Chapter 1.

3. Arithmetic Operations
4. Decimal Codes
5. Alphanumeric Codes
6. Gray Codes

DIGITAL \& COMPUTER SySTEMS - Digital System

- Takes a set of discrete information inputs and discrete internal information (system state) and generates a set of discrete information outputs.

1. 정보 표현
2. Nuumber Systems
3. Arithmetic Operations
4. Decimal Codes
5. Alphanumeric Codes
6. Gray Codes

- Type of Digital System
- No state present
- Combinational Logic System
- Output = Function(Input)
- State present
- State updated at discrete times \rightarrow Synchronous Sequential System
- State updated at any time \rightarrow Asynchronous Sequential System
- State = Function (State, Input)
- Output = Function (State) or Function (State, Input)

Digital System Example:

A Digital Counter (e. g., odometer):

Count Up

40782

Inputs: Count Up, Reset
Outputs: Visual Display
State:
"Value" of stored digits
\triangleleft What is Digital System ?

- Digital system is a system in which signals have finite number of discrete values (electric impulses, decimal digits, arithmetic operations etc.)
- Analog system is a system in which signals have infinite number of values (electoric voltage that vary with time)
- Synchronous; systems where signals may change only at discrete instants
- Asynchronous; systems where signals may change at any instant

(d)
- Why are Digital Systems important ?
- It is well suited for numerical and non-numerical information processing
- Information processing can use a general-purpose system (computer)
- The finite number of values in a digital signals is represented by a vector of signas with just 2 values (binary signals)
- Digital signals are quite insensitive to variations of component variable values

- Numerical digital systems can be made more accurate by increasing the number of digits used in the representation.
- Complex digital systems are built as integrated circuits composed of a large number of very simple devices.
- It is possible to select among different implementations of systems that trade off speed and amount of hardware.

INFORMATION REPRESENTATION - Signals

- Digital System;
- Stores, moves and processes information
- Information;
- Represents broad range of phenomena
- From physical world : characterized by parameters
- Analog Signal : 시간상에서 연속적으로 변하는 물리량 신호
- Such as weight(중력,무게), temperature(온도), pressure(압력), velocity(속도), frequency(빈도)
- Continuous
- From man-made world : parameters
- Digital Signal : 이산적(discrete)인 정수 체계로 표현되는 시간적으로 불 연속적인 신호
- Such as business records using words
- Quantities and currencies taking on values from alphabet
- Integers or units of currency
- Discrete in nature
- For digital systems, the information variables take on discrete values.
- Two level, or binary values are the most prevalent values in digital systems.
- Binary values are represented abstractly by:
- digits 0 and 1
- words (symbols) False (F) and True (T)
- words (symbols) Low (L) and High (H)
- words ON and OFF.

Signal Example - Physical Quantity: Voltage

- The reason why binary is used
- Assume a system with 10 value
- If overall voltage range is from 0 to 5 V
- each stage will be less than 0.5 V
- consider noise margin, it will be less than 0.25 V
- This would require complex and costly electronic circuit
- As a consequence, use of the multivalued circuit is limited
- Instead, binary circuit is simple, easy to design, reliable
- A binary digit is called a bit
- Information is represented in digital computers by groups of bits
- By using various techniques, groups of bits can be made to represent not only binary number, but also other groups of discrete symbols
- Groups of bits can even specify to the computer the instruction to be executed and data to be processed
- Natural signal \rightarrow analog-to-digital converter \rightarrow discrete quantities of information

(Digital)
- Example 1-1. Temperature Measurement and Display

5. digital value : transmitted

- \rightarrow wireless receiver (digital input device) : indoor base station
- \rightarrow microcomputer : calculation performed
- to adjust its value based on thermistor properties
- \rightarrow displayed with an analog meter

6. digital value : converted to analog value

- by digital-to-analog(D/A) converter
- giving the quantized, discrete voltage level : Fig. 1-4(d)

