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Abstract— This paper studies an optimal planning of falling
motions of a human-sized humanoid robot to reduce the damage
of the robot. We developed a human-sized robot HRP-2FX
which has a simplified humanoid robot shape with seven d.o.f.
and can emulate motions in the sagittal plane of a humanoid
robot. An optimal control is applied to generate the falling
motion of HRP-2FX to minimize a performance index, and the
optimality has been verified by the experiments on HRP-2FX.

I. INTRODUCTION

Biped humanoid robots have several advantages over

wheeled mobile robots. They can step over obstacles and

go up and down stairs. On the other hand, the robots have a

major disadvantage. They may fall over and then damage

severely. This is one of the crucial barriers for practical

application of humanoid robots. Humanoid robots cannot be

accepted for use in society unless this problem is overcome.

Compared with quadruped walking robots or wheeled

ones, the center of gravity of a biped-walking robot is

located at a relatively high position and the size of the

convex hull of the feet is smaller. A biped humanoid robot

is essentially an unstable structure, and so little can be done

to prevent the robot from falling over[1]. In addition, the

robot may be damaged seriously enough to prevent it from

walking thereafter, since the impact between the robot and

the ground can be large. The bigger the humanoid robot, the

more serious the damage can be. It is therefore important to

address this problem.

The goal of our research is to prevent physical damage

that would disable the locomotive ability of the robot, thus

giving it a chance to stand up again. For this purpose, we

proposed a safe falling motion control strategy to minimize

damage to humanoid robots, in which we have shown how

to control falling[2], [3].

In order to decrease damages, we have to consider a

tradeoff between the landing impact and the position as well

as the stability after the landing and the position. In this

paper we investigate this problem.

An optimal planning method is applied to design safe

falling motions. The effectiveness of the proposed method

was verified by the experiments using a human-sized hu-

manoid robot which has a simpler shape and less degrees

of the freedom specially designed for falling motion experi-

ments.
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Fig. 1. HRP-2FX

This paper is organized as follows. Section II overviews

humanoid robot HRP-2FX and dynamics model of forward

falling, Section III presents a modeling of a foward falling

motion. Section IV presents an an optimization technique.

Section V is about results of optimization. Section VI shows

results of experiments. And section VII concludes the paper.

II. HRP-2FX

We have tried many experiments of falling over motion

control using human-sized humanoid robot HRP-2P[4]. But

it is not reasonable to use such a human-sized humanoid

robot with full specifications for preliminary falling exper-

iments, since it includes mechanisms more than necessary

to the experiments. It is easy to damage the robot by the

experiments in which a large impact should be applied at

a landing, and it is difficult and expensive to maintain it.

Therefore, we have developed a simplified humanoid robot

HRP-2FX with a minimum mechanism which is essential for

the falling experiments (See Fig. 1)[5].

HRP-2FX is designed to emulate the motions in the

sagittal plane of HRP-2P/HRP-2, and therefore it can be

used for the experiments of forward and backward falling

motions. The remained configuration of HRP-2FX follows

that of HRP-2P/HRP-2 including the length of the links,

the movable ranges of the joints, actuators, sensors and

electronics.

Each joint are corresponding to the pitch joints of HRP-2P,

except for the head and wrists joints(Table I). These joints

are located at the ankle, knee, hip, chest, shoulder and both

elbows.

These configurations make the control software

OpenHRP[6] to be applicable with small modifications. The
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TABLE I

Specifications of HRP-2P & HRP-2FX

HRP-2P HRP-2FX

Legs 6 D.O.F./Leg 3 D.O.F./Leg
(Hip:3 Knee: 1 Ankle: 2) (Hip:1 Knee: 1 Ankle: 1)
Upper leg length: 0.3[m] Upper leg length: 0.3[m]
Lower leg length: 0.3[m] Lower leg length: 0.3[m]
Ankle height: 0.1 [m] Ankle height: 0.09 [m]

Waist 2 D.O.F (Yaw:1 Pitch:1) 1 D.O.F (Pitch:1)

Arms 6 D.O.F./Arm 3 D.O.F./Both
(Shoulder:3 Elbow:1 Wrist:2) (Shoulder:1 Elbow:2)

Hands 1 D.O.F./Hand

Neck 2 D.O.F. (Yaw:1 Pitch:1)

Height 1.58 [m] (floor–top) 1.49 [m] (floor–top)
(standing 0.81 [m] 0.835 [m]
straight) (floor–center of mass) (floor–center of mass)

Weight Total 58 [kg] Total 28 [kg]

power supplier and computers are placed outside, since it

does not need to be self consistent.

