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Abstract

We have long wanted to create artifacts that resemble us: artifacts that not only
look like us, but act, think and feel like us, with which we can have sympathy and
empathy. In particular, the purpose of this thesis work is twofold: One is to under-
stand animal behavior, the role of the motivation system and of a�ect, in terms of
the theory embodied in the software architecture for modeling interactive synthetic
characters. The other is a practical one: to build believable synthetic characters that
we can interact with, utilizing our best understanding of animal behavior in creating
characters that are perceived as sympathetic and empathetic to humans. We have
done this with the help of a speci�c understanding of the roles of the motivation and
a�ect systems of animals.

To accomplish these goals, I propose a creature kernel model which is largely based
on the approach of Blumberg [7]. The creature kernel is modeled as a sum of four
main parts, the perception, motivation, behavior and motor systems. Among these
four components, despite the fact that the motivation system plays a crucial role in
daily survival of creatures in nature, its functional importance has often been ne-
glected in attempts to create intelligent artifacts because it has been thought of as
the "opposite" of rationality. Thus, in the system proposed in this thesis, emphasis is
placed on the roles of the motivation system and how it acts as the integrator of the
four parts of the creature kernel, and enables a creature to exist as a functional whole.

The plausibility of the proposed system is demonstrated through two projects, for
which the characters were built using the creature kernel. The �rst project is called
Sydney K9.0, in which the main character is Sydney, a virtual dog. Human partici-
pants can train the dog to do certain tricks using various physical input devices: voice
command, clicker sound, milkbone box and a training stick. Learning and training
phenomena are observed as operant and classical conditioning, and it can be explained
how each subsystem is functioning inside of the character's mind to implement that
functionality. The other project is called (void*): A cast of characters, through
which three distinctive characters { Earl, Elliot and Eddie { are introduced. In this
project, a human participant can 'possess' one of these three characters using buns-



and-forks interface and control the possessed character's dance movement by wiggling
the interface in various ways. Learning and adaptive change of attitude through the
interaction as well as expression of di�erent personalities and its e�ect on interaction
are emphasized. How well the personalities were represented is explored through the
results of a survey of a number of novice users of the system.

Thesis Supervisor: Gerald E. Schneider
Title: Professor of Neuroscience

Thesis Co-Supervisor: Bruce M. Blumberg

Title: Assistant Professor of Media Arts and Sciences
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People have long been fascinated with artifacts that resemble us. Fiction writers

and engineers have described and tried to build artifacts that not only look like us,

but act, think and, more recently, even to feel like us, and with which we can have

sympathy and empathy.

The beginning of such e�orts to build such artifacts can be traced back at least to

1938, when Thomas Ross made a machine which showed learning in a test of animal

intelligence { �nding the way out of a maze [137]. It was the �rst attempt to make a

machine that would imitate a living creature in performance, as distinguished from

appearance. Since then, there have been many researchers from various disciplines

pursuing this kind of goal, some of whom have focused on parts of the system that

are crucial for creating such artifacts and some of whom have dealt with the problem

of building a whole system.

Building lifelike creatures satis�es two natural desires. One is the desire to under-

stand ourselves, or living organisms in general, better. The process of implementation

provides us the best way of �nding out where in the system our lack of understanding

or comprehension lies, or whether our knowledge really is correct. The other desire

which we would like to satisfy by making lifelike artifacts is the desire to �nd another

instantiation of ourselves for sharing the essence of our lives - and relieving solitude.

Nowadays, such artifacts are labeled as toys, agents or robots to serve as friends,

companions or servants, and are designed to function at various places in various

contexts with the purpose of making our lives better.

This thesis describes work that extends such e�orts and concentrates on the problem

of building a whole system rather than focusing on a subsystem. The purpose of the

work is to build a framework for constructing arti�cial creatures that can act and

react with humans, in a believable manner.
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(a) (b)

Figure 0-1: These are two snapshots of some of the software creatures for which I have

implemented the behavior system. Throughout this thesis, I will discuss e�orts to create

lifelike characteristics of this kind of creature, characteristics which bring them to life { and

enable them to interact with humans in a believable manner.
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Chapter 1

An interesting parallel: history of

work on arti�cial creatures, and

evolution of real animals

The e�orts toward building lifelike artifacts continued after Thomas Ross' compelling

demonstration in 1938. His work led to various incarnations of lifelike artifacts, and

that e�ort is still continuing in the forms of intelligent robots [16, 17], software crea-

tures [2, 122, 9], and agents [96, 24].

Interestingly, parallels can be seen between implementation techniques and our un-

derstanding of how the brain of a living organism operates, and the development of

such techniques bears some resemblence to the evolution of the brain.

The simplest form of a creature can be described in a stimulus-response (SR) [68]

framework. This framework stems from Descartes who invented the idea of the re
ex

arc in a living organism; Descartes' idea can be considered one of the �rst theories of

how a living creature works. Straightforward S-R behavior patterns of animals that

are optimized for particular environmental settings have been �xed by the genes, and

can result in an animal being fooled by a supernormal stimulus, even if the response

is not necessarily helpful for survival. This demonstrates the fact that at least some

17



animal behavior patterns are tied to very speci�c stimulus con�gurations, and are

elicited without analysis of other available information [126].

On the implementation side, Braitenberg suggested a number of vehicles based on

a simple SR framework, which showed compellingly lifelike attributes [11]. Some of

the �rst vehicles that appear in his book are not more than a couple of light sensors

and wheels connected to the sensors. However, based on the way the wires are ar-

ranged, vehicles show either positive or negative phototactic behaviors, and people

easily perceive them as vehicles "in love" with the light or which are "afraid" of the

light, which are attributes that are usually ascribed only to living creatures. Brait-

enberg showed how interesting and life-like behaviors can arise from very simple SR

connections.

Foreseeable problems arose as he attempted to take the obvious next step: the addi-

tion of more complex repertoires of behaviors while keeping the simple SR connection

scheme. Connections necessarily got more and more complex, and coordination for

invoking desired behaviors became more di�cult (Figure 1-1). The evolution of the

central nervous system probably has faced the same challange (Figure 1-2). The

cerebellum and corpus striatum sit one level above the spinal cord and brainstem,

which serve as the center of re
ex arcs and action pattern generators, and the higher

centers orchestrate them to generate desired behavior patterns [47, 43]. An obstacle

for the Braitenberg vehicles' proceding one step further was the lack of such coordi-

nation centers, which are situated at one higher level or layer in the control hierarchy.

E�orts at �nding a solution and creating mechanisms that deal with this coordi-

nation problem led to the implementation of central control mechanisms [142, 25]

and then, to the coining, at a higher level of coordination, behavior engine and action

selection mechanisms [15, 72, 8].

As the need for this coordination mechanism was realized by those who are interested

18



(a) (b)

Figure 1-1: (a) In his book, Vehicles [11], Braitenberg showed that proper wiring of

sensors and servos preserving the simple SR framework is enough to evoke lifelike behaviors

and emotional attributes such as love and hatred. (b) Provoking more complex patterns of

behavior while keeping the simplest SR framework ends up complicating the circuit itself

and it becomes harder to generate well coordinated behaviors of the creature (Coursey of

the MIT Press, Illustration, Maciek Albercht.).

in constructing lifelike creatures, it was realized that such mechanisms have been con-

ceptualized by those who closely observe real creatures { the ethologists [70, 68, 126].

In particular, Tinbergen proposed a hierarchical network to explain the way animals'

behaviors are organized for meeting their survival needs, and Lorenz pursued the idea

in more detail and explained various behaviors that he observed in his research in the

framework of hierarchical organization with di�erent operations that happen at each

level.

These works of the ethologists further inspired those who are interested in construct-

ing arti�cial lifelike creatures and led to interesting and promising results. Wilson

started the new �eld of animat development [141], bringing together people who

were interested in making intelligent systems with people interested in simulating

the behavior of animals. Brooks's subsumption architecture led to success in con-

structing insect-like robots that operate reactively. Maes's action selection mecha-

19



Figure 1-2: Figures from The Living Brain, W. Grey Walter [137]. This �gure demon-

strates the early evolution of brain as progress in the organization of nerve cells. (A) Jelly�sh

is a good example of a creature that probably has no gating mechanism other than a net

of simple nerve cells. (B) Ganglia, or nerve knots, are really simple forms of brain that

appear early as the mechanism for gating outputs from nerves; this coordination scheme

is observed in insects. (C) As a slightly more advanced form, lancelots show a nerve cord

with a budding brain.
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nism has proven to be useful for designing sofware agents [72] through various im-

plementations. Other implementations also proved that this approach is more robust

and adaptive [138, 102, 8, 71] than traditional approaches and further proceeded to

demonstrate its generalizability to coordinated behaviors among individuals [75, 123]

in addition to coordination of behaviors within an individual. One can perceive these

advances in the programming of robots and synthetic characters in terms of a bio-

logical analogy: the computer brains were evolving structures above the level of the

spinal cord and brainstem [43, 22].

The next challange is to carry this creature with its expanded repertoire of behav-

iors into various novel environments. Just as in natural evolution, we are brought

up against the notorious nature-versus-nurture controversy [26, 68, 45]. Some of the

necsssary conditions for a species' survival are that it must have a structure that �ts

and performs well in the particular environment confronting it, and it must do this ef-

�ciently. It must have robust adaptive plans{plans which are e�cient over the range

of environments that it may encounter. One strategy for simplifying this problem

would be maintaining a highly optimized structure for a certain environment. This

strategy tends to sacri�ce complex, plastic development for e�ciency reasons. How-

ever, for a species to spread over a broad range of environments, a complex repertoir

of behaviors is required or the behaviors must be able to change in order to remain

adaptive in the face of such environmental variety [50].

Also, since organisms live in an ever-changing environment, they must be able to

modify their adaptations in response to these changes. Thus, there are a variety of

changes to which an organism must continually adapt during its lifetime. It must be

able to institute short-term, reversible changes in response to temporary environmen-

tal changes. Finally, for its survival it is important for an animal to be able to learn

from experience in such a way that it modi�es its behavior adaptively.

The major mechanism for adding robustness to creatures is called learning. Learning
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depends on changes at di�erent levels within the central nervous system. It may

include simple sensitization or desensitization among neuronal connections as well as

the use of strategic decisions in acquiring new plans.

Normally an animal's behavior is modi�ed on the basis of individual experience so as

to increase the animal's chances of survival. Such behavioral changes presuppose the

presence of special phylogenetically developed genome-coded programs that prepare

the individual for changes in its surroundings. Thus, the brain of an animal is pro-

grammed for adaptive changes of various kinds: it is programmed to learn.

Learning has directionality. It takes place to alter the behavior of the living organism

to be performed more in one way than in other ways. This implies the need for a

certain feedback mechanism for guiding this adaptive change and some kind of mem-

ory mechanism in addition, if the change is to be present over a certain period of time.

For learning, it is assumed that reward or punishment signals provide feedback nec-

essary for learning. Positive reinforcement or reward follows a behavior that accom-

plishes something that increases the animal's chance of survival, and this, in turn,

raises the likelihood of the animal's performing the behavior. By contrast, nega-

tive reinforcement or punishment follows a behavior that could decrease the animal's

chance of survival, and this, in turn, reduces the likelihood of the animal's performing

the behavior.

The evolutionary need for these components of learning mechanisms led to the appear-

ance of feel good and feel bad circuitry associated with modules controlling approach

and avoidance.

This circuitry was elaborated from visceral control mechanisms and from the chemosen-

sory mechanisms which were so closely allied with feeding { the taste and olfactory

systems { as well as from central mechanisms underlying pain and discomfort. The
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highly interconnected neuronal groups of this system have come to be called by neu-

roscientists the limbic system of the forebrain and midbrain [87, 14]. The activities

of this collection of brain components are tightly connected to learning and memory.

The limbic system is seen as the center of motivation mechanisms which include

drives and a�ect; it includes the neurons where activity can provide feedback with

a directional bit { happiness and sadness, satisfaction and disappointment, each of

which can serve as either reward or punishment. The result is a tendency to have the

creature either pursue further the behavior which has brought the reward or suppress

the behavior that originated the punishment, and grope for another way of doing

things. From the learning perspective, drive and a�ect mechanisms are similar in the

sense that both of them provide signed feedback signals to the creature. To reiterate,

the appearance of memory and motivation mechanisms, which was possible through

the evolution of limbic-system structures (including the hippocampus), made crea-

tures become more robust and thus made it possible for them to survive in a broad

range of environmental conditions.

Spier [112] has attempted to develop some of these ideas in computational mod-

ules. He developed a reactive learning framework based on the incentive learning

paradigm. In his model, what he called motivation involves a minimal amount of

explicit memory and, while still keeping the reactive system framework, he could

demonstrate the ability to build an adaptive system which becomes updated through

a well correlated, yet simple, motivation mechanism.

Change in quantitative values of the components that constitute the motivation sys-

tem (i.e., change in neuronal activity states) not only serves as the basis for judging

the plausibility of the behavior that triggered the change, but also may be expressed

outwardly and communicated to other creatures in the form of emotional expressions.

One of Darwin's most signi�cant theoretical statements on communication emerged
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from his consideration of animal emotions and the vehicles for their expression. In

1872, he set out to provide a general account of both acoustic and visual expressions

of emotions in humans and nonhumans. As in all of his earlier discussions, he at-

tempted to document and account for similarities and di�erences in expression across

the animal kingdom by considering their design features and functions. The following

quote captures the relevant details of Darwin's "bottom line."

No doubt as long as man and all other animals are reviewed as independent

creations, an e�ectual stop is put to our natural desire to investigate as

far as possible the causes of Expression. By this doctrine, anything and

everything can be equally well explained; and it has proved pernicious with

respect to Expression as to every other branch of natural history. With

mankind some expressions, such as the bristling of the hair under the

in
uence of extreme terror, or the uncovering of the teeth under that of

furious rage, can hardly be understood, except on the belief that man once

existed in a much lower and animal-like condition. The community of

certain expressions in distinct though allied species, as in the movements

of the same facial muscles during laughter by man and by various monkeys,

is rendered somewhat more intelligible, if we believe in their descent from a

common progenitor. He who admits on general grounds that the structure

and habits of all animals have been gradually evolved, will look at the whole

subject of Expression in a new and interesting light [28].

Though this quote is restricted to visual expressions, Darwin adopted the same ap-

proach (descent with modi�cation) to vocal expressions, and this included his expla-

nation of function. Speci�cally, he argued that expressions were designed to convey

information about the signaler's emotional or motivational state, with some signals

re
ecting an underlying ambiguity or con
ict between di�erent emotional states (his

theory of "antithesis") such as fear and aggression.

Concerning communication, the grandfathers of ethology { Lorenz, Tinbergen, and

von Frisch { largely accepted Darwin's treatment, especially the idea that signals were
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designed to communicate information about the signaler's motivational or emotional

state. Thus Lorenz [67] explored the communicative exchanges between mothers and

their young in a variety of avian species, focusing in particular on the signals and

cues used during imprinting. For Lorenz, signals used during imprinting would insure

attachment of o�spring to the mother, and maternal response to o�spring in distress.

Communications among organisms serve at least two di�erent roles. One is coordina-

tion of behaviors among organisms by conveying behavioral intentions or necessary

information for the good of the group. For example, Tinbergen [127, 128] looked at

some of the key releasers during aggressive interactions between stickleback �sh, in

addition to exploring the variety of displays used by gulls during competitive inter-

actions and courtship. Von Frisch [136] provided in-depth analyses of the honeybee's

communication system, concentrating in particular on signals used to convey infor-

mation about the location and quality of food. In all of these studies, very ritualized

patterns were observed, each of which apparently has very clear meanings to the other

animals of the same species.

With all these roles 1 being played, which also can be shown through various postu-

ral and behavioral con�gurations, the motivation system plays an important role in

creating the lifelike impression made by synthetic creatures.

The communicative aspect of motivation caught the attention of those who were in-

terested in building lifelike artifacts. Disney's magical creatures are probably the best

example demonstrating what emotional attributes can add to a creature. Thomas et

al [124] re
ect that the addition of (exaggerated) emotional response to their charac-

ters was the key to bringing the illusion of life to the screen. Characters that smile

or frown help the human beings watching or interacting with the characters believe

that the characters do feel happy or sad, and are trying to convey the internal state

of their feelings. People believe they have emotions, and thus have life.

1I discuss the roles of the motivation system in greater detail in Chapter 6

25



There has been a series of e�orts for making artifacts with their own motivations and

emotions in the robotics and software-agents domains as well [134, 37]. Breazeal [12]

built a robot called Kismet that can express nine emotions: anger, surprise, fear,

happiness, calm, interest, tired, disgust and sadness. In a social situation - interac-

tion with a human user - Kismet displays one of those nine emotional states through

its facial expressions. Duration and 'intensity' of certain types of interactions that

the designer had in mind are the main factors that a�ect its drive states, which in

turn, are used for selecting one of the nine emotional states as the primary emotion

of that moment to be expressed through its face. Though Kismet expresses emo-

tion which re
ects the nature of its interaction with the human user, the system

is designed within the framework of a kind of re
ex model such that Kismet does

not learn to try out a di�erent strategy even if a certain situation causes it to un-

dergo pain. While Breazeal's robot design is focused on a feed-forward operation

of motivation, i.e., drives and emotional states in
uence behavior selection and fa-

cial expression, Velasquez's robot, Yuppy, was designed more with a feed-backward

operation of emotion. Previous emotional experiences are fed back to the behavior

system and in
uence future action selection strategies in the same or similar situa-

tion [134]. Within a behavior engine similar to that of Breazeal's, his robot keeps

forming emotional memory, which a�ects behavioral attitude when it reencounters

an object with associated emotional memory. However, since Yuppy does not have

any generalization capability from the past experience, it does not know how to deal

with objects or situations whose features - whether they cause pleasure or pain to the

robot - were not pre-speci�ed by the designer, and thus it does not show emotional

response to a novel object or situation.

Bates led the OZ project [2, 76], which paid a lot of attention to emotional aspects of

synthetic actors, called Woggles. Individual Woggles had speci�c habits and interests

or baseline emotional states, which are shown as di�erent personalities for di�erent

Woggles. However, designed with application to interactive cinema in mind, which is
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di�erent from the goal of making an adaptive animat, emotion, as well as the rest of

the components of a motivation system, functions like a set of rules for determining

each Woggle's speci�c ways of reacting to events or objects.

Including the works mentioned above, the stream of research e�orts for construct-

ing artifacts with emotion led to many interesting demonstrations [96, 135]. How-

ever, those implementations have limitations primarily because emotion is modeled

as super�cial phenomena that make creatures look live, rather than as an important

functional module that is crucial for proper functioning of the creatures, with emo-

tional expression as one of the phenomena observable as the result of its operation.

Instead of being carefully designed by programmers with speci�c aspects of emotional

phenomena in mind, it should have been implemented as an emergent phenomenon

that comes from the underlying motivation system that works as a part of the func-

tional modules that are crucial for the operation of the creature. This is in accordance

with a well-de�ned di�erence between the magical and the scienti�c imitation of life.

The former copies external appearances; the latter is concerned with performance

and behavior [137]. This criterion can be applied to the subparts of any system that

claims to mimic life, and thus it is applicable to the motivation system, too.

Blumberg [6]'s work made an important advances beyond the older philosophy. He

implemented an action selection method, and incorporated learning based on feed-

back from the drive system. The work demonstrated a way of understanding and

implementing classical and operant conditioning within the behavior architecture.

However, this implementation did not fully explore the a�ect (emotional feeling) part

of the motivation system for providing reinforcers for learning, and thus was restricted

to certain types of behavioral adaptation.
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Chapter 2

The scope of this thesis

This thesis work aims at building arti�cial creatures that are like us and that can

interact with us. I hope this attempt not only provides us with greater ability to

build creatures that are fun to interact with but also contributes to our better un-

derstanding of living organisms, more speci�cally the mechanisms that underlie their

operation.

The thesis builds mainly on work done by the Synthetic Characters Group, MIT

Media Laboratory. The type of arti�cial creatures we create are called synthetic

characters, and they can be described as 3D virtual creatures that are intelligent

enough to do and express the right things in a particular situation or scenario [62].

The general research goal of our group is to create life-like synthetic characters that

can interact with human participants in real time.

2.1 Problems

This goal of having arti�cial creatures intearact with human participants in real time

imposes a number of challenges, which include both design issues and performance

issues. Design issues include the structuring of a character's software brain so that it

is intelligent enough to meet the demands of the interaction setting, and performance

issues concerned with optimizing such software, using rapid graphics rendering rou-
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tines and minimizing other hardware communication delays involved in implementing

such scenarios well enough so that human participants do not lose interest in interact-

ing with the characters. Among those various concerns, the following two are issues

of special signi�cance in my work.

Intentionality

Human participants can comfortably relate to interactive characters only when they

feel that they can understand what is going on in the characters' minds. That is, they

must be able to infer a character's beliefs and desires through its observed actions,

and the quality of those actions [30]. Fundamentally then, a character's actions must

be driven by and expressive of its beliefs and desires. This problem can be viewed as

the need for communication between characters and human participants.

Adaptability

Real time interaction with human participants brings a strong measure of unpre-

dictability to the virtual world. Not every situation can be predicted at the character

design stage. So, it is very di�cult to make characters behave in an intelligent man-

ner solely based on the designer's comprehensive thought at the development stage.

Furthermore, failures to show at least a very primitive level of intelligent behavior

damages the life-like impression made by the characters. For example, it is hard to

feel sympathy for a character that keeps approaching a participant who has been

punishing the character at every instance of interaction, rather than avoiding such

a participant. In other words, adaptability is crucial for it to "survive" as a char-

acter that can interact with humans in a compelling manner, where the details of

interactions are not pre-scripted.

2.2 Proposed Approach

As discussed in Chapter 1, biological creatures are good sources that we can learn

lessons from to solve problems that these interactive synthetic characters ought to be
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able to solve. Living in speci�c environments, biological creatures maintain both the

hardware and software structures that have been evolved as viable solutions to the

problem of survival. So, the approach this thesis is taking is to look for the solutions

that those creatures have adopted and develop them as a mathematical and structural

framework that can be easily incorporated as a design principle for building synthetic

characters.

2.2.1 The motivation system

To look intentional, characters should know how to convey their intention. They

need to be understandable characters, and thus, communicative characters. And, as I

discussed in Chapter I, a good part of communication comes from facial, gestural and

behavioral expressions of emotions, which is part of the function of the motivation

system; this is exclusive of more explicit forms of communication such as language.

This external communicationmedium as a role of the motivation system has been wit-

nessed in not only humans but also other creatures in nature. For example, monkeys

may communicate their emotional state to others by making an open-mouth threat

to indicate the extent to which they are willing to compete for resources, and this

may in
uence the behavior of other animals. This aspect of the motivation system is

well emphasized by Darwin [28], and has been studied more recently in humans by

Ekman [35, 36]. He reviews evidence that humans can place facial expressions into

the categories of happiness, sadness, fear, anger, surprise and disgust, and that this

categorization may operate similarly in di�erent cultures. He also describes how the

facial muscles produce di�erent expressions. Further investigations into the degree

of cross-cultural universality of facial expressions, its development in infancy, and its

role in social behavior are described by Izard [56] and Eibl-Eibelfeldt [33].

On the other hand, we have also discussed the role that the motivation system plays

in providing reinforcement which is crucial for learning, which, in turn, is a crucial

component for making creatures robust and adaptive. This brings us back to the
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need for the motivation system not just as a super�cial addition to creatures, but

with its proper implementations based on functional connections with other parts of

the system.

Thus, the goal of this thesis work is to build a framework for creating interactive

synthetic characters that incorporates the motivation system in such a way that it

functions as an internal and external communication medium and as reinforcement

for learning, which are crucial aspects of building intentional and adaptive synthetic

characters, and, �nally, a basis for shaping personalities and imposing diversity on

characters, all as emergent phenomena.

2.2.2 Groundwork

There is no fuzzier terminology than in the areas of motivation and emotion. They

are common words that we always use in everyday conversations, but there are no

clear de�nitions of those words that everyone agrees with. So, the �rst e�ort should

make clear the boundaries of those concepts that I will try to implement in the sys-

tem. Functional de�nitions need to be made to explain necessary concepts.

Blumberg [7] developed a behavior engine based on the theory of hierarchical struc-

ture of behavioral organization [126, 68], which is widely accepted by ethologists.

E�ciency and plausibility of the framework has been demonstrated by various inter-

active installations such as ALIVE [71] and Swamped! [9]. In my work, I extend that

model to utilize a probabilistic framework, designing creatures based on a more ex-

plicit information 
ow model, and I have enabled various kinds of animal-like learning

to make creatures truly adaptive. Most of the codes for this new model have been

written in Java. The developed creature kernel model has been implemented in the

form of various characters in various settings.

Thus, what I demonstrate through this thesis is a computational framework based on

the motivation model, which can be connected to other parts of a creature's kernel,
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and implementations of synthetic characters in various interaction settings.

2.3 Development

The motivation system cannot be properly implemented by merely adding ad hoc

adjustments of the look or reaction of the creature for each situation, or as a set of

rules which tells the creature the way it should feel when a certain event happens.

Instead, only a systematic and functional implementation of it can actually aid a

designer developing a situated animat creature, and enable the creature to be truly

adaptive and believable in the situation that it lives in.

2.3.1 A rough sketch

In this thesis work, the motivation system is modeled as a sum of the drive system

and the a�ect system. The drive system is composed of the drives due to the internal

state of the creature and the drives induced by its sensory inputs. The a�ect system

is composed of a�ects associated both of these types of drives, and a�ects associated

with appetitive and consummatory behaviors and with social signals. The number of

basic components of drives and a�ect is speci�ed to meet creature speci�c character-

istics. The behavior system, which also is a part of the creature kernel, a�ects the

motivation system both at its input and output ends. Performing consumatory behav-

iors satis�es associated drives, which, in turn, in
uence the a�ect system. Appetitive

behaviors, on the other hand, in
uence the a�ect system directly; for example, just

approaching an apple makes a raccoon happy even if it has not eaten it quite yet and

thus has not lowered its hunger drive. On the output side, the change in a�ect is

shown as various facial expressions and appropriate gestures.

2.4 Demonstration

Two projects were worked on to provide the necessary environments for implementing

the motivation model: Sydney K9.0 and (void*): A cast of characters.
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Sydney K9.0 is a project that focuses on the motivation system's role as the rein-

forcement for learning. Sydney is the name of the dog in the project, and the setting

provided is an interaction between a human participant and Sydney through speech

and other auxiliary interfaces. Various types of animal learning, especially those dis-

cussed in Lorenz [68] are explored using the creature kernel framework described in

this thesis.

(void*): A cast of characters is a project that focuses more on the communica-

tion medium aspect of the motivation system. Three characters with distinguishable

personalities are introduced in this project. The project touches not only the issue of

interaction between characters and human participants but interactions among char-

acters themselves. Personality is the main factor that shapes the characters' reactions

to participants' inputs and, in turn, their attitudes toward the interaction itself.

