CxxTest User’s Guide

$Revision: 1.71 $

Erez Volk, erez_v at users dot sourceforge dot net

mailto:erez_v at users dot sourceforge dot net

Table of Contents

1 Introduction............ ... nnnnnn. 1
1.1 About this guide 1
2 Getting started i i 2
2.1 Getting CxXTest . ..ot 2
2.2 Your first test!o 2
2.3 Your second test 2
2.4 Graphical user interface. 3
3 Really using CxxTest........coiiiiiiiiiiiiiiiiiinnn.. 4
3.1 What can you test. 4
3. L1 TS _FAIL ..ot 6

31,2 TS _ASSERT . .ottt et ettt 6

3.1.3 TS_ASSERT_EQUALSttt e e e e e et 6

3.1.4 TS_ASSERT_SAME _DATA e 6

3.1.5 TS _ASSERT _DELTA. ...t e e et e 6

3.1.6 TS_ASSERT_DIFFERSo\ttt ettt e e ettt 6

3.1.7 TS_ASSERT_LESS _THANttt e 6

3.1.8 TS_ASSERT_LESS_THAN_EQUALS 7

3.1.9 TS_ASSERT_PREDICATEttt e e 7

3.1.10 TS_ASSERT_RELATIONttt e et 7

3.1.11 TS_ASSERT_THROWS and friends 7

3.1.12 TS_TRACE and TS_WARNttt et 8

3.1.13 The ETS_ INACTOSttt e e e e e e e e e e e e e e 8

3.1.14 The TSM_ IMACTOS .« + « e te vt te e et e e e e e e ettt et 8
3.1.14.1 The ETSM_ IACTOS .+« « v voe ettt et e e e 9

3.2 Running the samples 9
3.3 Test fIXOUTES . . oot 9
3.3.1 Test suite level fixtures. 9

3.4 Integrating with your build environment, 9
341 OVETVIEW . ..ottt et e e e e e e e 10

3.4.2 Actually doing it 10

3.4.2.1 Using Makefiles 10

3.4.22 USiNg CONS . oottt e e 10

3.4.2.3 Using Microsoft Visual Studio............................ 10

3.4.2.4 Using Microsoft Windows DDK 11

3.5 Graphical user interface.o 11
3.5.1 Starting the GUI minimized 11

3.5.2 Leaving the GUL open........... o . 11

4 Advanced topicsciiiiiiiiii e 13
4.1 Aborting tests after failures 13
4.1.1 Controlling this behavior at runtime............................ ... 13

4.2 Commenting out tests 13
4.3 Comparing equality for your own types 14
4.3.1 The equality operator........ 14

4.3.2 Value traitso 14

4.3.3 UnKnown tyPest 14

4.3.4 Enumeration traits........... ... 15

4.3.5 Defining new value traits......... 15

4.3.5.1 Defining value traits for template classes.................. 16

4.3.6 Overriding the default value traits 16

4.4 Global Fixtures 16
4.4.1 World fiXtures 17

4.5 Mock ObJeCtS . . oottt 17
4.5.1 Actually doing it ... 18

4.5.2 Advanced topic with mock functions 18

4.5.2.1 Void functions 18

4.5.2.2 Calling the real functions while testing.................... 18

4.5.2.3 When there is no real function 19

4.5.2.4 Functions in Namespacesouuuvineennennnenn... 19

4.5.2.5 Overloaded functions 19

4.5.2.6 Changing the mock namespace........................... 20

4.6 Test Listeners and Test Runners........... 20
4.6.1 Other test listeners 20

4.6.1.1 The stdioprinter........... ..o, 20

4.6.1.2 The Yes/Norunner................oiiiiiiiiiaiiaan... 20

4.6.1.3 Template files............ i 20

4.7 Dynamically creating test suites.......... 21
4.8 Static initialization 21
Appendix A Command line options....................... 22
Al =mverSIon 22
A2 mmOUEPUL oo 22
A3 ‘mmerror-printer’ 22
A TUnDeT . 22
AD fmmgud 22
A6 m=Ancdude’ .. 22
AT fmmtemplate’ 23
A8 mmhave—€h . .. 23
AL o L 23
AT0 ==have—std ... 23
A LD =mmo=std .. 23
A12 ==1onglong . .o 23
A 13 mmabort—on—fail’ ... 23
AT mmpart 24
AL LD om0t 24
AL6 ‘——no-static—indt 24

iii

Appendix B Controlling the behavior of CxxTest.......... 25

Bl CXXTEST_HAVE _STD. . ..ttt ettt e e e e e e e e e e et 25
B.2 CXXTEST_HAVE_EH.o e e 25
B.3 CXXTEST_ABORT_TEST_ON_FATL\ttt e et 25
B.4 CXXTEST_USER_VALUE _TRAITSttt e e e e 25
B.5 CXXTEST_OLD_TEMPLATE_SYNTAXttt e e e e e e e 25
B.6 CXXTEST_OLD_STD . ..ttt ettt e et e e e e e e e e e e e e e e 25
B.7 CXXTEST_MAX_DUMP_SIZEttt e e e e e 25
B.8 CXXTEST_DEFAULT _ABORTottt ettt et e e e e e e e e 25
B.9 CXXTEST_LONGLONG ottt ettt e et e e e e e e e e e e et et e 25

Appendix C Runtimeoptions 26

C.1 setAbortTestOnFail(bool)t 26
C.2 setMaxDumpSize(unsigned) ..., 26

Appendix D Version history.............................. 27

Chapter 1: Introduction 1

1 Introduction

CxxTest is a JUnit/CppUnit/xUnit-like framework for C++.
Its advantages over existing alternatives are that it:
e Doesn’t require RTTI
e Doesn’t require member template functions
e Doesn’t require exception handling
e Doesn’t require any external libraries (including memory management, file/console 1/0,

graphics libraries)

In other words, CxxTest is designed to be as portable as possible. Its only requirements are a
reasonably modern C++ compiler and either Perl or Python. However, when advanced features
are supported in your environment, CxxTest can use them, e.g. catch unhandled exceptions and
even display a GUL

In addition, CxxTest is slightly easier to use than the C++ alternatives, since you don’t need
to “register” your tests. It also features some extras like a richer set of assertions and even
support for a “to do” list (see TS_WARN()).

CxxTest is available under the GNU Lesser General Public License.

1.1 About this guide

This guide is not intended as an introduction to Extreme Progamming and/or unit testing. It
describes the design and usage of CxxTest.

http://junit.org/
http://cppunit.sourceforge.net
http://xprogramming.com/software.html
http://www.gnu.org/copyleft/lesser.html

Chapter 2: Getting started 2

2 Getting started

2.1 Getting CxxTest

The homepage for CxxTest is http://cxxtest.sourceforge.net. You can always get the
latest release from the SourceForge download page, here or here. The latest version of this guide
is available online at http://cxxtest.sourceforge.net/guide.html. A PDF version is also
available at http://cxxtest.sourceforge.net/guide.pdf.

2.2 Your first test!

Here’s a simple step-by-step guide:
1. Tests are organized into “Test Suites”. Test suites are written in header files.

A test suite is a class that inherits from CxxTest::TestSuite. A test is a public
void (void) member function of that class whose name starts with test, e.g.
testDirectoryScanner (), test_cool_feature() and even TestImportantBugFix().

