
 
 Copyright © 2007 ARM Limited. All rights reserved.  
  

 

Application Note         
Cortex™-M3 Embedded Software Development 

Document number: ARM DAI 0179B 

Issued: March 2007 

Copyright ARM Limited 2007 

 

 

 

 

 

 

 

 

 

 

179 



  

 

2 Copyright © 2007 ARM Limited. All rights reserved. Application Note 179 
  ARM DAI 0179B 

Application Note 179  
Cortex-M3 Embedded Software Development 

Copyright ©  2007 ARM Limited. All rights reserved. 

Release information 

The following changes have been made to this Application Note. 

Change history 

Date Issue Change 

January 2007 A First release (withdrawn) 

March 2007 B Second release 

Proprietary notice 

Words and logos marked with ® or © are registered trademarks or trademarks owned by 
ARM Limited, except as otherwise stated below in this proprietary notice. Other brands 
and names mentioned herein may be the trademarks of their respective owners. 

Neither the whole nor any part of the information contained in, or the product described in, 
this document may be adapted or reproduced in any material form except with the prior 
written permission of the copyright holder. 

The product described in this document is subject to continuous developments and 
improvements. All particulars of the product and its use contained in this document are 
given by ARM in good faith. However, all warranties implied or expressed, including but 
not limited to implied warranties of merchantability, or fitness for purpose, are excluded. 

This document is intended only to assist the reader in the use of the product. ARM Limited 
shall not be liable for any loss or damage arising from the use of any information in this 
document, or any error or omission in such information, or any incorrect use of the 
product. 

Confidentiality status 

This document is Open Access. This document has no restriction on distribution. 

Feedback on this Application Note 

If you have any comments on this Application Note, please send email to 
errata@arm.com giving: 

•  the document title 

•  the document number 

•  the page number(s) to which your comments refer 

•  an explanation of your comments. 

General suggestions for additions and improvements are also welcome. 

ARM web address 

http://www.arm.com 

 



  

 
Application Note 179 Copyright © 2007 ARM Limited. All rights reserved. 3 
ARM DAI 0179B  

Table of Contents 

1 The Cortex-M3 ............................................................................................................4 
1.1 Nested Vectored Interrupt Controller (NVIC) ......................................................4 
1.2 Memory Protection Unit (MPU) ...........................................................................4 
1.3 Debug Access Port (DAP) ..................................................................................4 
1.4 Memory Map .......................................................................................................4 

2 Developing Software for Cortex-M3.........................................................................6 
2.1 Exception handling..............................................................................................6 
2.2 Memory Protection Unit (MPU) ...........................................................................9 
2.3 Stack and Heap Configuration ..........................................................................10 
2.4 Instruction Set Support......................................................................................12 
2.5 Bit-Banding........................................................................................................14 
2.6 Execution Modes...............................................................................................15 
2.7 Supervisor Calls (SVC) .....................................................................................15 
2.8 System Timer (SysTick)....................................................................................17 
2.9 RVCT 3.0 Options.............................................................................................18 

3 Moving Existing ARM Projects to the Cortex-M3..................................................19 
3.1 General code modifications ..............................................................................19 
3.2 Changes to startup code...................................................................................20 
3.3 Changes to Exception Handling........................................................................20 
3.4 Retargeting for new device ...............................................................................21 
3.5 Exploiting new features of the Cortex-M3 .........................................................21 

4 Debugging with the Cortex-M3...............................................................................22 



 The Cortex-M3 

 

4 Copyright © 2007 ARM Limited. All rights reserved. Application Note 179 
  ARM DAI 0179B 

1  The Cortex-M3  

The ARM Cortex™-M3 is a high performance, low cost and low power 32-bit RISC 
processor. The Cortex-M3 processor executes purely Thumb-2 instructions and does not 
support the ARM instruction set. The Cortex-M3 processor is based on the ARM v7-M 
architecture and has an efficient Harvard 3-stage pipeline core. It also features hardware 
divide and low-latency ISR (Interrupt Service Routine) entry and exit. 

As well as the CPU core, the Cortex-M3 processor includes a number of other 
components. These included a Nested Vectored Interrupt Controller (NVIC), an optional 
Memory Protection Unit (MPU), Timer, Debug Access Port (DAP) and optional Embedded 
Trace Macrocell (ETM). The Cortex-M3 also has a fixed memory map. 