2.5 Evaluation

Evaluation of how well the proposed method works follows the description of the

(void*) project.

Adaptive characters should not fail at dealing with novel situations that are generated

by inputs from human participants and through interactions with other characters

who have their own intentions. While continuing the interaction with the charac-

ters, human participants should feel comfortable thinking they understand what is

going on and what characters are trying to convey, instead of feeling obstructed by

an opaqueness of the characters' minds.

So, centering on the perceived believability of characters' behavior and apparent ease

of communication from the human participants' viewpoint, survey questions were an-

swered by volunteers and the results were analyzed to evaluate the plausibility of the
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proposed approach and, thus, the implemented system and algorithm.

To summarize, I have aimed at achieving the following three goals by incorporat-

ing the motivation system into synthetic characters through this thesis work:

1. Realization of synthetic characters that look more believable than heretofore,

in other words, characters that give more lifelike impressions through their

emotional expressions and reactions to events and human participants' inputs.

2. Design and implementation of synthetic characters that are adaptive even in

situations that were not anticipated at the designing stage.

3. Provision of a framework which is easy for designers to use for implementing be-

lievable synthetic characters. Without a proper motivation system framework,

emotional responses of characters have to be designed and added by hand for

every little situation. This previous approach makes the job very di�cult for

the designers or programmers, because as the world becomes more complex, the

number of possible situations grows exponentially, every one of which has to be

carefully considered to evoke believable responses from characters. This older

approach is not what happens in nature. I have implemented in the software of

synthetic characters a theory of how real animals work.
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Chapter 3

Glossary

Terminologies used in this thesis follow the conventions of the Synthetic Characters

Group, MIT Media Laboratory, where all the implementation work described here

was done. Below I describe the meanings of the key terminologies that appear fre-

quently in descriptions of the system, to avoid confusion that might arise for readers

outside of the group.

Virtual world refers to an environment we create as a software program and display

in 3D graphics. It allows constant external inputs, which add unpredictability to the

state of the world. All the projects described in this thesis display the world on a 
at,

vertical screen. However, it does not need to be restricted to a 
at screen, and any

other media which our creatures are allowed to inhabit meet the working de�nition

of virtual world. Virtual world is a subset of world which refers to both virtual

world and physical world. Unlike virtual world, physical world is �lled with tan-

gible objects and inhabited by robots, human beings and other animals. Creatures

are inhabitants of a world, which include both real animals and software creatures.

The common denominator of those two categories of creatures is that they both have

perception, motivation, behavior and motor systems and live in an unpredictable en-

vironment. Characters, or synthetic characters, are creatures designed according to

the behavior-based creature design framework [7]. They might be embodied physi-

cally or graphically so that human participants can perceive them or they might not
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Figure 3-1: This �gure is a schematic diagram of a situated creature, which is composed of

the four main parts: perception, motivation, behavior and motor systems. Arrows represent

information 
ows among those systems. Well coordinated communication among those four

is required for a creature to successfully function in a dynamic world. See text for details.

be embodied when it is not necessary, as in the cases of music and camera creatures.

Characters have distinct names which are used in their world, and personalities that

can be perceived by other characters in the world and by human participants who

are interacting with or watching them.

Creature Kernel is the integration of the four main elements { perception, mo-

tivation, behavior and motor systems { which, we think, are crucial for the operation

of a creature in an unpredictable world. A schematic diagram of the creature kernel

and how each part is connected to form a situated creature is shown in Figure 3-1.

Introducing each concept brie
y, the perception system refers to a system of sen-

sors that are used to extract the state of the world. For animals in a physical world,

the perception system includes visual, auditory and tactile sensors, whereas for vir-

tual creatures, it refers to a set of visual sensors, which return the visual features

of other objects in the same virtual world, smell sensors, which return the olfactory

features of objects that they can smell, etc. The motivation system is the sum

of drives and a�ect. Depending on personalities and what kind of species they are,
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characters have di�erent sets of drives with di�erent parameters. A�ect refers to the

state of feelings, often referred to as emotion, mood, etc. The behavior system is

the control center of a creature's behavior. By putting together inputs from various

parts of the creature kernel, action selection is made, and a command to the motor

system is sent out that follows the decision made by the action selection. The motor

system controls all movement of the physical body such as limbs and joints in the

case of real animals, or the mechanical parts for robots and the graphical representa-

tion on the screen for virtual creatures.

Emotional expression is revealing of a�ect through the creatures' motor system,

i.e., facial expressions, various gestures, etc. It enables and aids the communica-

tion between creatures and human participants, as well as that among creatures

themselves. Human participants are users of our installation, who a�ect synthetic

characters or the state of the virtual world through various input devices.
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Part II

DEVELOPMENT OF THE

SYSTEM
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This thesis work is aiming at creating a whole graphical creature through which dif-

ferent parts of the underlying system { perception, motivation, behavior and motor

skills and their realizations through the graphical 'body' { all interact in a plausible

manner. In particular this work is directed at building creatures that are adaptive to

an unpredictable world, and thus who are able to interact with human participants,

whose exact input never can be predicted in advance. We call such creatures inter-

active synthetic creatures.

In Part II, I describe how the concept and framework were developed and imple-

mented for supporting creation of such creatures.

Figure 3-2: K. F. Chicken, one of two main actors of SWAMPED! [9] in its virtual world.
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Chapter 4

About building synthetic

characters

The work of implementing a synthetic character is premised upon a broad under-

standing of a synthetic character as a situated creature in a dynamic and unpredica-

ble world, as well as upon a deep understanding at the level of detailed operations.

A synthetic character is conceptualized as a situated creature in a world, and its

existence and operation have their meanings not in isolation but through the charac-

ter's action and reaction to the world, which includes not only various objects but also

other creatures in the same world. Figure 4-1 summarizes this concept of a synthetic

characater as a situated creature.

In its most abstract form, this idea of a situated system is rooted in the theory

of classical control systems. The fundamental notion in classical control theory is

that of a dynamic system. Such a system consists of a controller and an environment.

Both the controller and the environment to be controlled are viewed as determinis-

tic �nite automata. The input of the controller is a signal which is the output of

the environment; on the other hand, the input to the environment is an action pro-

vided by the controller [29]. Likewise, the operation of a synthetic character can be

viewed as a stream of interactions between the creature and the environment. As the
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Figure 4-1: A synthetic character is modeled as a situated creature in the world and its

operation is a series of actions and reactions to the dynamic and unpredictable world that

surrounds the character.

Figure 4-2: A synthetic character is modeled as a sum of four main components { percep-

tion, motivation, behavior and motor systems. Well-coordinated functioning of those four

is essential for a character to survive in an unpredictable world.

task of a controller is to achieve a reaction in the environment, a situated creature

seeks ways of managing its life to satisfy its goals and thereby survive, overcoming

the challenges provided by the unpredictable surrounding world. Thus, the system

function represents a set of correct actions to be executed for each possible perception.

Getting to the system-level description of a character that should behave in this

manner, each character can be understood as a composition of four main components

{ perception, motivation, behavior and motor systems [49], which form the kernel of

a creature. To function in an unpredictable world, these four main components of a

creature should coordinate well as a whole, as shown in Figure 4-2.

Given this structure, a creature's actions and reactions or, more generally, its be-

haviors, arise either internally or externally. Internally aroused behaviors include be-
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a b

Figure 4-3: These two �gures show examples of information 
ow within a creature when it

performs internally originated behavior. a: Need of certain behavior arises frommotivation

system and is signaled to the behavior system (arrow 1); combining with sensory input

about the state of the external world (arrow 2), the behavior system selects a certain motor

subsystem to be executed to satisfy the motivation system (arrow 3). The motor system also

gets input from the perception system (arrow 4) and executes a motor command that it has

been told to do (arrow 5). This execution is fed back to the motivation system (arrow 6) and

serves as one of the bases for deciding whether the same cycle should be repeated or another

drive should be taken care of. b: This is another example of information 
ow which explains

the case when internally originated behavior is performed. Motivational input a�ects the

perception system (arrow 1) which has the creature focus on certain objects (arrow 2) with

which the creature can satisfy its motivational need. The �nding of such an object then

motivates the creature (arrow 3), for example, to approach the object, and the rest of the

scenario is similar to that of a.

haviors for satisfying certain drives { for example, arousal of the curiosity drive makes

a creature explore novel places, and arousal of maternal or paternal drives leads to

behaviors such as child care by parents. These motivational inputs are fed into the

creature's behavior system to activate relevant behavior modules, which in turn send

execution commands to appropriate parts of the motor system as shown in Figure 4-3.

External stimuli may trigger behaviors as well. Perceptual input might go directly

into the motor system to trigger certain re
ex responses, or it may cause the moti-

vation system to increase certain drives as shown in Figure 4-4. Except for purely

re
ex cases, the motivation system functions as a medium, i.e., a common currency,
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a b

Figure 4-4: These are examples of information 
ow in the case of externally originated

behaviors. a: Perceptual input (arrow 1)can be directly fed into motor system (arrow

2) to trigger a re
ex like motor skill (arrow 3). b: Or the external state of the world

(arrow 1) - such as the presence of an appetite raising object, which will a�ect hunger

drive, or the presence of a predator, which will raise the drive to 
ee - is reported to the

motivation system (arrow 2), which then in
uences the behavior system (arrow 3) to select

an appropriate behavior to tell the motor system (arrow 4) to take an action (arrow 5).

that facilitates communication among the other systems [23, 10]. These motivational

inputs are fed into the creature's behavior system to activate relevant parts, which in

turn send execution commands to appropriate parts of the motor sytem [80] as shown

in Figure 4-4. The motivation system talks to the behavior system to provide bias

in action selection. Appropriate behavior is selected based on the creature's current

needs combined with other factors. Signals from the motivation system bias the sig-

nals that are sent to the motor system, modulating the manner of execution of the

creature's motor skill. For example, even if the creature is performing a walk skill, it

could walk happily or sadly depending on its current mood. In turn, the result of the

action selection in the behavior system and thus execution of the associated motor

skills, lowers or raises various drives, or a�ects emotional states positively or nega-

tively, depending on how they are connected to each other. The perception system

may directly talk to the motivation system as well. Finding an apple might suddenly

raise the creature's hunger drive. On the other hand, a creature would be more likely

48



Figure 4-5: A character's operation is modeled and analyzed as alternating action and

learning phases at every tick. These phases are referred to as forward and backward op-

erations, respectively. Forward process includes evaluation of the state of the world and

the character itself and making the right behavioral decision, and backward process refers

to feedback from the result of the action, and updating of the character's world model, or

learning.

to �nd foods when it is hungry than when it is not.

4.1 Forward and backward operations

As a character that has the ability to learn, the operation of a character can be ex-

pressed as a repetition of two di�erent modes of operations { forward operation and

backward operation.

The process I just described in the previous section summarizes the forward pro-

cess of a situated character. It consists of determining the current state of the en-

vironment by evaluating the current input to the character, and then determining

a suitable action strategy given the state of the environment. After performing the

chosen strategy, given the output or response that resulted due to the character's

action, the goodness or plausibility of the strategy, and thus the plausibility of the

character as an estimator, is evaluated. Update of the evaluator follows, to increase

the probability of its working better or using a better strategy the next time. This

post-action system update process, i.e. learning, is referred to as backward operation

of characters. This way of seeing a character's operation is summarized in Figure 4-5.

To summarize, no matter whether we think about characters for synthesis or anal-

ysis, we must include both the character itself and the environment, both how the
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character is structured and how it operates, and both how its forward operation is

performed and backward operation is realized. No matter how local the focus of work

on a synthetic character may be, all these action and reaction relations should be

kept in mind. This thesis work is based on this framework and mindset.

50



Chapter 5

Creature Kernel

As discussed in Chapter 4, the creature kernel is composed of four subsystems { the

perception, motivation, behavior and motor systems. In this chapter, I explain in

more detail how each of these four systems are similar and di�erent from each other

and how each is implemented.

All four systems are modeled as a network of basis units. For example, the perception

system is modeled as a hierarchically connected network of sensor units. Each unit

represents a species-speci�c sensor such as a vision sensor, smell sensor, etc. and

some units are structured for extracting compound information such as distance to a

certain object. The number of levels in each network and the way units are connected

are decided both by the designer and by learning processes, i.e., both by phylogeny

and ontogeny of the creature. Units in a network interact with each other to excite

or inhibit other units' activation in a manner similar to what was implemented by

Blumberg [7]. This in
uence is modulated by the strength of the connection, which

ranges between 0 and 1, as well as by its own activation level.

5.1 The behavior system

The behavior system is composed of behavior units. The output value of each behavior

unit is a function of the prior output value of itself, output values of its parent
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Figure 5-1: One behavior unit. Arrows represent connections to other units in the behavior

system, or other systems in the creature kernel. Output value of this unit is a function of

the output value of itself in the near past as well as inputs through those connections.

behavior unit and sibling behavior units (via mutual inhibition), and inputs from

other subsystems i.e., the motivation and the perception systems. Figure 5-1 is a

schematic diagram of one behavior unit where arrows represent connections to other

units within a behavior network. Units that inherit output values of the units that

belong to higher level of the network are called children units. Units that in
uence

children units are called, in turn, parent units.

5.1.1 Behavior network

Behavior units are organized in a semi-hierarchical manner to form a behavior net-

work. Figure 5-2 shows a portion of a possible behavior network as proposed by

Tinbergen [126]. Arrows between behavior units are either excitatory or inhibitory

connections. For simplicity, Figure 5-2 only shows input streams to behavior units

from other parts of the behavior network, omitting in
uences from other subsystems

of the creature kernel.
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Figure 5-2: Hierarchical organization of behavior units as proposed by Tinbergen [126].

Vertical arrows represent in
uences from a parent behavior to its children behaviors and

horizontal arrows represent mutual inhibitory connections among sibling behaviors.
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Figure 5-3: This �gure shows how a behavior sequence may be executed within a behavior

network. Filled circles and arrows show a possible activation of a behavior sequence in a

behavior network.

5.1.2 Execution of a behavior sequence

A behavior sequence is executed through a chain of activation of behavior units, shown

as connected by directional arrows in the �gures. From the node where the sequence

started, behavior units activate in an order following the direction of the arrows until

the sequence terminates { i.e., for example, when it sends out an appropriate motor

signal for bodily execution. One example sequence of execution is shown in Figure 5-

3. Both the weight of the connections and how the behavior units are connected are

important. It is assumed that every creature has a species-speci�c a priori structure

of its behavior network and associated connection weights that it was born with. Both

the presence and absence of connections and weights associated with the connections

are 
exible so that they can change over time for the creature to becomemore adaptive

to the speci�c environment, and so it can learn new skills or strategies for solving

problems it might face. Or the structure of the behavior network could just re
ect

personal habits that a particular individual has developed through its lifetime. I

propose that these modi�cations in the behavior network are the result of learning;

the way this learning has been implemented is discussed in Chapter 7.
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Figure 5-4: Components of the motivation system. The motivation system is composed of

the drive system and the a�ect system, and each consists of corresponding subparts. Parts

of the behavior system which have intimate connection to the motivation system are shown

in this �gure as well.

5.2 The motivation system

The motivation system is composed of two parts: the drive system and the a�ect

system. The drive system includes those depending on internal states and sensory

induced drives. It is organized as a semi-hierarchical network like the behavior system,

and the connections that connect basis units are also 
exible, i.e. the connection

weights may be modi�ed and updated as learning of the synthetic character proceeds.

Figure 5-4 summarizes the components that all together form the motivation system.

I include part of the behavior system in the �gure, since there is a tight coupling

between the behavior system and the motivation system which, among other things,

is responsible for expressing the state of the motivation system outwardly through

gestures and facial expressions.

5.2.1 The drive system

Consummatory behaviors and appetitive behaviors [68] have intimate back and forth

connections with the drive system in particular, and the creature's a�ective state is

expressed through its various emotional expressions which are built in (innate) or

are shaped to �t cultural conventions. Every synthetic character is born with species

speci�c drives that are connected in the a priori way, and over time, the connections
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between the drive units are modi�ed as the character interacts with the world and

gains experience. The connections and their strengths re
ect the individual's speci�c

interests and desires that are perceived as personality, and as characteristics which

contribute to the individual's behavioral strategies and habits.

5.2.2 The a�ect system

Components of the a�ect system include a�ect associated with drives due to the crea-

ture's internal states, a�ect associated with appetitive behaviors, and a�ect associated

with sensory-induced drives. Top level nodes in the motivation network represent so

called mood which provides underlying bias to the character's behavior.

Approaching a�ect

When I use a word, Humpty Dumpty said in a rather scornful tone, 'It

means just what I choose it to mean - neither more nor less.' 'The ques-

tion is,' said Alice, 'whether you can make words mean so many di�erent

things.' 'The question is,' said Humpty Dumpty, 'which is to be master -

that's all.' Lewis Carroll: Through the Looking Glass

One of the challenges that we are faced with when we start modeling and implement-

ing the a�ect system is that we need to be clear on what we mean by a�ect.

In antiquity, Chinese doctors believed that humans experience four basic a�ective

states { anger, happiness, sorrow, and fear, which were thought to arise from activ-

ities of the liver, heart, lungs and kidneys. The ancient Greeks also viewed human

nature as being constructed of four basic elements { �re, air, earth and water { and

the classic temperaments - choleric, sanguine, melancholic and phlegmatic { are rem-

iniscent of the psychobehavioral control systems that appear to be emerging from

brain research as distinguishable emotive circuits [89].

Most modern taxonomies of human emotions, in line with earlier perspectives [31],
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posit the existence of a fairly small set of basic passions. For instance, Tomkins [131,

130] argued that joy, fear, rage, surprise, disgust, anguish, interest, and shame are

the basic human emotions. Izard [54, 53] concurred, but also added contempt.

Plutchik's [92, 93] list is similar to that of Tomkins's, but instead of shame, ac-

ceptance was put forward. Although all of these are distinguishable a�ects, and most

can be recognized by facial countenance [35, 53, 55], it is doubtful that all should

be considered to be of equal importance (i.e., re
ecting robust, cross-species types of

brain organization).

Despite all this e�ort, there has never been any clear agreement as to what the word

means. Amongst philosophers, a�ect has almost always played an inferior role, often

as an antagonist to logic and reason. Along with this general demeaning of a�ect

in philosophy comes either a wholesale neglect or at least a certain distortion in the

analysis of emotions [111, 69]. The lack of acceptable theory of emotion does not stem

from a paucity of candidates [117]. Many books have been written presenting this

or that theory of emotion. However, most have a selective view of observational and

experimental evidence, often omitting whole areas of research that another theorist

would deem pertinent. Both this disparity of viewpoint between theorists and the

logical confusion which can be found within some theories are traceable to variations

in the meaning of the word emotion [82].

One could argue that such verbal responses merely re
ect cultural conditioning, and

that all humans readily recognize the outward re
ections of various emotions in oth-

ers [35, 55]. At present, the more fertile starting assumption is that the verbal re-

sponses re
ect a pre-linguistic, a�ective heritage, of distinct brain mechanisms passed

down to us from our evolutionary past. These emotions appear to be represented co-

herently at a fundamental neural level. Although one could debate endlessly on how

such systems should be verbally labeled, the essential issue is that concrete brain

mechanisms for several emotions do exist, and scienti�c understanding of emotions

can only be achieved through a direct study of these systems. Thus, although it

57



may be impossible to convince an insistent skeptic of the proposition that the brain

contains a separate 'panic system' [89], the essential issue is that brain circuits that

elaborate separation distress do exist.

Therefore, the approach taken in this thesis is, instead of attempting to start from

an inductive de�nition of a�ect and emotion, which has proven to be very di�cult

to work out, working with a deductive de�nition of a�ect which can be prescribed

collectively through examples. In particular, the aspects of a�ect that are considered

to be pertinent in terms of operation of the creature kernel will be presented in terms

of their functionality (see Chapter 6), and the modeling and implementation of a�ect

are designed to cover all those aspects important for functioning as a part of the

creature kernel.

Three-axis model of a�ect

In addition to keeping the previously claimednotion of developing a model of the a�ect

system that can support the functional need for the proper operation of the creature

kernel, the design constraints I adopted include 
exibility and communicatability.

� Flexibility: By being 
exible, I mean the model's ability to cover a wide range

of a�ective space, including that of a primitive animal that does not have a very

complicated motivation system, and a more developed creature that possesses

intricate and complex motivations and thus a�ects.

� Communicatability: A fundamental underlying requirement of this creature

kernel framework is the ability of all four subsystems' to work together to make

the creature a functioning whole. This should be supported by the subsystems'

ability to communicate with each other.

Like all other subsystems in the creature kernel, the a�ect system is organized as a

semihierarchical network structure. The basis a�ect units are connected via direc-

tional arrows, whose values represent levels of in
uence. The top level nodes of this

network are three basis units { valence, stance and intensity { whose values vary along
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their respective axes [101, 12].

Putting the components of a�ect on axes make sense because the main descriptors

of those components are signed values. A creature can experience both positive and

negative states of one kind of a�ect (for example, happiness and unhappiness), which

can be clearly represented as values along an axis that spans negative and positive

values. Each state of one particular a�ect can be represented as a point on this

axis, i.e. a creature can feel happy a lot or a little, or very unhappy or only a little

unhappy, depending on the situation. This property of a�ect is essential for later

development and especially for integration with learning which needs the guidance of

signed quantities where values can be compared.

Intuitively, ths most basic attribute of a�ect is represented along the feeling good

{ feeling bad axis. A creature might feel good in anticipation of something good com-

ing as a result of the behavior, or the behavior itself may be pleasing and rewarding,

or the creature might feel bad due to the opposite reasons. This attribute of feeling

good or bad varies along one of the three main axes and is called 'valence.' Stance

corresponds to a�ective situations which lead to either approach or withdrawal re-

sponses in Schneirla's sense [73]. This also assumes positive and negative values, but

is more concerned with a pronome [83] that the creature is reacting to or interacting

with 1. Stance is a�ect toward an object, another creature or situation that the crea-

ture is experiencing. The third, and the last, axis represents intensity. The need of

a new dimension comes from temporal di�erences (for example, to express di�erent

rates of change) as well as qualitative di�erences in the expression types. In the case

of human beings where six primary emotions can be considered as the primitives of

a�ect [35], this axis aligns well with the a�ective attribute called 'surprise.' Surprise

is often reported in conjunction with happiness, anger and distress and this observa-

1The di�erence between valence and stance can be viewed as similar to the comparison between

intransitive verbs and transitive verbs. The basic either positive or negative a�ect that a creature

experiences when the behavior can be described using an intransitive verb, would be closer to valence.

Otherwise, it would be more proper to use stance, within the framework I am developing here.
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tion supports the notion of separating this process from others [116]. When surprise

occurs in close proximity to other aspects of a�ective arousal, surprise normally pre-

cedes others. As shown in the case of surprise and curiosity, a�ective response along

the intensity axis is not really related to the attainment of a goal or bodily feedback

and it precedes other evaluation-related a�ective responses, whereas good/bad and

approach/withdrawal axes are more related to the maintenance of valued goals or

perception of the relative position of self to a goal to be reached. Surprise, curios-

ity, and interest (or disbelief, which evokes a reaction similar to that of novelty { a

con
ict between expectation and perception) are indicative of the formation of new

representations, whereas happiness, anger, sadness and fear are indicative of those

emotions that occur when an event is being assessed with respect to the maintenance

of valued goals.

In terms of the relationship with learning and behavior, while stance and valence axes

contribute to a character's learning by providing evaluative quantities, i.e. serve as

guidance for future behavior and belief, the intensity components contribute through

absolute values as well as by determining the focus of attention. This issue is dis-

cussed in more detail in Chapter 7.

This a�ect system network, which starts with three basis nodes - valence, stance and

intensity, can be expanded to arbitrary depth to represent complex a�ective states, or

can be kept near the basis units for representing states in a simpler a�ect system. For

example, Russell [101] succeeded at mapping out the six primary emotional states [35]

on the plane spanned by these three basis axes. Within the proposed framework, this

result can be implemented as a network of two layers with three nodes on the �rst

layer and six nodes on the second layer that are connected to the �rst layer via arrows

from the �rst layer with various weight combinations.
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The motivation system is at the center of forward and backward operations

As explained in Chapter 4, the operation of a character is viewed as a chain of two

phases of operations, forward and backward, which include evaluation of the world

and making strategic decisions and performing actions, and of getting feedback and

updating its world models or beliefs, respectively.

In particular, with the motivation system in mind, the operation of a character is

viewed as follows.

During the forward operation phase, after evaluation of the current world or event,

a behavioral decision which will bring the most positive valence or stance response

as the result of the action, is made. The values of the a�ect system modulate the

way the chosen behavior is performed. For example, even if the character made the

same decision to 'walk', it may walk happily or sadly based on the current state of

the a�ect system or anticipated outcome.

During the backward operation phase, feedback from the motivation system deter-

mines the goodness of the chosen action. In particular, the realization that the

immediate goal of an action has not been attained or that the goal is not going to be

attained in the near future, or that more than what has been expected will happen,

violates expectation, i.e., there is a realization that something unusual or unexpected

has occurred. Attention is then focused on two di�erent dimensions. First, an assess-

ment is made as to whether or not the event was encoded properly, and second an

appraisal is made about the relative certainty that a particular goal has or has not

been attained [115]. This is fed back to the creature as a�ective component values,

which updates (adjusts) the decision making system so that the creature can predict

or plan better next time in a similar situation. Positive valence and stance values

support the recent decision whereas negative outcomes discourage repetition of the

same strategic choice in the future. This lesson is re
ected in the weight updates, or

learning in the behavior and other creature kernel networks.
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5.3 The perception system

The perception system is organized as a network of basis perceptual units. The kinds

of perception units that a character possesses vary according to the type of species

that the character belongs to. For example, the virtually omniscient camera creature

has smell sensors that can detect almost all the creatures in the same virtual world if

they have names. The raccoon in the Swamped! world [9] was dependent on visual

sensors when it needed to detect K. F. Chicken, so it would not be able to realize

the existence of Chicken if it was behind the wall or some other kind of obstruction.

See the paper by Kline and Blumberg [62] for details on the sensors' software side

implementations.

Like those in the behavior system, the connection weights in the perception system

network are also subject to modi�cation and update during the backward operation

phase of the character. Certain connections within the network are strengthened to

re
ect the character's personal preference and interest, or the connection between a

certain perception unit and a behavior unit is tightened to emphasize the contextual

importance of the sensor output when the character performs that behavior.

5.4 The motor system

The underlying structure of the motor system is the same as that of other subsystems

and is subject to same type of operation and thus learning processes. However, cur-

rent implementation of the motor system maintains a more-or-less 
at hierarchy and

individual nodes correspond to the leaf nodes, or terminal branches of the behavior

network. This 
at motor system functions as the mediator between the behavior sys-

tem and the graphics output layer. It receives a signal that indicates which graphics

skill should be activated at the next tick and sends it to the graphics layer and has

it play the appropriate animation sequence.
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Chapter 6

The motivation system

Chapter 5 describes the creature kernel framework which is composed of four subsys-

tems. Among those four subsystems, this chapter focuses on the motivation system.