// MyTestSuite.h
#include <cxxtest/TestSuite.h>

class MyTestSuite : public CxxTest::TestSuite
{
public:
void testAddition(void)
{
TS_ASSERT(1 + 1 > 1);
TS_ASSERT_EQUALS(1 + 1, 2);
}
s

2. After you have your test suites, you use CxxTest to generate a “test runner” source file:
cxxtestgen.pl ——error-printer -o runner.cpp MyTestSuite.h
or, for those less fortunate:
C:\tmp> perl -w cxxtestgen.pl --error-printer -o runner.cpp MyTestSuite.h
3. You would then simply compile the resulting file:
g++ -0 runner runner.cpp
or perhaps
C:\tmp> cl -GX -o runner.exe runner.cpp
or maybe even
C:\tmp> bcc32 -erunner.exe runner.cpp
4. Finally, you run the tests and enjoy a well tested piece of software:

./runner
Running 1 test.OK!

2.3 Your second test

Now let’s see what failed tests look like. We will add a failing test to the previous example:

// MyTestSuite.h
#include <cxxtest/TestSuite.h>

class MyTestSuite : public CxxTest::TestSuite

http://cxxtest.sourceforge.net
http://sourceforge.net/project/showfiles.php?group_id=52834
http://dl.sourceforge.net/cxxtest
http://cxxtest.sourceforge.net/guide.html
http://cxxtest.sourceforge.net/guide.pdf

Chapter 2: Getting started 3

{
public:
void testAddition(void)

{
TS_ASSERT(1 + 1 > 1);
TS_ASSERT_EQUALS(1 + 1, 2);
}

void testMultiplication(void)
{

TS_ASSERT_EQUALS(2 * 2, 5);
}
};
Generate, compile and run the test runner, and you will get this:

./runner

Running 2 tests.

MyTestSuite.h:15: Expected (2 * 2 == 5), found (4 != b)
Failed 1 of 2 tests

Success rate: 50%

Fixing the bug is left as an excercise to the reader.

2.4 Graphical user interface

(v3.0.1) CxxTest can also display a simple GUIL. The way to do this is depends on your compiler,
OS and environment, but try the following pointers:

e Under Windows with Visual C++, run perl cxxtestgen.pl -o runner.cpp
--gui=Win32Gui MyTestSuite.h.

e Under X-Windows, try ./cxxtestgen.pl —o runner.cpp --gui=X11Gui MyTestSuite.
You may need to tell the compiler where to find X, usually something like g++ -o runner
-L/usr/X11R6/1ib runner.cpp -1X11.

e If you have Qt installed, try running cxxtestgen.pl with the option --gui=QtGui. As
always, compile and link the the Qt headers and libraries.

See Graphical user interface and Running the samples for more information.

http://www.trolltech.com

Chapter 3: Really using CxxTest 4

3 Really using CxxTest

There is much more to CxxTest than seeing if two times two is four. You should probably take a
look at the samples in the CxxTest distribution. Other than that, here are some more in-depth
explanations.

3.1 What can you test

Here are the different “assertions” you can use in your tests:

Macro Description Example

TS_FAIL(message) Fail unconditionally TS_FAIL("Test not implemented") ;
TS_ASSERT (ezpr) Verify (expr) is true TS_ASSERT (messageReceived()) ;
TS_ASSERT_EQUALS(z, y) Verify (x==y) TS_ASSERT_EQUALS (nodeCount (), 14);

TS_ASSERT_SAME_DATA(z, y, size) Verify two buffers are TS_ASSERT_SAME_DATA(input, output,,

equal size);
TS_ASSERT_DELTA(z, y, d) Verify (x==y) up to d TS_ASSERT_DELTA (sqrt(4.0), 2.0,
0.0001);
TS_ASSERT_DIFFERS(z, vy) Verify ! (x==y) TS_ASSERT_DIFFERS (exam.numTook (),

exam.numPassed());

TS_ASSERT_LESS_THAN(z,) Verify (x<y) TS_ASSERT_LESS_THAN (ship.speed(),
SPEED_OF _LIGHT) ;

TS_ASSERT_LESS_THAN_EQUALS (z, Verify (x<=y) TS_ASSERT_LESS_THAN_EQUALS (requests,

y) items);

TS_ASSERT_PREDICATE(R, x) Verify P(x) TS_ASSERT_PREDICATE(SeemsReasonable,
salary);

TS_ASSERT_RELATION(R, =z, y) Verify xR y TS_ASSERT_RELATION(std::greater,

salary, average);

TS_ASSERT_THROWS Cexpr, type) Verify that (expr) throws TS_ASSERT_THROWS (parse(file),

a specific type of exception Parser::ReadError) ;

TS_ASSERT_THROWS_EQUALS (expr, Verify type and value of (See text)
arg, x, y) what (expr) throws
TS_ASSERT_THROWS_ASSERT (expr, Verify type and value of (See text)
arg, assertion) what (expr) throws

TS_ASSERT_THROWS_ANYTHING (ezpr) Verify that (expr) throws TS_ASSERT_THROWS_ANYTHING (buggy()) ;
an exception

TS_ASSERT_THROWS_NOTHING (Cexpr) Verify that (expr) doesn’t TS_ASSERT_THROWS_NOTHING (robust());
throw anything

Chapter 3: Really using CxxTest

TS_WARN (message) Print message as a warn-
ing
TS_TRACE (message) Print message as an infor-

mational message

TS_WARN("TODO: Check invalid

parameters") ;

TS_TRACE(errno) ;

Chapter 3: Really using CxxTest 6

3.1.1 TS_FAIL

TS_FAIL just fails the test. It is like an assert(false) with an error message. For example:

void testSomething(void)

{
TS_FAIL("I don’t know how to test this!");
}

3.1.2 TS_ASSERT

TS_ASSERT is the basic all-around tester. It works just like the well-respected assert () macro
(which I sincerely hope you know and use!) An example:
void testSquare(void)

{
MyFileLibrary::createEmptyFile("test.bin");

TS_ASSERT(access("test.bin", 0) == 0);
}

3.1.3 TS_ASSERT_EQUALS

This is the second most useful tester. As the name hints, it is used to test if two values are
equal.
void testSquare(void)

{
TS_ASSERT_EQUALS(square(-5), 25);
}

3.1.4 TS_ASSERT_SAME_DATA

(v3.5.1) This assertion is similar to TS_ASSERT_EQUALS (), except that it compares the contents
of two buffers in memory. If the comparison fails, the standard runner dumps the contents of
both buffers as hex values.

void testCopyMemory(void)

{
char input[77], output[77];
myCopyMemory(output, input, 77);
TS_ASSERT_SAME_DATA(input, output, 77);
}

3.1.5 TS_ASSERT_DELTA

Similar to TS_ASSERT_EQUALS (), this macro verifies two values are equal up to a delta. This is
basically used for floating-point values.
void testSquareRoot(void)

{
TS_ASSERT_DELTA(squareRoot(4.0), 2.0, 0.00001);

}

3.1.6 TS_ASSERT_DIFFERS

The opposite of TS_ASSERT_EQUALS (), this macro is used to assert that two values are not equal.

void testNumberGenerator(void)
{
int first = generateNumber();
int second = generateNumber() ;
TS_ASSERT_DIFFERS(first, second);
}

Chapter 3: Really using CxxTest 7

3.1.7 TS_ASSERT_LESS_THAN

This macro asserts that the first operand is less than the second.

void testFindLargerNumber(void)

{
TS_ASSERT_LESS_THAN(23, findLargerNumber(23));