7. continuous signal : using signal conditioning (Fig. 1-4e)

- such as processing of the output by a low pass filter

8. applied to analog voltage display : Fig. 1-4(f)

- labeled with the corresponding temperature values

1. temperature values over one 24-hour : plotted in Fig. 1-4(a)

- measured by sensor consisting of a thermistor(temp \rightarrow resistance)
- provided analog voltage that is proportional to temperature

2. using signal conditioning this voltage :

- changed continuous voltage ranging 0~15V : Fig. 1-4(b)

3. analog voltage : sampled at a rate of once per hour

- a very slow sampling rate for illustration : dotted in Fig. 1-4(b)
- each value sampled : applied to an analog-to-digital(A/D) converter - replaced with digital no. written in binary(4 bit) : Fig. 1-4(c)
- value of temperature : in process
temperature : in process of conversion
- quantized from an finite no. of values to just 16 values
- analog temperature $-25 \sim-15$: represented by digital temp. -20
- quantization error
- this discrepancy between actual temp. and digital temp.
- to obtain greater precision : to increase no. of bits beyond four

4. digital value : pass through microcomputer

- \rightarrow wireless transmitter (digital output device) : outdoor site

CopyRight © 2008 by hwany., All right reserved.

Digital Computer Example

- Block Diagram of a Digital Computer

- Memory : stored program and data (input, output, intermediate data)
- Datapath : performed arithmetic \& other data-processing operations (as specified by program)
- Control unit :
- supervised flow of information
- retrieves instructions
- CPU (Central Processing Unit) : 메모리에 저장된 프로그램으로부텉 명령

어를 하나씩 읽어서, 명령어에 대응하는 동작을 실행하는 Datapath를 제어

- Processor(IC) : heart of the computer

- four functional modules
- CPU, FPU, MMU, internal cache

CPU(central processing unit)

- contained datapath, control unit
- performed fixed-point operations
- fixed-point number : integer number
- FPU(floating-point unit) :
- contained datapath, control unit like CPU
- performed floating-point operations
- floating-point number : real number
- handled very large and very small numbers
- MMU(memory management unit) :
- memory hierarchy : cache - RAM - hard disk
- cache : allow CPU, FPU get at data to be processed - much faster than with RAM alone
- cause the memory that appears to be available to CPU
- to be much, much larger than actual size of RAM
- Processor bus, I/O bus :
- attached to the bus interface to carry data having
- different numbers of bits, different speeds,
- different ways of controlling the movement of data
- bus interface hardware : handles these differences
- so that data can be communicated between two buses
© Ch. 1~6 : Logic Design of Digital Circuits in general
Ch. 5~7 : Primary Components of Digital System,
- their operation, and their design
- Ch. 8 : Operational Characteristics of RAM

Ch. 9 : Datapath and Control for Simple Computer
Ch. 10~13 : Basics of Computer Design

- Ch. 10 : typical instructions
- employed in computer instruction set architecture
- Ch. 11 : architecture and design of CPUs
- Ch. 12 : I/ O devices and communication with them
- Ch. 13 : memory hierarchy concepts related to cache \& MMU

1. Information Representation

- Number System
- Decimal
- Binary
- Octal
- Hexadecimal
- Arithmetic Operations

3. Arithmetic Operations

- Conversion

4. Decimal Codes

- Decimal-to-Binary, Decimal-to-Octal
- Binary-to-Octal, Binary-to-Hexadecimal

- Decimal Numbering System

- 10 개의 digit 사용 (r digit $=0 \sim 9$)
- 예) 1473

$$
\begin{aligned}
& 1473=1 \times 10^{3}+4 \times 10^{2}+7 \times 10^{1}+3 \times 10^{0} \\
& N_{10}=d_{3} \times 10^{3}+d_{2} \times 10^{2}+d_{1} \times 10^{1}+d_{0} \times 10^{0}
\end{aligned}
$$