1.1 Nested Vectored Interrupt Controller (NVIC) 

Depending on the silicon manufacturer’s implementation, the NVIC can support up to 240 
external interrupts with up to 256 different priority levels, which can be dynamically 
reprioritized. It supports both level and pulse interrupt sources. The processor state is 
automatically saved by hardware on interrupt entry and is restored on interrupt exit. The 
NVIC also supports tail-chaining of interrupts. 

The use of an NVIC in the Cortex-M3 means that the vector table for a Cortex-M3 is very 
different to previous ARM cores. The Cortex-M3 vector table contains the address of the 
exception handlers and ISR, not instructions as most other ARM cores do. The initial 
stack pointer and the address of the reset handler must be located at 0x0 and 0x4 
respectively. These values are then loaded into the appropriate CPU registers at reset. 

1.2 Memory Protection Unit (MPU) 

The MPU is an optional component of the Cortex-M3. If included, it provides support for 
protecting regions of memory through enforcing privilege and access rules. It supports up 
to 8 different regions which can be split into a further 8 sub-regions, each sub-region 
being one eighth the size of a region. 

1.3 Debug Access Port (DAP) 

The debug access port uses an AHB-AP interface to communicate with the processor and 
other peripherals. There are two different supported implementations of the Debug Port, 
the Serial Wire JTAG Debug Port (SWJ-DP) and the Serial Wire Debug Port (SW-DP). 
Your Cortex-M3 implementation might contain either of these depending on the silicon 
manufacturer’s implementation. 

1.4 Memory Map 

Unlike most previous ARM cores, the overall layout of the memory map of a device based 
around the Cortex-M3 is fixed. This allows easy porting of software between different 
systems based on the Cortex-M3. The address space is split into a number of different 
sections; this is shown in Figure 1.1 and described in Table 1.1. 



  

 

Application Note 179 Copyright © 2007 ARM Limited. All rights reserved. 5 
ARM DAI 0179B   

Figure 1.1 Cortex-M3 Memory Map 

Table 1.1 Details of Cortex-M3 Memory Map 

Memory Region Description Accessed via bus 

Code For code memory (flash, ROM, or remapped RAM) ICode and DCode 

SRAM For on-chip SRAM, with bit-banding feature System 

Peripheral For normal peripherals, with bit-banding feature System 

External RAM For external memory System 

External device Memory space for external peripherals or shared memory System 

Private peripheral Address space for system devices, e.g. MPU, NVIC, 
DAP, and other CoreSight devices 

System 

Vendor specific For additional uses specified by the vendor  

 



 Developing Software for Cortex-M3 

 

6 Copyright © 2007 ARM Limited. All rights reserved. Application Note 179 
  ARM DAI 0179B 

2 Developing Software for Cortex-M3 

This section describes the different aspects of developing software for the Cortex-M3 and 
demonstrates how to write code to configure and use the main features of the core.  The 
code examples in this section are designed for use with the RealView Compilation Tools 
(RVCT) 3.0 or later. 

2.1 Exception handling 

2.1.1 Writing the Exception Table 

The easiest way to populate the vector table is to use a scatter file to place a C array of 
function pointers at memory address 0x0. The C array can be used to configure the initial 
stack pointer, image entry point and the addresses of the exception handlers.  

Example 2.1 Example C structure for exception handlers 

/* Filename: exceptions.c */ 
typedef void(* const ExecFuncPtr)(void) __irq; 

/* Place table in separate section */ 
#pragma arm section rodata="exceptions_area"  

ExecFuncPtr exception_table[] = { 
    (ExecFuncPtr)&Image$$ARM_LIB_STACKHEAP$$ZI$$Limit, 
    (ExecFuncPtr)__main,   /* Initial PC, set to entry point  */ 
    NMIException, 
    HardFaultException, 
    MemManageException, 
    BusFaultException, 
    UsageFaultException, 
    0, 0, 0, 0,             /* Reserved */ 
    SVCHandler, 
    DebugMonitor, 
    0,                      /* Reserved */ 
    PendSVC, 
    SysTickHandler, 

    /* Configurable interrupts start here...*/ 
    InterruptHandler0, 
    InterruptHandler1, 
    InterruptHandler2 

    /* 
    : 
    */ 
}; 

#pragma arm section 

Notice that the first two items in this structure are the initial stack pointer and the image 
entry point. The initial stack pointer is generated using a linker defined symbol; see 
section 2.3 for details. Example 2.1 uses the C library entry point (__main) as the entry 
point for the image. 