In this case, there is no requirement to consider any

actions in a lateral direction. So, this robot has only one

wide leg and the right and the left upper arms are driven

by one servomotor as one link. The angular rate sensors of

yaw and roll axis have also been omitted. The forearms are

driven by independent servomotors, which are synchronized

by position control.

To obtain the similar dynamic falling motion, we designed

HRP-2FX to be approximately one half of HRP-2P (Fig.2).

Then the mass distribution of the leg of HRP-2FX is com-

parable to that of a leg of HRP-2P, and that of the body is

about a half of HRP-2P.

Fig. 2. In the sagittal plane, HRP-2FX is nearly equal to a half of HRP-2P

There are soft cushions at each joint to absorb landing

impacts, and all weak elements such as the motors are

protected by the frame.

The design can make HRP-2FX emulate the falling motion

of HRP-2P/HRP-2 in the sagittal plane safety at a low cost.

III. MODELING OF A FORWARD FALLING MOTION

Now, let us discuss a forward falling motion of HRP-2FX.

In the case of backward falling motion, we could model the

falling robot by the single inverted pendulum model[3] since

the landing position and the COG are close. When the robot

falls forward, however, it lands at the knee which is far from

the COG. Therefore, we cannot model a robot falls forward

by the single inverted pendulum.

A. Modeling of the dynamics

Let us use a quadruple inverted pendulum model as shown

in Fig. 3. The links are numbered from 0 to 3 from the lowest

Fig. 3. Dynamics model of a forward falling motion

one, and link 0 corresponds to the links between the toe and

the knee in the original robot, link 1 to the upper leg, link

2 to the torso and link 3 to the arms respectively.

We separate the falling motion into two stages.

Stage 0: This is the motion from the standing state

to the landing of the knee. The position of the tiptoe

is fixed on the ground. We define joint 0 be the

rotational axis at the tiptoe.

Stage 1: This is the motion after the landing of the

knee until the landing of the arm. The position of

the knee is fixed on the ground. We define joint 1

be the rotational axis at the knee.

The equations of motion can be written as

Aθ̈ + Bθ̇
2

+ C sin θ = Du, (1)

A = {Lij cos (θi − θj)} , (2)

B = {Lij sin (θi − θj)} , (3)

C = −diag(gG), (4)

D = KT Km, (5)

Lij =

{ ∑2
n=0 Mnαniαnj (i �= j)

∑2
n=0 Mnα2

ni + Ii (i = j)
, (6)
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α0 =







r0 0 0 0
R0 r1 0 0
R0 R1 r2 0
R0 R1 R2 r3






, (7)

α1 =







r0 − R0 0 0 0
0 r1 0 0
0 R1 r2 0
0 R1 R2 r3






, (8)

α =

{

α0 (Stage0)
α1 (Stage1)

, (9)

K =







1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1






, (10)

Km =







0 0 0
1 0 0
0 1 0
0 0 1






, (11)

q = Kθ, (12)

G = αT M , (13)

M = [M0 M1 M2 M3]
T
, (14)

θ = [θ0 θ1 θ2 θ3]
T
, (15)

q = [q0 q1 q2 q3]
T
, (16)

I = [I0 I1 I2 I3]
T
, (17)

u = [u1 u2 u3]
T
, (18)

where θn is the angle of the link n from the vertical line

and qn is the relative angle between the consecutive links at

joint n, In is the moment of inertia of link n, and un is the

torque input to the n th joint. Note that joint 0 is a free joint

and no input can be specified.

The same equation can be used for both of the stages by

switching the matrix α, which is α0 for stage 0, and is α1

for tage 1.

Table II shows the parameters of this model and initial

stats based on HRP-2FX.