}

3.1.8 TS_ASSERT_LESS_THAN_EQUALS

(v3.7.0) Not surprisingly, this macro asserts that the first operand is less than or equals the second.

void testBufferSize(void)

{
TS_ASSERT_LESS_THAN_EQUALS(bufferSize(), MAX_BUFFER_SIZE);

}

3.1.9 TS_ASSERT_PREDICATE

(v3.8.2) This macro can be seen as a generalization of TS_ASSERT (). It takes as an argument the
name of a class, similar to an STL unary_function, and evaluates operator (). The advantage
this has over TS_ASSERT () is that you can see the failed value.

class IsPrime

{
public:
bool operator() (unsigned) const;

};
// ...

void testPrimeGenerator(void)
{

TS_ASSERT_PREDICATE(IsPrime, generatePrime());
}

3.1.10 TS_ASSERT_RELATION

(v3.8.0) Closely related to TS_ASSERT_PREDICATE(), this macro can be seen as a generalization of
TS_ASSERT_EQUALS (), TS_ASSERT_DIFFERS(), TS_ASSERT_LESS_THAN() and TS_ASSERT_LESS_
THAN_EQUALS (). It takes as an argument the name of a class, similar to an STL binary_
function, and evaluates operator(). This can be used to very simply assert comparisons
which are not covered by the builtin macros.

void testGreater(void)

{
TS_ASSERT_RELATION(std::greater<int>, ticketsSold(), 1000);

}

3.1.11 TS_ASSERT_THROWS and friends

These assertions are used to test whether an expression throws an exception. TS_ASSERT_THROWS
is used when you want to verify the type of exception thrown, and TS_ASSERT_THROWS_ANYTHING
is used to just make sure something is thrown. As you might have guessed, TS_ASSERT_THROWS_
NOTHING asserts that nothing is thrown.

(v3.10.0) TS_ASSERT_THROWS_EQUALS checks the type of the exception as in TS_ASSERT_THROWS
then allows you to compare two value (one of which will presumably be the caught object). TS_
ASSERT_THROWS_ASSERT is the general case, and allows you to make any assertion about the

Chapter 3: Really using CxxTest 8

thrown value. These macros may seem a little complicated, but they can be very useful; see
below for an example.

void testFunctionsWhichThrowExceptions(void)

{
TS_ASSERT_THROWS_NOTHING(checkInput(1l));
TS_ASSERT_THROWS(checkInput(-11), std::runtime_error);
TS_ASSERT_THROWS_ANYTHING(thirdPartyFunction());

TS_ASSERT_THROWS_EQUALS(validate(), const std::exception &e,
e.what(), "Invalid value");

TS_ASSERT_THROWS_ASSERT(validate(), const Error &e,
TS_ASSERT_DIFFERS(e.code(), SUCCESS));

3.1.12 TS_TRACE and TS_WARN

(v3.0.1) TS_WARN just prints out a message, like the #warning preprocessor directive. I find it
very useful for “to do” items. For example:

void testToDoList(void)

{
TS_WARN("TODO: Write some tests!");
TS_WARN("TODO: Make $$$ fast!");

}

In the GUI, TS_WARN sets the bar color to yellow (unless it was already red).
(v3.9.0) TS_TRACE is the same, except that it doesn’t change the color of the progress bar.

3.1.13 The ETS_ macros

The TS_ macros mentioned above will catch exceptions thrown from tested code and fail the
test, as if you called TS_FAIL(). Sometimes, however, you may want to catch the exception
yourself; when you do, you can use the ETS_ versions of the macros.

void testInterestingThrower ()

{
// Normal way: if an exception is caught we can’t examine it
TS_ASSERT_EQUALS(foo(2), 4);

// More elaborate way:
try { ETS_ASSERT_EQUALS(foo(2), 4); }
catch(const BadFoo &e) { TS_FAIL(e.bar()); }

3.1.14 The TSM_ macros

Sometimes the default output generated by the ErrorPrinter doesn’t give you enough informa-
tion. This often happens when you move common test functionality to helper functions inside
the test suite; when an assertion fails, you do not know its origin.

In the example below (which is the file ‘sample/MessageTest.h’ from the CxxTest distribu-
tion), we need the message feature to know which invocation of checkValue() failed:

class MessageTest : public CxxTest::TestSuite
{
public:
void testValues()
{
checkValue(0, "My hovercraft");
checkValue(1, "is full");
checkValue(2, "of eels");

Chapter 3: Really using CxxTest 9

}

void checkValue(unsigned value, const char *message)
{
TSM_ASSERT(message, value);
TSM_ASSERT_EQUALS(message, value, value * value);
}
};

3.1.14.1 The ETSM_ macros

Note: As with normal asserts, all TSM_ macros have their non-exception-safe counterparts, the
ETSM_ macros.

3.2 Running the samples

CxxTest comes with some samples in the ‘sample/’ subdirectory of the distribution. If you
look in that directory, you will see three Makefiles: ‘Makefile.unix’, ‘Makefile.msvc’ and
‘Makefile.bcc32’ which are for Linux/Unix, MS Visual C++ and Borland C++, repectively.
These files are provided as a starting point, and some options may need to be tweaked in them
for your system.

If you are running under Windows, a good guess would be to run nmake -fMakefile.msvc

run_win32 (you may need to run VCVARS32.BAT first). Under Linux, make -fMakefile.unix
run_x11 should probably work.

3.3 Test fixtures

When you have several test cases for the same module, you often find that all of them start with
more or less the same code—creating objects, files, inputs, etc. They may all have a common
ending, too—cleaning up the mess you left.

You can (and should) put all this code in a common place by overriding the virtual functions
TestSuite::setUp() and TestSuite::tearDown(). setUp() will then be called before each
test, and tearDown() after each test.

class TestFileOps : public CxxTest::TestSuite

{
public:
void setUp() { mkdir("playground"); }
void tearDown() { system("rm -Rf playground"); }
void testCreateFile()
{
FileCreator fc("playground");
fc.createFile("test.bin");
TS_ASSERT_EQUALS(access("playground/test.bin", 0), 0);
}
I

Note new users: This is probably the single most important feature to use when your tests
become non-trivial.

3.3.1 Test suite level fixtures

setUp () /tearDown() are executed around each test case. If you need a fixture on the test suite
level, i.e. something that gets constructed once before all the tests in the test suite are run, see
Dynamically creating test suites below.

Chapter 3: Really using CxxTest 10

3.4 Integrating with your build environment

It’s very hard to maintain your tests if you have to generate, compile and run the test runner
manually all the time. Fortunately, that’s why we have build tools!

3.4.1 Overview

Let’s assume you’re developing an application. What I usually do is the following:

e Split the application into a library and a main module that just calls the library classes.
This way, the test runner will be able to access all your classes through the library.

e Create another application (or target, or project, or whatever) for the test runner. Make
the build tool generate it automatically.

e For extra points, make the build tool run the tests automatically.

3.4.2 Actually doing it

Unfortunately, there are way too many different build tools and IDE’s for me to give ways to
use CxxTest with all of them.

I will try to outline the usage for some cases.

3.4.2.1 Using Makefiles

Generating the tests with a makefile is pretty straightforward. Simply add rules to generate,
compile and run the test runner.
all: 1ib run_tests app

Rules to build your targets
lib: ...

app: ...

