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Abstract

The gcd-sum is an arithmetic function defined as the sum of the gcd’s of the

first n integers with n : g(n) =
∑n
i=1(i, n). The function arises in deriving

asymptotic estimates for a lattice point counting problem. The function

is multiplicative, and has polynomial growth. Its Dirichlet series has a

compact representation in terms of the Riemann zeta function. Asymptotic

forms for values of partial sums of the Dirichlet series at real values are

derived, including estimates for error terms.
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1. INTRODUCTION

This article is a study of the gcd-sum function: g(n) =
∑n
i=1(i, n). The

function arose in the context of a lattice point counting problem, for integer
coordinate points under the square root curve. The function is multiplica-
tive and has a derivative-like expression for its values at prime powers. The
growth function is O(n1+ε) and the corresponding Dirichlet seriesG(s) con-
verges at all points of the complex plane, except at the zeros of the Riemann
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zeta function and the point s = 2, where it has a double pole. Asymptotic
expressions are derived for the partial sums of the Dirichlet series at all
real values of s.
These results may be compared with those of [3, 4, 5] where a different
arithmetic class of sums of the gcd are studied, namely those based on
g(n) =

∑n
i,j=1(i, j) and its generalizations. Note that the functions fail to

be multiplicative.
The original lattice point problem which motivated this work is solved
using a method based on that of Vinogradov. The result is then compared
with an expression found using the gcd-sum.

2. GCD-SUM FUNCTION

The gcd-sum is defined to be

g(n) =

n
∑

j=1

(j, n) (1)

The function that is needed in the application to counting lattice points,
described below, is the function S defined by

S(n) =

n
∑

j=1

(2j − 1, n) (2)

Theorem 2.1. The function S and gcd-sum g are related by

S(n) =

{

g(n) n odd
2g(n)− 4g(n2 ) n even

(3)

Proof. For all n ≥ 1

n
∑

j=1

(2j, n) +

n
∑

j=1

(2j − 1, n) =
2n
∑

j=1

(j, n) = 2g(n) (4)

If n is odd,

n
∑

j=1

(2j, n) =

n
∑

j=1

(j, n) = g(n)

From this and (4) we obtain the equation S(n) = g(n).
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If n is even,

n
∑

j=1

(2j, n) = 2

n
∑

j=1

(j,
n

2
) = 4g(

n

2
)

and again the result follows by (4).

The following theorem gives the value of g at prime powers. Even though
a direct proof is possible, we give a proof by induction since it reveals more
of the structure of the function.

Theorem 2.2. For every prime number p and positive integer α ≥ 1:

g(pα) = (α + 1)pα − αpα−1 (5)

Proof. When α = 1:

g(p) = (1, p) + (2, p) + · · ·+ (p, p) = (p− 1) + p = 2p− 1

Similarly when α = 2:

g(p2) = (1, p2) + (2, p2) + · · ·+ (p, p2) + (p+ 1, p2) + · · ·+ (2p, p2) + · · ·+ (p2, p2)
= 1 + 1 · · ·+ p+ 1 + · · ·+ p+ · · ·+ p2

= (p2 − p) + p(p− 1) + p2

= 3p2 − 2p

Hence the result is true for α = 1 and for α = 2. Now for any α ≥ 2:

g(pα) =

pα−1
∑

j=1

(j, pα) +

pα−1
∑

j=pα−1+1

(j, pα) + pα

= g(pα−1) + pα +
pα−1
∑

j=pα−1+1

(j, pα − 1)

But

pα−1
∑

j=pα−1+1
(j, pα − 1) =

pα−pα−1−1
∑

j=1

(j, pα−1)

=

pα−pα−1
∑

j=1

(j, pα−1)− pα−1

= (p− 1)g(pα−1)− pα−1
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Hence

g(pα) = pα − pα−1 + pg(pα−1)
Thus, if we assume for some β that

g(pβ) = (β + 1)pβ − βpβ−1 ,

then

g(pβ+1) = pβ+1 − pβ + pg(pβ)
= pβ+1 − pβ + p

[

(β + 1)pβ + βpβ−1
]

= (β + 2)pβ+1 − (β + 1)pβ

and the result follows by induction.