TABLE II

Parameters of the model

R[m] r[m] M [kg] I[kgm2]

link0 0.37 0.20 4.166 0.321

link1 0.30 0.15 2.076 0.239

link2 0.53 0.31 15.96 0.724

link3 0.54 0.23 5.57 0.301

q(0)[deg] q̇(0)[deg] qmin[deg] qmax[deg]

joint0 4.8 q̇0(0) −4.2 90.0
joint1 −15.8 0 −150.8 24.2
joint2 4.4 0 0 125.0
joint3 4.4 0 0 200.0

In addition, we can calculate the vertical component of the

floor reaction force fz during the falling motion given as

fz = −βsθ̈ − βcθ̇
2

+ gM, (19)

βs = MT (α diag(sin θ))

βc = MT (α diag(cos θ)). (20)

B. Impact dynamics at landing

When the knee or the arm of the robot hits the ground,

the speed of all joints changes immediately by the landing

impact. Generally, impact dynamics can be represented by

the following equation.

∂T +

∂ξ̇
+ =

∂T −

∂ξ̇
−

+ P, (21)

where T is the kinetic energy and P is the applied impact.

In the case of landing on the knee, we use P1 and in the case

of landing on the arm, we use P4 as P . We put − to the

states immediately before the impact and put + to the states

immediately after the impact. ξ̇ is the generalized velocity.

Let us define the velocity before the impact as

ξ̇
−

:=
[

θ̇
−

ẋ−

j ż−j

]T

, (22)

where ẋj ,żj are the horizontal and the vertical components

of the landing point velocity. In stage 0, the landing point is

the knee; when it is necessary to distinguish it, we transcribe

them into ˙xj1, ˙zj1. In stage 1, the landing point is the tip of

the arm; we transcribe them into ˙xj4, ˙zj4.

Since we assume the landing to be perfectly inelastic, the

velocity after the impact becomes

ξ̇
+

:=
[

θ̇
+

0 0
]T

. (23)

The kinetic energy T is given by

T =
1

2
ξ̇

T

[

A Q

QT M 0
0 M

]

ξ̇, (24)

where the matrix Q is

Q =







G0 cos θ0 −G0 sin θ0

G1 cos θ1 −G1 sin θ1

G2 cos θ2 −G2 sin θ2

G3 cos θ3 −G3 sin θ3






. (25)

By substituting Eq.(22),(23),(24) and (25) into Eq.(21), we

obtain the equation for the velocity change at the impact.

[

A

QT

]

θ̇
+

=

[

A Q

QT M 0
0 M

][

θ̇
−

ẋj
−

żj
−

]

+

[

0
Px

Pz

]

, (26)

where Px and Pz are the horizontal and the vertical compo-

nents of the impulse P at the landing point, respectively (Fig.

4, left). We can calculate the change of the joint velocities

from the first row of Eq.(26) as

θ̇
+

= A−1

(

Aθ̇
−

+ Q

[

ẋj
−

żj
−

])

. (27)

458



The rest part of Eq.(26) gives the impulse at an impact

moment.
[

Px

Pz

]

= QT θ̇
+
− QT θ̇

−

−

[

M 0
0 M

] [

˙xj1
−

˙zj1
−

]

.

(28)

Fig. 4. Landing model of a forward falling motion

The angular momentum immediately after the landing

Lj1
+ is given by

Lj
+ = M

[

ẋc
+

−żc
+

]T [

xc − xj

zc − zj

]

+ Iθ̇
+
. (29)

where xc,zc are the COG position of the whole robot body.

Lj can be written as Lj1 in the case of landing on the knee

and be written as Lj4 in the case of arm.

Let us call them an excessive angular momentum. To get

a stable and safe landing, it is desirable to have the excessive

angular momentum after the impact as small as possible.

IV. OPTIMIZATION

We apply an optimization method[7][8] which is based on

the Pontryagin’s minimum principle. It is followed,

Equation (1) can be rewritten as

ẋ = f(x, u), (30)

x :=

[

θ

θ̇

]

, (31)

f(x, u) :=

[

θ̇

A−1(Du − Bθ̇
2
− C sin θ)

]

. (32)

Let J be the total performance index defined by

J = JT +

∫ T

0

Jt dt, (33)

where Jt is the state at time instance t (0 ≤ t ≤ T ) and

JT that at the final time T . To minimize J , we define a

Hamiltonian by

H = pT f − Jt, (34)

where p is the co-state that has the same dimension as x.