A rule that runs the unit tests
run_tests: runner
. /runner

How to build the test runner
runner: runner.cpp lib
g++ —o $0 $~

How to generate the test runner
runner.cpp: SimpleTest.h ComplicatedTest.h
cxxtestgen.pl -o $@ --error-printer $~

3.4.2.2 Using Cons

Cons is a powerful and versatile make replacement which uses Perl scripts instead of Makefiles.

See ‘sample/Construct’ in the CxxTest distribution for an example of building CxxTest test
runners with Cons.

3.4.2.3 Using Microsoft Visual Studio

I have tried several ways to integrate CxxTest with visual studio, none of which is perfect. Take
a look at ‘sample/msvc’ in the distribution to see the best solution I'm aware of. Basically, the
workspace has three projects:

http://dsmit.com/cons/

Chapter 3: Really using CxxTest 11

e The project CxxTest_3_Generate runs cxxtestgen.
e The project CxxTest_2_Build compiles the generated file.

e The project CxxTest_1_Run runs the tests.

This method certainly works, and the test results are conveniently displayed as compilation
errors and warnings (for TS_WARN()). However, there are still a few things missing; to integrate
this approach with your own project, you usually need to work a little bit and tweak some
makefiles and project options. I have provided a small script in ‘sample/msvc/FixFiles.bat’
to automate some of the process.

3.4.2.4 Using Microsoft Windows DDK

Unit testing for device drivers?! Why not? And besides, the ‘build’ utility can also be used to
build user-mode application.

To use CxxTest with the ‘build’ utility, you add the generated tests file as an extra depen-
dency using the NTBUILDTARGETO macro and the ‘Makefile.inc’ file.

You can see an example of how to do this in the CxxTest distribution under ‘sample/winddk’.

3.5 Graphical user interface

There are currently three GUIs implemented: native Win32, native X11 and Qt. To use this
feature, just specify ‘--gui=X11Gui’, ‘--gui=Win32Gui’ or ‘--gui=QtGui’ as a parameter for
‘cxxtestgen’ (instead of e.g. ‘-—error-printer’). A progress bar is displayed, but the results
are still written to standard output, where they can be processed by your IDE (e.g. Emacs or
Visual Studio). The default behavior of the GUI is to close the window after the last test.

Note that whatevr GUI you use, you can combine it with the ‘--runner’ option to
control the formatting of the text output, e.g. Visual Studio likes it better if you use
‘-—runner=ParenPrinter’.

3.5.1 Starting the GUI minimized

If you run the generated Win32 or Qt GUIs with the command line ‘-minimized’, the test
window will start minimized (iconified) and only pop up if there is an error (the bar turns red).
This is useful if you find the progress bar distracting and only want to check it if something
happens.

3.5.2 Leaving the GUI open

The Win32 GUI accepts the ‘~keep’ which instructs it to leave the window open after the tests
are done. This allows you to see how many tests failed and how much time it took.

3.5.3 Screenshots!

As with any self-respecting GUI application, here are some screenshots for you to enjoy:
e Using the Qt GUI on Linux (with the WindowMaker window manager):

qt_runner - MessageTest::testValues()

NENRENERRENRNNNNRNRNRNNNNRNRRRNNRREND 57%

Iclass MessageTest festvaluesi 12 of 21 4
T T e e Lo —_———— ——

Chapter 3: Really using CxxTest 12

e Using the Win32 GUI on Windows 98:
@ TestRunner - GreenYellowRed:test_Green_again()

e Using the X11 GUI (with the venerable TWM):

[®] .f211_runner - MessageTest::testValues(

e And of course, no GUI is complete without the ability to mess around with its appearance:
Aqt_runner - GreenYellowRed:test_Cannot_go_back(

| 19% |
|cfass GreenYeflowRed |test_Cannot = go_backj) |4 of 21

Ahhh. Nothing like a beautiful user interface.

Chapter 4: Advanced topics 13

4 Advanced topics

Topics in this section are more technical, and you probably won’t find them interesting unless
you need them.

4.1 Aborting tests after failures

Usually, when a TS_ASSERT_* macro fails, CxxTest moves on to the next line. In many cases,
however, this is not the desired behavior. Consider the following code:

void test_memset ()

{

char *buffer = new char[1024];

TS_ASSERT(buffer);

memset (buffer, 0, 1024); // But what if buffer == 07
}

If you have exception handling enabled, you can make CxxTest exit each test as soon as a
failure occurs. To do this, you need to define CXXTEST_ABORT_TEST_ON_FAIL before including
the CxxTest headers. This can be done using the ‘--abort-on-fail’ command-line option or
in a template file; see ‘sample/aborter.tpl’ in the distribution. Note that if CxxTest doesn’t
find evidence of exception handling when scanning your files, this feature will not work. To
overcome this, use the ‘--have-eh’ command-line option.

4.1.1 Controlling this behavior at runtime

(v3.8.5) In some scenarios, you may want some tests to abort on failed assertions and oth-
ers to continue. To do this you use the ‘--abort-on-fail’ option and call the function
CxxTest: :setAbortTestOnFail (bool) to change the runtime behavior. This flag is reset
(normally, to true) after each test, but you can set it in your test suite’s setUp() function to
modify the behavior for all tests in a suite.

(v3.9.0) Note that this behavior is available whenever you have exception handling
(‘-—have-eh’ or CXXTEST_HAVE_EH); all ‘--abort-on-fail’ does is set the default to true.

4.2 Commenting out tests

CxxTest does a very simple analysis of the input files, which is sufficient in most cases. This
means, for example, that you can’t indent you test code in “weird” ways.

A slight inconvenience arises, however, when you want to comment out tests. Commenting
out the tests using C-style comments or the preprocessor will not work:

class MyTest : public CxxTest::TestSuite
{
public:
/*
void testCommentedOutStillGetsCalled()
{
}
*/

#if O
void testMarkedOutStillGetsCalled()
{
}

#endif

}s

Chapter 4: Advanced topics 14

(v3.10.0) If you need to comment out tests, use C++-style comments. Also, if you just don’t
want CxxTest to run a specific test function, you can temporarily change its name, e.g. by
prefixing it with x:

class MyTest : public CxxTest::TestSuite
;ublic:
// void testFutureStuff ()

/7 L
//}

void xtestFutureStuff ()
{
}

}s

4.3 Comparing equality for your own types

You may have noticed that TS_ASSERT_EQUALS () only works for built-in types. This is because
CxxTest needs a way to compare object and to convert them to strings, in order to print them
should the test fail.

If you do want to use TS_ASSERT_EQUALS() on your own data types, this is how you do it.

4.3.1 The equality operator

First of all, don’t forget to implement the equality operator (operator==()) on your data types!

4.3.2 Value traits

Since CxxTest tries not to rely on any external library (including the standard library, which is
not always available), conversion from arbitrary data types to strings is done using value traits.

For example, to convert an integer to a string, CxxTest does the following actions:
e int i = value to convert;
e CxxTest::ValueTraits<int> converter(i);

e string = converter.asString();

CxxTest comes with predefined ValueTraits for int, char, dobule etc. in
‘cxxtest/ValueTraits.h’ in the ‘cxxtest-selftest’ archive.