I list the roles of the motivation system that are crucial for proper functioning of a

character and present the mathematical framework to show how it is actually imple-

mented within the creature kernel framework to achieve the required functions.

No single function can explain the functional importance of the motivation system

and there have been a number of claims and studies about what the functions of the

motivation system are. The usual approach to the functional studies of drives and

a�ects assumes them to be important chie
y as driving "forces"{giving direction and

intensity to behavior { or as internally arising stimulation. In addition, one of the

major functions of a�ective responses, which has been repeatedly discovered, is that

they act as internal reinforcing mechanisms, and thus contribute to learned motiva-

tion of either a positive or negative nature. In another paper, Scott [105] pointed

out that an internal emotional response may also magnify and prolong the results of

external stimulation.

Among the functions of the motivation system which this thesis is particularly aimed

at understanding and implementing in software are the following three: to serve as

the internal and external communication medium, to provide the reinforcement signal
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for learning and to serve as the basis for shaping personality, thus to bring diversity

to the society of creatures and synthetic characters.

6.1 Acts as the communication medium

The �rst function of the motivation system is to serve as a communication channel.

A collection of objects that together exist as a pool or society of such objects, requires

some means of communication if they need to coordinate in some way with each other.

These objects could be a group of people in a society or a bunch of cells that together

form a tissue.

In the case of synthetic characters, two kinds of communication mechanisms are

needed for full functionality { internal and external communications. Internally, the

creature kernel of a character is composed of four subsystems: the perception, mo-

tivation, behavior and motor systems. Since the coordination of those four subcom-

ponents is essential for the survival of the character, communication among the four

systems is required.

On the other hand, externally, as an object that interacts with other objects, i.e.

other characters in the same environment or society, each character needs a means

of communicating with other characters including human participants in character-

human interaction settings. We human beings face a similar challange as a member of

a society where more than one person resides. We have developed various communi-

cation channels such as language and gesture. In the case of animals that do not have

language, bodily expressions of emotions and intentions including facial expressions

are major ways of achieving direct communications [28].

As in animals, the motivation system serves as the means of both types of com-

munications in the case of synthetic characters that do not have language.
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6.1.1 Internal communications

For internal communication, the motivation system functions as the common currency

that enables the exchange of necessary information among the four subsystems. As

explained in Chapter 4, behaviors of a character originate either internally or exter-

nally and in both cases, the driving force is spread over multiple subsystems of the

creature kernel to instigate and guide that needed behavior. The motivation system

provides the common currency which enables this propagation of information over

the boundaries of those subsystems.

6.1.2 External communications

Needs, intentions and a�ective states are the crucial contents that need to be commu-

nicated among individuals of a society. Animals have developed various mechanisms

for expressing a�ective states such as gestures and facial expressions or a�ectively

modulated execution of behaviors. For example, a dog walks happily or sadly based

on its a�ective state. For species where language is not available for the means of

communication this tight connection between the motor system and the motivation

system provides the needed means of communication. Special e�ort is needed to keep

the true emotional state from appearing on one's face.

A monkey, for example, may communicate its a�ective state to others by making

an open-mouth threat to indicate the extent to which it is willing to compete for

resources, and this may in
uence the behavior of other animals. This aspect of

a�ect was emphasized by Darwin [28], and has been studied more recently by Ek-

man [35, 36]. He reviews evidence that humans can categorize facial expressions into

the categories happy, sad, fearful, angry, surprised and disgusted, and that this cate-

gorization may operate similarly in di�erent cultures. He also describes how the facial

muscles produce di�erent expressions. Further investigations of the degree of cross-

cultural universality of facial expression, its development in infancy, and its role in

social behavior are described by Izard [56], Fridhund [39] and Eibl-Eibesfeldt [33]. As
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described below, there are neural systems in the human forebrain { in the amygdala

and overlying temporal cortical visual areas { which are specialized for the face-related

aspects of this processing.

Not only advertising a creature's a�ective state at that moment, emotional expres-

sions also serve as the warning or the encouraging signals which accelerate group

learning [34, 28]. This mechanism is thought to play a very important role in making

a group more adaptive.

6.2 Provides the reinforcement signal for learn-

ing

By providing the reinforcement signal for learning, the motivation system plays an

essential role in making a creature be adaptive to an unpredictable environment.

Guided by its innate a�ects and drives, a creature behaves in a way that satis�es

its needs. Drives, and A�ect with its associated 'a�ective tags', bias a creature to

behave in an adaptive manner by providing values to measure the level of goodness

of its behavior [112] at a given instance.

Two-factor learning theory [51] has been nicely generalized to include a�ect as re-

ward or punishment for animal learning by Young [143]. In his paper, Young points

out that a�ective processes are positive or negative in sign. Inferring its behavior

as the cause or source of the a�ective process, a creature uses that internal a�ec-

tive response as a factor that sustains or terminates the aroused behavior pattern.

The motivation system includes both the a�ect system and the drive system. Suc-

cess (Failure) at performing consumatory behaviors, which would lead to reduction

(increase) in certain drives or satisfaction (unsatisfaction) in certain motivations, or

experience of happiness or joy (sadness or fear) function as positive(negative) rein-

forcers for a creature's learning, which in turn cause the creature to be more(less)

likely to trigger the behavior pattern just aroused [85].
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A distinguishing characteristic of experiences that involves a�ect is an e�ort to assim-

ilate some type of new information into current knowledge schemes [74]. Stein and

Levine [114] concluded from an experiment that people constantly monitor their en-

vironment in an e�ort to maintain preferred states. To succeed at this task, pattern-

matching procedures are used to analyze and compare incoming data to what is

already known. They concluded from their experiment that when new information

is detected in the input, a mismatch occurs, causing an interruption in the current

thinking process. Attention then shifts to the novel or discrepant information. With

the attentional shifts comes arousal of the autonomic nervous system and a focus

on the implications the new information has for the maintenance of valued goals.

Thus, a�ective experience is almost always associated with attending to and making

sense out of new information. This conclusion draws upon a very narrow de�nition

of a�ect di�erent from that used in this thesis. The usage of the term here does

not always assume that an a�ective process is related to a novel event. But it is

true that even the thesis de�nition of a�ective arousal includes cases where mismatch

occurs between the perceived state of the world or self and the expected state, and

the a�ective arousal that occurs forces the creature to learn from this new information.

Each subsytem operates in the form of alternations between two modes: forward

mode and backward mode. Forward operation refers to the process of each node's

getting inputs from various other nodes within and outside of the system. This re-

sults in each part's operations, leading to outputs which in
uence (1) the character's

deciding to take certain actions, and (2) at the sane time, the updating of each system

to the next state. External and internal reactions to past actions are fed back to the

creature and this becomes the bias for updating parameters, and thereby in
uences

the structures of the networks which form the creature's kernel. The necessary signal

comes mainly through the motivation system, which decides the direction of updates.

(See Figure 6-1.) This latter process is called backward operation and is viewed as

learning.
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(a) (b)

Figure 6-1: These �gures show operation of a situated character. a: Without learning

ability, a character's operation is a series of perception ! decision making (such as action

selection) ! action. Not all the information 
ows are shown here for simplicity. See

Figure ?? for a complete diagram. b: With learning ability, the result of previous action

a�ects the character's decision making system, i.e., updates its internal model of the world.

Next time, when it faces exactly the same situation, it may react di�erently or it may

react in the same way with more con�dence. The arrow in the box represents the result

of learning's updating the creature's internal model and perception(t+1) represents its

getting new input after updating the internal model as the result of learning.

Consequently, learning almost always occurs during an a�ective episode. In an at-

tempt to understand the nature of changing conditions, people and animals revise

and update their beliefs about the conditions necessary for maintaining their goals.

This explains the role of the motivation system as a reinforcement signal for learning.

6.2.1 Implementation

Within the computational structure, the motivation system sends out necessary sig-

nals for learning to subsystems of the creature kernel during the backward operation

phase of the character. In the mathematical framework, each subsystem network is

interpreted as a graphical model [59] where each node has output values with its con-

nection weights representing in
uential strength. System output is determined as a

function of connections, associated weights, state of the external world and the state

of the creature itself [68, 126, 7].
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In this section, I describe both forward and backward operations with emphasis on

the backward operation that corresponds to learning. I discuss di�erent kinds of

learning and the way they are implemented in this proposed framework.

There are three di�erent kinds of learning that are necessary for the proper oper-

ation of the creature kernel. They are designated organizational learning, concept

learning and a�ective tag formation.

Organizational Learning

Organizational learning refers to the updates in the networks. I will explain it using

the behavior network as an example. The behavior network is updated through

modi�cation of the way nodes are connected to each other and the weights associated

with each node. The existence of a directed arrow from behavior A to behavior B

indicates that the activation of behavior A could lead to the activation of behavior

B. In other words, the strategy of performing behavior B after behavior A is one of

the available strategies of the creature, who is the owner of the system. So this part

of the organizational learning which involves reformation of the network is also called

strategy learning. Often, behavior B is one of the children nodes of behavior A, and

the weight associated with the link corresponds to the level of preference given to

behavior B compared to other children behaviors of behavior A. The initial value of

this weight re
ects the innate tendency of the creature. Good or bad experiences

such as the encountering of dangerous objects while performing that behavior or

consummation of certain drives would decrease or increase the weight, respectively.

In e�ect, the result is manifested as the change in behavioral tendency or habit of

the creature through its behavior, and thus this type of update is called preference

learning.

Behavior Groups The behavior network is organized into groups of mutually ex-

clusive behaviors called \Behavior Groups." Activation of the Behavior Group is

always preceeded by the activation of its parent behavior [7]. The activation level of
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each behavior is determined as a function of the creature's internal state, releasing

stimuli, level of interest and inhibitory gain combined with the level of preference

given to each behavior from its parent behavior. This preference is proportional to

the expected \reward" from performing each behavior. This reward comes through

the motivation system, which, in turn, is represented by stance and valence values.

Assume that a behavior P has a child Behavior Group, which has N children behav-

iors as its entity. Then the activation level of i� th child behavior at time t can be

represented as

Vit = PRi � [LIit � Combine f(�kRMkt); (�nIVnt)g] (6:1)

, where LIit is the level of interest for behavior i at time t, Vit is the value of behavior

i at time t, RMkt is the value of releasing mechanism k at time t, IVnt is the value

of internal variable n at time t [7]. Here PR(i) represents the preference level toward

the behavior i from the parent behavior p. This activation level is combined with

the inhibitions from other sibling behaviors ( i.e., behaviors that belong to the same

Behavior Group ), so only one of the behaviors in the Behavior Group ends up being

active at the end of the update tick. This can be written as Eqn 6.2,

Vi;t+(n��) = Vi;t+((n�1)��) � (�m6=iNmi;t+(n��) � Vm;t+(n��)) (6:2)

and, here, Nmi is the inhibitory gain from behavior m toward behavior i.

Bayesian Inference and Learning The level of preference from a parent behavior

to one of its children behaviors is proportional to the expected reward from that

particular child behavior. Expected reward for behavior i, E(Ri) can be written as

E(Ri) = wviE(vi) + wsiE(si) (6:3)

where E(vi) and E(si) are expected valence and stance value for behavior i, respec-

tively, and wvi and wsi are mixing weights , which are subject to vary from individual
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to individual creature, and from behavior to behavior as well. For simplicity, we

calculate the expected values for valence and stance separately 1 and combine them

together later.

This preference level from the parent behavior to a certain child behavior is updated

after each child behavior's activation following the activation of the parent behavior.

Let EVi(t) represent expected valence of child behavior i at time t; EVi(t + 1) is

updated as

EVi(t+ 1) = EVi(t) �
N + �

N + � + 1
+

I � vi

N + � + 1
(6:4)

after the child behavior i is activated. Here, I is the arousal level of the a�ect and vi

is the actual valence that the creature just experienced as the result of the activation.

� is the number of accumulated activations of the behavior group which this child

behavior i belongs to, and N is a constant related to the con�dence of the initial EVi

value. Let behavior j be another child behavior that belongs to the same behavior

group; the expected valence is updated as:

EVj(t+ 1) = EVj(t) �
N + �

N + �+ 1
: (6:5)

Accordingly, the preference value for behavior i is calculated as the normalized value

of Clamp(0; 1; EVi). Where Clamp(min;max; v) has the following property.

Clamp(min;max; v) = min if v � min

= max if v � max

= v; otherwise:

And we take the normalized value to make the sum of the preferences values of be-

haviors in the same behavior group equal to one. See Appendix A for the derivation

1Under this treatment, valence and stance are considered as independent entity in the de�ned

space [101].
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of the learning rule.

In Figure 6-2, I show an example of preference update traces. Here the number

of behaviors in the behavior group is 3 and the �gure shows the update in preference

values from the behavior to each child behavior through 50 instances of the activation

of their parent behavior. In this simple simulation run, it is assumed that stance value

does not contribute to the reward. See Appendix C for actual matlab code for this

simulation.

Concept Learning

By concept, we mean each character's attitude toward or belief about certain objects

or events, which in
uences his behavior when he encounters such objects or events.

For example, if there is a character who has a concept that tigers are scary, he will

behave cautiously and will try to run away from it when he meets a tiger, whereas if

there is another character who has a concept that animals are fun to play with, the

best guess that he can make when he meets a tiger for the �rst time is that it is going

to be fun to play with, and he will try to approach the tiger.

We assume that each character is born with some built-in concepts. Another as-

sumption is that there is a set of features that each character cares about when he

judges whether a certain concept is right or wrong with respect to a given object or

event. For example, assume that a character uses size and brightness of objects as

reliable features for judging the nature of the objects (e.g., scariness). This is graph-

ically represented in Figure 6-3. Gray area is where he believes size and brightness

features of scary animals are located. So this shows that initially his belief is that

all animals are scary no matter how small it is or how bright the animal's color is.

Given this, at the �rst instance of meeting an animal (e=1), he will behave under

an assumption that the animal will be scary, following MDL (Minimal Description

Length) principle. Assume that he met a white cat and behaved very cautiously.

After �guring out that the white cat is fun and not scary, he will narrow his con-
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(a)

(b)

Figure 6-2: Above two �gures show the progressive change in the preferences in a hypo-

thetical case of one parent behavior a�ecting a child behavior group which consists of three

children behaviors. In this example, it is assumed for simplicity that stance component does

not a�ect the learning. Each graph is plotted as line segments, dots and line, or dots, rep-

resenting child behavior one, two and three. In this case, N is 10, the initial preferences for

each behavior were 0.2, 0.3 and 0.5. Activation of each child behavior results in a stochastic

process of reward with mean -4.15, 0.8 and -0.1, respectively, with variances being all 1 for

(a) and 2 for (b). Both �gures show that as the event proceeds, the preference for behavior

two increases, approaching 1.0, and the preferences for the other two behaviors converge to

zero, but more slowly when the data have higher variance.
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Figure 6-3: Assume a character whose initial belief (left side) is that all animals are

scary no matter how small they are or how bright their fur colors are. As he interacts with

animals that break this current belief, he updates his concept to re
ect his own experience

(righthand graphs). This is called concept learning and implemented using Bayesian belief

update and MDL principle. See text for details.

cept down and start thinking that only dark animals are scary. Then he meets a

little black mouse (e=2) with an assumption that the mouse will be scary because

it is a dark animal. Then if he again �gures out that the mouse is not scary, he

will update his concept again to include only dark and large animals in the category

of scary animals and apply this assumption when he meets an animal next time (e=3).

This process of belief update is called concept learning, and implemented as part

of the creature kernel learning system as follows. Each object is represented as a

vector whose dimension equals the number of features that the character cares about.

And each concept is coded as a set of vectors that belong to the concept. So, assume

that for a concept C, the character has example vectors xj that all belong to a concept

C, and each xj is a vector whose dimension equals the number of features that the

character cares about. When he encounters a new object y, he thinks that y belongs

to the concept C with probability as shown in Equation 6.6.

P (y 2 Cjfxjg) =
1

(1 + d

R
)n�1

(6:6)

Here n is the dimension of the vector, and R is the farthest distance between two

example data that belong to the set xj along each dimension. And d represents the

shortest distance between y and a datum that belongs to the example set along the
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feature axis. This measure is multiplied for every dimension to calculate the proba-

bility of y belonging to the same concept that the set xj represents. So, if all features

of y fall in the area bounded by the example features, the creature will behave with

the strong belief that y belongs to the concept C, whereas if d is large for every

dimension, his belief in y's belonging to the concept C will be low. After interaction

with y, if it was discovered that y belongs to the concept C even if P (y 2 Cjfxig)

was not 1, the character will add this new datum y to the concept C representing

set, and update the concept. As examples are added and R for a certain feature axis

gets larger, that axis becomes less and less useful in describing the concept [121].

This learning rule is also used for representing and updating beliefs in certain events,

situations or behaviors.

In Figure 6-4, I show a simple example of how a concept is built as experience accu-

mulates. Dots represent data points gained through experience, which belong to the

concept that the creature is currently learning. Here, it is assumed that the value

along the x axis is the only feature that is relevant for determining the concept. Dot-

ted line represent the concept distribution at the initial stage of learning. Without

enough experience, the creature safely assumes a rather broad distribution. As more

examples are gathered, the creature is now able to clearly distinguish the data points

that belong to the concept and those that do not (solid line).

A�ective Tag Formation

One of the primary roles of the motivation system is to o�er a very e�cient way of

making quick decisions, through a mechanism that was called "Somatic Marker" by

Damasio [27]. Here we introduce a more general concept, A�ective Tag, in order to

avoid the unproven hypothesis that such a mechanism is always associated with a pe-

ripheral state of the body. A�ective tags provide bias to action selection in a form of

emotional memory. Even when there is no other strong cue to prefer one way versus

the other, an a�ective tag can still function as a bias to make the character feel neg-
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Figure 6-4: This graph demonstrates the change in a concept as a creature's relevant expe-

rience accumulates. Here, it is assumed that the value along the x axis is the only property

that is relevant in determining the concept. The dotted line represents the concept at an

early stage and the solid line represents the concept after ten iterations of exposure to the

concept and learning. It shows that as experience accumulates, false positives are e�ectively

suppressed and the con�dence in the region where the actual data come from approaches

one. See Appendix D for the actual matlab code which generated this hypothetical simula-

tion.
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ative stance to a red umbrella even though he has never seen it before, just because

he had a bad accident involving a red car. Or it in
uences the character to decide

to make an appointment to be on Wednesday as opposed to Thursday even if there

isn't any clear advantage of having the meeting on Wednesday, because his joyful ex-

perience on last Wednesday biases him to have a positive attitude toward Wednesday.

In our system, this functionality is implemented as Hebbian connections [48] between

the units in the motivation system and objects of interest; the connection weightWi;j

is updated using the learning rule that can be written as �Wi;j / Oi �Mj . This value

is recalculated whenever an object Oi is involved in behavior and got motivational

feedback Mj as the result of the behavior. So, for example, when a certain behavior

selection is made, the motivation unit provides bias to behaviors di�erently based on

objects of interest that each behavior is likely to engage. Though the in
uence is

small compared to the in
uence of major drives, positive feedback resulting from the

mutual inhibition mechanism biases behaviors with stronger a�ective tag inputs.

6.3 Basis for Shaping Personalities

Although the organizational structures of all of the four main parts of a creature con-

tribute to shaping its personality, the motivation system plays the most fundamental

role for making a creature distinguishable from other individuals. In di�erent individ-

uals, preferences are set di�erently for di�erent drives and associated a�ects (desires).

From mere preferences for certain colors, tastes or shapes to the relative hierarchy of

internal motivational structure and also through details in the way each emotional

state is expressed outwardly, various parts of the motivation system contribute to

forming a unique personality of a creature. The motivational system nevertheless

keeps it as adaptive and functional as any other individual of the same species with a

di�erent personality. The motivation system thus allows diversity among creatures,

and it brings a real as well as a virtual creature to life by biasing its behavior and by

being exhibited through emotional expressions [124].
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Chapter 7

Learning and memory

Learning is an evolutionary solution that many of the creatures around us have found

and adopted for the apparent advantages it guarantees for survival. The modi�ability

can be regarded as a species-characteristic adaptation to changes in the environment

that are to be expected, but the directions of which are not predictable. This ability

to learn is central for making characters adaptive and robust, which is a major theme

of this thesis work. In this chapter, I explain various types of learning that are

subject to implementation, and discuss how they are implemented and the necessary

structures and assumptions that are necessary to support them.

7.1 Learning

When we use the word 'learning', it may refer to more than one type of behavioral

adaptation. Here I brie
y review the basic concepts and general theories of learning.

Rescorla [97] states that experiments on learning and memory should be based on

examination of the organism's experience and behavior at two separate times. At

the �rst time (t1), the organism is exposed to a particular experience { a sensory

stimulus or a particular opportunity to learn. At a later time (t2), the investiga-

tor assesses the organism to determine whether the t1 experience has modi�ed its

behavior. The aim is to determine whether a particular t1 experience produces an
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outcome at t2 that would be absent without the t1 experience. This in turn implies

the two step process of learning observed in nature, which is also the process that

underlies its implementation. In the creature kernel framework discussed so far, this

two-fragments view of learning is reworded as follows. First, the results of previous

action or strategic choice are fed back to the creature after being sampled from the

external world, via the creature itself through the creature's perception system, then

second, modi�cations of appropriate parts of the creature kernel in an appropriate

manner are decided and made.

The most prevalent way of categorizing types of learning is based on the second

of these two fragments. It categorizes learning into three main types and one of the

following three experimental paradigms is used to probe each of these three learning

types.

1. Without any other event or constraint, a single stimulus (S1) is presented to

the organism. The result may be habituation, dishabituation, or sensitization,

which are all types of nonassociative learning.

2. One stimulus (S1) is presented in relation with another stimulus (S2). This

paradigm (called Pavlovian, or classical conditioning) allows us to study how

the organism learns about the structure of its environment and the relations

among stimuli in its world.

3. A single stimulus(S1) is delivered in such a way as to reinforce a certain behavior.

Called instrumental, or operant conditioning, this paradigm allows us to study

how an organism learns about the impact of its own actions on the world.

Above experimental paradigms correspond to the three basic paradigms of learning

and what each experimental paradigm studies are called nonassociative learning, clas-

sical conditioning and operant conditioning, respectively.

Nonassociative learning involves only a single stimulus at t1. Three kinds of
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nonassociative learning are habituation, dishabituation, and sensitization. Habitua-

tion is a decrease in response to a stimulus as the stimulus is repeated, whereas an

increase in response amplitude over the baseline level is called dishabituation. Even a

response that has not been habituated may increase in amplitude after a strong stim-

ulus. This e�ect is known as sensitization. The response is greater than its baseline

level because of prior stimulation.

Learning that involves relations between events { for example, between two or more

stimuli, between a stimulus and a response, or between a response and its conse-

quences { is called associative learning, one form of which is classical conditioning

where an initially neutral stimulus comes to predict an event. In instrumental con-

ditioning (also called operant conditioning), an association is formed between the

animal's behavior and it consequences [125]. While these di�erent types of learn-

ing occur, di�erent brain regions may process di�erent dimensions or attributes of a

learning or memory situation: spatial, temporal, sensory dimensions, responses and

emotional aspects [61, 79]. This broad classi�cation scheme is widely accepted by

contemporary learning theorists.

7.1.1 An ethologist's view of learning

A set of learning abilities necessary (and probably su�cient) for making characters

robust and adaptive, are found in animals that are capable of surviving in a dynamic

and unpredictable natural world. Within these broad boundaries, Lorenz classi�es

types of learning that are observed in animals as described below. I have used the

Lorenz treatment of learning because it is more comprehensive than most, encom-

passing a greater variety of phenomena.

In animals, through adaptive modi�cations of behavior, the process of learning se-

lects from many possibilities, contained in a pool of action primitives and possible

combinations of them, the one that seems to �t current circumstances best. Environ-

mental in
uences furnish the information about which possibility this is. Following
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Figure 7-1: This diagram shows how Lorenz classi�es types of learning that are observed in

animals [68]. Roughly, learning types are categorized as nonassociative learning, associative

learning and other types of learning. See text for details.

Lorenz's view [68], animal learning is classi�ed into three main categories: nonasso-

ciative learning, associative learning and other types of learning. The various types

of learning and his adopted classi�cation scheme are shown in Figure 7-1, and a brief

description of each is as follows1.

Nonassociative learning

Nonassociative learning is the most primitive type of learning. It can be catego-

rized into two kinds of learning: faciliation/sensitization and habituation/stimulus

1Actually, this list gets fairly long because there are a number of distinct learning types that he

stresses. I list them with descriptions, which directly follow Lorenz's explanations in his book [68],

because the way he uses some terminologies is di�erent from more common usage of those words

among learning theorists. Readers who are already familiar with Lorenz's usage of terminologies

may skip this section.

82



adaptation.

Facilitation and sensitization Performance of some behaviors is smoother and

faster after the behavior pattern is performed a few times repetitively. This phe-

nomenon is called facilitation and, Lorenz speci�cally points out that this is di�erent

from maturation, even though the e�ect might be similar in growing organisms.

Similarly, the threshold of response to key stimuli get lowered as certain sensory

input, and the response to it, happens repetitively. This process takes place in the

sensory sector of the CNS and is called sensitization.

Habituation or stimulus adaptation Animals have the ability to deal with a

constantly reoccurring stimulus situation. If there are speci�cally unchanging as-

pects of the environment, they adapt to these and still respond to more informative

environmental cues adequately. As a result, the animals show releasing responses only

when the stimuli are novel, and when they are detected constantly and repeatedly

the animals no longer exhibit the response.

Associative learning

Learning through association can be viewed as a connection forming process. Here

association is de�ned broadly as connections between contents of awareness. Asso-

ciations are produced when two events happen at once or several times in the same

sequence and within short intervals of time, where the interval varies based on species

and the type of events. Again, associative learning can be divided into two categories

- associative learning without feedback and associative learning with feedback.

Associative learning without feedback reporting success

� Habituation linked with association. Habituation to a certain innate re-

leasing stimulus may be speci�c to a more complex stimulus con�guration re-

peatedly associated with the releasing stimulus. Any change in the associated

stimuli can result in a renewed response to the releaser.
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� Becoming accustomed or habit formation. The process of becoming accus-

tomed is a kind of habit formation in which an originally e�ective combination

of key stimuli loses its releasing function unless associated with the perception

of a more complex con�guration. The original key stimuli are still essential, but

are e�ective after the accustomization process only when they occur within the

context of the associated more complex con�guration.

� Conditioned re
ex proper or conditioning with stimulus selection.

'Conditioned response' refers to the designation of the result of simple associa-

tion. This association connects an originally ine�ective stimulus with a reaction

that can be regarded as a 're
ex,' insofar as its function does not depend on

the changes of internal readiness. Skinner's operant conditioning experiment,

where an intended behavioral response is learned as a response to an originally

ine�ective stimulus through conditioning of type S [110], and Pavlov's classical

conditioning [97] experiment belong to this category.