Theorem 2.3. The following expression gives the function g in terms
of Euler’s totient function φ :

g(n) =

n
∑

j=1

(j, n) = n
∑

d|n

φ(d)

d
(6)

Proof. The integer e is equal to the greatest common divisor (j, n) if
and only if e|n and e|j and ( je , ne ) = 1 for 1 ≤ j ≤ n. Therefore the terms
with (j, n) = e are φ(ne ) in number. Grouping terms in the sum for g(n)
with value e together, it follows that

g(n) =
∑

e|n
eφ(
n

e
) =
∑

d|n

φ(d)

d/n
= n
∑

d|n

φ(d)

d

Corollary 2.1. The function g is multiplicative, being the divisor sum

of a multiplicative function.

Note that g is not completely multiplicative, nor does it satisfy any
modular style of identity of the form

g(n)g(m) =
∑

d|(m,n)
h(d)g(

mn

d2
)

3. BOUNDS
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Theorem 3.1. The function g is bounded above and below by the ex-

pressions

max(2− 1
n
,
(3

2

)ω(n)

) ≤ g(n)
n
≤ 27

( logn

ω(n)

)ω(n)

where n is any positive integer and ω(n) is the number of distinct prime
numbers dividing n.

Proof. The bound

g(n) =

n
∑

j=1

(j, n) ≥ 1(n− 1) + n = 2n− 1

gives the lower bound

2− 1
n
≤ g(n)
n

Now consider

g(n)

n
=
∏

p|n

g(pα)

pα
(by 2.1)

=
∏

p|n

(

(α+ 1)− α
p

)

(Theorem 2.2)

≥
∏

p|n
(2− 1

p
) ≥
(3

2

)ω(n)

since α ≥ 1 and p ≥ 2.

This completes the derivation of the second part of the lower bound.
By equation (5),

g(pα)

pα
= α(1− 1

p
) + 1 ≤ wα log p

where w = 3 if p = 2, 3, 5 or w = 1 if p ≥ 7. Hence, if pi ≥ 7 for every i
and n =

∏m
i=1 p

αi
i , then

g(n)

n
≤
m
∏

i=1

αi log pi =

m
∏

i=1

log(pαii )

Now

logn =

m
∑

i=1

αi log pi
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If f is the monomial function f(x) =
∏m
i=1 xi of real variables subject to

the constraints xi ≥ 1 and
∑

xi = α, for some fixed positive real number
α, then (using Lagrange multipliers) the maximum value of f is ( αm )

m and
occurs where each xi =

α
m . Hence

g(n)

n
≤
( logn

m

)m
=
( logn

ω(n)

)ω(n)

In general, using α1 = 1 if 2
�
n, etc.,

g(n)

n
≤ 27(α1 log p1)(α2 log p2)(α3 log p3)

∏

pi≥7
αi log pi

= 27

m
∏

i=1

αi log pi

≤ 27
( logn

ω(n)

)ω(n)

The upper bound in the expression given by the previous theorem is not
very useful, given the extreme variability of ω(n). A plot of the first 200
values of g(n)/n given in Figure 1 illustrates this variability. The following
estimates are more useful in practice.

Theorem 3.2. The functions g and S satisfy for all ε > 0

g(n) = O(n1+ε) (7)

S(n) = O(n1+ε). (7)

Proof. This follows immediately from Theorem 2.3, since φ(d) ≤ d and
the divisor function d(n) = O(nε).

4. DIRICHLET SERIES

Define a Dirichlet series based on the function g:

G(s) =

∞
∑

n=1

g(n)

ns
, for σ = <(s) > 2
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FIG. 1. The functions g(n)/n and nε

Theorem 4.1. The Dirichlet series for G(s) converges absolutely for
σ > 2 and has an analytic continuation to a meromorphic function defined
on the whole of the complex plane with value

G(s) =
ζ(s− 1)2
ζ(s)

where ζ(s) is the Riemann zeta function.