4.3.3 Unknown types

)

Obviously, CxxTest doesn’t “know” about all possible types. The default ValueTraits class for
unknown types dumps up to 8 bytes of the value in hex format.
For example, the following code
#include <cxxtest/TestSuite.h>

class TestMyData : public CxxTest::TestSuite
{
public:
struct Data
{
char datal[3];
};

void testCompareData()

Chapter 4: Advanced topics 15

Data x, y;
memset(x.data, 0x12, sizeof(x.data));
memset (y.data, OxF6, sizeof(y.data));
TS_ASSERT_EQUALS(x, y);
}
}s
would output

Running 1 test.

TestMyData.h:16: Expected (x == y), found ({ 12 12 12 } != { F6 F6 F6 })
Failed 1 of 1 test

Success rate: 0%

4.3.4 Enumeration traits

(v3.10.0) CxxTest provides a simple way to define value traits for your enumeration types, which
is very handy for things like status codes. To do this, simply use CXXTEST_VALUE_TRAITS as in
the following example:

enum Status { STATUS_IDLE, STATUS_BUSY, STATUS_ERROR };

CXXTEST_ENUM_TRAITS(Status,
CXXTEST_ENUM_MEMBER (STATUS_IDLE)
CXXTEST_ENUM_MEMBER(STATUS_BUSY)
CXXTEST_ENUM_MEMBER (STATUS_ERROR));

See ‘sample/EnumTraits.h’ for a working sample.

4.3.5 Defining new value traits

Defining value traits for new (non-enumeration) types is easy. All you need is to define a way
to convert an object of your class to a string. You can use this example as a possible skeleton:

class MyClass
{

int _value;

public:
MyClass(int value) : _value(value) {3}
int value() const { return _value; }

// CxxTest requires a copy constructor
MyClass(const MyClass &other) : _value(other._value) {}

// If you want to use TS_ASSERT_EQUALS
bool operator== const MyClass &other) const { return _value == other._value; }

// If you want to use TS_ASSERT_LESS_THAN
bool operator== const MyClass &other) const { return _value < other._value; }

};

#ifdef CXXTEST_RUNNING
#include <cxxtest/ValueTraits.h>
#include <stdio.h>

namespace CxxTest

{
CXXTEST_TEMPLATE_INSTANTIATION
class ValueTraits<MyClass>

{
char _s[256];

public:

Chapter 4: Advanced topics 16

ValueTraits(const MyClass &m) { sprintf(_s, "MyClass(%i)", m.value()); }
const char *asString() const { return _s; }
};
};
#endif // CXXTEST_RUNNING

4.3.5.1 Defining value traits for template classes

A simple modification to the above scheme allows you to define value traits for your template
classes. Unfortunately, this syntax (partial template specialization) is not supported by some
popular C++ compilers. Here is an example:

template<class T>

class TMyClass

{

T _value;

public:
TMyClass(const T &value) : _value(value);
const T &value() const { return _value; }

// CxxTest requires a copy comnstructor
TMyClass(const TMyClass<T> &other) : _value(other._value) {}

// If you want to use TS_ASSERT_EQUALS
bool operator== (const TMyClass<T> &other) const { return _value == other._value; }

};

#ifdef CXXTEST_RUNNING

#include <cxxtest/ValueTraits.h>
#include <typeinfo>

#include <sstream>

namespace CxxTest
{
template<class T>

class ValueTraits< TMyClass<T> >
{

std::ostringstream _s;

public:
ValueTraits(const TMyClass<T> &t)
{ _s << typeid(t).name() << "(" << t.value() << ")"; }
const char *asString() const { return _s.str().c_str(); }
};
};
#endif // CXXTEST_RUNNING

4.3.6 Overriding the default value traits

(w2.8.2) If you don’t like the way CxxTest defines the default ValueTraits, you can override
them by #define-ing CXXTEST_USER_VALUE_TRAITS; this causes CxxTest to omit the default
definitions, and from there on you are free to implement them as you like.

You can see a sample of this technique in ‘test/UserTraits.tpl’ in the ‘cxxtest-selftest’
archive.

4.4 Global Fixtures

(3.5.1) The setUp() and tearDown() functions allow to to have code executed before and after
each test. What if you want some code to be executed before all tests in all test suites? Rather

Chapter 4: Advanced topics 17

than duplicate that code, you can use global fixtures. These are basically classes that inherit
from CxxTest::GlobalFixture. All objects of such classes are automatically notified before
and after each test case. It is best to create them as static objects so they get called right from
the start. Look at ‘test/GlobalFixtures.h’ in the ‘cxxtest-selftest’ archive.

Note: Unlike setUp() and tearDown() in TestSuite, global fixtures should return a bool
value to indicate success/failure.

4.4.1 World fixtures

(ws.8.1) CxxTest also allows you to specify code which is executed once at the start of the
testing process (and the corresponding cleanup code). To do this, create (one or more)
global fixture objects and implement setUpWorld() /tearDownWorld(). For an example, see
‘test/WorldFixtures.h’ in the ‘cxxtest-selftest’ archive.

4.5 Mock Objects

(v3.10.0) Mock Objects are a very useful testing tool, which consists (in a nutshell) of passing
special objects to tested code. For instance, to test a class that implements some protocol over
TCP, you might have it use an abstract ISocket interface and in the tests pass it a MockSocket
object. This MockSocket object can then do anything your tests find useful, e.g. keep a log of
all data “sent” to verify later.

So far, so good. But the problem when developing in C/C++ is that your code probably
needs to call global functions which you cannot override. Just consider any code which uses
fopen(), furite() and fclose(). It is not very elegant to have this code actually create files
while being tested. Even more importantly, you (should) want to test how the code behaves
when “bad” things happen, say when fopen() fails. Although for some cases you can cause the
effects to happen in the test code, this quickly becomes “hairy” and unmaintainable.

CxxTest solves this problem by allowing you to override any global function while testing.
Here is an outline of how it works, before we see an actual example:

e For each function you want to override, you use the macro CXXTEST_MOCK_GLOBAL to “pre-
pare” the function (all is explained below in excruciating detail).

e In the tested code you do not call the global functions directly; rather, you access them in
the T (for Test) namespace. For instance, your code needs to call T::fopen() instead of
fopen(). This is the equivalent of using abstract interfaces instead of concrete classes.

e You link the “real” binary with a source file that implements T: : fopen() by simply calling
the original fopen().

e You link the test binary with a source file that implements T: :fopen() by calling a mock
object.

e To test, you should create a class that inherits T: :Base_fopen and implement its fopen()
function. Simply by creating an object of this class, calls made to T::fopen() will be
redirected to it.

This may seem daunting at first, so let us work our way through a simple example. Say we
want to override the well known standard library function time ().
e Prepare a header file to be used by both the real and test code.

// T/time.h
#include <time.h>
#include <cxxtest/Mock.h>

CXXTEST_MOCK_GLOBAL(time_t, /* Return type */
time, /* Name of the function */

Chapter 4: Advanced topics 18

(time_t *t), /* Prototype */
(t) /* Argument list */),
e In our tested code, we now include the special header instead of the system-supplied one,
and call T: :time() instead of time().