� Avoidance through trauma. Some acquired avoidance responses are similar

to a conditioned re
ex, or are a special case of this. Here, the fact that the

response that the originally indi�erent, but newly associated stimulus releases

is acquired very rapidly and is particularly long-lasting or even irreversible, as

in very strong escape reactions [33], puts this in a special category.

� Imprinting. Imprinting is an irreversible early and strong learning phenomenon.

At a particularly early stage of an organism's life, imprinting proceeds as pro-

grammed without any feedback from the e�ect of an action. As the result

of this process, an innate response becomes linked to its biologically adequate

stimulus [68].

� Conditioned inhibition. By repeatedly punishing a behavior right before

it is initiated, inhibition of that behavior can be established. In this case,

the association is made between the punishment and the intention to initiate

the behavior. This is distinguished from a conditioned re
ex in the sense that
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conditioned inhibition is associated not with a re
ex nor with a passive readiness

to react, but with a central nervous impulse.

Associative learning with feedback from the consequence The prerequisite

for learning by success or failure is a "feedback mechanism," i.e., a regulation cycle.

Von Frisch showed that a honey bee which has 
own repeatedly to a blue 
ower and

found no nectar but has found nectar when visiting a yellow 
ower will thereafter


y to yellow 
owers only, even if the yellow color did not have a releasing e�ect

originally [136]. This is an example where feedback a�ects the modi�cation of behav-

ior. In this case, animals gather information concerning the stimulus con�guration

in which a certain motor pattern brings a reinforcing reward to the animal. Through

this process, the animal comes to learn the selection of a stimulus situation rather

than the selection of an action.

� Conditioned appetitive behavior. When rewarding or punishing experi-

ences that come after performance of a certain behavior are fed back to the

precedent behavior, this feedback information a�ects the likelihood of any ap-

petitive behavior that is directed toward the action. Conditioned appetitive

behavior is distinguished from the conditioned re
ex in the following sense.

Whereas the conditioned re
ex constantly results in releasing the same motor

pattern when the associated stimulus con�guration is presented, conditioned ap-

petitive behavior can result in even other kinds of appetitive behavior that are

phyletically programmed even if they did not occur during the original learning

process.

� Conditioned aversion. In the same way that conditioned appetence lies func-

tionally in parallel with the conditioned re
ex, conditioned aversion can be seen

as the functional counterpart of conditioned avoidance. The di�erence is that

the direct connection between the conditioned stimulus and the response is af-

fected in the former case, but not in the latter. In the latter case, the adaptive

information is derived from the feedback, which a�ects the nervous pathways
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that lead to the aversion in the same way as the conditioned appetence facili-

tates even appetitive that did not occur during the learning process.

� Conditioned action. When a behavior pattern is rewarded right after an

animal performs it, the preference to perform that behavior increases. The

reward may come from an altogether di�erent behavior system, and the next

time the motivation is awakened the animal prefers to perform that previously

rewarded behavior. It can be seen as the behavior being registered as a means

of satisfying the motivational need.

� Conditioned appetitive behavior directed at quiescence. The motiva-

tion to get rid of a primary annoyer is such a strong one that the deliverance

from a strongly disturbing stimulus acts as a very strong reward. The result is

that the animal learns very quickly the corresponding appetitive behaviors, and

does not easily forget. This explains why alcohol or drug addiction is so strong.

� Operant conditioning. Operant conditioning here is con�ned to learning

processes in which not the stimulus situation but the behavior pattern is selected

among the repertoire of behavior patterns that the animal is concerned with.

Operant conditioning can be viewed as the process of learning the skill that

maximizes reward within that environment. In nature, operant conditioning is

very rare and mainly occurs under the in
uence of disturbing stimulus situations

in an attempt to get rid of the annoying situations, i.e., within the context of

appetence directed at quiescence.

Et cetera

Other than those described so far, there are additional learning types found in animals.

These are not subject to implementation as far as this thesis work is concerned, but

I will include a brief description of what each means for the completeness of the list.

Motor learning. Acquisition of a new motor pattern happens through formation

of a chain of conditioned actions. For example, teaching a dancing sequence to a
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pigeon is done through this process by linking one directional turn after another.

Voluntary movement and insight. The evolutionary development of voluntary

movement and the di�erentiation of mechanisms exploiting instant information, es-

pecially information about spatial arrangements, are closely connected. Insight is the

result of these mechanisms. In animals, the ability to adapt movements to their phys-

ical limitations and the ability to gather goal-related spatial information are closely

connected, so that the separation of sensory and motor functions is not always im-

mediately apparent.

7.1.2 Integration with contemporary learning theory

Lorenz's classi�cation scheme described so far is based on his close observations of real

animal behaviors and emphasizes some learning types that are particularly strong.

Figure 7-2 show how his classi�cation scheme can be mapped onto the more common

learning theorists' framework. In the �gure, terminologies in the solid boxes are ones

used by contemporary learning theorists, and those in the open boxes are the termi-

nologies used by Lorenz to explain animal behavior.

Contemporary learning theorists classify learning into two main categories; they are

nonassociative learning and associative learning. This categorization agrees with

Lorenz. He refers to each as learning without association and learning with

association, respectively, and with these he starts his further categorization. As-

sociative learning is subdivided into classical conditioning and operant conditioning.

These correspond to learning without feedback reporting success and learning

with feedback from the consequences in Lorenz's terminology.

Nonassociative learning is subdivided into habituation, dishabituation and sensiti-

zation by modern learning theorists. Lorenz categorizes it slightly di�erently. He

also explains what is called sensitization using his terminology, facilitation or sen-

sitization, but he uses one item, habituation or stimulus adaptation to include
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Figure 7-2: Lorenz categorized di�erent types of learning based on his close observation

of animal behavior. His categorization can be mapped onto more general categorization

scheme as shown in this �gure. See text for details.
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both habituation and dishabituation. He views habituation and dishabituation as

essentially the same process only with opposite e�ects on the behavior.

Comparisons for associative learning get a bit more complicated. Lorenz uses the

terminologies, learning without feedback reporting success and learning with

feedback from the consequences, to refer to classical conditioning and operant

conditioning, respectively. But then he subdivides each to distinguish more speci�c

cases.

He mentions six di�erent subcategories to explain speci�c cases of classical condition-

ing type learning. Among them, habituation linked with association, becoming

accustomed or habit formation, conditioned re
ex proper and conditioned

inhibition are distinguishable learning types based on where the actual learning takes

place or where the necessary signals for learning come from. Avoidance through

trauma and imprinting are phenomena that may be viewed as special cases of re-


ex proper. Both are not unlearnable and they strongly alter behaviors. But in

terms of the mechanisms of learning, both can equally be seen as subcategories of

conditioned re
ex proper.

Five subcategories are presented as representatives of operant conditioning type learn-

ing. Again, among them, conditioned appetitive behavior, true operant con-

ditioning, conditioned action and conditioned aversion are distinctive in terms

of the related learning algorithms. He mentions conditioned appetitive behavior

directed at quiescence as the �fth category of operant conditioning type learning,

but it is a special case of conditioned appetitive behavior whose strength is distinc-

tively large.

Here, the terminology operant conditioning is a bit confusing because it refers to

two di�erent kinds of learning. By modern learning theorists, operant conditioning

is used more broadly for phenomena where an individual creature learns about the
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impact of its own action and how it a�ects the world. Lorenz prefers to use the term

in a more narrow sense and he refers to learning that involves searching through an

available repertoire of actions until the creature �nds the one with a wanted impact,

forgetting previously tried actions and sticking to the found action that brings the

desired impact.

These di�erent learning types are discussed again in section 7.3, locating where each

happens and specifying the components involved in each learning type within the

creature kernel framework.

7.2 Memory

The terms \learning" and \memory" are so often paired that it sometimes seems as

if one necessarily implies the other. We cannot be sure that learning has occurred

unless a memory can be elicited later. Like learning, memory is a collective term that

refers to a number of distinguishable kinds. Here I introduce some basic concepts of

memory, and then explain what are the necessary memory types and how they �t in

the creature framework for implementation of the necessary learning types.

7.2.1 Classi�cation by type

The basic distinction is betwen declarative memory and nondeclarative memory.

Declarative memory is what we usually think of as memory: facts and information

acquired through learning. It is memory we are aware of accessing. And nondeclar-

ative memory is shown by performance rather than by conscious recollection. It is

sometimes called procedural memory. Declarative memory deals with what and non-

declarative memory deals with how [40].

Each is also a collection of slightly di�erent kinds of memory. Endel Tulving [133]

de�nes semantic memory and episodic memory as two main categories of declarative

memory. Semantic memory is generalized memory, such as knowing the meaning of
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Figure 7-3: Memory is a collective term, which usually refers to di�erent kinds of memo-

ries. This �gure shows a way of classifying di�erent types of memories in terms of inclusion

relations [99]. See text for details of this classi�cation scheme and explanation of each

memory type.

a word without knowing where or when one learned that word. On the other hand,

episodic memory is autobiographical memory that pertains to a person's particular

history.

Procedural memory is the most representative of nondeclarative memory, whose sub-

categories are procedural memory, priming and conditioning. It deals with the prob-

lem of how. Skill acquisition is a good example of the formation of procedural memory.

Priming, or repetition priming, is a change in the processing of a stimulus, usually

a word or a picture, as a result of prior exposure to the same stimulus or related

stimuli. Conditioning is a context-dependent memory type. It stores the information

about a particular response's being appropriate to a particular stimulus in one setting

but not in another. More formally, the conditioned stimulus(CS) or unconditioned

stimulus(US) becomes associated with the context in which it occurs. A CS evokes

a conditioned response(CR) in one context but evokes no response (or not as strong

a response) in another. Figure 7-3 summarizes this categorization scheme based on

memory types.
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7.2.2 Classi�cation by duration

Another way of classifying di�erent memory types is classi�cation by their durations.

Some memories last longer than others, and this is what I mean by di�erent \du-

rations" of memories. The multiple trace hypothesis well classi�es di�erent types of

memory by duration [81] and it can be summarized as follows.

Iconic memory is the briefest memory. An example would be transient impres-

sions of a scene that are illuminated only for an instant. These brief memories are

thought to re
ect the continuation of sensory neural activity, the so-called sensory

bu�ers.

Somewhat longer than iconic memory is the short term memory (STM). Stor-

age of a telephone number that was never used before, which lasts until the call is

made if nothing distracts, is one example of this type of memory. However, the usage

of this terminology, STM, is not consistent among the investigators from di�erent

�elds. Cognitive psychologists, who �rst used the term, found that if subjects are not

allowed to rehearse, STM lasts only about 30 seconds [18, 91]. Many biologists de�ne

STM as memory that is not permanent but that lasts for minutes or hours, even up

to a day.

Some memories last beyond the short-term memories but fall short of long-term

memories. Remembering the parking spot that does not last more than a day is

an example of such memories and they are called intermediate term memories. Inter-

mediate memories are characterized as memories that outlast STM but that are far

from being permanent [81, 98].

Beyond ITM are memories that last for weeks, months, and years; these are called

long-term memories(LTMs). Because many memories that last for days or weeks do,

however, become weaker and may even fade out completely with time, some investig-

tors use the term permanent memory to designate memories that appear to continue
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without decline for the rest of the life of an organism, or at least as long as the or-

ganism remains in good health.

Given this background, next I present learning and memory types that are relevant

or useful for the synthetic characters and how those features are implemented within

the proposed creature kernel framework.

7.3 Learning for synthetic characters

Basically, within the creature kernel framework, the results of learning a�ect forma-

tion of associated weights of the links between basis units. For example, habits or

available skills are coded as links that connect behavior basis units in the behavior

network, and the comparative strengths of such connections re
ect how much the

creature is familiar or accustomed to those action sequences.

Whereas nonassociative learning deals with relations between the perception system

and the behavior system, associative learning includes the motivation system as well.

Facilitation and sensitization are categorized in the same group in the sense that

both result in strengthening of certain connections. Facilitation refers to strength-

ening, or increasing the weight of a connection within the behavior system, which

can be implemented using the organizational learning algorithm. Sensitization af-

fects connections between the perception system and the behavior system, which is

implemented as a combination of concept learning and organizational learning. Sen-

sitization relatively strengthens certain links between perception units and behavior

units, which e�ectively shifts the focus of attention related to that behavior. On the

other hand, habituation and stimulus adaptation weaken connections. Habituation

also a�ects the link between the perception system basis unit and the behavior system

basis unit and it is implemented as a combination of concept learning and organiza-

tional learning within the creature kernel framework.
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The area where the associative learning types happen extends over the motivation

system in addition to the perception and the behavior systems. Habituation linked

with association is realized through having a previously e�ective stimulus be part of

a new stimulus con�guration. This corresponds to concept learning in the perception

system, and organizational learning at the connections that connect the perception

system and the behavior system which then form a new context as part of the crea-

ture's behavior repertoire. Becoming accustomed, or habit formation, is imple-

mented as a concept learning process in the perceptual system linked to an existing

behavior repertoire. The re�ned stimulus re
ects the learning and experience in the

situation or environment in which the character is located. Lorenz uses the term habit

formation for this because it involves becoming accustomed. It should not be con-

fused with habit formation which is the result of facilitation of a behavior sequence

through preference learning within the creature kernel learning framework. Condi-

tioned re
ex proper has the broadest meaning within this category. It results in a

new formation of connections and strengthening of those connections, i.e. organiza-

tional learning, between certain characteristics of the perception system and/or the

motivation system with the behavior system. At the execution of the conditioned

re
ex, the associated formation (perceptual input or motivational state) leads to that

behavior. Special cases of this type of learning are avoidance through trauma and

imprinting, which are so strong that they are not unlearned and a single experience

(i.e. learning example) is often enough to form the link. Conditioned inhibition

is implemented as the addition of an e�ectively negative link to an existing context.

Associative learning with feedback from the consequence is di�erent from

the learning types within the category of associative learning without feedback

from the consequence in terms of the learning processes involved. While the latter

assumes that the interconnected target nodes involved are already known to the crea-

ture, the former requires the creature's active searching for such target nodes, within

the behavior system.
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Conditioned appetitive behavior is a process of adding more behavior nodes

to an existing chain of actions that lead to a �nal consummatory behavior in the

context of satisfaction of a speci�c motivation. Appropriate appetitive behaviors are

found through various trials of the character and these are placed between the relevant

motivation nodes and the associated consummatory behavior nodes. This learning

results in adding connections between the motivation system and the behavior sys-

tem as well as connections within the behavior system. Conditioned appetitive

behavior directed at quiescence is a special case of conditioned appetitive

behavior and it is dealt with as a special case because the motivation to get rid of

the primary annoyer is very strong in animals, and this strong motivation sometimes

challenges the animals to go through some unusual behaviors. This probably re
ects

the fact that the strong motivation makes the searching for the appropriate appetitive

behaviors very intense and this does not allow the animals to give up the attempt to

�nd one. Similarly, operant conditioning in Lorenz's sense consists of �nding out

the proper behavior nodes that allow or lead to the relevant consummatory behav-

iors and thus satisfy the current motivational need. It results in adding connections

between the motivation system modules and the behavior system modules. Both

conditioned appetitive behavior and operant conditioning are implemented

by organizational learning.

Conditioned action and conditioned aversion are viewed as changing the in-

dividual behavior associated probabilities. Both are implemented as a process of

a�ective tag formation. The former associates positive a�ect with the behavior, i.e.,

it in
uences the character to execute the behavior more, whereas the latter associates

the behavior with negative a�ect, and this results in having the character decrease

its preference for performing the behavior.
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7.4 Memory for synthetic characters

By type. Declarative memory assumes symbolic representations of events or ob-

jects that are subject to memorization. For human beings, language is the main

means of presenting the content of the memory to other individuals. Some way of

representing or pointing to the contents are needed for internal communication pur-

poses such as comparisons for checking matches. At least for now, we have not given

language processing ability to characters. This part of memory and learning has not

been fully explored yet, but initial attempts are integrated and explained in Chapter 9.

The contents of synthetic characters' nondeclarative memory are re
ected through

their later a�ective responses and behaviors. The ability to do certain tasks or pref-

erences for those tasks manifest the results of their procedural learning and thus

reveals procedural memory.

Within the proposed creature kernel framework, available skills or performable be-

haviors re
ect the existence of connections to and between behavior nodes, with

associated weight values. In other words, the contents of the nondeclarative mem-

ory of synthetic characters can be seen as the existence and relative strength of the

associative weights. In particular, procedural memory is located as the weight con-

nections between behavior nodes within the behavior network. These are shown as

performable skils and habits that are manifested through the possible repertoire of be-

haviors. On the other hand, priming and conditioning memories are inter-subsystem

associative weights, i.e. weights that connect nodes in the perception subsystem and

the behavior subsystem or the motivation subsystem and the behavior subsystem,

that all together form contexts in which certain behaviors are performed, preferred

or prohibited.

By duration. Since the lifespan of synthetic characters is di�erent from that of real

animals or human beings, it is hard to categorize the type of their memories using

the same time measure.
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One approach would be inferring which memory type that each memory belongs

to based on analogy. For example, skills or habits acquired in animals usually last for

more than weeks, which can be regarded as a kind of long term memory. From this

perspective, we can view the procedural learning which is the main type of learning

for synthetic characters as a process of forming long term memory (LTM).

Or, real time measures may be adopted for judging memory types and this can be

adjusted as the designer wishes. One example would be to have the characters de-

velop some built-in skills that last over multiple sessions, while other learning lasts

only while the character-human interaction lasts. If the newly learned skills may last

over multiple sessions so that the acquired knowledge endures as long as it is not

unlearned, the interaction can be viewed as a process of forming long term memory,

whereas if the knowledge is all gone whenever a new interaction session starts, it can

be viewed as short term memory or intermediate memory depending on how long

each interaction lasts. But all this is adjustable within the creature kernel framework

and subject to modi�cation depending on application purposes.

97



98



Chapter 8

Personality

Distinctive personality is another factor that makes a character come to look alive,

and look intentional [124]. Especially when there are more than one character that

face very similar problems, it is obvious that exactly the same look of those characters

or the same behaviors of the characters would make the illusion of life quickly fade

away, even if they can all adequately deal with the dynamics of their world in an

intelligent way, and convey their a�ective states and thoughts in well understandable

ways. Intention is not duplicatable.

Thus, strong or unique personalities give a better illusion of life to characters [124],

and the challenge lies not just in giving them personalities but having each charac-

ter consistently show its given personality in various situations. Characters should

stay in charater to associate themselves with certain personalities which gives them

uniqueness, and thus lifelike impressions.

On the other hand, it is impossible to impose distinct personalities on autonomous

characters by the designer's hand-crafting appropriate responses for all the possible

situations. Like implementation of the a�ect system 1, considering the exponential

nature of the number of situations to think about when such an approach is taken and

1discussed in Chapter 6
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the di�culty of maintaining consistency in personality with that method, a principled

way of designing personality should be adopted instead.

8.1 The Big Five theory of personality

The variations among people come both from observable attributes as well as from

dynamic internal 'personality processes.' In general, people's personalities are per-

ceived through various attributes such as their temporary conditions, social roles and

evaluations by others, their appearance and physical characteristics, temperament,

character traits and abilities [103]. Apart from physical contributions, it has been

proposed that the internal personality process comes from �ve broad orthogonal fac-

tors that have been called Big Five [41, 78]. The �ve factors are extroversion (factor

1), agreeableness (factor 2), conscientiousness (factor 3), emotional stability (factor

4) and intellect-imagination (factor 5).

8.2 Personality for synthetic characters

The approach proposed here for imposing distinctive personalities upon characters

is not by having designers hand craft various responses for every situation, but by

adjusting a countable number of parameters in the creature kernel, and letting these

apply to every situation that the character faces. The personality of an individual

synthetic character that is designed by adjusting the creature kernel parameters, can

be conveyed through the way it behaves, the way it seems to feel in certain situations,

how it adapts to the environment, etc., in addition to what it looks like. Variations

in all such channels are combined together to attribute a certain personality type to

the character.

Except for factor 5, the attributes of the big �ve personality factors can be roughly

ascribed to di�erent parts and mechanisms in the creature kernel, which helps the
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character programmers in deciding where to work to deliver the intended personality 2.

In particular, the extroversion factor is represented by promptness of responses

to environmental and external inputs and level of interactions with other characters

and human participants. Agreeableness corresponds to the readiness to change

one's habits and beliefs based on inputs that come from other characters and the

environment. This factor also a�ects the learning rate within the proposed creature

kernel framework. Conscientiousness can also be shown through the way behaviors

are performed. Sticking to a safe strategy with a bit of delay in response and learning

is interpreted as due to a high level of conscientiousness. Emotional stability is

the extent to which, and how easily, the a�ect system is in
uenced by behavioral

consequences and external inputs. In addition to this process oriented approach, the

visual appearance and the way each animation is designed also a�ect the way each

character's personality is perceived. More detailed implementation examples and

discussions are found in Chapter 11.

2Factor �ve involves cognitive processes, corresponding mostly to the neocortex level of the brain,

which is little provided for by the creature kernel proposed in this thesis.
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Part III

IMPLEMENTATIONS
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This part of the dissertation explains two projects for which the characters have been

designed using the creature kernel framework described in parts I and II. These two

projects implement di�erent virtual worlds and di�erent human-character interaction

settings.

The �rst one is Sydney K9.0, which implements a world inhabited by three graphical

synthetic characters, Sydney the dog, Nabee the butter
y, and Fridge the refrigera-

tor who essentially is the graphical instantiation of the human participant. Human

participants can in
uence the world through speech signals delivered through a micro-

phone, and a training stick which directs Sydney's attention. Like typical pet dogs,

Sydney is a dog with its own desires and drives such as curiosity, hunger and fatigue.

The person who is interacting with the dog can teach it some tricks, rewarding Syd-

ney with yummy virtual food which satis�es Sydney's hunger drive. This interaction

raises various interesting questions for the model such as how motivation and learning

interact, and the roles of perception, attention and interference from other drives.

The second project is (void*): A cast of characters, which implements a din-

ing hall setting inhabited by three distinctive characters { Earl the trucker, Elliot the

Salesman and the fast dude, Eddie. Here, a human participant plays the role of the

spirit of the night and can possess one of the characters by holding the buns-and-forks

interface implements above the corresponding plate on the table. Moving the interface

at the person's will makes the possessed character dance in the corresponding way.

This dancing experience in
uences the character and make it feel in a certain way,

and a�ects the attitude toward possession, and thus toward the human participant.

The characters in both projects implement the creature kernel framework described

in this thesis and demonstrate both the plausibility and the limitations of the ap-

proach. I describe both projects in detail in the subsequent chapters and discuss

�ndings learned through the actual implementations. In particular, the discussion of

Sydney K9.0 centers on the various issues related to learning and memory, whereas
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our consideration of (void*): A cast of characters leads to a discussion concerning

the creation of characters with diverse personalities and how this in
uences the actual

implementation as well as how the personalities in
uence the other characters and

the human participants.

(a) (b)

Figure 8-1: (a) A hand holding the buns-and-forks interface. (b) The early implementation

of (void*): A cast of characters was controlled by a record player and a pair of buns-

and-forks interfaces. These are early versions of interface hardwares for the (void*) project,

and I put these pictures here for historical interest. This project implements a dining

hall setting where human participants can interact with characters' dance using a pair of

buns-and-forks interfaces. See text for details.
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Chapter 9

Sydney K9.0

Sydney K9.0 implements a virtual world where a dog named Sydney (See Figure 9-

1.), which is designed using the framework of the developed creature kernel, lives. As

Figure 9-1: As the main character of the project, Sydney K9.0, Sydney shows o�

his various drives and a�ects such as hunger, curiosity, fatigue as well as surprise and

satisfaction.

a dog, Sydney has his own desires and beliefs. Other characters in this project include

Fridge and Nabee. A human participant can speak into a microphone to interact with

Sydney, and can use a training stick to guide Sydney's attention, a milkbone box to

give rewards and a clicker to signal a reward. Fridge, dog's best friend, is the graphi-

cal instantiation of the participant on the screen and plays the role of a dog trainer

as shown in Figure 9-2. Essentially, the design of the interaction provided through

this project is based on the "click-and-treat" training paradigm which is a positive

reinforcement training system based on operant conditioning and made popular by

animal behaviorists [140, 94].

This chapter explains the details of this project with emphasis on the character-human
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Figure 9-2: Sydney K9.0 implements a virtual dog training session where Fridge, a

refrigerator in the virtual world, is the trainer, which is essentially the graphical instantiation

of the human participant who can provide input to the system with the aid of various

interfaces such as a wearable microphone, a training stick, a milkbone box and a clicker.

interaction and the character's learning that is evoked through the interaction. Anal-

ysis follows based on comparisons between the observed phenomena in this project

and the real behavior of animals.

9.1 Characters

There are three graphical characters in the virtual world of Sydney K9.0. They are

Sydney the dog, Fridge the refrigerator who is the dog's best friend, and Nabee the

butter
y.

9.1.1 Sydney

Sydney is a virtual dog 1 implemented using the creature kernel framework explained

in this thesis. Sydney is shown in various moods in Figure 9-1.

1Although the implementation of Sydney was inspired by real dog behaviors, Sydney is a "car-

toon" character. We did not aim at exactly imitating a dog but rather at demonstrating the devel-

oped creature kernel architecture and learning algorithms associated with it.
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Perception. Sydney's perception system is roughly divided into two parts. One is

composed of virtual sensors and the other is composed of sensors that are responsible

for receiving inputs from the physical world. Virtual sensors are taxonomy sensors

which enable Sydney to access all the returnable features of the targeted objects [62].

In particular, the perception network is extended by weighted feature value providers 2

that return levels of beliefs in whether the objects are far, close, etc.

In this project, there are four di�erent interfaces through which the human par-

ticipant can interact with Sydney: a training stick, a clicker, a milkbone box and

voice through a microphone. The user can move the training stick in any direction

in the three dimensional space and the movement and resulting location of the stick

is depicted by the corresponding positional change of the training stick that Fridge

holds. Sydney gets the training stick-related information using his virtual sensor tar-

geted at the virtual training stick in Fridge's hand. The clicker sound is treated as

a special sound signal that is perceived as distinct from a speech signal, even though

both are auditory signals. A special interface is attached to the system which stores a

value from the time when a clicker signal is received through the attached microphone

until the value is requested by and returned to the main system. When Sydney's be-

havior is rewardable, the human participant shakes the milkbone box, which elicits a

bone on the screen which Sydney can receive and grab to satisfy his hunger. A shake

sensor is installed inside the milkbone box, which is activated whenever the box is

shaken. This signal is sent to the bone, not to Sydney, and Sydney only knows that

a reward has been given through his perception of the bone through his bone taxon-

omy sensor. A speech signal is delivered to the system through a microphone. Speech

data sampled at 11025 Hz are averaged and thresholded to be converted to vectors of

512 components. Data are converted to their Cepstral coe�cient representations for

further processing, which is discussed in Section 9.3. The module of the system that

2A value provider extends a transducer which is one of the programming primitives for imple-

menting the creature kernel. It takes a set of objects and returns a 
oating value which is the result

of the operation on the taken objects [62]. A feature value provider, in particular, returns a value

calculated on certain features of the objects.
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deals with this data conversion and acoustic pattern processing is called Dog Ear 3.