The exception table has also been placed in its own section. This has been done using 
#pragma arm section rodata="exceptions_area". This instructs the compiler to place 
all the RO (read-only) data between #pragma arm section rodata="exceptions_area" 
and #pragma arm section into its own section called exceptions_area. This can then 
be referred to in the scatter file to place the exception table at the correct location in the 
memory map (address 0x0). 



  

 

Application Note 179 Copyright © 2007 ARM Limited. All rights reserved. 7 
ARM DAI 0179B   

2.1.2 Writing the Exception Handlers 

The core saves the system state when an exception occurs and restores it on return. 
Therefore, the exception handlers do not need to save or restore the system state and 
can be written as an ordinary (ABI-compliant) C function. However, we recommend that 
you use the __irq qualifier to aid clarity of code. The keyword is also used by the compiler 
to maintain eight-byte alignment of the stack where necessary.  See Section 2.3.2 for 
further details. 

Example 2.2 Simple C exception handler 

__irq void SysTickHandler(void) 

{ 

    printf("----- SysTick Interrupt -----"); 

} 

Note Clearing of an interrupt source must be handled by the ISR. 

On the Cortex-M3, exception prioritization, nesting of exceptions, and saving of corruptible 
registers is handled entirely by the core to permit efficient handling.  This means that 
interrupts remain enabled by the core on entry to every exception handler. 

2.1.3 Placing the Exception Table 

Because the exception table has been placed in its own section in the object it can be 
easily placed at 0x0 using a scatter file. 

Example 2.3 Placing exception table in scatterfile 

LOAD_REGION 0x00000000 0x00200000 

{ 

  ;; Maximum of 256 exceptions (256*4 bytes == 0x400) 

  VECTORS 0x0 0x400 

  { 

    exceptions.o (exceptions_area, +FIRST) 

  } 

} 

 

Note +FIRST is used to ensure that exceptions_area is placed at the very beginning of the 
region and to prevent the linker’s unused section elimination mechanism from removing 
the vector table. 

2.1.4 Configuring the System Control Space (SCS) registers 

The SCS registers are located at 0xE000E000. As there are a large number of individual 
registers, it is best to use a structure to represent them. This can then be positioned in the 
correct memory location by adding this structure to the scatter file, using a similar method 
to the exception table. Example 2.4 below shows an example structure for the SCS 
registers. 

Example 2.4 SCS Register Structure 

typedef volatile struct { 
    int MasterCtrl; 
    int IntCtrlType; 
    int zReserved008_00c[2];                    /* Reserved space */ 
    struct { 
        int Ctrl; 
        int Reload; 
        int Value; 



 Developing Software for Cortex-M3 

 

8 Copyright © 2007 ARM Limited. All rights reserved. Application Note 179 
  ARM DAI 0179B 

        int Calibration; 
    } SysTick; 
    int zReserved020_0fc[(0x100-0x20)/4];      /* Reserved space */ 
     
    /* Offset 0x0100 */ 
    struct { 
        int Enable[32]; 
        int Disable[32]; 
        int Set[32]; 
        int Clear[32]; 
        int Active[64]; 
        int Priority[64]; 
    } NVIC; 
    int zReserved0x500_0xcfc[(0xd00-0x500)/4];      /* Reserved space */ 
    /* Offset 0x0d00 */ 
    int CPUID; 
    int IRQcontrolState; 
    int ExceptionTableOffset; 
    int AIRC; 
    int SysCtrl; 
    int ConfigCtrl; 
    int SystemPriority[3]; 
    int SystemHandlerCtrlAndState; 
    int ConfigurableFaultStatus; 
    int HardFaultStatus; 
    int DebugFaultStatus; 
    int MemManageAddress; 
    int BusFaultAddress; 
    int AuxFaultStatus; 
    int zReserved0xd40_0xd90[(0xd90-0xd40)/4];      /* Reserved space */ 
    /* Offset 0x0d90 */ 
    struct { 
        int Type; 
        int Ctrl; 
        int RegionNumber; 
        int RegionBaseAddr; 
        int RegionAttrSize; 
    } MPU; 
} SCS_t; 

Note This might not contain all of the SCS registers in your device. Please refer to the reference 
manual provided by the silicon manufacturer of your device. 

2.1.5 Configuring Individual IRQs 

Each IRQ has an individual enable bit in the Interrupt Set Enable Registers, part of the 
NVIC registers. To enable an interrupt you need to set the corresponding bit in the 
Interrupt Set Enable Register. Please refer to the reference manual for the device you are 
using for specific details on the Interrupt Set Enable Register. 