// code.cpp
#include <T/time.h>

int generateRandomNumber ()
{

return T::time(NULL) * 3;
}

e We also need to create a source file that implements T: :time () by calling the real function.
This is extremely easy: just define CXXTEST_MOCK_REAL_SOURCE_FILE before you include
the header file:

// real_time.cpp
#define CXXTEST_MOCK_REAL_SOURCE_FILE
#include <T/time.h>
e Before we can start testing, we need a different implementation of T: :time () for our tests.
This is just as easy as the previous one:
// mock_time.cpp
#define CXXTEST_MOCK_TEST_SOURCE_FILE
#include <T/time.h>
e Now comes the fun part. In our test code, all we need to do is create a mock, and the tested
code will magically call it:

// TestRandom.h
#include <cxxtest/TestSuite.h>
#include <T/time.h>

class TheTimeIsOne : public T::Base_time

{
public:
time_t time(time_t *) { return 1; }
};
class TestRandom : public CxxTest::TestSuite
{
public:
void test_Random()
{
TheTimeIsOne t;
TS_ASSERT_EQUALS(generateRandomNumber(), 3);
¥
};

4.5.1 Actually doing it

I know that this might seem a bit heavy at first glance, but once you start using mock objects
you will never go back. The hardest part may be getting this to work with your build system,

which is why I have written a simple example much like this one in ‘sample/mock’, which uses
GNU Make and G++.

4.5.2 Advanced topic with mock functions

4.5.2.1 Void functions

Void function are a little different, and you use CXXTEST_MOCK_VOID_GLOBAL to override them.
This is identical to CXXTEST_MOCK_GLOBAL except that it doesn’t specify the return type. Take
a look in ‘sample/mock/T/stdlib.h’ for a demonstation.

Chapter 4: Advanced topics 19

4.5.2.2 Calling the real functions while testing

From time to time, you might want to let the tested code call the real functions (while being
tested). To do this, you create a special mock object called e.g. T::Real_time. While an object
of this class is present, calls to T::time () will be redirected to the real function.

4.5.2.3 When there is no real function

Sometimes your code needs to call functions which are not available when testing. This happens
for example when you test driver code using a user-mode test runner, and you need to call
kernel functions. You can use CxxTest’s mock framework to provide testable implementations
for the test code, while maintaing the original functions for the real code. This you do with
CXXTEST_SUPPLY_GLOBAL(and,CXXTEST_SUPPLY_VOID_GLOBAL) For example, say you want to
supply your code with the Win32 kernel function IoCallDriver:

CXXTEST_SUPPLY_GLOBAL(NTSTATUS, /* Return type */
IoCallDriver, /* Name */
(PDEVICE_OBJECT Device, /* Prototype */
PIRP Irp),
(Device, Irp) /* How to call */);

The tested code (your driver) can now call ToCallDriver () normally (no need for T::), and
the test code uses T::Base_IoCallDriver as with normal mock objects.

Note: Since these macros can also be used to actually declare the function prototypes (e.g.
in the above example you might not be able to include the real <ntddk.h> from test code),
they also have an extern "C" version which declares the functions with C linkage. These are
CXXTEST_SUPPLY_GLOBAL_C and CXXTEST_SUPPLY_GLOBAL_VOID_C.

4.5.2.4 Functions in namespaces

Sometimes the functions you want to override are not in the global namespace like time (): they
may be global functions in other namespaces or even static class member functions. The default
mock implementation isn’t suitable for these. For them, you can use the generic CXXTEST_MOCK,
which is best explained by example. Say you have a namespace Files, and you want to override
the function bool Files::FileExists(const String &name), so that the mock class will be
called T::Base_Files_FileExists and the function to implement would be fileExists. You
would define it thus (of course, you would normally want the mock class name and member
function to be the same as the real function):

CXXTEST_MOCK(Files_FileExists, /* Suffix of mock class */
bool, /* Return type */
fileExists, /* Name of mock member */

(const String &name), /* Prototype */
Files::FileExists, /* Name of real function */
(name) /* Parameter list */),

Needless to say, there is also CXXTEST_MOCK_VOID for void functions.

There is also an equivalent version for CXXTEST_SUPPLY_GLOBAL, as demonstrated by another
function from the Win32 DDK:

CXXTEST_SUPPLY(Allocatelrp, /* => T::Base_AllocateIrp */
PIRP, /* Return type */
allocatelrp, /* Name of mock member */

(CCHAR StackSize), /* Prototype */
IoAllocatelrp, /* Name of real function */
(StackSize) /* Parameter list */);

And, with this macro you have CXXTEST_SUPPLY_VOID and of course CXXTEST_SUPPLY_C and
CXXTEST_SUPPLY_VOID_C.

Chapter 4: Advanced topics 20

4.5.2.5 Overloaded functions

If you have two or more global functions which have the same name, you cannot create two
mock classes with the same name. The solution is to use the general CXXTEST_MOCK/CXXTEST_
MOCK_VOID as above: just give the two mock classes different names.

4.5.2.6 Changing the mock namespace

Finally, if you don’t like or for some reason can’t use the T:: namespace for mock functions,
you can change it by defining CXXTEST_MOCK_NAMESPACE. Have fun.

4.6 Test Listeners and Test Runners

A TestListener is a class that receives notifications about the testing process, notably which
assertions failed. CxxTest defines a standard test listener class, ErrorPrinter, which is re-
sponsible for printing the dots and messages seen above. When the test runners generated in
the examples run, they create an ErrorPrinter and pass it to TestRunner: :runAllTests().
As you might have guessed, this functions runs all the test you've defined and reports to the
TestListener it was passed.

4.6.1 Other test listeners

If you don’t like or can’t use the ErrorPrinter, you can use any other test listener. To do this
you have to omit the ‘--error-printer’, ‘--runner=’ or ‘--gui=’ switch when generating the

tests file. It is then up to you to write the main() function, using the test listener of your fancy.

¢

4.6.1.1 The stdio printer

If the ErrorPrinter’s usage of std: : cout clashes with your environment or is unsupported by
your compiler, don’t dispair! You may still be able to use the StdioPrinter, which does the
exact same thing but uses good old printf ().

To use it, invoke ‘cxxtestgen.pl’ with the ‘~-runner=StdioPrinter’ option.

(v3.8.5) Note: ‘cxxtest/StdioPrinter’ makes reference to stdout as the default output
stream. In some environments you may have <stdio.h> but not stdout, which will cause
compiler errors. To overcome this problem, use ‘~-runner=StdioFilePrinter’, which is exactly
the same as ‘--runner=StdioPrinter’, but with no default output stream.

4.6.1.2 The Yes/No runner

As an example, CxxTest also provides the simplest possible test listener, one that just
reports if there were any failures. You can see an example of using this listener in
‘sample/yes_no_runner.cpp’.

4.6.1.3 Template files

To use you own test runner, or to use the supplied ones in different ways, you can use CxxTest
template files. These are ordinary source files with the embedded “command” <CxxTest world>
which tells ‘cxxtestgen.pl’ to insert the world definition at that point. You then specify the
template file using the ‘--template’ option.

Chapter 4: Advanced topics 21

See ‘samples/file_printer.tpl’ for an example.

Note: CxxTest needs to insert certain definitions and #include directives in the runner
file. It normally does that before the first #include <cxxtest/*.h> found in the template
file. If this behvaior is not what you need, use the “command” <CxxTest preamble>. See
‘test/preamble.tpl’ in the ‘cxxtest-selftest’ archive for an example of this.

4.7 Dynamically creating test suites

Usually, your test suites are instantiated statically in the tests file, i.e. say you defined class
MyTest : public CxxTest: :TestSuite, the generated file will contain something like static
MyTest g_MyTest;.

If, however, your test suite must be created dynamically (it may need a constructor, for
instance), CxxTest doesn’t know how to create it unless you tell it how. You do this by writing
two static functions, createSuite() and destroySuite().