Motivation. Like any other characters implemented on the basis of the creature

kernel framework, Sydney's motivation system is composed of two parts { the drive

system and the a�ect system. Sydney has three main drives, which are hunger, cu-

riosity and fatigue.

Sydney feels hungry if he does not get an adequate amount of food for a long time, and

thus the food which satis�es the hunger drive is perceived as an incentive or positive

reinforcement for Sydney. The hunger drive provides Sydney the motivation to learn

through interaction with the human participant because learning and performance of

a selected behavior gives Sydney a piece of milkbone as reward.

Curiosity drives Sydney to explore the world. Drives rise, at di�erent rates, while

they are not satis�ed and satisfying stimuli are not provided, or while the key stimuli

that trigger them are perceived. Curiosity rises if Sydney stays at one place for long,

and exploring the world lowers curiosity. Sydney is also interested in knowing and

interacting with other creatures such as Nabee (See Section 9.1.3). So, for example,

when Nabee is close to Sydney, his curiosity rises and often it surpasses the other

drives.

Fatigue brings Sydney back home and causes him to rest until he feels restored.

After the fatigue level goes back to normal, Sydney gets up and start the behaviors

that satisfy the currently most active drive.

Behavior. Sydney's behavior system is a sum of two main parts. One is the primary

behavior part, which is a set of behavior nodes and sequences that can be used to

satisfy goals, and the other is the autonomous behavior part, which contains more

re
ex-like behavior such as ear movement, which is triggered when Sydney detects

3Robert C. Burke at the MIT Media Lab, Synthetic Characters Group, did the implementation,

so that I could integrate it into Sydney's creature kernel.
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sound and autonomous stand, which is a low priority default behavior that is activated

to avoid situations where no animation is running because no particular behavior has

been chosen by the action selection mechanism. The primary behavior part is basically

composed of behavior units such as walk, run, lie down, sit down, roll over, beg, etc.,

which are within the behavior network to trigger movement sequences for satisfying

goals and drives.

Motor. Animation �les made by animators are provided as the means of enabling

Sydney to perform certain skills and display them on the screen. Leaf node behavior

units, at the termination of the behavior system's branches, form a one-to-one map-

ping with animation �les, where the behavior system blends into the motor system 4.

9.1.2 Fridge

Fridge is essentially the graphical instantiation of the user and is a very simple minded

character. Sydney's hunger drive makes Sydney more eager to get into the interac-

tive or training sessions, and this desire is expressed through his cheerful behavior

communicating "let's play" in front of Fridge. Fridge does have a desire to interact

with Sydney, which rises when there is no interaction and Sydney is far from Fridge.

Fridge opens its door and show its gut �lled with milkbones.

Fridge holds a training stick in its hand and the movement of the stick is determined

by the direct input data from the physical training stick that the human participant

controls. Since Sydney is interested in the tip of the training stick, the virtual training

stick directs Sydney's attention. This in
uences Sydney's interactive learning, and is

described in section 9.3.

4The underlying motor system that takes the a�ect parameters and blends hand-crafted anima-

tions to generate a new animation sequence with a certain a�ect quality was implemented by Michael

Johnson [60], who is also at the MIT Media Lab, Synthetic Characters Group. All the character

models and animations were generated by the artists in the group, Jed Wahl and Scott M. Eaton.
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9.1.3 Nabee

Nabee, the butter
y, is a very simple minded creature. Its main behavior is to 
y

back and forth between two points in the world and it is not aware of other characters

in the world. Sydney gets distracted no matter what he was doing when this 
ying

creature is nearby.

9.1.4 Cinematographer

There is another character in this project, called Cinematographer or camera charac-

ter 5. Although it does not have its graphical bodily appearance on the screen, it does

have its own motivation and action selection. Its main goal is to show o� the a�ective

states of the main characters and take shots from the best angles and distances to

best convey the state of the world to the human observers [132].

9.2 Interaction

From Sydney's stand point, the information that he receives that is relevant to train-

ing comes from auditory inputs and visual inputs. Auditory inputs include utterances

of the human participant and the clicker sound, and visual input used as part of the

training comes from his virtual visual perception of the training stick. Like a real

dog, Sydney does not comprehend language and does not have a concept of language.

What matters is the acoustic pattern of the speech signal, and thus Cepstral coe�-

cient representation is regarded as su�cient to encode necessary information 6. It is

assumed that Sydney has the ability to distinguish the clicker sound from an utter-

ance due to its distinctive frequency. In practice, this is implemented as two separate

channels, i.e., two serial ports, each of which is exclusively used for one of those two

5The basis camera creature and the accompanying functionality was implemented by Bill Tom-

linson [132] who is also with Synthetic Characters Group, at the MIT Media Laboratory.
6This is based on the assumption that dogs use acoustic patterns for distinguishing and matching

verbal commands rather than rich representations with the help of grammar primitives such as

phonemes or syllabus. The Cepstral coe�cient merely takes the log of the power spectrum of the

speech signal; it is considered to be a reliable method for distinguishing spectral patterns of voice

signals [95]
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types of auditory inputs.

Without the human participant's presence, Sydney freely wanders around based on

his internal drives and a�ects aroused endogenously as well as perceptually. At re-

alization of the human's presence, through a speech signal that is perceived as an

attentional bid, Sydney runs toward Fridge and waits for a command 7. Speech sig-

nal is either perceived as an attentional bid or a command based on Sydney's state

of mind, i.e., what he expects to happen. When he is not expecting an interaction

with a human participant, a speech signal that comes in through his auditory chan-

nel directs his attention to Fridge, i.e., the human participant, and makes him expect

that more of the interaction would happen. Once his attention is on the interaction

with the human participant, he considers the speech signal as a behavior command

and processes the data to �nd out whether it matches one of the known command

acoustic patterns. As the user's speech command is issued, Sydney does a trick that,

he believes, matches the spoken command. If it was right, the human participant

shakes the milkbone box in his hand which elicits a milkbone in the virtual world.

Sydney runs toward the milkbone and takes it. It reduces Sydney's hunger drive and

makes him feel rewarded. No reward is given when Sydney did not do what he was

supposed to do. The reward solidi�es his belief in the link between the command and

the behavior he just performed. When the behavior was not right, he gets no reward

which, in turn, weakens his belief in the associative link between the perceived acous-

tic pattern and the behavior, which becomes less likely to be performed the next time

he hears the same acoustic pattern. When there is no input from the human partici-

pant for long enough, Sydney loses interest in standing in front of Fridge, waiting for

a speech command, and other drives such as curiosity take over and cause Sydney to

start doing other things that he is more interested in. Images in Figure 9-3 are screen

shots from the Sydney K9.0 demo and show views of example interactions.

7This assumes that Sydney has already learned that staying in front of Fridge is a context that

can lead to command-behavior interaction, which then leads to a rewarding situation. Dogs that

did not have this interaction before would not show this approaching and waiting behavior without

learning, but we have built this into Sydney as if it were an innate pattern.
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a b c

Figure 9-3: (a) At perception of the human participant's attention bid, Sydney runs

toward Fridge and waits for further interaction. This is because through past interactions,

Sydney learned that interaction leads to rewarding, thus it has developed positive attitude

toward interaction itself. (b) Fridge is the human participant's graphical instantiation in

the virtual world. The motion of a physical training stick, which is controlled by the human

participant, is mapped onto the coordinate changes of the virtual stick held by Fridge. The

stick movement in the virtual world is perceived by Sydney and it directs his attention. (c)

When there is no input from the human participant for a long enough time, Sydney loses

interest in Fridge and leaves to do behaviors driven by other motivations.

More on the utterance inputs. There are two challanges regarding implement-

ing a system that responds to a spoken command at a dog's level of intelligence. One

of the challenges to the system with this interaction is �guring out a way to distin-

guish di�erent implications of the speech sound signals that come through the same

channel, i.e. auditory perception. Table 9.1 shows an example interaction sequence

that may occur in this kind of setting [21]. This sequence demonstrates the fact that

dog training is repetitive and requires �nding out the functional implication of spoken

commands. For example, even though "Good dog!" and "Roll over" are both spoken

by the human participant and perceived through the dog's auditory perception chan-

nel, whereas the former marks the end of a behavior and signals a coming reward, i.e.

food, the latter conveys the user's intending for the dog to do a certain behavior that

matches the command. Without a priori knowledge of any of the language or syl-

labus, dogs manage to �nd it out and learn to distinguish those two di�erent signals.

The implemented system uses the clicker sound to signal reward, instead of verbal

approval (although the latter could be implemented in the system also) and nothing

is presented when Sydney's behavioral response is not right. How this is implemented

is presented in Section 9.3.
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Command Classi�cation Context

Sydney! Attentional bid Dog ignores user and is chasing a butter
y.
Sydney! Attentional bid Dog ignores user
Come! Attentional bid Dog runs towards fridge.

Here he comes. Miscellaneous /Other Ignored by dog.
Roll over. Command Dog sits down.
Too Bad! Discouragement Dog gets back up.
Roll over! Command No response from the dog.
Too Bad! Discouragement Dog gets back up.
Roll Over. Command No response from the dog.
Roll Over! Command The dog rolls over.
Good dog! Approval User clicks clicker, rewards dog with bone.

Table 9.1: Within a Sydney K9.0 interaction scheme, the spoken commands are
categorized into �ve groups, attentional bid, command, approval, discouragement,

miscellaneous, as shown in this table. Di�erent groups have di�erent functional im-
plications, which are �gured out through the dog { human participant interaction.
This table shows a typical interaction sequence that can be seen in a dog training
session.

9.3 Clicker Training

One of the challenges of introducing learning ability in synthetic characters is to

maintain a lifelike impression made by the characters on the people interacting with

them. While we would like to be able to train characters and personalize them as

our friends and companions, we do not want them to passively store knowledge and

simply replay it. We want them to learn what they are being taught while staying in

character. Even if they are learning, they should have their own drives and a�ects and

show these states through their actions and emotional expressions. This raises the

issue of how to train a being that has its own intentions. Pet trainers face a similar

problem in their training of creatures that always have their own drives and interests.

Among various techniques tried with pets, the clicker training [94, 140] method has

proven to be particularly successful, and general enough to be useful for teaching a

variety of behavioral responses to pets. Borrowing this idea from pet training, our

project implements a clicker training session.

115



Clicker training is based on operant conditioning and consists of two associative learn-

ing processes. By repeatedly giving a reward (i.e., something like a food treat that

is motivationally important to the dog) right after sounding a hand-held "clicker"

device, the dog forms an associative link between the clicker sound and the positive

reinforcer. After multiple repetitions, the clicker becomes a secondary reinforcer that

reliably signals that a primary reinforcer will be forthcoming. In addition, the clicker

acts as an "event marker" indicating the exact behavior and/or con�guration for

which the dog is to be rewarded. This solves one of the biggest problems in learning,

namely, the credit assignment problem. Figuring out exactly for which behavior it is

being rewarded is a huge obstacle for a dog in a learning situation, and the clicker's

sharp temporal characteristic makes it easy for the dog to �gure it out.

Operant conditioning forms a linkage between a behavior, such as bar-pressing, and

a reaction, such as the arrival of food. If the reaction is rewarding, the propensity

to engage in the behavior increases [125]. The milkbone provides an unconditioned

stimulus that elicits appetitive behavior that leads to chewing and eating behavior.

Eating is rewarding, and thus perceiving a milkbone becomes rewarding for the dog.

The unconditioned stimulus, food, and the unconditioned response, eating that leads

to hunger drive satisfaction, is an innate behavior context chain.

In Figure 9-4 (b), the chain of links marked A corresponds to this. The �rst thing

that a dog trainer does is to form a linkage between the clicker sound and something

rewarding. It could be any type of food that the dog enjoys or petting or praise that

causes positive a�ective arousal in the dog. A strong link between the clicker sound

and the unconditioned reward stimulus makes the dog regard the clicker sound itself

as rewarding, and thus the trainer can use this clicker sound as a reward or positive

reinforcer for further training.

This associative link between two perceptual stimuli is marked B in Figure 9-4. This
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is useful for training because the clicker sound has two properties that are very use-

ful. Firstly, it has a very distinctive sound that is easily discriminable from other

auditory inputs. This makes it easy for the learner, i.e., the dog, to discover what it

means in the context. Secondly, it can provide a precise mark, signalling the end of a

behavior that the trainer has selected, because the click is very brief 8. For example,

verbal praises such as "Good dog" might be used for the same purpose but since the

duration of the verbal pronunciation is long, a number of behaviors could be acti-

vated while the speech signal is being made, and thus the dog may not get the proper

information on what it is supposed to learn. Finally, operant conditioning builds a

chain of links labeled C in Figure 9-4. A verbal command is issued and by rewarding

with the clicker sound whenever the dog does the behavior it is supposed to perform,

it forms an associative link between the command and the behavior which leads to

the clicker sound. The sound has a positive reinforcing value due to the expectation

of reward that follows. This interaction paradigm can be summarized as Sydney's

known behavioral context as shown in Figure 9-4 (a).

9.3.1 DogEar

The DogEar system refers to a subsystem designed to mediate verbal communication

between a human participant and Sydney. It receives the human participant's utter-

ance data, and converts the raw data to a Cepstral coe�cient format that is received

and stored by Sydney's auditory memory. DogEar samples data at rate of 11025 Hz

and captures data that are above certain threshold. Data are averaged over windows

of 512 samples. Sampled data are represented as a vector of Cepstral coe�cients [95].

To obtain the vocal tract response after removing the pitch ripple, the method of

�ltering the log-magnitude of the signal with an inverse FFT was adopted. Then the

signal coe�cients that are beyond the pitch frequency are truncated, and then in the

Fourier domain, 10 �lters placed linearly on a scale from 100 Hz up to 2kHz are used

8To be precise, Sydney does not "know" that the clicker sound says it is the end of a behavior.

Instead, since he has an associative link between the clicker sound and the appearance of a milkbone,

he shifts his focus, expecting a milkbone reward instead of persisting in the behavior.
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b

Figure 9-4: a. As the result of clicker training, linkages that form a chain of hearing a

speech command, perform a behavior trick, hear clicker sound and get milkbone as reward.

b. Clicker training, e�ectively, builds in a context within Sydney's creature kernel. The

chain labeled A is an unconditioned stimuli - unconditioned response (US-UR) link that

preexists in the creature kernel. During the �rst phase of the clicker training, an associative

link between two stimuli, clicker sound and food, a piece of milkbone in this project's case,

is formed, and labeled B in this �gure. The third associative link chain is formed through

an operant conditioning process and this is labeled C. The link encompasses the sequence

of spoken command ! performance of a corresponding trick ! clicker sound. The link

between a spoken command and a trick is strengthened as the outperforming of the link is

rewarded by the clicker sound, which has a positive reinforcing value as it is followed by an

unconditioned rewarding stimulus.
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for further analysis. See Burke [21] for details.

9.4 Observations and Discussion

Preliminary informal interactive experiences have been provided to experienced pro-

grammers, as well as novice users who have never interacted with software creatures

before. Participants who had pet-training experience felt comfortable extending their

experience to the virtual pet training session. One response we received to a recalci-

trant Sydney while adjusting the noise controls in a crowded environment was, "he's

acting that way because you aren't treating him gently enough. I know how dogs

behave since I have my own pet dog at home." The user went on to (gently) teach

Sydney how to roll over on command.

Since the acoustic data processing does not assume a priori knowledge of language

or grammar, Sydney's acoustic system has proven robust. At one point during a

demonstration, Sydney had learned to respond appropriately to commands in English,

French, Japanese and Norwegian. Users were consistently impressed by Sydney's life-

like behavior. These observations show the plausibility of the implementation of Dog

Ear as a model for an auditory signal processing channel for a doglike synthetic char-

acter.

The clicker training method is powerful for producing desired behavior patterns in-

duced by luring and shaping. But the implementation of such interactions heavily

rely on the variability of motor actions, which was not the focus of this thesis work.

The next obvious step would be to incorporate a more 
exible motor system archi-

tecture to enable fuller implementation of luring and shaping.

Limitations of this implementation also include the lack of ability to process a�ect

information in the verbal commands. As our participants indicated, real dogs dis-

cern contextual information from cues such as prosidy and pitch in utterances. This
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extension will be implemented by augmenting DogEar to extract these acoustic cues

and transfer them to the behavior system.
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Chapter 10

Sydney K9.0: How and what does

Sydney learn?

As discussed before, the learning in Sydney results in formation of links between

nodes in the creature kernel. To be more speci�c, as shown in Figure 9-4 (b), it is as-

sumed that there is an innate pathway from the perception of food (milkbone) to the

appetitive behavior such as searching and grabbing, and then to the consummatory

behavior, namely the chewing that gives satisfaction of the hunger drive, an event

resulting in reward that comes from the motivation system of the animal. Given this

innate structure, the �rst thing that is learned within the clicker training scenario is

the association between the clicker and the appearance of the milkbone. The milk-

bone has a rewarding value that comes from the satisfaction of the hunger drive, and

the reward value gets transferred to the clicker sound as the contingency repeats.

Having this link established, then the context of utterance { behavioral response {

clicker sound is formed, and this gets attached to the appearance-of-milkbone node

through the clicker sound node.

Within the creature kernel framework, learning proceeds as a repeated succession

of concept learning and structural learning. Concept learning, involving formation of
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concepts within the Bayesian framework 1, takes place �rst in the process of forming

the contingency link between the clicker sound and the appearance of a milkbone.

10.1 Review of Bayesian concept learning

This section reviews some terminologies that will be assumed to be known to the

reader throughout this chapter. You can skip to the next session if you do not feel a

need to review the Bayesian framework, without danger of missing any of the content

of this chapter.

Probability P (hjX) is the probability that hypothesis h is a true extension of the

concept, given the n examples, x1; x2; :::; xn that we have seen so far. For the purpose

of illustration, let's assume that the concept that Sydney is trying to learn is the

reliable signal that he can rely on to predict the appearance of a milkbone (AM).

Anything that is represented as a node in the creature kernel may be regarded as

a hypothesis. For example, events such as movement of fridge (FM), appearance of

a butter
y (BA), clicker sound (CS), performance of behavior 1 (PB1) and perfor-

mance of behavior 2 (PB2) have been happening with a close temporal proximity to

the event AM. Those �ve events are hi, members of the hypothesis set H with above

zero probability of being the reliable cue, i.e., the true extension of the concept.

These probabilities are numbers between 0 and 1 re
ecting our degree of belief in

h; P (hjX) is near 1 only if we are quite con�dent that h is the true extension, near 0

if we are quite con�dent that h is not the true extension, and somewhere in between

1In the Bayesian framework, the concept formation process consists of the following four

stages [120]. First, a constrained hypothesis space of possible extensions of a concept and a prob-

ability distribution over that space, which represents the learner's state of knowledge about which

entities a concept refers to, is de�ned. Second, an informative prior distribution over the hypothesis

space re
ecting the background and contextual knowledge that the learner brings to this task is

considered. Third, the size principle for scoring the likelihood of hypotheses, which favors smaller

consistent hypotheses with exponentially greater weight as the number of observed examples in-

creases, is incorporated. Last, the notion of hypothesis averaging is applied, i.e., integrating the

predictions of multiple consistent hypotheses, weighted by their a posteriori probabilities, to arrive

at the probability of generalizing a concept to a new entity.
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if we are somewhat uncertain. As probabilities, these degrees of belief are normalized

to sum to 1 over the hypothesis space H:

�h2HP (hjX) = 1:

Using the Bayes rule, the probability assignment of P (hjX) is,

P (hjX) =
P (Xjh)P (h)

P (X)

and thus depends on the product of the two terms P (Xjh) and P (h). The likelihood

P (Xjh) measures the probability that we would observe examplesX if h were in fact

the true extension of the concept. The prior probability P(h) measures how probable

we think it is that h is the extension of the concept before we have observed any ex-

amples. The posterior probability P (hjX) measures our belief in h after we observed

the examples X.

P(h) represents the learner's a priori belief in a certain hypothesis being the true

extension of the concept and it re
ects the individual di�erences { intelligence, ex-

perience, etc. For example, capacity of memory is the limiting factor. Omitting a

particular hypothesis from the hypothesis space is equivalent to including it by as-

signing it a priori probability of zero.

Now consider the liklihood term P (Xjh). To compute the probability of observ-

ing the examples in X given that the hypothesis h is a true extension of the concept,

we require some assumptions about the process that generates the examples and how

it depends on the hypothetical extension. Here, strong sampling is assumed where

the observed examples of a concept are sampled randomly and independently from

the concept's extension. This assumption implies that environmental changes or par-

ticipants' inputs proceed independently of the learner's understanding of the world.

Under this assumption, X denotes a sequence of n randomly sampled examples, and

the likelihood of observing this evidence given a particular hypothetical extension h
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for the concept is simply,

P (Xjh) = [
1

size(h)
]n

, if h includes those n objects, and 0 if it does not include one more of them.

The size principle can be seen as a quantitative form of Ockham's razor, \Entities

should not be multiplied without necessity." Given the examples x1; x2; :::; xn, Ock-

ham prefers the hypothesis with the minimal number of entities necessary to explain

their occurence. This is always the set X = x1; x2::::; xn itself if X 2 H.

In the Bayesian framework, we cast the problem of generalization as computing

P (y 2 CjX), the probability that a new stimulus y belongs to concept C, given

the set X of previously observed examples. Formally, the generalization is done by

averaging over the set of consistent hypotheses. This can be written as follows. From

the conditional independence of y 2 C and X, we have

P (y 2 CjX) = �h2HP (y 2 Cjh)P (hjX):

10.2 Concept Learning

In the creature kernel framework, correlations between entities and dependency and

independency evidences are learned through the concept learning procedure. The

con�dence and beliefs built through this process become the basis of structural learn-

ing. In this section, I discuss concept learning and how it �ts into Sydney's clicker

training scenario.

10.2.1 A priori, P (h)

In concept learning within the Bayesian learning framework, an a priori distribu-

tion represents the learner's knowledge or preexisting belief. The appropriate choice

of P (h) when modeling a learner depends on our background knowledge about the

124



learner. The most commonly used a priori models are uninformative prior, exponen-

tial prior and Erlang prior [58, 3]. Figure 10-1 shows each distribution assuming that

the hypothesis h is represented along one axis and its size is s.

Here the preference for a certain hypothesis is represented as a function of com-

plexity, i.e, the description length of the hypothesis. Let's consider the example of

Sydney's learning the concept of the reliable cue for predicting the appearance of a

milkbone. If he takes the uniformative a priori, all hypotheses are equally preferred,

for example, two hypotheses, CS { a milkbone appears whenever there is a clicker

sound { and FM and PB1 then CS { a milkbone appears when clicker sound occurs

following Sydney's performance of behavior 1 after Fridge's movement { even though

the second one is much more complex. On the other hand, if he takes an exponential

a priori, he prefers the simplest explanation if there is no other relevant information.

Taking the Erlang density as a priorimakes it possible to prefer hypotheses less when

they are too simple or too complex.

In the implementation of Sydney K9.0, the Erlang prior is used with � being 1.0 to

represent the fact that dogs have limited cognitive capacity such that it is di�cult for

them to consider too many simultaneous events at the same time. For the purpose

of illustration, I present a simpli�ed version of Sydney's creature kernel in Figure 10-

2. It is assumed that the chain that connects the appearance of the milkbone to

the appetitive and consummator behaviors of eating and satisfaction of hunger drive

(indicated as A in the �gure) already exists. Now, as the �rst pass of clicker train-

ing, the clicker sound is made and a milkbone appears, which is a reward to Sydney.

Given that various things are happening in the environment at the same time, Sydney

initiates concept learning, attempting to �gure out a reliable cue for predicting the

appearance of the milkbone. For the sake of simplicity of this discussion, assume that

Sydney can pay attention to only one thing at a time. Here, the description length,

s, is the number of intentional pointers that are concurrently considered to explain

a hypothesis. Given the Erlang a priori with sigma 1.0 this assumption corresponds
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b

c

Figure 10-1: In the Bayesian concept learning framework, an a prioiri distribution over the

hypothesis is taken into account, which re
ects the learner's background and the contextual

knowledge that the learner brings to the task. Here I show the most prevalently used a

priori distributions as functions of s, the description length, or complexity of the hypothesis.

Uninformative prior is the most naive one and is usually chosen when there is no a priori

reason to prefer one hypothesis over any other. When the expected size of the hypothesis

along a certain dimension is known, the apprioriate prior is a maximum entropy density,

which takes the exponential function form as shown in (b). Additional information, such as,

whether the concept should not be extremely simple or complex, can be taken into account

using Erlang density as shown in c. See Je�reys [58] for more detail.
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Figure 10-2: This �gure illustrates Sydney's creature kernel in a simpli�ed way for the

purpose of discussion in this chapter. A few components of each subsystem of the creature

kernel are selected and placed. The chain of links, from the apearance of milkbone to

appetitive and consummatory behaviors for eating that leads to satisfaction of his hunger

drive, is assumed to exist before learning.

Figure 10-3: For the purpose of concept learning within the Bayesian framework, an Erlang

a priori distribution is adopted for Sydney. This distribution is based on the assumption

that hypothesis description length can be neither too long nor too short. See text for details.
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to setting the threshold for hypothesis consideration to be 0.3. See Figure 10-3 for

priors with di�erent description lengths.

As shown in Figure 10-2, There are �ve entities that may taken into account during

Sydney's process of concept formation: sight of Fridge (movement), sight of butter
y,

sound of clicker, behavior 1 and behavior 2. In the real implementation, the sight of Fridge

node is expanded to Fridge moving the stick left, Fridge moving the stick right, etc,

and each of the children nodes of sight of Fridge can be considered separately during

the concept formation process, but here they are omitted for simplicity of illustra-

tion. Given the Erlang a priori threshold set at 0.3, the hypothesis space, H, contains

only �ve components, Fridge moves (FM), butter
y appears (BA), clicker sound(CS),

performed behavior1 (PB1) and performed behavior2 (PB2). All start with a priori

probability

P (hi) =
PErlang(hi)

�iPErlang(hi)

, which is the normalized Erlang probability directly calculated from the description

length.

The learner, Sydney is modeled as a situated creature looking for the correct hypoth-

esis that activates the sight of milkbone node. Figure 10-4 demonstrates simulation

results, showing how Sydney builds a concept for given environmental stimuli.

10.2.2 Concept formation

As a learner, Sydney's operation is viewed as a process of alternating forward and

backward operations. Forward operation consists of Sydney's getting various stimuli

and responding appropriately using his best guess at the situation given the stimuli.