Proof. First write g as a Dirichlet product:

g(n) =
∑

d|n
φ(d)
n

d
= (φ ∗ g)(n)

Hence, if σ > 2,

G(s) =
(

∞
∑

n=1

φ(n)

ns
)(

∞
∑

n=1

n

ns
)

= ζ(s− 1)
(

∞
∑

n=1

φ(n)

ns
)

But [1]

φ(n) =
∑

d|n
µ(d)

n

d
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Therefore

G(s) = ζ(s− 1)2
(

∞
∑

n=1

µ(n)

ns
)

=
ζ(s− 1)2
ζ(s)

Since the right hand side is valid on the whole of the complex plane, G(s)
has the claimed analytic continuation with a double pole at s = 2 and a pole

at every zero of ζ(s).

We now derive asymptotic expressions for the partial sums of this Dirich-
let series of g by a method which employs good expressions for Dirichlet
series based on Euler’s function φ, leading to an improvement in the error
terms.
If α ∈ � , define the partial sum function Gα by

Gα(x) =
∑

n≤x

g(n)

nα

Lemma 4.1. If f(x) = O(log x) then
∑

n≤x f(
x
n ) = O(x).

Proof. This follows easily from the estimate

log(bxc!) = x log x− x+O(log x)

In what follows we define the constant function hα(x) = α for each real
number α.

Theorem 4.2. As x→∞

G1(x) =
x logx

ζ(2)
+O(x)

Proof. By Theorem 2.3, if f(n) = φ(n)/n,

g(n)

n
=
∑

d|n

φ(d)

d

= (h1 ∗ f)(n)
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If we define F (x) =
∑

n≤x f(n) then, by [1],

F (x) =
x

ζ(2)
+O(log x)

Therefore (using Lemma 5.1 to derive the error estimate)

G1(x) =
∑

n≤x
h1(n)F (

x

n
)

=
∑

n≤x
F (
x

n
)

=
x

ζ(2)
[1 +

1

2
+
1

3
+ · · ·+ 1

bxc ] +O(x)

=
x

ζ(2)
[logx+ γ +O(

1

x
)] +O(x)

=
x logx

ζ(2)
+O(x)

Theorem 4.3. As x→∞,

G0(x) =
x2 logx

2ζ(2)
+O(x2)

Proof. By Theorem 2.3 with f(n) = n:

g(n) =
∑

d|n

n

d
φ(d)

= (f ∗ φ)(n)
= (φ ∗ f)(n)

If we define F (x) =
∑

n≤x n then

F (x) =
bxc(bxc+ 1)

2
=
x2

2
+O(x)
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Therefore

G0(x) =
∑

n≤x
φ(n)F (

x

n
)

=
x2

2

∑

n≤x

φ(n)

n2
+O(x2)

=
x2 logx

2ζ(2)
+O(x2)

Lemma 4.2. For all α ∈ �

Gα(x) =
∑

n≤x
n1−αΦα(

x

n
)

where

Φα(x) =
∑

n≤x

φ(n)

nα

Proof. Define the monomial function mβ(x) = x
−β for all real β and

positive x. By Theorem 2.3,

g(n)

nα
=
∑

d|n

φ(d)

dα
(
n

d
)1−α

= (φα ∗mα−1)(n)

The lemma follows directly from this expression.

Below we derive an asymptotic expression for Gα for all real values of
α. This is interesting because of the uniform applicability of the same
expression. First we set out some standard estimates [1] which are collected
together below for easy reference. Let

Sα(x) =
∑

n≤x

1

nα

for all positive x and real α. Then
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(a) Φ0(x) =
x2

2ζ(2)
+O(x log x)

(b) Φ1(x) =
x

ζ(2)
+O(log x)

(c) Φ2(x) =
logx

ζ(2)
+
γ

ζ(2)
−A+O( log x

x
)

(d) Φα(x) =
x2−α

(2− α)ζ(2) +
ζ(α− 1)
ζ(α)

+O(x1−α logx), α > 1, α 6= 2

(e) Φα(x) =
x2−α

(2− α)ζ(2) +O(x
1−α logx), α ≤ 1

(A) S1(x) = logx+ γ +O(
1

x
)

