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1 (SHE Section 2.2)

58. Suppose lim f(x) = L. Then for any € > 0 there exists § > 0 such that 0 < |[x —¢| < L =
X—C
|f(x)—L| = |(f(x) = L) — 0| = &, so it immediately follows that lim f(x) = L if and only if
X—C
lim(f(x) — L) = 0 by choosing the same §.
X—C
I, x#0

, x=0.

60. The statement is clearly false. Let f(x) = Then lin’(l) f(x) =0, but there is no such
xX—

interval of the form (0 — y,0+ 7) such that f(x) > O for all x in the interval.
62. Suppose lim f(x) = L. Then for any € > 0 there exists 6 > 0 such that 0 < [x—¢| < 0 =
X—C

lf(x)—L<e = L—¢e< f(x) <L+e. Let B=max(|L— ¢g|,|L+ €]), then it follows that
| f(x)| < B, as required.
2
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(b) By the definition of absolute value,

5x+1 > -1 5x—1 > 1
‘SX—F]’: x+1, X = ?7 ’5)6—]‘: X 5 -x_?a
—Sx—1, x<-—3, =Sx+1, x<js.
Therefore, for values close to zero, |[Sx+ 1| =5x+ 1 and [Sx— 1| = —5x+ 1.
Hence lim 2 =S =1 e D= (i) 1004
x—0 X x—0 X x—0 X

(c) Multiplying top and bottom by the conjugate, we have

. Vx+6—x x+6—x? _ —(x—=3)(x+2) , —(x+2)
lim ————— =1lim = lim =lm ———
=3 x7—3x =3 (B3 =3x2)(Vx+6+x) —3x2(x—3)(Vx+6+x) —3x2(Vx+6+x)
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3 (SHE 2.3 54)

(a) Suppose lim f(x) = L. Then given &€ > 0 there exists 6y > 0 such that 0 < |x —¢| < &y implies
X—C

|f(x) —L| < &. Since g differs from f at finitely many points xi,x2,...,%,, find x; which is
closest to x = c. Now to show that limg(x) = L, choose 8, = min(&y,|c — x|). Then for all

X—C
x € (¢ — 8;,c+ &), it follows that f(x) = g(x), so if |f(x) —L| < &, then it is also true that
|g(x) — L| < &, which completes the proof.

(b) Now we need to show that if lim f(x) does not exist, then lim g(x) also does not exist. The proof
X—C X—C
is by contradiction: suppose lim g(x) exists. But f and g only differ at finitely many points, so
X—C
by part (a), it follows that lim f(x) must exist, which contradicts the assumption that lim f(x)
X—C X—C

does not exist. Hence lim g(x) also does not exist.
X—C



4 (SHE 2.4)

26. The sketch is given below. Since

50(a).

50(c).

lim g(x)= lim —x*=—1, lim g(x)= lim (2—x) =3,

x——1- x——1- x——1*t x——1*

1
lim g(x) = lim (2—x)=1= lim — = lim g(x),

x—1- x—1- x—1t X2 x—1t

so we only have a jump discontinuity at x = —1.

Suppose f is continuous at ¢. Then for any € > 0 there exists § > 0 such that 0 < [x —c¢| < &
implies |f(x) — f(c)| < €. In particular, choose € = f(c), then there exists § > 0 such that
O0<|x—c|<dé = |f(x)—f(c)| < f(c) = 0< f(x) <2f(c), which implies f(x) > 0 when
O0<|x—c|<d8,orxe (c—08,c+9).

Define the function i(x) = g(x) — f(x). Then h(c) = g(c) — f(c) > 0, so by part (a), there exists
0 > 0 such that h(x) = g(x) — f(x) > 0, or f(x) < g(x), forall x € (¢ —8,c+ ).

56. Let f.(x) = 1[f(x) 4+ f(—x)] and f,(x) = 3[f(x) — f(—x)]. Then f, is even and f, is odd, and
each continuous on (—oo,00), and f = f, + f,.
5 (SHE 2.5)
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44. Since 0 < cos?[1/(x —m)] < 1 for all x # 7, we have |[(x — &) cos?[1 /(x — &)]| < |x — 7. Thus,
—|x—m| <|(x—=m)cos[l/(x—m)]| < |x— 7.
Since lim (—|x — x|) = lim (]x — 7|) = 0, the result follows by the pinching theorem.
X—T X—T
6 (SHE 2.6)
8. Set f(x) = vx? —3x—2. Then f is continuous on [3,5] and f(3) = -2 <0, f(5) =v10+2 > 0.
By the intermediate value theorem there is a ¢ in [1,2] such that f(c) = 0.
12. Set f(x) = x. Then f(x) is continuous on [1,2]. (1) =1 <2 and f(2) =4 > 2. By IVT there

isac € (1,2) such that f(c) = 2.



26. Set h(x) = f(x) — g(x). Then h is continuous on [a,b], and h(a) = f(a) — g(a) < 0 and h(b) =
f(b) —g(b) > 0. By IVT, there exists a number ¢ € (a,b) such that 2(c) = 0. Thus, f(c) = g(c).

7 Consider the function f(x) = x* +cosx. Then f(0) =1>0and f(—1) = —1+cos(—1) < 0 since

0 < cos(—1) < 1. Since f is continuous on (—1,0), then by IVT there exists ¢ € (—1,0) such that
f(c) = c* +cosc, so a solution x = ¢ exists.