His conclusion about a situation and preparation to respond to it appropriately relies

on his generalization ability which can be formally represented as

P (y 2 CjX) = �P (y 2 Cjh)P (hjX):
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Here y is the current set of stimuli and X re
ects the past stimuli or events. The

term h refers to the individual hypothesis in the set H which is the set of all available

hypotheses. And C is the concept, which corresponds to the nature of the hypothesis

which H is trying to explain. Backward operation, on the other hand, is the process

of updating the creature's beliefs and in this case, the real outcome of the event y

is provided and based on its outcome, y is added to X or not and hypothesis h is

updated accordingly. For each hypothesis h in H, this update equation is written as

P (hjX) =
P (Xjh)P (h)

P (X)

, where X now includes the inputs of past stimuli and the current stimulus that he

just encountered. Let us go back to the previous example of Sydney's learning the

concept of which is the reliable cue for anticipating the appearance of a milkbone.

The hypothesis set includes FM (h1), BA (h2), PB1 (h3), PB2 (h4), and CS (h5).

If what Sydney just observed xn was the fact that there was a clicker sound and then

a milkbone appeared, he updates his example set X to X 0, which now includes xn,

and the belief in P (h5jX 0) becomes higher than P (h5jX), whereas P (hj jX 0) becomes

lower than P (hj jX) for all all j 6= 5.

The change in Sydney's belief is shown in Figure 10-4. Given this simple creature

kernel, there are �ve concepts which are taken into consideration. They are FM, BA,

CS, PB1 and PB2 as described above. Since the description length for all these �ve

are the same, the a priori probabilities are the same for all these. The state of the

world is represented as a combination of binary numbers such as (1,0,0,1,1) to say, for

example, that Fridge moved, and Sydney did behavior 1 and behavior 2 but butter
y

did not 
y by and there was no clicker sound. This is shown in the �rst column

of Figure 10-4(a). For this illustration, the event sequence was generated randomly.

The binary 
ag right next to the �rst column (existence or absence of a vertical bar)

shows whether the milkbone appeared or not. It is set to one if CS is one. So, the

right answer for Sydney would be �guring out that it is one when CS is one. The
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Figure 10-4: Five hypotheses with description length 1 are considered here for purposes

of simple illustration. The �rst column represents the state of the world at each event time,

and the existence of a solid bar in the second column shows that there was a milkbone

reward. The third column shows progressive change in Sydney's beliefs in each hypothesis.

See text for details.
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third column represents the progressive change of Sydney's belief in each of the �ve

hypotheses. It is clear that Sydney starts with no particular preference for any of the

possible candidate concepts { since the description lengths are all same 2 { but as time

proceeds, he becomes more and more con�dent that the third hypothesis, that the

sound of clicker is a reliable cue, predicting the appearance of milkbone. Con�dence

is not updated when the event of interest, the appearance of milkbone in this case,

does not happen as shown in the case of t = 2a:

Figure 10-5 illustrates the case where a strict prior threshold is not used. For simplic-

ity of the illustration, it is assumed that Sydney is only interested in three perceptual

components { FM, CS and PB1. As he forms the concept for explaining the ap-

pearance of the milkbone, combinations of two or more of these components are all

considered, but with di�erent a priori probabilities as shown in the �rst bar graph of

the third column in Figure 10-5; the number of hypotheses in consideration is seven

in this case. The convention of the illustration in Figure 10-5 is the same as that of

Figure 10-4 and the inputs are generated randomly.

The above two demonstrations assume a perfect world where there is no aliasing

in sensing and the resources such as attention are not limiting components for the

operation. Among many other possibilities, two stochastic components are taken into

account in the actual simulation. One is the occurrence of inconsistent inputs and the

other is the limited processing capacity. Extension of this treatment demonstrates

phenomena such as superstitious behavior when certain phenomena coincidently keep

happening together with a reliable cue, perhaps because they have a very low thresh-

old for detection, so that Sydney might keep his con�dence in such hypotheses high

and believe in the false coincidental associations.

2This is a naive view taken for the sake of computational simplicity. Species or individual speci�c

preferences do exist in the case of real animals.
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Figure 10-5: For illustrative purposes, only three conceptual components are considered

as constituents of a hypothesis. Allowing the description length to be longer than one, seven

hypotheses are considered, where a priori probabilities are di�erent for each hypothesis. As

time progresses, evidence is collected (shown in the left column) and Sydney becomes more

con�dent about one hypothesis versus the others. See text for details.
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A note on time Many aspects of learning require memory, which in turn brings

the concept of time into consideration. The concept of time includes two di�erent

usages: one is the time as a pointer and the other is the time as a measure of du-

ration or passage. Examples of the former usage, where time is regarded as (rather)

an absolute measure, are 'event A happened when event B happened (here, when

event B happened is a pointer to a certain point in time),' and 'event A happened at

3:45 pm on January 24th in year 4821 (here the pointer to a certain point in time is

speci�ed by a system of units which has been socially accepted).' The latter usage

regards time as a relative measure. Using this meaning of time, statements such as

'event A happened after a certain duration of time passed since event B happened'

or 'I am hungry since it has been 12 hours since I had my last meal' can be made.

Here, the temporal di�erence between when two events happened (event A and event

B in the �rst example, and now and when the speaker had the last meal in the second

example) is the subject of consideration.

In this system, time is not at all assumed in an absolute sense. There is no system of

measure, by which characters can tell 'it already is noon!', for example. However, the

relative sense of time, in the subjective manner, has been incorporated. Under this

assumption, characters have a sense of the passage of time in an indirect manner. For

example, the drive level within a character progressively changes over time and the

character can realize that the drive level has changed even though it cannot tell how

much time actually has passed since the last realization of the drive level. This a�ects

learning in a similar way. For example, in the case where the associative link between

the clicker and milkbone is formed, the temporal di�erence between the appearance

of two incidents a�ects the strength of the associative link, and the passage of time is

measured either in terms of the number of distracters that happened in between, in

the backward process, or the change in the level of expectation in the forward process.

Another way the characters can tell the passage of time is through the number of

distractions that happened between two events (as brie
y mentioned in the last sen-
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tence of the above paragraph). The concept of action time is adopted here. For

example, a character has a certain belief and tries the adequate behavioral response

for a while, but it gives it up after it thinks that enough time has passed. Here,

"enough time" is measured by the number of action trials made. Some actions take

more time than others, so a �ve action time period may mean a very di�erent tem-

poral length in the absolute sense depending on which action that the character is

measuring with. But they are considered to raise the fatigue or tiredness level a

similar amount, so action time is useful in the system where the passage of time is

measured in the relative sense in terms of drive or motivation changes.

From the software standpoint, another timer worth mentioning is the time that the

world keeps for updating objects. The tick rate increases with the system speed,

and decisions on items that require constant updating such as whether new sensory

sampling should be made, are made at every tick.

10.2.3 Inconsistent inputs

Inputs may be presented inconsistently, for example, a milkbone is given to Sydney

without a preceeding clicker sound or only the clicker sound is made but food is not

given. The learner should be able to tolerate such variations. In real world situations,

this variation in inputs may occur partly because the world itself is not perfect or the

learner might miss some changes due to his limited sensing capabilities.

In the implementation of Sydney, this problem is dealt with when the con�dence

in hypotheses is updated. For each hypothesis, violation of a certain hypothesis by a

current stimulus does not lead to a complete rejection of the hypothesis, even though

this complete rejection approach may be valid in some other situations. For Sydney,

updating of con�dence in hypothesis hi, the following formula is adopted.

P (hijX) =
� � P (Xjhi)P (hi) + � � P (hi)

�i(P (Xjhi)P (hi) + P (hi))
+ �:
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Here � and � are free parameters that can be adjusted to assign appropriate momen-

tum to the old belief, and � is a stochastic term that keeps alternatives from being

completely rejected 3. In e�ect, this mechanism also ensures that Sydney will not

become too �xed in his behavior and will continue to sample alternatives that may

be useful in the future as the environment or other conditions change 4.

Figure 10-6 illustrates a few simulation runs. In all of these simulations, both �

and � are chosen to be 0.5. In all the cases shown in the �gure, the hypothesis set H

is the same as the case shown in Figure 10-5, where seven alternative hypotheses are

considered with di�erent priors. All the graphs in Figure 10-6 contain con�dence pro-

�les for all seven hypotheses over time. In particular, the solid green line represents

the con�dence in the hypothesis CS and the solid red line represents the con�dence in

the hypothesis FM. Figure 10-6(a) shows the case where all inputs were consistently

given, such that a piece of milkbone was given after the clicker sound. After about 30

time units in the experiment, which corresponds to 17 presentations of the milkbone,

on average, Sydney builds up con�dence in the hypothesis CS, above 0.9. In the case

of Figure 10-6(b), after initially consistent CS-milkbone presentations, during the

time interval between 50 and 100 the milkbone was given randomly with independent

probability 0.5. After the time unit 100 is passed, the milkbone was given again

consistently after the clicker sound. Not immediately, but gradually the con�dence

in hypothesis CS decreases and the situation becomes such that any one hypothesis

is not preferred above the others. Then the con�dence in hypothesis CS builds up

again as the consistent inputs are presented. In the third case, Figure 10-6(c), after

the consistent presentations of CS and milkbone during the �rst 50 time intervals,

the milkbone was consistently given after Fridge moved. Consequently, the hypothe-

sis FM becomes gradually more preferred over the hypothesis CS. After the stimulus

3These parameters are preset in the current implementation. Systematic update of these param-

eters re
ecting the amount of gained knowledge and experience is another problem that needs to be

looked into.
4There are some striking exceptions to this. In his descriptions of various learning phenomena,

Lorenz [68] classi�es such distinctive phenomena as special kinds of learning, such as imprinting.
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a

b

c

Figure 10-6: While inputs were consistently presented, i.e., clicker sound then milkbone in

a, inconsistent inputs were provided in cases b and c. In case b, up to experiment time 50,

the milkbone was consistently given after the clicker sound. But during the time interval

between 50 and 100, the milkbone was given randomly with independent probability 0.5.

After the time unit 100 is passed, the milkbone was given again consistently after the clicker

sound. In the case of c, the initial 0�50 time interval was the same as in the other two

cases, but during the time interval 50�100, the milkbone was consistently given after Fridge

moved. In all three �gures, con�dence pro�les for all seven hypotheses in the hypothesis

set are plotted over time. In particular, the solid green line represents the con�dence in the

hypothesis CS and the solid red line represents the con�dence in the hypothesis FM. See

text for details.
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presentation schedule is switched back to CS followed by milkbone, con�dence in each

hypothesis switches back to its former state.

10.2.4 Focus of attention

As the number of components of consideration increases, the number of hypotheses

grows exponentially. This growth cannot be dealt with in practice and a focus-of-

attention module handles this problem by shifting the focus of attention. In the case

of Sydney, a �xed number of hypotheses, less than the capacity limit, ordered in terms

of preferences, are considered at every concept learning instance. In addition to that,

stochastic choice is made among other possible hypotheses, which are less preferred,

due to their complexity in description, or the fact that their con�dence got lowered

based on prior experiences. In e�ect, it is possible but takes more time for Sydney to

learn more complex concepts, for example, ones with longer description length.

10.3 Structural learning

Having formed the correlative link between the clicker sound and the milkbone, clicker

training results in Sydney preferring certain behaviors more than others and then do-

ing those preferred behaviors with the occurrence of the vocal commands. Sydney's

learning the right behavioral responses and thus expanding the scenario to a full con-

text which includes the hearing of a verbal command, the performing a trick, hearing

a clicker sound, getting a milkbone, and �nally eating with consummatory actions, is

done through the process of concept formation, and then updating the appropriate

part of the subsystem network.

Once the clicker sound is correlated strongly enough with the appearance of a milk-

bone, the clicker sound itself has a positive stance value that comes from the hunger

drive. In other words, when Sydney hears a clicker sound after learning the associ-

ation between the clicker sound and the milkbone appearance, hearing the sound of

the clicker is perceived as being rewarding for the behavior that he just performed,
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by an amount that is proportional to the multiplication of the connection strength

between the milkbone appearance and the clicker sound (which corresponds to the

value P (a milkbone appearsjclicker sound) and the current level of the drive unit

in the motivation system that the clicker sound is pointing to, which is the hunger

drive). This is because the rewarding value of the clicker sound is coming from the

appearance of a milkbone, and the milkbone's rewarding value is coming from the

satisfaction of hunger drive. The next thing that a trainer can do is to watch the dog's

behavior and make a clicker sound whenever the dog performs an interesting skill that

potentially can be used as a part of a trick. Initially the dog would not know what

triggered the clicker sound, but having the performance of behavior as the entity of

the concept space that Sydney searches through, he gets to "�gure out" the behavior

he performed and raise the value, i.e. the intrinsic probability, for performing that

behavior since it elicits the clicker sound which is rewarding. This approach can be

extended to rewarding a certain combination of behaviors, to teach a preferred behav-

ior sequence rather than a single action, but this will take longer to teach because it

is a more complex concept for Sydney based on the fact that the complexity measure

we are using is still the description length 5. Also, here it becomes obvious why a

temporally short clicker sound is e�ective for training. If the marking is precise and

short and the clicker sound is made right after one behavior is performed, the search

space for Sydney gets smaller and it is easy for him to �gure out a reliable concept.

These observations correspond to real dog trainers' experiences. A similar procedure

proceeds to form the chain of links between a certain pattern of spoken sounds and a

behavior trick. In the creature kernel framework, the learned associations are coded

in the connection weights among the nodes that constitute the subsystems.

5Real trainers accomplishes this task by teaching each behavior separately then fading stimuli.

Alternative approach in this system would be rewarding the behaviors that are part of the behavior

sequence that is going to be taught so that the probability of performing those behaviors than teach

the chaining.
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10.3.1 Teaching behavior tricks

In this clicker training framework, there are three di�erent kinds of interactions that

enable teaching a dog behavior tricks. Once the associative link between the clicker

sound and reward is formed, the clicker can be conveniently used for training since

it still carries the intrinsic value that comes from the link. The �rst interaction is

making a clicker sound whenever the dog performs a behavior trick that the trainer

intends to teach. This is perceived by the dog as a positive reinforcement for per-

forming the behavior and the general preference given to that behavior increases. The

second kind of interaction is one that leads to chaining of behaviors. By rewarding

whenever a certain combination of behavior is performed, in proper order, associative

links between behavior nodes themselves are formed and from the perspective of the

creature kernel's behavior system, it is seen as a known skill of the creature. Finally,

whenever the dog seems to be initiating the desired behavior, by issuing a vocal com-

mand, the trainer can have the dog proceed to completion of the behavior and then

make the clicker sounds so the dog can learn the context of vocal command then

behavior then reward.

Even if the dog already has the knowledge of the context, if more than one com-

mand is to be taught, he needs to learn to discriminate di�erent vocal patterns and

learn the corresponding behavior link from the acoustic pattern. In Sydney K9.0,

these types of learning all happen simultaneously as a process of repeated concept

formation and update in weights. Figure 10-7 illustrates the context forming process.

Once Sydney has learned the useful context (voice command ! performing a trick

then reward) he needs to learn which among the known tricks is the behavior match-

ing a certain voice command.

Let's assume that there are four known tricks as shown in the �gure (Figure 10-

7), and the four tricks form the hypothesis set for this learning. A priori probabilities

are proportional to the probability of occurrence of the clicker sound that Sydney

received when he performed each behavior, possibly outside of the voice command
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Figure 10-7: This �gure shows the creature kernel view of Sydney's context formation

process. Having the knowledge that performance of certain behaviors bring the clicker

sound and then reward, and this happens in the context of a voice command, he still needs

to learn to discriminate the meaning of di�erent acoustic patterns, i.e., respond to a certain

command with a certain type of behavior.

context. The formation of context proceeds within the operant conditioning frame-

work where Sydney performs various behaviors in search of the right trick and the

completion of the context, and he is rewarded for right behavior. His doing a behavior

corresponds to the forward operation part of the process and the probability for doing

one of the four tricks under consideration re
ects his con�dence in that behavior, i.e.,

P (y 2 CjX). Here y is one of the four tricks and concept C can be expressed as "it

is the right behavior that will complete a valid context 6," and X is the past experi-

ence and gained knowledge including a priori beliefs. Through the process of being

rewarded for doing a speci�c behavior, Sydney builds his con�dence that one of the

tricks will bring reward in the presence of a certain voice command. This con�dence

is coded as the strengthened connection weight between the auditory memory that

stores that acoustic pattern and the corresponding behavior trick. Figure 10-8 shows

the behavior preference pro�le in this situation. In the presence of a certain voice

command, one of the four behavior tricks was rewarded for being performed and over

time, the preference for that behavior got higher compared to the others. The change

in preference for the rewarded behavior is shown in Figure 10-8 a in the green line.

6Here, valid context would be a context where Sydney knows from his experience that its com-

pletion would lead to the consummation that he desires.
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a

b

Figure 10-8: These two �gures show the change in Sydney's preference given to four

behaviors in the trick learning situation. a. in the presence of a certain voice command,

performing one trick is consistently rewarded and Sydney gradually builds up higher pref-

erence for that trick than the others in that context. b. When the rewarded behavior is

changed after a while, Sydney can change his preference to the new behavior which is now

being rewarded. In this case, one behavior was rewarded during the �rst 20 trials, then an-

other behavior began to be rewarded instead during the rest of the session. The preference

change pro�les are shown in green and red lines, respectively.
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Figure 10-9: Two behaviors were rewarded probablistically in this simulation. One

behavior was rewarded for performance in the given context 70 percent of the time, and

the other behavior was rewarded 30 percent of the time. The resulting concept shows that

Sydney prefers those two behavior proportionately. Preferences to other behaviors remain

above zero due to a stochastic component parameter that was set to 0.08. This ensures that

Sydney does not give up any of the hypotheses completely.

Sydney can change the concept, and thus the relative preferences given to behaviors.

In the simulation result shown in Figure 10-8 b, Sydney was rewarded for performing

one behavior during the �rst 20 trials (the preference pro�le for the rewarded be-

havior during this period is shown in green), then another behavior was consistently

rewarded afterwards during the rest of the trial runs (the preference change for this

newly rewarded behavior is shown in red).

10.3.2 Probability matching

When a behavior is probabilistically rewarded, the resulting concept re
ects the rein-

forcement pattern as shown in Figure 10-9. In this case, one behavior was rewarded

70 percent of the time and another behavior was rewarded 30 percent of the time.

The resulting concept shows that Sydney prefers those two behaviors in proportion

to the reinforcement frequency. Such matching phenomena have been reported in a
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number of animal behavior studies [113].

Bitterman reports [88, 5] that in the case of real animals, if the reward is provided

with a certain probability, depending on species, some animals match the probability

of the behavior or choice with the probablity of the reward or max out, i.e., always

choose the case that provides the most reward. Once the concept on the likelihood of

the appearance of the reward is formed, this behavioral response can be implemented

by corresponding action selection mechanism. If the action selection mechanism is

a liner process which forces the animal choose a certain action or make a decision

in proportional to the strength of the learned associative connection (Thorndike's

law [5]), the animal would show the matching behavior. Whereas if the animal takes

the concept and instead of directly applying it to the action selection mechanism, if

it anticipate the expected reward and compare it [129], as humans are often thought

of doing, it will show the behavior that always chooses the case which gives the larges

reward.

10.4 Finding a dog's mind in Sydney

There are various phenomena in addition to those described above, that are reported

by people who have experience in dog or animal training. The reports are propagated

from mouth to mouth as bits of wisdom to help people better understand animals

and get better at training them. In this section, I explain how such phenomena can

be explained in the creature kernel based learning frramework.

10.4.1 Blocking

A dog can be taught, for example, to roll over at the hand down gesture. Or a dog

can be taught to roll over at the voice command, "roll over." However, once the dog

is taught to do the behavior in one way, even if the other cue is consistently presented

afterwards, the dog does not pay attention to the other cue, i.e., it does not learn the

correlation between the newly presented cue and the appropriate behavioral response.
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For example, once the dog has learned that the hand down gesture is a reliable cue

for performing the roll over behavior to get a reward, even if the trainer starts saying

'roll over' consistently while doing the hand down gesture, the dog does not learn that

the voice command is a reliable hypothesis predicting that performing the roll over

behavior will lead to reward and consummation 7. In the concept learning framework,

this is explained very concisely. During the backward belief update process, which

can be written as P (hijX) = P (Xjhi)P (hi)

�iP (Xjhi)P (hi)
, once P (hi) is high and outcome y is still

consistent with this hypothesis (i.e. the hand down gesture is consistently shown),

there is no reason why the creature should prefer other hypotheses over this one. This

is shown in Figure 10-10. In this simulation, the hypothesis set is the same as the

one considered in Figure 10-4. There are seven hypotheses in this set. During the

�rst 50 time units, CS was presented right before the milkbone. From 50 to 100 time

intervals, Fridge moved whenever the clicker sound was made. Then, the stimulus

type reverted back to the situation where only the clicker sound was made before

the milkbone was given as a reward. As shown in the �gure (Figure 10-10), once the

concept that the clicker sound is a reliable cue for the appearance of the milkbone, the

other variation in the presentation did not a�ect the con�dence levels. The clicker

sound hypothesis is shown in a green line that approaches one over time, and the

other hypotheses show a trend of converging to zero 8

7In the current implementation, even if hand down gesture happens before the 'roll over' com-

mand, Sydney would not learn that the temporal sequence of hand down and roll over' is the right

stimulus if the already learned 'roll over' consistently happens and is enough to predict that the

timing is right to perform the roll over behavior. In real animals, only the concurrent patterns show

the blocking phenomena. Even if a dog learned that 'roll over' command tells him that it is time

to perform the roll over behavior, if the hand down gesture begins to always happen before the 'roll

over' command, it will expand the reliable stimulus to the sequence of hand down then the voice

command 'roll over.' Also, in the system, a temporal pattern is stored as a form of sequence in the

associated memory. How long this sequence can be depends on the short-term memory capacity

that we assign to each creature.
8In the �gure, the con�dence level approaches 0.92 instead of 1. This is because there are some

stochastic components added to keep the probability of eliciting all the other behaviors from being

zero, and the probabilities have been normalized to sum to one over the behaviors in the same

behavior group. Characters could not learn that some alternative hypotheses are better when the

situation or environment changes, if they completely lose the chance to try them out.
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10.4.2 Jackpotting

Schedules of reinforcement a�ect learning. In the literature of animal learning, there

are a number of research reports discussing how various factors such as frequency,

size and delay of reinforcement a�ect the performance of the animal. There are some

consistent trends when these factors are combined, for example, animals usually work

harder for smaller and immediate rewards than larger and delayed rewards. However,

recently pet trainers have realized that a reward procedure called jackpotting has very

useful e�ects. Their claim is that instead of a small bit of food, an unexpected large

reward is much more e�ective at inducing the animal to work harder to learn.

There is not much in the operant research literature to support this [20]. But within

our creature kernel framework, it can be explained by the fact that within the mo-

tivation system, the a�ect system plays a crucial role in learning by providing re-

inforcements. In our own experience, unusually large rewards elicit a very strong

a�ective arousal, and those events are stored as special memories as we remember

some events with strongly emotional arousal more vividly for a longer time compared

to the usual memories of facts and normal events [40]. In the creature kernel, this

phenomenon can be implemented by adding a special a�ective tag to an event when it

elicited an a�ective feedback above a certain threshold, and having this tag refreshed

by further experiences. This will strongly a�ect the creature's action selection and

decision making.
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Figure 10-10: Once a concept is learned, if its cue keeps consistently being presented,

the extraneous cues are not learned. This phenomenon is called blocking, and the concept

learning adopted here explains the phenomenon. See text for details.
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Chapter 11

(void ): A cast of characters

(void*): A cast of characters implements a dining hall setting. There are three main

characters - Earl the Trucker, Fast Eddie (Dude) and Elliot the Salesman (see Fig-

ure 11-1 (a)) and each of them can interact with a human user through a buns-and-

forks interface (Figure 11-1 (b)). A human participant can "possess" a character by

putting the buns-and-forks on one of three plates between her and the screen; each

plate represents one of the three characters. This results in a "POSSESSED" signal

being sent to the corresponding character. As an acknowledgement of the possession,

the character gets up and walks toward the center of the diner hall. From this point

on, the character's behavior system receives a strong in
uence from the interface until

it is un-possessed.

11.1 Characters

The three characters have very distinctive and strong personalities. Earl the Trucker's

basic emotional state is anger; he represents a conservative character who has a very

negative attitude toward dancing. Fast Eddie, also called Dude, is a happy character.

He is interested in doing novel and cool things. Though he does not expect to be

possessed before he has any experience of possession, he generally has a very positive

attitude toward dancing. And when he �gures out that possession leads to dancing, he

comes to look forward to being possessed. Elliot the Salesman's underlying emotional
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(a) (b)

Figure 11-1: (void ): A cast of characters implements a diner setting. (a) There are

three distinctive characters sitting at the counter. (b) A human participant can come in

and possess one of the three characters using a wireless interface mimicking buns-and-forks

from Charlie Chaplin's movie Gold Rush. From then on, he can force the character to dance

in a certain way by wiggling the interface in the way he wishes the legs of the possessed

character to move. Characters respond to this possession and forced dancing di�erently,

based on each character's personality, past experience and motivation.

state is fear and nervousness. He is willing to do whatever he is forced to do by au-

thority. Through repeating experiences, he gradually builds a certain attitude toward

possession and the dancing experience associated with the possession. Depending on

how the user controls the interface, characters can have a fun time dancing or they

can have painful experiences falling down on the 
oor. Happy dancing experiences

act as positive rewards for the characters and cause them to look forward to being

possessed, whereas too much painful experience makes the characters build up a neg-

ative attitude toward dancing and possession, and eventually this could make them

upset and walk out of the hall, not listening to the signals from the interface.

In other words, based on how the human participant controls the interface, the pos-

sessed character may have fun dancing a certain type of dance that it likes, or it may

keep falling down on the 
oor and have a painful time. This emotional experience is

fed back to the character itself, and its attitude toward dancing is updated so it may

come to di�er from the character's original attitude. The current attitude toward

possession and dancing is indicated by its emotional expression. Even if the char-
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acter is doing the same LEG LIFT following the human participant's one bun lifting

signal, it could do it full of joy or with resistance or hesitance depending on whether

the character is enjoying the dance or experiencing too much pain doing it. It may

reject being possessed and walk out of the dining hall when the human participant is

causing too much pain. If it receives acknowledgement of un-possession, it gains the

freedom to act according to its own will. It may go back to its seat or keep dancing.

When another character is possessed, it pays attention to the possessed character's

behavior and watches that character's dancing and reactions to the human partici-

pant. It expresses cheer or sympathy depending on how the possessed character is

doing.

11.2 Learning

All these personality based attitude changes and learning take place in the motiva-

tion based learning framework implemented around each character's creature kernel.

Di�erent kinds of learning phenomena observed during the interactions are as follow.