The dynamics of p can be given by

ṗ = −

(

∂H

∂x

)

= −

(

∂f

∂x

)T

p +

(

∂Jt

∂x

)

, (35)

with the terminal condition

p[T ] = −

(

∂JT

∂x

)

. (36)

We can easily find p by integrating Eq.(35) in the reversing

time from t = T to 0. Based on the dynamics, gradient

function Ju can be obtained by

Ju = −

(

∂f

∂u

)T

p +

(

∂Jt

∂u

)

. (37)

The optimal input u can be found by the iterations using

Ju as the gradient function. We applied the steepest descent

method to find the optimal input u.

A. The Performance Indexes

We set the performance index at final time T as

JT = KA (JA)2 + KB(JB)2 + KP (JP )2 + KF (JF )2

+ KL(JL)2 + KM (JM )2, (38)

where K∗(∗ = A,B, P, F, L, M) are the weights for tuning

motion. For example, the weight KP works in order to

restrict the landing may occur at time T .

Also, we set the performance index along the falling

trajectory as

Jt = KF (JF )2 + KL(JL)2 + KM (JM )2. (39)

The evaluating parameters are given as

JA =

{

P1 (Stage0)
P4 (Stage1)

, (40)

JB =

{

Lj1
+ (Stage0)

Lj4
+ (Stage1)

, (41)

JP =

{

zj1 (Stage0)
zj4 (Stage1)

, (42)

JF = lower(fz , 0), (43)

JL = lower(q1, qmin1) + upper(q1, qmax1)

+ lower(q2, qmin2) + upper(q2, qmax2)

+ lower(q3, qmin3) + upper(q3, qmax3), (44)

JM0 = lower(zj1, 0) + lower(zj2, 0)

+ lower(zj3, 0) + lower(zj4, 0), (45)

JM1 = lower(zj0, 0) + lower(zj2, 0)

+ lower(zj3, 0) + lower(zj4, 0), (46)

JM =

{

JM0 (Stage0)
JM1 (Stage1)

, (47)

lower(X, Xmin) :=
1

1 + eKE(X−Xmin)
(
Xmin − X

KS

+ 1),

(48)

upper(X, Xmax) :=
1

1 + eKE(Xmax−X)
(
X − Xmax

KS

+ 1),

(49)

where JF is to keep positive floor reaction force and JL is

to keep the joint angles within the limitation. JM is used to
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guarantee the first landing of the desired point. KE and KS

are the parameter for the sloped sigmoid function.

We independently optimized Stage 0 and Stage 1 of a

forward falling motion. Table III shows the weights used for

optimizations.

TABLE III

Weight factors for evaluation

weights limits

KP 1000 UP 0.001

KF 1 UF 50

KL 100 UL 0.1

KM 200 UM 0.4

KE 10
KS 10

B. A viability check

Even if it is a motion provided by optimization, there is

the case that an unrealizable result is obtained. For example,

there can be the violation of the joint movable range or the

large error of the landing timing. They can be controlled

by tuning weights, but are not enough. In order to reject

inapparopriate results, we introduce a viability check using

the same parameters of the performance index,

V = (JP (T ) ≤ UP ) ∩

(

∫ T

0

JF dt ≤ UF

)

∩

(

∫ T

0

JL dt ≤ UL

)

∩

(

∫ T

0

JM dt ≤ UM

)

, (50)

where UP , UF , UL and UM are threshiold for eagh evaluating

parameters.

When V =TRUE, the provided motion can be said to be

feasible movement.

C. Searching the final time T

This technique demands terminal times T0, T1 as given

parameter of the optimization. On the other hand, it is ob-

vious that T0 and T1 have strong influence on the generated

motion. Therefore we determine the optimal terminal times

by the following algorithm.