(B) Sα(x) =
x1−α

1− α + ζ(α) +O(
1

xα
), α > 0, α 6= 1

(C) Sα(x) =
x1−α

1− α +O(
1

xα
), α ≤ 0

where in (c)

A =

∞
∑

n=1

µ(n) log n

n2 � −0.35

Note that there are better estimates for the error terms, for

(a) O(x log
2

3 x(log logx)1+ε) [8] and for (b) O(log
2

3 x(log logx)
4

3 ) [9] but,
since these are only available for α = 0 and α = 1 we do not use them.
Even though there is a wide diversity of expressions in this set, a very
similar expression holds for Gα(x), for all real values of α, except α = 2
which corresponds to the pole of G(s):

Theorem 4.4. If α < 2:

Gα(x) =
x2−α logx

(2− α)ζ(2) +O(x
2−α),

if α = 2:

G2(x) =
log2 x

2ζ(2)
+O(log x)

and if α > 2:

Gα(x) =
x2−α logx

(2− α)ζ(2) +
ζ(α − 1)2
ζ(α)

+O(x2−α).
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Proof.

Case 0: Let α = 0. The stated result is given by Theorem 5.4 above.
Case 1: Let α = 1. The result is given by Theorem 5.3.
Case 2: Let α = 2.

G2(x) =
∑

n≤x
n−1Φ2(

x

n
)

=
∑

n≤x

log( xn )

nζ(2)
+ (

γ

ζ(2)
−A)

∑

n≤x
n−1 +

∑

n≤x
O
(

n−1
log( xn )

x/n

)

=
logx

ζ(2)
(
∑

n≤x

1

n
)− 1

ζ(2)

∑

n≤x

logn

n
+ (

γ

ζ(2)
−A)(

∑

n≤x

1

n
) +O(1)

= [
logx

ζ(2)
+
γ

ζ(2)
−A][log x+ γ +O( 1

x
)]− 1

ζ(2)
[
log2 x

2
+A1 +O(

log x

x
)] + O(1)

=
log2 x

2ζ(2)
+ logx[

2γ

ζ(2)
−A] +O(1)

Case 3: If α < 1 we have

Gα(x) =
∑

n≤x

1

nα−1
Φα(
x

n
)

=
∑

n≤x

1

nα−1
x2−α

n2−α(2− α)ζ(2) +
∑

n≤x
O
(

x1−α log(
x

n
)
)

=
x2−α

(2− α)ζ(2) (
∑

n≤x

1

n
) +O(x2−α)

=
x2−α

(2− α)ζ(2) [logx+ γ +O(
1

x
)] +O(x2−α)

=
x2−α logx

(2− α)ζ(2) +O(x
2−α)
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Case 4: Finally, if α > 1 and α 6= 2:

Gα(x) =
∑

n≤x

1

nα−1
Φα(
x

n
)

=
∑

n≤x

1

nα−1
[ x2−α

n2−α(2− α)ζ(2) +
ζ(α − 1)
ζ(α)

+O(
x1−α

n1−α
log(
x

n
))
]

=
x2−α

(2− α)ζ(2) (
∑

n≤x

1

n
) +
ζ(α− 1)
ζ(α)

(
∑

n≤x

1

nα−1
) +O(x2−α)

=
x2−α

(2− α)ζ(2) [logx+ γ +O(
1

x
)]

+
ζ(α− 1)
ζ(α)

[
x2−α

2− α + ζ(α − 1) +O(x
1−α)] +O(x2−α)

=
x2−α log x

(2− α)ζ(2) +
ζ(α − 1)2
ζ(α)

+O(x2−α)

For α ∈ {0, 1, 2}we can improve these asymptotic expressions by deriving
an additional term and a smaller error. This has already been done for
α = 2. In both of the remaining cases we use the following useful, and
again elementary, device [1]: If ab = x, F (x) =

∑

n≤x f(n) and H(x) =
∑

n≤x h(n) then

∑

e,d≤x
f(e)h(d) =

∑

n≤a
f(n)H(

x

n
) +
∑

n≤b
h(n)F (

x

n
)− F (a)H(b)

in the special case a = b =
√
x.