See ‘sample/CreatedTest.h’ for a demonstration.
4.8 Static initialization

(v3.9.0) The generated runner source file depends quite heavily on static initialization of the
various “description” object used to run your tests. If your compiler/linker has a problem with
this approach, use the ‘--no-static-init’ option.

Appendix A: Command line options 22

Appendix A Command line options

Here are the different command line options for cxxtestgen:

A.1 ‘--version’

(v3.7.1) Specify ‘~-version’ or ‘-v’ to see the version of CxxTest you are using.
A.2 ‘--output’

Specify ‘-—output=FILE’ or ‘-0 FILE’ to determine the output file name.
A.3 ‘--error-printer’

This option creates a test runner which uses the standard error printer class.
A.4 ‘--runner’

Specify ‘--runner=CLASS’ to generate a test runner that #includes <cxxtest/CLASS.h> and
uses CxxTest: :CLASS as the test runner.

The currently available runners are:

‘~-runner=ErrorPrinter’
This is the standard error printer, which formats its output to std: :cout.

‘~-runner=ParenPrinter’
Identical to ErrorPrinter except that it prints line numbers in parantheses. This
is the way Visual Studio expects it.

‘-—runner=StdioPrinter’
The same as ErrorPrinter except that it uses printf instead of cout.

‘-—runner=YesNoRunner’
This runner doesn’t produce any output, merely returns a true/false result.

A.5 ‘--gui’

Specify ‘--gui=CLASS’ to generate a test runner that #includes <cxxtest/CLASS.h> and uses
CxxTest: :CLASS to display a graphical user interface. This option can be combined with the
‘—-—runner’ option to determine the text-mode output format. The default is the standard error
printer.

There are three different GUIs:

‘-—gui=Win32Gui’
A native Win32 GUI. It has been tested on Windows 98, 2000 and XP and should
work unmodified on other 32-bit versions of Windows.

‘——gui=X11Gui’
A native XLib GUI. This GUI is very spartan and should work on any X server.

‘——gui=QtGui’
A GUI that uses the Qt library from Troll. It has been tested with Qt versiond
2.2.1 and 3.0.1.

Appendix A: Command line options 23

A.6 ‘—-include’

(w3.5.1) If you specify ‘~—include=FILE’, cxxtestgen will add #include "FILE" to the runner
before including any other header. This allows you to define things that modify the behavior of
CxxTest, e.g. your own ValueTraits.

Note: If you want the runner to #inculde <FILE>, specify it on the command line, e.g.
‘-—include=<FILE>’. You will most likely need to use shell escapes, e.g. ‘"--include=<FILE>"’
or ‘-—include=\<FILE\> .

Examples: ‘--include=TestDefs.h’ or ‘-—include=\<GlobalDefs.h\>’".

A.7 ‘--template’

Specify ‘--template=FILE’ to use ‘FILE’ as a template file. This is for cases for which ‘--runner’
and/or ‘--include’ are not enough. One example is the Windows DDK; see ‘sample/winddk’
in the distribution.

A.8 ‘--have-eh’

(v2.8.4) cxxtestgen will scan its input files for uses of exception handling; if found, the TS_ macros
will catch exceptions, allowing the testing to continue. Use ‘--have-eh’ to tell cxxtestgen to
enable that functionality even if exceptions are not used in the input files.

A.9 ‘—-no-eh’

(v3.8.5) If you want cxxtestgen to ignore what may look as uses of exception handling in your
test files, specify ‘--no-eh’.

A.10 ‘--have-std’

(v3.10.0) Same as ‘~-have-eh’ but for the standard library; basically, if you use this flag, CxxTest
will print the values of std: :string.

Note: If you reference the standard library anywhere in your test files, CxxTest will (usually)
recognize it and automatically define this.

A.11 ‘--no-std’

(v3.10.0) The counterpart to ‘--have-std’, this tells CxxTest to ignore any evidence it finds for
the std:: namespace in your code. Use it if your environment does not support std:: but
cxxtestgen thinks it does.

A.12 ‘--longlong’

¢

(v3.6.0) Specify ‘--longlong=TYPE' to have CxxTest recognize TYPE as “long long” (e.g.
‘~-longlong=__int64’). If you specify just ‘--longlong=" (no type), CxxTest will use the
default type name of long long.

Appendix A: Command line options 24

A.13 ‘--abort-on-fail’

(v2.8.2) This useful option tells CxxTest to abort the current test when any TS_ASSERT macro
has failed.

A.14 ‘--part’

(v3.5.1) This option tells CxxTest not to write the CxxTest globals in the output file. Use this to
link together more than one generated file.

A.15 ‘--root’

(v3.5.1) This is the counterpart of ‘--part’; it makes sure that the Cxxtest globals are written
to the output file. If you specify this option, you can use cxxtestgen without any input files to
create a file that hold only the “root” runner.

A.16 ‘--no-static-init’

(v3.9.0) Use this option if you encounter problems with the static initializations in the test runner.

Appendix B: Controlling the behavior of CxxTest 25

Appendix B Controlling the behavior of CxxTest

Here are various #defines you can use to modify how CxxTest works. You will need to #define
them before including any of the CxxTest headers, so use them in a template file or with the
‘-—include’ option.

B.1 CXXTEST_HAVE_STD

This is equivalent to the ‘-~have-std’ option.

B.2 CXXTEST_HAVE_EH

This is equivalent to the ‘-~have-eh’ option.

B.3 CXXTEST_ABORT_TEST_ON_FAIL

(v2.8.0) This is equivalent to the ‘-—abort-on-fail’ option.
B.4 CXXTEST_USER_VALUE_TRAITS

This tells CxxTest you wish to define you own ValueTraits. It will only declare the default traits,
which dump up to 8 bytes of the data as hex values.

B.5 CXXTEST_OLD_TEMPLATE_SYNTAX

Some compilers (e.g. Borland C++ 5) don’t support the standard way of instantiating template
classes. Use this define to overcome the problem.

B.6 CXXTEST_OLD_STD
Again, this is used to support pre-std:: standard libraries.
B.7 CXXTEST_MAX_DUMP_SIZE

This sets the standard maximum number of bytes to dump if TS_ASSERT_SAME_DATA() fails.
The default is 0, meaning no limit.

B.8 CXXTEST_DEFAULT_ABORT

This sets the default value of the dynamic “abort on fail” flag. Of course, this flag is only used
when “abort on fail” is enabled.

B.9 CXXTEST_LONGLONG

This is equivalent to ‘--longlong’.

Appendix C: Runtime options 26

Appendix C Runtime options

The following functions can be called during runtime (i.e. from your tests) to control the behavior
of CxxTest. They are reset to their default values after each test is executed (more precisely,
after tearDown() is called). Consequently, if you set them in the setUp() function, they will
be valid for the entire test suite.

C.1 setAbortTestOnFail(bool)

This only works when you have exception handling. It can be used to tell CxxTest to temporarily
change its behavior. The default value of the flag is false, true if you set ‘~-abort-on-fail’,
or CXXTEST_DEFAULT_ABORT if you #define it.

C.2 setMaxDumpSize(unsigned)

This temporarily sets the maximum number of bytes to dump if TS_ASSERT_SAME_DATA() fails.
The default is 0, meaning no limit, or CXXTEST_MAX_DUMP_SIZE if you #define it.