11.2.1 Organizational Learning

Once a character is un-possessed, it may continue dancing or go back to its seat by

its own free choice, since there is no longer any external input which dominates its

behavior system as occurred while it was being possessed. The strength of the de-

sire to dance, which is determined by the overall a�ective feedback from the previous

dancing experience, in
uences the character's decision between going back to the seat

or continuing to dance. This attitude or desire to dance is a modi�able parameter

that is learned through possession and dancing experience and implemented as the

preference learning part of organizational learning.

Upon the decision to keep dancing, it tends to repeat the type of dance that it en-

joyed during its previous interaction session. This is because, in its behavior system,

the dance types that gave the greater fun to the character gained a higher prefer-
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ence value compared to others and were dynamically assigned as children nodes of

the autonomous dancing behavior parent node. This shows an example of strategy

learning. A session of free dancing gradually reduces the desire to dance because of

fatigue and consummation of its desire, and eventually the character goes back to its

seat.

11.2.2 Concept Learning

The main concept that a character builds through an interaction experience is the

attitude toward dancing and possession. In this particular installation, the data that

these characters collect are the motivational feedback that they experience during

the interaction - dancing session. This, in turn, in
uences the character's attitude

toward dancing which then alters the drive system part of the motivation system,

changing the desire to dance and the desire to interact with the human participant.

The updated attitude toward dancing constitutes a change in the a�ect part of the

motivation system of the character, which is displayed as its emotional state through

facial expression and modulation of its motor system at the next time tick.

11.2.3 A�ective Tag Formation

Characters have the ability to choose where in the diner to dance. They can choose

to dance slightly to the left, to the right or in the middle. This decision is made

very quickly, from a combination of personal preference, physical proximity to the

point and past experience. The past experience is coded as a�ective tags attached to

locations, which in
uence the character's decision when it dances the next time. For

example, a bad experience in the right corner of the diner makes the character avoid

that corner, whereas having lots of fun in one corner increases the probability that

the character will choose that corner in the forthcoming session.
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11.3 Observations and Discussion

Tight coupling among the four systems that constitute the creature kernel made it

possible to build characters that show their a�ective states transparently. In our

implementation, the motivation system continually sends modulating signals to the

motor system so the character behaves in the proper emotional way, as signals to the

behavior system update the behavioral preferences and concepts. Since these changes

can be seen by the human participant while the behavior system is being updated,

when the character shows an attitude change the person can easily feel sympathetic

toward the character. This is the main response we got from SIGGRAPH 99 partici-

pants who had a chance to interact with the (void*) characters.

Given this, one of the notable facts is that although the three main characters in

the installation showed very di�erent personalities their creature kernels have the

same basic structure. Di�erent initial biases toward di�erent desires and preferences

for certain types of dance, di�erently progressing learning rates, etc., made the charac-

ters look and behave very di�erently, as they conveyed strong and easily recognizable

archetypes.

From a programmer's point of view, this motivation-based creature design freed us

from considering every possible instance or situation a character might encounter.

We have been able to create emotionally compelling synthetic characters, and then

it was easy to add complicated situations and possible actions and still get realistic

and emotional responses from the characters that could elicit sympathetic interest

from human participants. That is, we are able to give them internally active and ex-

ternally expressed feelings that can guide their adaptation to environments not fully

anticipated by their creators.
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Chapter 12

(void*): A cast of characters {

experimental studies

One of the main goals of the (void*): A cast of characters project is to build

characters that have distinct personalities which are conveyed through the way they

express themselves, adapt to the world and learn, and characters that can convey such

attributes to the human participants through interactions. In this chapter, I describe

how di�erent factors have been considered and integrated into the system to build a

character with a certain personality, and then I present results of an evaluation of the

success of this approach as judged by users who interacted with the system and thus

with the characters.

12.1 Construction process

The process of implementing the characters started with a series of brainstorming

sessions for deciding on which personality each character should represent; these ses-

sions included all members of the group who worked on this (void*): A cast of

characters project. Instead of using terminologies such as extroversion or consci-

entiousness at the initial stage of conceptualizing personalities, more common words

such as coward, cool or easily upset were used for ease of discussion. This process cor-

responds to annotating the a�ective nature of animations using plain English words
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such as happy or sad, which are a�ect descriptors that �t designations based on the

six primary emotions, instead of (valence 1, stance 1) or (valence -1, stance -0.2), which

are three-axis representations of a�ect of the type that is actually used in the crea-

ture kernel framework. This convention was taken because it helps people who do not

need to know internal representation think easily and intuitively using plain language.

The change of basis was not di�cult, i.e., representations of a�ect or personality in

one basis were readily convertible to the other. After agreement on the general de-

scriptors of the personalities, the behavior designer could decompose the description

using the representation that is more easily adapted to the creature kernel framework.

For the (void*) project, the following was decided: Earl the Trucker represents a

personality with much anger. He thinks it is irritating to be possessed and to be forced

to dance. Elliot the Salesman is a nervous and timid character. He is frightened

by possession and dances because he is forced to do so by an authority, but does not

quite enjoy it. Fast Eddie(Dude) likes dancing and thus he enjoys being possessed.

This conceptual description can be transformed to a Big Five personality factor rep-

resentation assigning numbers to each factor that correspond to relative emphasis in

each character. The designer's conception of the (void*) character personalities is

shown in Figure 12-1. As shown in the �gure, the personalities of the (void*) char-

acters can be represented in terms of the amounts of (extroversion, agreeablness,

conscientiousness, emotional stability). The representations for Earl, Elliot and

Eddie are (medium low, low, medium, medium low), (medium low, medium, medium,

medium low) and (very high, medium low, medium low, medium), respectively. To be

speci�c, the extroversion factor is mainly re
ected in a character's behavior when

he is serving the role of a supporting character, i.e., when he is not possessed and

one of the other two is the currently possessed character. As a character is more ex-

troverted, he is more ready to express his emotional reactions such as surprise (when

Earl dances though he was never expected to dance, for example), or encouragement

or sympathy when the possessed character is doing well or being hurt. The agree-

ableness factor is represented as the degree of being unresistant to possession and
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Figure 12-1: Rather general descriptions of character personalities have been transformed

to Big Five personality factor representation. From the top, each graph represents the

designated personality of Earl the Trucker, Elliot the Salesman and Fast Eddie (Dude).

Initials on the x-axes of the graphs stand for extroversion, agreeableness, conscientiousness

and emotional stability, respectively, and the values are rated between 0 and 5. Factor

Five, intellect-imagination, is not included in this representation since it is irrelevant to this

study, as discussed in Chapter 8.
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other externally in
uenced or triggered behaviors, combined with con�dence in one's

own beliefs. Earl, whose agreableness is low, is resistive to possession, initially think-

ing that being in
uenced by an external power is not a good thing. Also, although

his attitude toward possession does change through the interaction, it procedes very

slowly. Eddie's agreeableness is also medium low and is shown by his not being very

ready to change his belief that dancing is a cool thing to do though he is accepting

of possession and being controlled. Elliot's agreeableness is medium. Although he

learns the nature of dancing and possession and is ready to change his initial attitude

toward them based on interaction, he does not welcome the possession very much

mainly due to his nervousness toward authority. The conscientiousness factor is

mainly expressed through the way the characters perform actions. This factor is

mainly coded in the way each action is performed by each character, i.e., its expres-

sion through how the corresponding animation �le has been designed and is being

played. Animators made Earl's animations in such a way that he performs actions

and dances in a kind of jerkey and abrupt manner, Eddie's to make him dance con-

�dently, and Elliot's conscientiously. The emotional stability is expressed through

the resistance to changes in belief through interactions and the level is medium or

medium low for all three characters. Characters may change and update their beliefs

in the nature of possession and dancing as the interaction proceeds.

12.2 Experiments and evaluations

The problem with this character behavior design method is that it is not obvious

how to evaluate the success of the approach. As an evaluation attempt, however, a

number of questions were asked in a questionnaire given to persons who were about

to interact with the installation and, thus, the three characters, with further ques-

tions given after the interaction. The questions focused on �guring out whether the

distinct personalities that the behavior designer tried to convey through behaviors,

learning pro�les, etc., were well perceived by the novice participants.
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To exclude any bias that might arise from knowing descriptive names of the char-

acters such as Trucker, Salesman,or Dude, only the neutral names such as Earl, Elliot

and Eddie were given to the participants. Figures of each character were also included

in the survey sheet with these names written on the �gures. The survey sheet given

to the participants is found in Appendix F.

Overall, all the novice users interacted with the characters without di�culty. All

of the participants interacted with all three characters, and prolonged the interaction

long enough to witness the emotional arc {the change is attitude toward the posses-

sion and dancing{ in at least one character. The users' ability to perceive the various

personalities was shown by the survey results presented below.

12.2.1 Survey results

Sixteen subjects participated in the interaction experiment. All were either MIT grad-

uate or undergraduate students aged between 19 and 39, with various backgrounds,

such as neuroscience, applied math and computer science. The questions given to

each subject were mainly about perceived personalities of the three characters. The

same set of questions were asked both before and after the real interaction. Subjects

were initially asked to answer questions about their perception of the personalities of

the characters as judged by just looking at the static �gures of the characters. This

was to assess how much the visual look of the character a�ects the apparent personal-

ity compared to the details of their actions, learning curves and emotional expressions.

Figure 12-2 illustrates the survey results. Three graphs represent survey results for

Earl, Elliot and Eddie, respectively. As in Figure 12-1, initials along the x-axis un-

der each column represent four of the Big Five personality factors, with the value,

rated on a zero to �ve scale. There are three bars for each personality factor, and

each, respectively, represents the value for that personality factor as conceived by the

behavior designer, the mean of the perceived value for the personality factor by the

subjects before, and �nally after, the interaction.
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Figure 12-2: Survey results on perceived personalities of (void*) characters' personalities.

On the x-axis, EX stands for extroversion, AG for agreeableness, CO for conscientiousness

and EM for emotional stability. For each case, the �rst bar represent the designer's per-

ception for each personality component in each character, and the second and third bars

represent perceived mean values calculated from subjects' answers, before and after the

interaction, respectively.

158



extroversion agreeableness conscientiousness emotional stability

Earl 15 14 11 13
Elliot 14 15 12 14
Eddie 14 14 11 13

Table 12.1: Total of sixteen subjects participated in this experiment. In this table,
for each personality factor and the character, the numbers of answers that agreed
with the designer's conception are shown.

extroversion agreeableness conscientiousness emotional stability

Earl 0.0002 0.0021 0.1050 0.0106
Elliot 0.0384 0.0002 0.0384 0.0021
Eddie 0.0001 0.0021 0.1050 0.0106

Table 12.2: The probabilities, calculated using binomial test, for getting the results
shown in Table 12.1 are shown in 0 to 1 scale.

The major question asked here is whether the personality types that the behavior

designer intended to convey through the three di�erent characters were well perceived

by the subjects. For each character, the designer's conception for each personality

factor is converted from the verbal description to a range of numbers. For example,

Earl's agreeableness and conscientiousness are medium and low, respectively. These

are converted to the range between 2 and 4 and the range betwen 0 and 2. There are

six possible responses for each personality factor of each character. And the num-

ber of responses that fall into the designer-intended range was counted (Table 12.1).

Then, binomial tests [109] were done over the sampled data to calculate the probabil-

ity of getting the resulting number (or fewer) of answers within the range. Table 12.2

show the test results. From these results, it can be said that subjects perceived all

of the personality factors in all three characters as the designer intended with more

than a 95% level of con�dence except in three cases, two of which are about the

conscientiousness factor in Earl and in Eddie's personality. In the common usage,

conscientiousness can refer to how conscientious people are at behaving and perform-
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ing certain gestures or motor patterns, or it could refer to a high level cognitive

component of being conscientious. Since what it meant in the survey was the for-

mer as the designer tried to convey the factor through the animations, the subjects

were told that conscientiousness should be judged in terms of how motor patterns

are performed and behaviors are done, but it seemd di�cult for some subjects to dis-

tinguish this meaning of the concept and the answers show a high variance as a result.

The next question asked was how much the interactions and the observations of

characters' behavior helped subjects gain the impressions of personality beyond the

visual appearances. One would expect that the impressions were due to a combination

of both factors. In this experiment, the perceived personalities were assessed both

before and after the interaction, and the comparison of the results is shown in Ta-

ble 12.3. The number of answers that were already in the designer's conception range

and stayed in the range after the interaction, were counted (shown in the before row)

and then the answers that got closer to the designer's conception after the interaction,

which originally did not belong the designer's conception range, were counted (shown

in the after row) and the sum is shown in the next row named total. It is seen that

in the end, the majority of the subjects perceived the character personality as the

designer intended. But out of 12 cases, in seven cases, less than 50% of the subjects

perceived the character personalities as they were intended before the interaction. It

can be concluded that the interactions and observation of behaviors helped the sub-

jects to have a better appreciation of the nature of the characters. Table 12.4 show

the e�ect of interaction on subjects' perception of characters personalities through an-

other comparison. In the table, the rows labeled closer show the number of subjects

whose perception of personality was not in the designer's conception range before the

interaction but got closer to the conception after the interaction. The rows labeled

farther show the number of subjects who initially did not perceive the personality

of characters as the designer intended and the perception got even farther from it

after the interaction. Among the twelve comparisons, in nine cases, more subjects

perceived the characters' personality closer to what the designer intended after hav-
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extroversion agreeableness conscientiousness emotional stability

Earl before 2 9 7 5
after 14 5 5 10
total 16 14 12 15

Elliot before 8 7 10 12
after 4 8 3 4
total 12 15 13 16

Eddie before 8 9 10 7
after 6 7 3 7
total 14 16 13 14

Table 12.3: For each character and personality type, this table shows the number of
answers that accorded with the designer's conception before the interaction, which
stayed to be so after the interaction. Second is the number of answers that did not
accord with the designer's conception initially but changed to be closer to that after
the interaction, and third is the sum of those two cases.

extroversion agreeableness conscientiousness emotional stability

Earl closer 14 5 5 10
farther 0 2 4 1

Elliot closer 4 8 3 4
farther 4 1 3 0

Eddie closer 6 7 3 7
farther 2 0 3 2

Table 12.4: This table compares the number of subjects who initially perceived the
value of the each personality factor di�erently from that conceived by the designer
and then later perceived a personality closer to the designer's conception, after the
interaction, and those who came to perceive it farther from the designer's comception.
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ing the interaction, rather than farther. There are three cases that tied. From this

result, it can be said that the interaction biased the subjects' beliefs in the way that

the designer intended with 99.9% level of con�dence. Two of the tie cases are about

the conscientiousness factor. As described above, it seems that it is because in the

common usage, conscientiouness includes a high level cognitive factor that is not em-

phasized in this implementation, so some changes in beliefs corresponded to chance

level.

12.3 Conclusion

The greatest obstacle to this study was di�culty in use of consistent terminology.

Even if we all understand and even agree on what each word referring to each person-

ality factor means, the descriptions of individual personalities still tend to be context

dependent and quite broad. Nonetheless, the personality of the characters perceived

by novice subjects showed characteristics that are similar to those that the behavior

designer had intended to be conveyed.
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Part IV

DISCUSSION AND CLOSING

REMARKS
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Starting from a consideration of the basic organization of the central nervous system

(CNS), this thesis has demonstrated a method of implementing a software kernel for

building interactive, intentional virtual creatures with lifelike characteristics such as

adaptation abilities, personality and expression of emotions.

The main contribution of this work is the provision of a framework upon which

lifelike artifacts can be built. This framework includes speci�c basic components en-

compassing di�erent hierarchical levels. The creature kernel, which is the basis of a

synthetic character, is composed of four main subsystems { perception, motivation,

behavior and motor systems { where the results of the coordinated interactions of

these four systems are propagated back to the creature kernel as well as outwardly,

to be expressed through speci�c movements and patterns of action and facial expres-

sions. The feedback signal propagated back to the creature kernel updates the kernel

to cope with the dynamics of the world and to make the creature more adaptive. This

update includes both quantitative and qualitative changes which are realized through

structural learning, concept learning and a�ective tag formation. These forms of

plasticity are re
ected by changes in beliefs, in desires relative to various drives, in

behavioral or object preferences and in acquired skills. Each synthetic character is

assumed to have various built-in properties, like the innate characteristics of real ani-

mals, di�erent for di�erent species. These include a number of sensors, innate drives,

behavior patterns and motor skill abilities that support the expression of those be-

havior patterns through the body (3D graphics in the cases discussed in this thesis).

These behavior patterns can be seen as the equivalent of the behaviors often referred

to as �xed action patterns by ethologists.

However, the current implementation of learning has limitations in various aspects.

One of the inherent problems with the reinforcement learning approach is the curse of

dimensionality. Adopting the belief network and the independent relations explicitly

coded in the network helps in dealing with this problem, but nevertheless the simul-

taneous activition of many events could be a problem. In real creatures the attention
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mechanism solves this problem [99, 40]. We have not implemented an attention mech-

anism in the proper way yet. Incorporation of an attention mechanism that does not

su�er from perceptual aliasing [77] would be the next step.

Feature extraction [32, 106, 119] is another major problem. Often in machine learn-

ing, unsupervised learning proceeds to provide the raw material for the next stage, in

most cases, which in most cases is supervised learning [4]. In the current implemen-

tation, it is assumed that creatures already know what are the characteristic features

of all the objects that they are dealing with. For example, they can query a 
ower

and get data such as its color and smell. Generalization depends on handcoded in-

formation on hierarchical relations among those features. The fact that animal is

a bigger category than lion, so using the information animal is a preferred way of

learning things initially, is given as a priori knowledge to the creatures. But this is

one of the problems that biological creatures depend on their own experiences and

knowledge to solve. They learn to attend to speci�c features, and �gure out the in-

clusion relations among features that describe objects over the course of development

and learning. We took the short cut solution for now but it will be an important next

area to explore for the implementation of believable characters.

The associative learning comes only from positive examples. A character does learn

from negative a�ective experiences but still the examples are used only as positive

examples of those that elicit negative a�ective reponses. The ability to learn from

negative examples may speed up the learning, but the current system does not include

this ability.

Since the whole system is built within a probability framework, there are two fun-

damental 
aws that come from this approach. One is the fact that the order of the

appearance of learning examples does not a�ect a creature's learning, which is not

found to be true in cognitive science literature [38, 42]. This can only be true when

the examples are all independent, which is not always the case in the real world. The
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other is the question of where all the a prioris are coming from. Preferences for cer-

tain colors, smells and tastes have to be handcoded before running the system. This

brings up the nature-versus-nurture debate again, and where to draw the boundary

line is another question to think about.

The role of the motivation system, which includes the a�ect system, has been empha-

sized throughout this thesis. The desired characteristics of the synthetic characters

that were major aims of the thesis work were adaptability and compelling lifelike

impressions. Real-time interactions with the external world, which includes both the

virtual environment where the synthetic characters are placed and the real world

where some of the sensing inputs arise, demands adaptability. This is because in-

stalling all the necessary components for dealing completely with all situations that

might occur is intractable from a resource standpoint, and it is simply too di�cult

for the designer to predict and implement them all. Achieving a compelling lifelike

impression requires believability in the characters, which should be supported by the

intentionality they display, which must be conveyed in a clear and understandable

way. The motivation system plays the crucial role in both cases, and thus has been

emphasized in the implementation of the creature kernel.

In particular, once the motivation system in the model was expanded to incorpo-

rate an a�ect system with the major role in learning, then various phenomena of

adaptation often thought of as distinct were all found to be natural outcomes.

The thesis started with an overview of the organization of the CNS and the func-

tional needs that drove the evolution of the hierarchical system. In the natural world,

as the need for showing more complex behaviors and coping with a more dynamic

environment arose, demand for higher intelligence also arose. Intelligence emerges

either from additions of higher levels in the hierarchy, i.e., by adding structures that

can deal with qualitatively di�erent problems, or from expansion of the number of the

units at the same level in the hierarchy. The latter would correspond to a creature
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with a greater number of di�erent motor skills that includes �ner detail so that, in

e�ect, it would be able to manifest very appropriate motor control for various sit-

uations through bottom up choices. This could be seen to mimic the addition of a

high-level control mechanism that can carefully control little details in a top down

manner.

The simulation examples shown in this thesis demonstrate characters that function

adequately in the given environments. But they have only a few basic drives, and the

number of motor skills is small and the granularity of control is also rough. Expan-

sion of the creature kernel in both horizontal and vertical directions will make the

implementation of more intelligent characters possible, and interesting expansions of

adaptation ability will emerge. This system contains only four basic component sys-

tems, and the functions of other parts of the CNS that are also crucial for the survival

of real creatures have been given only minimum consideration. Sensory systems and

special memory systems are the two most prominent examples among them. Learned

knowledge is all stored in the form of connection weights and there is no explicit mem-

ory. The structure of memory and the way the contents are accessed a�ect learning,

and adaptive changes in memory and speci�c learning strategies need to be allowed

in future development of the software. Sensors are all treated with equal importance,

and it is assumed that characters do not need to deal with the notorious binding

problem, which is not always true in real animals. E�cient strategy for proper bind-

ing is also a subject of learning and thus should accelerate the e�cient development

of attention mechanisms.

Though multiple characters of similar complexity were developed and placed in the

(void*) situation, not too many interactions were allowed among the characters them-

selves. Di�erent personalities, experiences and a priori parameter settings and strate-

gies cause di�erential development of each character, and thus change the nature of

interactions. This is what novels are about in the world of literature 1. Characters

1I watched a Star Trek, Voyager episode recently. In this episode, there was an interaction called
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Figure 12-3: Shakespeare's play, Hamlet is decomposed into nine story elements as shown

in this �gure. In the preliminary simulation, characters' interactions with the human par-

ticipant changes relative strengths of drives and desires of the characters, and this causes

them go through the story elements in an order di�erent from the original plot. A story

emerges as the interaction proceeds, in a way that depends on an individual character's

personality and past experiences.
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experience various things in the world through their interaction with the world and

other characters, and as a result, build motivations for initiating certain actions or

responding in a certain way when the next event occurs. With properly updatable

motivation systems and adaptability of characters being implemented, an interactive

emergence of a story can be realized. A preliminary implementation was done using

the story elements of Hamlet (See Figure 12-3) and the results proved that a seem-

ingly coherent plot can emerge di�erently every time, through interactions between

human participants and characters.

Also, building arti�cial creatures provides us with a new kind of opportunity to un-

derstand biological organisms better, in addition to enabling us to build synthetic

characters that are fun and bene�cial to interact with. Artifacts are built using our

best knowledge of what the biological creatures would be like, put in a similarly

complex and dynamic environment. Depending on whether the simulated organism

succeeds or not, the results tell us whether our assumptions may be right and suf-

�cient, or whether there must be some missing factors that we have not thought

of. Thus, the synthetic creatures are a kind of embodied theory of behavior and its

underlying control system.

Holonovel where the human can interact with holographic humanoid �gures, which are not distin-

guishable in their realistic impression from the participant himself. The person keeps interacting

with those holographic �gures and changing the world. The holographic �gures respond and behave

following their own minds, and a story emerges as the interaction proceeds. At one point, one of

the participants was put in a dangerous situation and people who were watching him outside of

the Holonovel changed the personality parameters of the holographic �gures instead of resetting the

scene or event. It was the only proper way of changing the way the story proceeds, and thereby the

person was rescued.
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APPENDIX
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Appendix A

Derivation of the learning rule for

organizational learning

Let's consider a preference update process of a behavior group with a parent and N

children behaviors. vi, the valence asociaed with child behavior i can be any value

between -1 and +1, where -1 corresponds to the worst experience, and +1 corresponds

to the best experience. For simplicity, we approximate it to a discrete case where vi

can be any value that can be represented as �1+ n

( k�1
2

)
where n is an integer between

0 and k� 1 and then, k, here corresponds to the level of discretization, which can be

adjusted arbitrarily.1

Let us assume that a parent behavior has N children behaviors. When one of those

N behaviors is activated at the next tick, the possible number of events that can

happen is N � k. Table A.1 illustrates one possible simple case, where there are

three children behaviors and valence value is discretized to take one of �ve possible

values between -1 and 1. For example, the entry at second row and second column

represents the event when the child behavior 2 is activated and the valence as the

result of that activation is -0.5. Each entry at i� th row and j � th column, eij has

its own probability of occurrence p(eij jbi), with �ijp(eijjbi) = 1. The preference to

1when k = 1, it is assumed that v0 equals a certain constant and does not change, which means

that bi has �xed valence value and it is not updated over time.
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behavior 1 (-1,0,0) (-0.5,0,0) (0,0,0) (0.5,0,0) (1,0,0)
behavior 2 (0,-1,0) (0,-0.5,0) (0,0,0) (0,0.5,0) (0,1,0)
behavior 3 (0,0,-1) (0,0,-0.5) (0,0,0) (0,0,0.5) (0,0,1)

Table A.1: Table of all possible events when N = 3 and k = 5.

behavior i would be then, the summation of the nonzero entry of each row multiplied

by this probability i.e.

E(Ri) = �jp(eijjbi)vij; (A:1)

where vij is the valence value associated with the entity eij.

The initial value of the preference value re
ects the best guess of the parent behav-

ior based on its a priori knowledge, �, on probability of the occurrence of each event

eij, and thus the valence vij that it would experience as the result of the activation

of that behavior i. Formally, it can be written as follows,

IPi = �jp(eijj�) � vij (A:2)

where IPi represents the initial preference given to behavior i.

Here we can de�ne � to be a variable that corresponds to the underlying probability

of each \event" and use P (�j�) to represent uncertainty about � given our back-

ground konwledge �. Another variable D represents the experience of the creature,

which encompasses the behavior chosen and the experienced valence as the result of

it. Using the Bayes' rule, now we can obtain the probability distribution for � given

experience D, and background knowledge �:

p(�jD; �) =
p(�j�)p(Dj�; �)

p(Dj�)
(A:3)

where

p(Dj�) =
Z
p(Dj�; �)p(�j�)d�: (A:4)
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Given Eqn A.3, the expected valence for each behavior i is equal to the average over

possible values of �ij :

p(vijD; �) =
Z
vij � p(eijj�ij; �)p(�ij jD; �)d�ij : (A:5)

Here the observable variable vij is discrete and has one of k possible values between

-1 and +1, and the likelihood function is given by

p(eijj�ij; �) = �ij; j = 1; :::; k: (A:6)

where � = �11; �12; :::; �Nk are parameters with a multinomial distribution. The simple

conjugate prior used with multinomial distribution is the Dirichlet distribution [46]:

p(�ij�) = Dir(�ij�i;1; :::; �i;k) �
�(�i)

�k
j=1�(�ij)

�k
j=1�

�ij�1
ij ; (A:7)

where �i = �j�ij and �ij � 0: The posterior distribution p(�ijD; �) = Dir(�ijNi1 +

�i1; :::; Nik+�ik). Given this conjugate prior and experience D, the normalized prob-

ability for eij is given by

p(eijjD; �) =
Z
�ijDir(�ijNi1 + �i1; :::; Nik + �ik)d�i =

Nij + �ij

Ni + �i
; (A:8)

where Ni = �jNij and
Nij

Ni
equals the implicit a priori probability of eij. Given the

experience set D, a posteriori probability for eij is D(eij jD; �) and expected valence

EVi equals �iP (eijjD; �) � vij. After each experience of vlj, the expected valence for

each behavior is updated as

EVi(t+ 1) = EVi(t) �
N + �

N + � + 1
+

vlj

N + � + 1
(A:9)

if i = l, and

EVi(t+ 1) = EVi(t) �
N + �

N + � + 1
(A:10)

if i 6= l. Similar learning algorithm can be applied to stance to give the normalized
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expected stance at time t, ESi(t)
�iESi(t)

. Preference for behavior i is, then, calculated as

the weighted sum of normalized expected valence and normalized expected stance:

PRi = wvi �
EVi(t)

�iEVi(t)
+ wsi �

ESi(t)

�iESi(t)
.
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Appendix B

Learning in the creature kernel

This appendix section brings together and summarizes the learning mechanisms found

in various parts of the dissertation.