- Weighting(가중치)
- Radix or Base (진수의 기수)
- MSD (Most Significant Digit) : 가장 큰 자리 값
- LSD (Least Significant Digit) : 가장 작은 자리 값

Binary Numbering System

- 2 개 $(0,1)$ 의 digit 사용
- 예) 110101_{2}

$$
\begin{aligned}
110101_{2} & =1 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0} \\
& =32+16+0+4+0+1 \\
& =53_{10}
\end{aligned}
$$

- Radix or Base $=2$
- Bit (Binary Digit) : 2진수의 각 자리 수
- 2진수의 자리 값 (뒤 테이블 참조)
$1010.01_{2}=1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}+0 \times 2^{-1}+1 \times 2^{-2}$ $=1 \times 8+0 \times 4+1 \times 2+0 \times 1+0 \times 0.5+1 \times 0.25$ $=10.25_{2}$
* The conversion of a decimal number to binary : 625

$$
\begin{array}{rlrl}
625-512 & =113 & =N_{1} & 512=2^{9} \\
113-64 & =49 & =N_{2} & 64=2^{6} \\
49-32 & =17 & =N_{3} & 32=2^{5} \\
17-16 & =1 & =N_{4} & 16=2^{4} \\
1-1 & =0 & =N_{5} & 1
\end{array} 2^{0} 0
$$

$$
(625)_{10}=2^{9}+2^{6}+2^{5}+2^{4}+2^{0}=(1001110001)_{2}
$$

K (kilo)	: $2^{10}=1,024$	\squareTABLE 1-1 Powers of Two					
M (Mega)	: $2^{20}=1,048,576$	n	$2^{\text {n }}$	n	$2^{\text {n }}$	n	2^{n}
G (Giga)	$: 2^{30}=1,073,741,824$	${ }_{1}^{0}$	2	8 9	256 512	16 17	65,536 131.072
		2	4	10	1.024	18	262.144
		3	8	11	2.048	19	524,288
		4	16	12	4,096	20	1.048576
		5	32	13	8.192	21	2,097,152
		${ }_{7}$	${ }^{64}$	14	16,34	22	4,194.304
		7	128	15	32,76s	23	8.358,608
8 by hwany. A				de 1	Pow		

- Octal Numbering System
- 8개 (0~7) digit 사용
- 예) 1367.4_{8}

$$
\begin{aligned}
1367.4_{8} & =1 \times 8^{3}+3 \times 8^{2}+6 \times 8^{1}+7 \times 8^{0}+4 \times 8^{-1} \\
& =512+192+48+7+0.5 \\
& =759.5_{10}
\end{aligned}
$$

- Hexadecimal Numbering System
- 16 개 ($0 \sim 9, \mathrm{~A} \sim \mathrm{~F}$) digit 사용
- 예) 9 FB. 5_{16}

$$
\begin{aligned}
9 \text { FB. } 5_{16} & =9 \times 16^{2}+15 \times 16^{1}+11 \times 16^{0}+5 \times 16^{-1} \\
& =2304+240+11+0.3125 \\
& =2555.3125_{10}
\end{aligned}
$$

- Base -8 and base 16 are useful for representing binary quantities indirectly because they posses the property that their bases are powers of two
- Each octal digit : three binary digits
- Each hexadecimal digit : four binary digits
- The length is shorter than corresponding binary number
- Conversion from binary to octal(hexadecimal) :
- divided into groups of three(four) bits, starting from binary point
- (010 110001101011.111100000 110 $)_{2}=(26153.7406)_{8}$
- $(0010110001101011.111100000110)_{2}=(2 C 6 B . F 06)_{16}$
- Conversion from octal(hexadecimal) to binary : reverse
- $(673.12)_{8}=(110111011.001010)_{2}$
- $(3 A 6 . C)_{16}=(001110100110.1100)_{2}$
- A number in base r contains r digits and is expressed as a power series in r

$$
\begin{aligned}
& \left(A_{n} A_{n-1} \cdots A_{1} A_{0} \cdot A_{-1} A_{-2} \cdots A_{-m+1} A_{-m}\right)_{r} \\
& =A_{n} \times r^{n}+A_{n-1} \times r^{n-1}+\cdots+A_{1} \times r^{1}+A_{0} \times r^{0} \\
& \quad+A_{-1} \times r^{-1}+A_{-2} \times r^{-2}+\cdots+A_{-m+1} \times r^{-m+1}+A_{-m} \times r^{-m}
\end{aligned}
$$