Appendix D: Version history

Appendix D Version history

e Version 3.10.1 (2004-12-01)
— Improved support for VC7
— Fixed clash with some versions of STL
e Version 3.10.0 (2004-11-20)
— Added mock framework for global functions
— Added TS_ASSERT_THROWS_ASSERT and TS_ASSERT_THROWS_EQUALS
— Added CXXTEST_ENUM_TRAITS
— TImproved support for STL classes (vector, map etc.)
— Added support for Digital Mars compiler
— Reduced root/part compilation time and binary size
— Support C++-style commenting of tests
e Version 3.9.1 (2004-01-19)
— Fixed small bug with runner exit code
— Embedded test suites are now deprecated
e Version 3.9.0 (2004-01-17)
— Added TS_TRACE
— Added ‘--no-static-init’
— CxxTest::setAbortTestOnFail () works even without ‘-—abort-on-fail’
e Version 3.8.5 (2004-01-08)
— Added ‘--no-eh’
— Added CxxTest: :setAbortTestOnFail () and CXXTEST_DEFAULT_ABORT
— Added CxxTest: : setMaxDumpSize ()
— Added StdioFilePrinter
e Version 3.8.4 (2003-12-31)
— Split distribution into cxxtest and cxxtest-selftest
— Added ‘sample/msvc/FixFiles.bat’
e Version 3.8.3 (2003-12-24)
— Added TS_ASSERT_PREDICATE
— Template files can now specify where to insert the preamble
— Added a sample Visual Studio workspace in ‘sample/msvc’

— Can compile in MSVC with warning level 4

Changed output format slightly
e Version 3.8.1 (2003-12-21)
— Fixed small bug when using multiple ‘~-part’ files.
— Fixed X11 GUI crash when there’s no X server.
— Added GlobalFixture: :setUpWorld () /tearDownWorld()
— Added leaveOnly(), activateAllTests() and ‘sample/only.tpl’
— Should now run without warnings on Sun compiler.
e Version 3.8.0 (2003-12-13)
— Fixed bug where ‘Root.cpp’ needed exception handling
— Added TS_ASSERT_RELATION

27

Appendix D: Version history

— TSM_ macros now also tell you what went wrong
— Renamed Win32Gui::free() to avoid clashes
— Now compatible with more versions of Borland compiler
— Improved the documentation
e Version 3.7.1 (2003-09-29)
— Added ‘--version’
— Compiles with even more exotic g++ warnings
— Win32 Gui compiles with UNICODE
— Should compile on some more platforms (Sun Forte, HP aCC)
e Version 3.7.0 (2003-09-20)
— Added TS_ASSERT_LESS_THAN_EQUALS
— Minor cleanups
e Version 3.6.1 (2003-09-15)
— Improved QT GUI
— Improved portability some more
e Version 3.6.0 (2003-09-04)
— Added ‘--longlong’
— Some portability improvements
e Version 3.5.1 (2003-09-03)
— Major internal rewrite of macros
— Added TS_ASSERT_SAME_DATA
— Added ‘--include’ option
— Added ‘--part’ and ‘--root’ to enable splitting the test runner
— Added global fixtures
— Enhanced Win32 GUI with timers, ‘~-keep’ and ‘-title’
— Now compiles with strict warnings
e Version 3.1.1 (2003-08-27)
— Fixed small bug in TS_ASSERT_THROWS_* ()
e Version 3.1.0 (2003-08-23)
— Default ValueTraits now dumps value as hex bytes
— Fixed double invocation bug (e.g. TS_FAIL(functionWithSideEffects()))
— TS_ASSERT_THROWS* () are now "abort on fail"-friendly
— Win32 GUI now supports Windows 98 and doesn’t need comctl32.1ib
e Version 3.0.1 (2003-08-07)
— Added simple GUI for X11, Win32 and Qt
— Added TS_WARN() macro
— Removed ‘--exit-code’
— Improved samples
— Improved support for older (pre-std::) compilers
— Made a PDF version of the User’s Guide
e Version 2.8.4 (2003-07-21)
— Now supports g++-3.3
— Added ‘--have-eh’

Appendix D: Version history 29

— Fixed bug in numberToString()
e Version 2.8.3 (2003-06-30)
— Fixed bugs in cxxtestgen.pl
— Fixed warning for some compilers in ErrorPrinter/StdioPrinter
— Thanks Martin Jost for pointing out these problems!
e Version 2.8.2 (2003-06-10)
— Fixed bug when using CXXTEST_ABORT_TEST_ON_FAIL without standard library
— Added CXXTEST_USER_TRAITS
— Added ‘--abort-on-fail’
e Version 2.8.1 (2003-01-16)
— Fixed charToString() for negative chars
e Version 2.8.0 (2003-01-13)
— Added CXXTEST_ABORT_TEST_ON_FAIL for xUnit-like behaviour
— Added ‘sample/winddk’
— Improved ValueTraits
— Improved output formatter
— Started version history
e Version 2.7.0 (2002-09-29)
— Added embedded test suites

— Major internal improvements

	Introduction
	About this guide

	Getting started
	Getting CxxTest
	Your first test!
	Your second test
	Graphical user interface

	Really using CxxTest
	What can you test
	TS_FAIL
	TS_ASSERT
	TS_ASSERT_EQUALS
	TS_ASSERT_SAME_DATA
	TS_ASSERT_DELTA
	TS_ASSERT_DIFFERS
	TS_ASSERT_LESS_THAN
	TS_ASSERT_LESS_THAN_EQUALS
	TS_ASSERT_PREDICATE
	TS_ASSERT_RELATION
	TS_ASSERT_THROWS and friends
	TS_TRACE and TS_WARN
	The ETS_ macros
	The TSM_ macros
	The ETSM_ macros

	Running the samples
	Test fixtures
	Test suite level fixtures

	Integrating with your build environment
	Overview
	Actually doing it
	Using Makefiles
	Using Cons
	Using Microsoft Visual Studio
	Using Microsoft Windows DDK

	Graphical user interface
	Starting the GUI minimized
	Leaving the GUI open
	Screenshots!

	Advanced topics
	Aborting tests after failures
	Controlling this behavior at runtime

	Commenting out tests
	Comparing equality for your own types
	The equality operator
	Value traits
	Unknown types
	Enumeration traits
	Defining new value traits
	Defining value traits for template classes

	Overriding the default value traits

	Global Fixtures
	World fixtures

	Mock Objects
	Actually doing it
	Advanced topic with mock functions
	Void functions
	Calling the real functions while testing
	When there is no real function
	Functions in namespaces
	Overloaded functions
	Changing the mock namespace

	Test Listeners and Test Runners
	Other test listeners
	The stdio printer
	The Yes/No runner
	Template files

	Dynamically creating test suites
	Static initialization

	Command line options
	--version
	--output
	--error-printer
	--runner
	--gui
	--include
	--template
	--have-eh
	--no-eh
	--have-std
	--no-std
	--longlong
	--abort-on-fail
	--part
	--root
	--no-static-init

	Controlling the behavior of CxxTest
	CXXTEST_HAVE_STD
	CXXTEST_HAVE_EH
	CXXTEST_ABORT_TEST_ON_FAIL
	CXXTEST_USER_VALUE_TRAITS
	CXXTEST_OLD_TEMPLATE_SYNTAX
	CXXTEST_OLD_STD
	CXXTEST_MAX_DUMP_SIZE
	CXXTEST_DEFAULT_ABORT
	CXXTEST_LONGLONG

	Runtime options
	setAbortTestOnFail(bool)
	setMaxDumpSize(unsigned)

	Version history