(i) Stage0 optimization for a range of T0 = 0.1 ∼ 0.5[s]

every 0.01[s]

(ii) Filtering by viability check V
(iii) Choose T0 that gives the minimum JA

(iv) Stage1 optimization for a range of T1 = 0.1 ∼ 0.4[s]

every 0.01[s] using the terminal condition of optimal

Stage0 as the initial condition

(v) Filtering by V of the result of the (iii)

(vi) Choose T1 that gives the minimum JA

The falling motion and its timing which result minimum

impact can be obtained by the above mentioned procedure.

Fig. 5. A result of a simulation (q̇0(0) = 90[deg/s])

Fig. 6. Optimal motion of each joints

V. THE RESULTS OF OPTIMIZATION

Figure 5 shows the stick diagrams of the optimal motion

whose initial condition is shown in Table II and q̇0(0) =
90[deg/s]. In this optimization, we used KA = KB = 0.001
and weights shown in Table III. We can observe a smooth

falling motion of the robot. In addition, the COG of whole

body is shown by the circle, which bounds at the moment

of the knee landing. Figure 6 shows the joint angles of

the optimized falling motion. The final time T provided by

optimization are T0 = 0.27[s] and T1 = 0.22[s].

A. Initial velocity modifications

We calculated the optimal falling motions under different

initial speeds. Table IV shows the results of optimization.

We can observe a tendency that the robot takes the earlier

terminal time T0, T1, when q̇0(0) becomes longer. There is

negative correlation between q̇0(0) and T (Fig. 7).

Figure 8, 9 and 10 shows optimized motions when

q̇0(0) =60, 120 and 150.
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TABLE IV

results of optimizations with several q̇0(0)

q̇0(0) T0 T1 P1 P4 Lj1 Lj4

[deg/s] [s] [s] [Ns] [Ns] [m2/s] [m2/s]

50 0.36 0.37 16.1 37.7 32.5 16.3
60 0.34 0.26 13.4 122.1 37.0 42.6
70 0.32 0.25 12.4 118.7 41.7 47.4
80 0.30 0.23 12.6 97.0 45.5 38.1
90 0.27 0.21 12.7 128.1 45.9 46.7

100 0.27 0.20 14.8 81.6 52.7 33.9
110 0.27 0.19 19.0 71.1 59.5 41.7
120 0.27 0.16 23.4 69.8 64.1 44.5
130 0.27 0.15 27.5 58.6 69.3 48.2
140 0.27 0.14 30.7 53.0 75.0 52.9
150 0.27 0.13 35.8 50.5 82.0 58.7
160 0.25 0.14 34.5 54.7 82.2 52.5

� �

Fig. 7. Terminal time T0, T1 with the change of q̇0(0)

VI. EXPERIMENTS

To evaluate the optimized forward falling motion, we con-

ducted a preliminary experiment using HRP-2FX. Standing

HRP-2FX was pushed from the back by hand and started

forward falling motions. As soon as the detection the start

of the falling motion, the robot started to playback the

optimized forward falling motion calculated in advance. To

avoid the hardware damage, we tested the falling motion onto

a high-jump mattress made of polyurethane foam.

Figure 11 shows snapshots of the experiment. We can

observe a soft and safe landing motion.

Figure 12 shows the link acceleration of the same ex-

periment measured by accelerometers located in right arm

and knee of the robot. The robot first landed at 0.51[s] on

the knee with peak acceleration of 4.41[G]. It kept rotating

around the knee and landed on the hands (tip of the arm)

at 0.73[s] with peak acceleration of 5.39[G]. Other peaks of

acceleration around at 0.2[s] and 0.4[s] were generated by

the servomotors.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we introduced HRP-2FX which was de-

veloped to evaluate falling motions of humanoid robots.

To minimize the landing impact of a falling motion, we

proposed the use of an optimization technique based on

variational principle. A quadruple inverted pendulum was

used to represent a falling motion with two different stages.

We tested the resulted optimal forward falling motion by

Fig. 8. An optimized motion (q̇0(0) = 60[deg/s])

Fig. 9. An optimized motion (q̇0(0) = 120[deg/s])

Fig. 10. An optimized motion (q̇0(0) = 150[deg/s])

HRP-2FX and obtained a smooth and safe landing with

moderate impact.

Although our current method is based on an off-line

optimization, it is indispensable to realize a real-time motion

generation for humanoid robots in the real environment. This

should be our next target.
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