CopyRight © 2008 by hwany.,

- Number Range

- The range of numbers that can be represented is based on the number of bits available in the hardware structures that store and process information
- The number of bits is most frequently a power of two
- For 16-bit unsigned integers, the number 537 is represented as 0000001000011001
- The range of integer is from 0 to $2^{16}-1(0$ to 65,535$)$
- The number 0.375 is .0110000000000000 if binary point is left of the most significant bit
- The range of fraction is from 0 to $\left(2^{16}\right.$ _ 1$) / 2^{16}$ or from 0.0 to 0.9999847412

1-3 Arithmetic Operations

- Examples of the addition of two binary number
Carries(올림): 00000101100

Augend(피가산수) : 01100	10110	
Addend(가산수):	$\underline{10001}$	$\underline{10111}$
Sum(합계):	11101	101101

- Examples of the subtraction of two binary number

Borrows(빌림): 000000011000110
Minuend(피감수) : 101101011010011 11110
Subtrahend(감수) : 1001010011 11110 10011
Difference(차0ㅇ): 0010000011 -01011

- Examples of the multiplication of two binary number

Multiplicand(피승수숫자) : 1011
Multiplier(승수숫자): 101
1011
0000
1011
110111

- Hexadecimal Addition

Perform the addition $(59 \mathrm{~F})_{16}+(\mathrm{E} 46)_{16}$

- Octal Multiplication

Perform the multiplication $(762)_{8} \times(45)_{8}$.

Octal	Octal	Decimal	Octal
762	5×2	$=10=8+2$	$=12$
45	$5 \times 6+1$	$=31=24+7$	$=37$
4672	$5 \times 7+3$	$=38=32+6$	$=46$
3710	4×2	$=8=8+0$	$=10$
43772	$4 \times 6+1$	$=25=24+1$	$=31$
	$4 \times 7+3$	$=31=24+7$	$=37$

CopyRight © 2008 by hwany., All right reserved.

- Conversion from Decimal to other Bases
- Conversion of Decimal Integer to Octal

$153 / 8$	$=19+1 / 8$	Remainder	$=1$
$19 / 8$	$=2+3 / 8$		Least significant digit
$2 / 8$	$=0+2 / 8$		$=2$

$(153)_{10}=(231)_{8}$

- Conversion of Decimal Integer to Binary

Convert decimal 41 to binary

$41 / 2$	$=20+1 / 2$	Remainder	$=1$
$20 / 2$	$=10$		Least significant digit
$10 / 2$	$=5$		
$5 / 2$	$=2+1 / 2$		
$2 / 2$	$=1$		
$1 / 2$	$=0+1 / 2$		$=0$

$(41)_{10}=(101001)_{2}$
Of course, the decimal number could be converted by the sum of powers of two:

- Conversion of Decimal Fraction to Binary

$0.6875 \times 2=1.3750$	Integer $=1$	Most significant digit
$0.3750 \times 2=0.7500$		$=0$
$0.7500 \times 2=1.5000$		
$0.5000 \times 2=1.0000$		$=1$
$0.6875)_{10}=(0.1011)_{2}$		Least significant digit

$$
(0.6875)_{10}=(0.1011)_{2}
$$

- Conversion Decimal Fraction to Octal

Convert decimal 0.513 to a three-digit octal fraction.