Theorem 4.5.

G1(x) =
x log x

ζ(2)
+ x[

2γ

ζ(2)
−A− 1

ζ(2)
] +O(

√
x logx)

Proof. First rewrite G1(x):

G1(x) =
∑

n≤x
Φ1(
x

n
) (by Lemma 4.2)

=
∑

n≤x

∑

m≤x/n

φ(n)

n

=
∑

e,d≤x

φ(d)

d
1.
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Now let F and H be defined by

F (x) =
∑

n≤x

φ(n)

n
=
x

ζ(2)
+O(log x)

H(x) =
∑

n≤x
1 = bxc

Using the device described above, rewrite G1 in terms of F and H :

G1(x) =
∑

n≤√x

φ(n)

n
H(
x

n
) +

∑

n≤√x
F (
x

n
)− F (

√
x)H(

√
x)

=
∑

n≤√x

φ(n)

n
[
x

n
+O(1)] +

∑

n≤√x
[
x

nζ(2)
+O(log(

x

n
))]

−(
√
x

ζ(2)
+O(log(x)))(

√
x+O(1))

= x
∑

n≤√x

φ(n)

n2
+O(

∑

n≤√x

φ(n)

n
) +

x

ζ(2)

∑

n≤√x

1

n

+O(
√
x logx) +O(

∑

n≤√x
logn)− x

ζ(2)
+O(

√
x logx)

= x[
logx

2ζ(2)
+
γ

ζ(2)
−A+O( log(x)√

x
] +O(

√
x)

+
x

ζ(2)
[log b

√
xc+ γ +O( 1√

x
)]

+O(
√
x logx) +O(log[

√
x]!)− x

ζ(2)

=
x logx

ζ(2)
+ x[

2γ

ζ(2)
−A− 1

ζ(2)
] +O(

√
x logx).

Theorem 4.6.

G2(x) =
log2 x

2ζ(2)
+ logx[

2γ

ζ(2)
−A] +O(1)

Proof. See the proof of Theorem 5.4, case 2 above.
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Theorem 4.7.

G0(x) =
x2 logx

2ζ(2)
+
x2ζ(2)2

2ζ(3)
+O(x3/2 logx)

Proof. First we state four estimates:

(1) G1(x) =
∑

n≤x

g(n)

n
=
x logx

ζ(2)
+O(x) (Theorem 4.2)

(2) F (x) =
∑

n≤x
n =

x2

2
+O(x)

(3)
∑

n≤x
logn = x logx+O(x)

(4) G3(x) =
ζ(2)2

ζ(3)
+O(

log x

x
) (by Theorem 4.4)

Expand G0 using f(n) = n and h(n) = g(n)/n so H = G1:

G0(x) =
∑

n≤x
g(n) =

∑

n≤x

g(n)

n
n

=
∑

n≤√x

g(n)

n
F (
x

n
) +
∑

n≤√x
nG1(

x

n
)− F (

√
x)G1(

√
x)

=
∑

n≤√x

g(n)

n
[
x2

2n2
+O(

x

n
)] +

∑

n≤√x
n[
x
n log

x
n

ζ(2)
+O(

x

n
)]

−(x
2
+O(

√
x))(

√
x logx

2ζ(2)
+O(

√
x)) (by (1) and (2))

=
x2

2

∑

n≤√x

g(n)

n3
+O
(

∑

n≤√x

g(n)

n2
)

+
x logx

ζ(2)

∑

n≤√x
1

− x

ζ(2)

∑

n≤√x
logn+O(x

∑

n≤√x
1)− x

3/2 logx

4ζ(2)
+O(x3/2)

=
x2

2
G3(
√
x) +O(log2 x) +

x2 logx

2ζ(2)
+O(x3/2 log x)

− x

ζ(2)
[

√
x logx

2
+O(

√
x)] +O(x3/2)− x

3/2 logx

4ζ(2)
+O(x3/2) (by (3))
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Therefore