Action selection is the mechanism that resolves con
icts in the resource. In the case

of animals or synthetic characters, the most obvious resource in con
ict is the motor

system. This is known as the behavioral �nal common path [80] in the animal behav-

ior literature. The behavior system of the creature kernel is composed of a cascaded

structure of groups of mutually exclusive behaviors, and action selection is the mecha-

nism for deciding relative priorities within the behavior system to solve this con
ict 1.

The creature kernel is a value-based system, and the action selection mechanism

utilizes the provided values. The value update equation adopted in this thesis work

is mainly based on the one suggested by Blumberg [7] as introduced in Chapter 6,

which is shown below (Eqn. B.1).

Vit = PRi � [LIit � Combine f(�kf(RMkt)); (�nf(IVnt))g]; (B:1)

1In fact, the motor system is not the only limiting factor. The perception and the motivation

system have their own limitations in terms of the number of processes that can be dealt with at the

same time. Attention mechanisms resolve this problem in real animals.
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where Vit is the value of behavior i at time t, LIit is the level of interest in behavior

i at time t, RMkt is the value of the releasing mechanism k at time t, which includes

outputs from the perception system such as Pi or other behaviors, Bj. IVnt is the

value of the internal variable n at time t, which mainly comes from the motivation

system.

Given this, the default way of converging on one behavior in each behavior group

is the mutual inhibition process, which was also formulated by Blumberg [7] and

introduced in Chapter 6 (See Eqn. B.2).

Vi;t+(n��) = Vi;t+((n�1)��) � (�m6=iNm;t+(n��) � Vm;t+(n��)) (B:2)

This action selection mechanism is embedded in the creature kernel, which is com-

posed of four subsystems { perception, motivation, behavior and motor systems, each

of which consists of basis units. When it comes to the operation, at every tick t, two

types of operations take place in the creature kernel (See Figure 4-5.), they are the

forward operation and the backward operation.

Given the above equations, the forward operation is straightforward. Each subsystem

makes a diagnosis of the current state of the world and the creature itself, if neces-

sary, and calculates appropriate values. The modules in the perception system sense

the state of the world and calculate Boolean values for either presence or absence of

certain objects, visual stimuli, sounds, etc., as well as incidental information, such as

the distance and a�ective state of another creature. The resulting values returned by

the perception system can be represented as fq(pr) where fq is a function that takes

an object returned by a sensor (pr) and returns a value 2, where q � r. The motiva-

2Current system has not been expanded to include a proper implementation of the attention

mechanism. At this sensing and sampling stage, the values from the motivation system calculated

at the previous tick can bias the creature to focus primarily on a certain portion or aspect of

the world. Where the attention mechanism should be placed in the creature kernel depends on

assumptions and implementation requirements. The easiest way of incorporating it into the current

system would be to have sensors carry a multiplicative 
ag determined by two factors. One of the

factors would be a threshold level, above which level the sensor should be activated no matter what
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tion system does a similar thing during the forward operation phase. It samples and

calculates the levels of all the drives and a�ective components based on the behavior

or sensing of the outcome from the previous tick. At its calculation, the motivation

system also incorporates in
uences from the perception, behavior and motor systems.

The outcome from both of these systems in combination with the values from the

behavior system is fed into the behavior system for its value calculation. The value

of each behavior unit is calculated using Equation B.1 and an action selection mech-

anism determines which of the behaviors win(s) at the behavioral �nal common path

to make it send the actual action command to the motor system.

Then the process turns into the backward process through which the result of the

previous action is re
ected in the creature kernel. This process can be viewed as

learning. The learning may happen in all four systems. In fact, learning in this sys-

tem is characterized as a distributed process, but here I explain it primarily using the

behavior system as the example.

Plasticity is imposed on all the variables that appear in Eqn B.1.

� PRi. This is the preference from the parent behavior. It depends on the

outcome of the previously performed behaviors. The preference is updated in

proportion to the experienced valence or stance while performing the actions

that involve the behavior. Like in habit formation [57], satisfaction from the

behavior just performed enhances the preference given to that behavior and

suppresses that given to the others in the same behavior group, i.e., the alter-

natives. In e�ect, this makes the creature prefer the e�ective behavior, or form

a habit even if the performed behavior does not have any particular advantage

over the others except for the fact that it happened to be peformed prior to

others. The preference update rule is written for the behavior just performed

the current focus of attention is. The other would be a Boolean 
ag signaling whether the sensor is

within the focus of attention range, in which case, the sensor should return a value.
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as follows.

PRi(t+ 1) = PRi(t) �
N + �

N + � + 1
+

I � vi

N + � + 1
(B:3)

and the update rule for the other behaviors in the same behavior group is as

follows.

PRi(t+ 1) = PRi(t) �
N + �

N + � + 1
: (B:4)

� f(RMk). Each releasing mechanism, RMk is a pointer to either one of the

behavior units or to perception units. After a certain behavior activation and

action, recently activated perception units and behavior units are fed into the

concept learning process to compute the relevance to the behavior of curent

interest for learning, Bi. As discussed in Chapter 6 and illustrated in Chap-

ter 10, the con�dence in belief that those units in consideration are relevant to

a certain outcome of the current behavior is updated using

P (hjX) =
P (Xjh)P (h)

P (X)
(B:5)

where X is the outcome of the event, h is the hypothesis under consideration,

i.e, each of RMk currently involved in the update in belief process. Once the

relevance is �gured out, the nature of the e�ect is re
ected in the function,

completing the update in f(RMk).

� f(IVn). Internal variables, IVn are pointers to units in the motivation system.

The learning rule for this case is the same as that for the releasing mechanisms.

Changes in certain drive or a�ect levels are scrutinized and concept learning is

applied to update the belief in the relevance of the behavior to those motivation

system components.

A�ective tag formation. The pronomes that were encountered through the acti-

vation of the behavior gets tags associated with a�ective components, which later are
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perceived as a�ective tags. Each object of interest is implemented as an instance of a

class with a�ective component variables. During the backward process, the encoun-

tered pronomes have their a�ective tags updated, which later can be retrieved when

the creature makes a decision for another forward process. See Chapter 6 for details.

All these types of learning happen also in the other parts of the creature kernel,

not just in the behavior system, and result in various phenomena such as S-S as-

sociations (the concept learning within the perception system), development of a

secondary drive/motivation (learning within the motivation system), etc. After this

whole update, the creature is ready for the next tick, and another forward operation

begins.

B.1 More on learning algorithm

This section explains the motivation behind the computational framework introduced

so far.

Uncertainty is one of the inherent problems faced by synthetic characters as well

as biological creatures. They need to survive in an unpredictable world with lim-

ited information processing and sensing capabilities. Both time and processing power

are not unlimited resources that can be exploited to any desired degree of precision.

Nonetheless, at every tick of the simulation update, creatures are required to make

a decision that { as far as their bounded processing abilities allow { maximizes the

expected reward. Among performable behaviors Bj , the one that would maximize

the expected reward (ER) is chosen to be performed 3. See Eqn. B.6.

i = argmaxER(Bj) (B:6)

3The concept of reward here is a broad one. It does not only refer to the immediate reward

that would prohibit exploration of a new regime in the behavior repertoire space. The reward here

includes especially the expected gaining of knowledge that will allow the creature to go beyond the

exploitation of current knowledge.
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A probabilistic network is a way of representing uncertain knowledge in a systematic

way [90]. Its independence relationship (and conditional independence relationships)

explicitly marked through absence of links makes coherent reasoning or decision mak-

ing possible. In the creature kernel implementation, each subsystem is modeled as a

probabilistic network.

A clear alternative would be a logic-based approach. However, this representation

without a network makes it di�cult to deal with the existence of invisible facts, and

thus leads to unintentional neglect of relevant information in the belief calculation.

It has been the cause of counterintuitive results that early implementations of expert

systems su�ered from [90, 108].

Reinforcement learning is a learning framework for a creature trying to survive in an

unknown environment [118]. A synthetic character is modeled as a situated learner

�guring out its own strategy for survival. Reinforcement learning has been widely

used for situated agents [50, 1, 104, 65, 66]. This is because, unlike stochastic learn-

ing algorithms that require a large number of examples, or extensive processing that

cannot be done on line [44, 63, 64, 100], or directive teaching signals in the case of

supervised learning, the assumptions made in the reinforcement learning �t the situ-

ation that agents (real or synthetic) are faced with.

Given a policy, a reward function, a value function and a model of the environ-

ment, reinforcement learning algorithm can be applied. In our implementation of

the behavior system, at each backward operation process, the preference value of the

performed behavior is updated as,

EVi(t+ 1) = EVi(t) �
N + �

N + �+ 1
+

r

N + �+ 1
: (B:7)

Here r is the sum of rewards from the motivation system through stance (s) and

valence (v) values multiplied by the arousal level (I). (See Appendix A for more
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details of the equations.) Assigning di�erent mixing weights wv and ws, Eqn. B.7 can

be rewritten as,

EVi(t+ 1) = EVi(t) �
N + �

N + � + 1
+

I � wv � v

N + �+ 1
+

I � ws � s

N + �+ 1
: (B:8)

The valence and stance values here include both the direct feedback from the just

performed behavior and the disappointment factors that are proportional to the dif-

ference between the expected valence and stance and the actually experienced ones.

Further re�ning the equation, Eqn. B.8 can be rewritten as,

EVi(t+ 1) = EVi(t) �
N + �

N + � + 1

+
I � (wv1 � v + wv2 � (E(v)� v))

N + � + 1

+
I � (ws1 � s+ ws2 � (E(s)� s))

N + �+ 1
: (B:9)

Assuming both wv1 and ws1 are equal to w1, and wv2 and ws2 are equal to w2, Eqn. B.9

can be, again, rewritten as,

EVi(t+1) = EVi(t)+
1

N + � + 1
((I �(w1�w2))(v+s)+(I �w2)(E(v)+E(s))�EVi(t)):

(B:10)

Assuming E(v)+E(s) is close enough to EVi(t+1), Eqn B.10 is similar to the TD(0)

algorithm, which is the simplest of the well-known reinforcement algorithms [118].

In general, in computational neuroscience, associative learning is modeled as Heb-

bian update of correlative links [45, 48]. This idea is expanded in the thesis work

to include updates in directional links between any units in the kernel, i.e., any of

the basis units in the behavior, motivation and perception systems. In the creature

kernel, simultaneous activation of two basis units results in an update in the links

that connect them. In particular, appearance of a certain object associated with an

a�ective experience attaches an a�ective tag to the object.
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The concept of Hebbian update is expanded to be incorporated in this Probabilis-

tic architecture in the form of concept learning. Beliefs in causality and relatedness

relations are updated in the probabilistic manner as proposed by Tenenbaum [121].

The study of concept learning has a long tradition [19, 107, 52, 84]. Which model

explains the concept formation phenomenon the best is subject to debate and is

an area still being studied. Modeling of behavior in terms of Bayesian probability

theory is well received nowadays due both to its plausibility in explaining empirical

results [139, 86, 13] and to its computational applicability. We have stretched the

notion of concept to include ideas of what is often called context in the animal behav-

ior and learning literature. Con�dence is correlative and causal relations are learned

and, in turn, are used when making decisions for performing actions. This con�dence

is not explicitly coded as any single item in the system, but is stored in the form of

connection weights in a distributed manner.
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Appendix C

preference.m

EV = [0.2 0.3 0.5];

% actual reward

vAlue = [-4.15 0.8 -0.1];

% variance

vAriation = [1 1 1];

N = 10;

alpha = 0;

rEward = 0;

c = 0;

figure; hold on;

maxIter = 50;

oNe = zeros(maxIter,1); tWo = zeros(maxIter,1); tHree = zeros(maxIter,1);

for world=1:maxIter

alpha = world - 1;

r = rand;

if(r < EV(1)) c = 1;

else if((r>=EV(1))& (r<(EV(1)+EV(2)))) c = 2;

else c = 3;

end

end

185



if(c == 1)

%% reaction from the world

rEward = (vAriation(1)*randn)+vAlue(1);

%% creature's reaction to the consequence

sUrprise = abs(EV(1) - rEward);

%% plot when surprise occurs

if(sUrprise > 0.5)

b = world*ones(1,1);

hist(b);

end

%% update expected values

EV(1) = (EV(1) * ((N+alpha)/(N+alpha+1))) + ((sUrprise * rEward)/(N+alpha+1));

EV(2) = (EV(2) * ((N+alpha)/(N+alpha+1)));

EV(3) = (EV(3) * ((N+alpha)/(N+alpha+1)));

else if(c == 2)

%% reaction from the world

rEward = (vAriation(2)*randn)+vAlue(2);

%% creature's reaction to the consequence

sUrprise = abs(EV(2) - rEward);

%% plot when surprise occurs

if(sUrprise > 0.5)

b = world*ones(1,1);

hist(b);

end

%% update expected values

EV(1) = (EV(1) * ((N+alpha)/(N+alpha+1)));

EV(2) = (EV(2) * ((N+alpha)/(N+alpha+1)))+ ((sUrprise * rEward)/(N+alpha+1));

EV(3) = (EV(3) * ((N+alpha)/(N+alpha+1)));
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else if(c==3)

%% reaction from the world

rEward = (vAriation(3)*randn)+vAlue(3);

%% creature's reaction to the consequence

sUrprise = abs(EV(3) - rEward);

%% plot when surprise occurs

if(sUrprise > 0.5)

b = world*ones(1,1);

hist(b);

end

%% update expected values

EV(1) = (EV(1) * ((N+alpha)/(N+alpha+1)));

EV(2) = (EV(2) * ((N+alpha)/(N+alpha+1)));

EV(3) = (EV(3) * ((N+alpha)/(N+alpha+1))) + ((sUrprise * rEward)/(N+alpha+1));

end

end

end

% clamp : since it is the probability of choice

EV(1) = max(0.0,min(EV(1),1.0));

EV(2) = max(0.0,min(EV(2),1.0));

EV(3) = max(0.0,min(EV(3),1.0));

% normalize

sUm = EV(1) + EV(2) + EV(3);

EV(1) = EV(1) / sUm; EV(2) = EV(2) / sUm; EV(3) = EV(3) / sUm;

oNe(world,1) = EV(1); tWo(world,1) = EV(2); tHree(world,1) = EV(3);

%% plot(world,EV(1),'r'); plot(world, EV(2),'b'); plot(world,EV(3),'g');

end

plot(oNe,'r:'); plot(tWo,'b.'); plot(tHree,'g-.');

axis([0 maxIter 0 1]);

xlabel('# events'); ylabel('preference from parent');
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figure; hold on;

plot(oNe,'r:'); plot(tWo,'b.'); plot(tHree,'g-.');

xlabel('# events'); ylabel('preference from parent');
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Appendix D

concept.m and other related

routines

% concept.m

a = 0.1*randn(100,1) + 1.5;

b = 0.1*randn(100,1) + 0.5;

rr = rAdius(a);

narrowingFactor = 8;

figure; plot(a,b,'.r'); hold on;

axis([0 4 0 1.02]);

c = 0:0.2:4;

maxIter = 5;

k = zeros(max(size(c)),maxIter);

for i=1:maxIter

for j=1:max(size(c))

k(j,i) = 1 / (1+(narrowingFactor*(dIstance(c(j),a)) / rr)^(i-1));

end

end
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plot(c,k(:,2),'k:');

plot(c,k(:,3),'k-.');

plot(c,k(:,5),'k');

xlabel('data points'); ylabel('confidence in belief');

%rAdius.m

%returns the max distance between two data within a one dimensional array, a

function r = rAdius(a)

s = size(a);

currentMaxDistance = 0;

for i=1:s

for j=1:s

kk = abs(a(i) - a(j));

if(kk > currentMaxDistance)

currentMaxDistance= kk;

end

end

end

r = currentMaxDistance;

%dIstance.m

%get the min distance between a data point and an array of data

function k = dIstance(c, a)
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ss = size(a);

currentMinDistance = 99999;

for i=1:ss

t = abs(a(i) - c);

if(currentMinDistance > t)

currentMinDistance = t;

end

end

k = currentMinDistance;
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Appendix E

An example behavior weight �le

(Dude)

Following list is an example of behavior weight �le initialization. This list is taken

fromDude's behavior weight �le and it shows the relative hierarchical structure among

behavior units and initial organization of behavior groups.

CHILD PRIMARY_BEHAVIORS SIT 1.0

CHILD SIT WALK_TO_DOOR_INSIDE_FIRST_TO_SIT 1.0

CHILD SIT GO_TO_SEAT_TWO 1.0

CHILD SIT SIT_SIT_SIT 1.0

CHILD SIT_SIT_SIT NOBODY_SIT 1.0

CHILD NOBODY_SIT STAY_SIT1 1.0

CHILD NOBODY_SIT STAY_SIT2 1.0
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CHILD NOBODY_SIT STAY_SIT3 1.0

CHILD NOBODY_SIT STAY_SIT4 1.0

CHILD SIT_SIT_SIT TRUCKER_SIT 1.0

CHILD TRUCKER_SIT OCC_POIN_AT_TRUCKER 1.0

CHILD OCC_POIN_AT_TRUCKER LK_AT_TRUCKER_G_LEFT 1.0

CHILD OCC_POIN_AT_TRUCKER LK_AT_TRUCKER_G_RIGHT 1.0

CHILD OCC_POIN_AT_TRUCKER LK_AT_TRUCKER_G_MIDDLE 1.0

CHILD TRUCKER_SIT LK_AT_TRUCKER_R 1.0

CHILD LK_AT_TRUCKER_R LK_AT_TRUCKER_RH 1.0

CHILD LK_AT_TRUCKER_R LK_AT_TRUCKER_RF 1.0

CHILD LK_AT_TRUCKER_R LK_AT_TRUCKER_RG 1.0

CHILD TRUCKER_SIT LK_AT_TRUCKER_L 1.0

CHILD LK_AT_TRUCKER_L LK_AT_TRUCKER_LH 1.0

CHILD LK_AT_TRUCKER_L LK_AT_TRUCKER_LF 1.0

CHILD LK_AT_TRUCKER_L LK_AT_TRUCKER_LG 1.0
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CHILD SIT_SIT_SIT SALESMAN_SIT 1.0

CHILD SALESMAN_SIT OCC_POIN_AT_SALESMAN 1.0

CHILD OCC_POIN_AT_SALESMAN LK_AT_SALESMAN_G_LEFT 1.0

CHILD OCC_POIN_AT_SALESMAN LK_AT_SALESMAN_G_RIGHT 1.0

CHILD OCC_POIN_AT_SALESMAN LK_AT_SALESMAN_G_MIDDLE 1.0

CHILD SALESMAN_SIT LK_AT_SALESMAN_R 1.0

CHILD LK_AT_SALESMAN_R LK_AT_SALESMAN_RH 1.0

CHILD LK_AT_SALESMAN_R LK_AT_SALESMAN_RF 1.0

CHILD LK_AT_SALESMAN_R LK_AT_SALESMAN_RG 1.0

CHILD SALESMAN_SIT LK_AT_SALESMAN_L 1.0

CHILD LK_AT_SALESMAN_L LK_AT_SALESMAN_LH 1.0

CHILD LK_AT_SALESMAN_L LK_AT_SALESMAN_LF 1.0

CHILD LK_AT_SALESMAN_L LK_AT_SALESMAN_LG 1.0

CHILD PRIMARY_BEHAVIORS POSSESSED 1.0

CHILD POSSESSED WALK_TO_DOOR_INSIDE_FIRST 1.0

195



CHILD POSSESSED WALK_TO_DANCE_POINT_LEFT 1.0

CHILD POSSESSED WALK_TO_DANCE_POINT_MIDDLE 1.0

CHILD POSSESSED WALK_TO_DANCE_POINT_RIGHT 1.0

CHILD POSSESSED POSSESSED_GESTURE_SIT 1.0

CHILD POSSESSED POSSESSED_GESTURE_STAND 1.0

CHILD PRIMARY_BEHAVIORS DANCE 1.0

CHILD DANCE HAD_TO_CALM_DOWN 1.0

CHILD DANCE DEFAULT 1.0

CHILD DEFAULT CONFUSED 1.0

CHILD DANCE TWIRL_LEFT 1.0

CHILD DANCE TWIRL_RIGHT 1.0

CHILD DANCE TWIRL_BOTH 1.0

CHILD DANCE LIFT_FORWARD_LEFT 1.0

CHILD DANCE LIFT_FORWARD_RIGHT 1.0

CHILD DANCE LIFT_FORWARD_BOTH 1.0
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CHILD DANCE LIFT_SIDEWAYS_LEFT 1.0

CHILD DANCE LIFT_SIDEWAYS_RIGHT 1.0

CHILD DANCE LIFT_SIDEWAYS_BOTH 1.0

CHILD DANCE CROSSOVER 1.0

CHILD DANCE KNEE_LIFT_LEFT 1.0

CHILD DANCE KNEE_LIFT_RIGHT 1.0

CHILD DANCE KNEE_LIFT_BOTH 1.0

CHILD DANCE DANCE_WALK 1.0

CHILD DANCE SHUFFLE 1.0

CHILD DANCE TWIST_LEFT 1.0

CHILD DANCE TWIST_RIGHT 1.0

CHILD PRIMARY_BEHAVIORS UNPOSSESSED 1.0

CHILD UNPOSSESSED UNPOSSESSED_GESTURE 1.0

CHILD PRIMARY_BEHAVIORS WALK_OUT 1.0

CHILD WALK_OUT WALK_TO_DOOR_INSIDE 1.0
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CHILD WALK_OUT WALK_TO_DOOR_OUTSIDE 1.0

CHILD WALK_OUT STAND_SNAP 1.0

CHILD WALK_OUT STAND_SNAP3 1.0

CHILD AUTONOMIC_BEHAVIORS LOOK_AT_CURRENT_PRONOME 1.0

CHILD AUTONOMIC_BEHAVIORS MAINTATAIN_BALANCE 1.0

CHILD AUTONOMIC_BEHAVIORS POST_EMOTION 1.0

CHILD AUTONOMIC_BEHAVIORS FACIAL_EXPRESSION 1.0

CHILD AUTONOMIC_BEHAVIORS SET_DANCE_POINT_TAGS 1.0

CHILD AUTONOMIC_BEHAVIORS BLINK 1.0
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Appendix F

Survey sheet given to (void*)

participants

In this experiment, participation is voluntary and no coercion to participate will be

involved. You are free to withdraw your consent and to discontinue participation

in the project or activity at any time. You may decline to answer any questions and

con�dentiality and anonymity are assured. The data collected will be reported in such a

way that your identity is protected. Your sincere answers will help us build characters

that are more lifelike and fun to interact with. Thanks for your cooperation.

Date_______________ Time _________________ Age ________________Gender __________

(Void *): A cast of characters

1. Information on the person who is participating in this survey.
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Figure F-1: Figures of all the characters in the (void*) project and their neutral names
were given to the survey participants to exclude any prejudice that might come from
descriptive names that were internally used for programming purposes.

(1) Are you familiar with computer games?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(2) How much are you interested in each of the following areas? (Please, write down 0

Psychology

Visual arts

Computer science

Biology

Sociology

Dancing
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Other ___________________

2. Reactions / impressions:

[Before the interaction]

(1) How much extrovert would you expect Earl to be?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(2) How much would you expect Earl to listen to other people's opinions?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(3) How conscientious would Earl be in his behavior?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(4) How easily would you expect Earl's emotional state to change?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(5) Which of the following can describe Earl's personality?
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stern friendly dominant submissive angry joyful amenable outgoing gentle

(6) How much extrovert would you expect Elliot to be?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(7) How much would you expect Elliot to listen to other people's opinions?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(8) How conscientious would Elliot be in his behavior?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(9) How easily would you expect Elliot's emotional state to change?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(10) Which of the following can describe Elliot's personality?

stern friendly dominant submissive angry joyful amenable outgoing gentle
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(11) How much extrovert would you expect Eddie to be?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(12) How much would you expect Eddie to listen to other people's opinions?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(13) How conscientious would Eddie be in his behavior?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(14) How easily would you expect Eddie's emotional state to change?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(15) Which of the following can describe Eddie's personality?

stern friendly dominant submissive angry joyful amenable outgoing gentle

(16) Would it be fun to interact with Earl?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(17) Would you expect Earl to like to interact with you?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)
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(18) Would it be fun to interact with Elliot?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(19) Would you expect Elliot to like to interact with you?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(20) Would it be fun to interact with Eddie?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(21) Would you expect Eddie to like to interact with you?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)
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[After the interaction]

(1) Which character(s) did you interact with?

Earl Elliot Eddie

(2) How much extrovert would Earl to be?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(3) How much would you expect Earl to listen to other people's opinions?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(4) How conscientious would Earl be in his behavior?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(5) How easily would Earl's emotional state change?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(6) Which of the following can describe Earl's personality?

stern friendly dominant submissive angry joyful amenable outgoing gentle
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(7) How much extrovert would Elliot to be?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(8) How much would you expect Elliot to listen to other people's opinions?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(9) How conscientious would Elliot be in his behavior?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(10) How easily would Elliot's emotional state change?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(11) Which of the following can describe Elliot's personality?

stern friendly dominant submissive angry joyful amenable outgoing gentle

(12) How much extrovert would Eddie to be?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(13) How much would you expect Eddie to listen to other people's opinions?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

206



(14) How conscientious would Eddie be in his behavior?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(15) How easily would Eddie's emotional state change?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(16) Which of the following can describe Eddie's personality?

stern friendly dominant submissive angry joyful amenable outgoing gentle

(17) Was it fun to interact with Earl?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(18) Did Earl initially like to interact with you?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(19) Did Earl like to interact with you later?
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(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(20) Was it fun to interact with Elliot?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(21) Did Elliot initially like to interact with you?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(22) Did Elliot like to interact with you later?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(23) Was it fun to interact with Eddie?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(24) Did Eddie initially like to interact with you?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)

(25) Did Eddie like to interact with you later?

(minimal) 0 --- 1 --- 2 --- 3 --- 4 --- 5 (maximal)
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(26) Which character is most like yourself?

(27) Any comments (on this experiment, the project, the characters, etc.)?
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