$0.513 \times 8=4.104$	Integer $=4$	Most significant digit
$0.104 \times 8=0.832$		$=0$
0.832×8	$=6.656$	
0.656×8	$=5.248$	

1. Information Representation
2. Number Systems
3. Arithmetic Operations
4. Decimal Codes
5. Alphanumeric Codes
6. Gray Codes

- What is Code ?
- In communications, a code is a rule for converting a piece of information (for example, a letter, word or phrase) into another form or representation, not necessarily of the same type.
- In communications and information processing, encoding is the process by which information from a source is converted into symbols to be communicated. Decoding is the reverse process, converting these code symbols back into information understandable by a receiver.
- 숫자, 문자, 기호 등을 다른 진수나 기호로 변환하여 나타내는 것
- Inputs for Digital Systems = Number, Letters, Symbols
- Digital Systems deal only 0 and 1.

1-4 Decimal Codes

Binary-Coded Decimal (BCD)

- Binary number system is the most natural system for a computer
- People are accustomed to the decimal system
- (human - decimal) : (computer - binary)
\rightarrow Decimal number should be stored in computer with specific form
\rightarrow BCD
- User enters number in decimal using keyboard
\rightarrow Decimal number is converted in BCD
$\rightarrow \mathrm{BCD}$ is converted in binary number for operation
\rightarrow Binary result is converted in BCD
\rightarrow BCD is converted in decimal number and display on CRT or LCD

\square \square TABLE 1-3 Binary-Coded Decimal (BCD)	
Decimal Symbol	BCD Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

- $(396)_{10}=(001110010110)_{\text {BCD }}$
- (0100001110010111$)_{\text {BCD }}=(4397)_{10}$
- BCD Addition

1-5. Alphanumeric Codes

- Any alphanumeric character set for English :
- at least 7 -bit $=128$ code, 6 -bit $=64$ code
- 10 decimal digits
- 26 letters of alphabet(uppercase, lowercase : 52)
- several special characters
- ASCII character code : original 7-bit code (Table 1-5)
- American Standard Code for Information Interchange

¢ ASCII								
TABLE 1-5 American Standard Code for Information Interchange (ASCII)								
$\mathrm{B}_{4} \mathrm{~B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1}$	$\mathrm{B}_{7} \mathrm{~B}_{6} \mathrm{~B}_{5}$							
	000	001	010	011	100	101	110	111
0000	NULL	DLE	SP	0	@	P	-	p
0001	SOH	DC1	$!$	1	A	Q	a	q
0010	STX	DC2	"	2	B	R	b	r
0011	ETX	DC3	\#	3	C	S	c	s
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	\%	5	E	U	e	u
0110	ACK	SYN	\&	6	F	V	f	v
0111	BEL	ETB	,	7	G	W	g	w
1000	BS	CAN	(8	H	X	h	x
1001	HT	EM)	9	I	Y	i	y
1010	LF	SUB	*	:	J	Z	j	z
1011	VT	ESC	+	;	K	[k	\|
1100	FF	FS		<	L	1	1	I
1101	CR	GS	-	=	M]	m	\}
1110	SO	RS	.	>	N	\wedge	n	~
1111	SI	US	1	?	O	-	-	DEL

- Parity Bit
- to detect error in data communication and processing
- extra bit : included
- to make the total no. of 1's in the resulting code word
either even(more common) or odd
- may be used with binary number
- as well as with code, including ASCII for characters
- may be placed in any fixed position
- ex. most significant position

	With Even Parity		With Odd Parity	
			01000001	

Gray Code

Binery Code	Bit Changes	Gray Code	Bit Changes
000		000	,
001	1	001	1
010	1	011	1
011	3	010	,
100	,	110	1
101	2	111	1
110	1	101	1
111	3	100	1
000		000	1

- UNICODE
- UNICODE extends ASCII to 65,536 unversal characters codes
- For encoding characters in world languages
- Available in many modern applications
- 2 bytes (16-bit) code words
- For more detail, See Reading Supplement - Unicode on the Companion Website (http:/ / www.prenhall.com/ mano)
\triangleleft Any Questions ??