G0(x) =
x2

2
[
ζ(2)2

ζ(3)
+O(

log x√
x
)] +

x2 logx

2ζ(2)

− x

ζ(2)
[

√
x logx

2
+O(

√
x)]

−x
3/2 logx

4ζ(2)
+O(x3/2 logx) (using (4))

=
x2 logx

2ζ(2)
+
x2ζ(2)2

2ζ(3)
+O(x3/2 logx)

5. APPLICATION

Consider the problem of counting the integer lattice points in the first
quadrant in the square [0, R] × [0, R] and under the curve y =

√
Rx as

R→∞.
Let R = n2 and count lattice points by adding those in trapezia under
the curve. If T is a trapezium with integral coordinates for each vertex
(0, 0), (b, 0), (0, α), and (b, β), then by Pick’s theorem [6] the area is equal
to the number of interior points plus one half the number of interior points
on the edges plus one. From this it follows that the total number of interior
lattice points is given by the expression

1

2
[(b− 1)(α+ β)− b− (b, β − α) + 2]

where (u, v) is the greatest common divisor.
We approximate the region under the curve y = n

√
x and above the

interval [0, n2] by n trapezia with the j-th having the base [(j − 1)2, j2].
Divide the lattice points inside and on the boundary of these trapezia into
five sets:

L1 = #{interior points of trapezia}
L2 = #{interior points of vertical sides}
L3 = #{interior points of the top sides}
L4 = #{interior points of the bottom sides}
L5 = #{vertices of all trapezia}



17

Then

L1 =

n
∑

j=1

1

2
[(2j − 1)(nj + n(j − 1))− (2j − 1)− n(j − 1)− nj − (2j − 1, n) + 2]

L2 =
n−1
∑

j=1

nj − 1 = n
3

2
− n

2

2
− n+ 1

L3 =
n
∑

j=1

[(n, 2j − 1)− 1] = S(n)− n where S is defined in (2)

L4 =

n
∑

j=1

2j − 2 = n2 − n

L5 = 2n+ 1

Hence if N1(R) represents the total number of lattice points,

N1(R) = L1 + L2 + L3 + L4 + L5

=
2

3
n4 − 1

6
n2 +

1

2
S(n)

N1(n
2) =

2

3
n4 − 1

6
n2 +O(n

1

2
+ε)

by Theorem 3.2.
It is interesting to note that the area of the gap between the curve and
the trapezia is exactly 16n

2.
The total number of points in the trapezia is of course less than the
number under the curve. There are n trapezia, the j-th having width
2j − 1. The maximum distance from the top of the j-th trapezia to the
curve is n/4(2j − 1), so the number of additional points is O(n2). This
leads to the estimate

N2(n
2) =

2

3
n4 +O(n2)

for the number N2 of lattice points under the curve.
Now a more accurate estimate for N2 is derived. First the method of
Vinogradov [7] is used to count the fractional parts of the inverse function
x = y2/R:
Let b− a� A where A� 1. Let f be a function defined on the positive
real numbers with f ′′ continuous, 0 < f ′(x) � 1 and having f ′′(x) � 1

A .
Then
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∑

a<u≤b
{f(u)} = b− a

2
+O(A

2

3 )

If A = n, f(u) = u2/n, and f ′′(u) = 2/n� A−1 then it follows that
∑

0<u≤n
{f(u)} = n

2
+O(n

2

3 )

Hence the number of lattice pointsM(n) under or on the inverse function
curve is

M(n) =

n
∑

j=1

⌊j2

n

⌋

+ n+ 1

=

n
∑

j=1

j2

n
−

n
∑

j=1

{ j2

n

}

+ n+ 1

=
1

6
(n+ 1)(2n+ 1) +

n

2
+O(n

2

3 )

So if N2(n) represents the number of lattice points strictly under the
curve y =

√
Rx when R = n, then

N2(n) = (n+ 1)
2 − 1
6
(n+ 1)(2n+ 1)− n

2
+O(n

2

3 )

=
2

3
n2 + n+ O(n

2

3 )

The number of lattice points on the curve is O(n
1

2 ), so does not change
this estimate.
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