Example 2.5 shows example interrupt enable code for the SCS structure shown in 
Example 2.4.  

Example 2.5 IRQ Enable Function 

void NVIC_enableISR(unsigned isr) 

{ 
    /* The isr argument is the number of the interrupt to enable. */ 

    SCS.NVIC.Enable[ (isr/32) ] = 1<<(isr % 32); 

} 

Note Some registers in the SCS region can only be accessed from Privileged mode. 



  

 

Application Note 179 Copyright © 2007 ARM Limited. All rights reserved. 9 
ARM DAI 0179B   

Individual IRQs can be disabled by setting the appropriate bit in the Interrupt Clear Enable 
Registers. 

Interrupt priorities  

Each individual interrupt can be assigned a priority level via the Interrupt Priority Registers. 
Depending on the implementation, up to 256 different priority levels can be assigned to 
each individual interrupt. The priority levels are represented using up to 8 bits. Groups of 
four interrupt priorities are stored in each word of memory. 

The lower the assigned priority number, the higher the priority of the interrupt. Therefore 0 
is the highest priority and 255 the lowest. 

2.2 Memory Protection Unit (MPU) 

The Cortex-M3 includes an optional MPU.  You should see the datasheets and other 
information from the manufacturer of your silicon to determine if an MPU is included. 

2.2.1 MPU Register locations 

The MPU registers are located at 0xE000ED90. There are 5 basic MPU registers and a 
number of alias registers for each of the regions. Table 2-1 provides a brief overview of 
the MPU registers; please refer to the Cortex-M3 Technical Reference Manual for further 
details. 

Table 2-1 MPU Registers 

Name Address Description 

MPU Type 0xE000ED90 Contains the number of regions in bits [15:8], 0 for no MPU 

Control Register 0xE000ED94 Controls enabling/disabling of the MPU, the use of the default memory 
map for privileged accesses and whether the MPU is enabled during 
Hard Fault, NMI and Fault Mask handlers. 

Region Number 0xE000ED98 Selects the Region you want to configure 

Region Base Address 0xE000ED9C Sets/reads the base address of region 

Region Attribute and Size 0xE000EDA0 Sets/reads size and permissions of region 

 

There are also aliases of the Region Base Address Registers and Region Attribute and 
Size register for each region. These follow the Region Attribute and Size Register directly.  
They are located at 0xE000EDA4 rising through memory sequentially. These are 
particularly useful for configuring the MPU quickly at power on, using STM instructions to 
write to the aliased addresses. 

2.2.2 Configuring MPU Regions 

To configure an MPU region you must first select the region you want to configure. You 
can use one of two methods to do this. You can select the region by writing the 
appropriate value to the Region Number register. Alternatively, use bits 0 to 3 of the 
Region Base Address register and set the VALID bit. With the latter method you can also 
program the region base address into the Region Base Address register at the same time. 

When you have selected the region you must program the base address of the region. 
The base address value must be aligned to a multiple of the region’s size. So a 64KB 
region must be aligned on a multiple of 64KB, for example 0x00010000, 0x00020000 and 
so on. 

Finally, you need to configure the permissions, size and enable the region using the 
Region Attribute and Size Register. Please refer to the Cortex-M3 Technical Reference 
Manual for details of the register layouts. 



 Developing Software for Cortex-M3 

 

10 Copyright © 2007 ARM Limited. All rights reserved. Application Note 179 
  ARM DAI 0179B 

Note The MPU must be enabled by setting bit 0 of the MPU Control Register before any regions 
will be active. 

2.2.3 Memory Region Attribute and Size (Types and Access Permissions) 

The MPU supports a number of different memory types, extensions and attributes. These 
are configured for each region in the Region Attribute and Size register. Table 2-2 
provides details of the Region Attribute and Size register. 

Table 2-2 Region Attribute and Size registers 

Field Name Description 

[28] XN Instruction access disable bit, 1= Disable instruction fetches  

[26:24] AP Data Access permissions, allows you to configure read/write access for User and 
Privileged mode 

[21:19] TEX Type extension field, allows you to configure memory access type, e.g. Strongly ordered, 
peripheral etc. 

[18] S Shareable 

[17] C Cacheable 

[16] B Bufferable 

[15:8] SRD Sub-Region Disable field, see Section 2.2.4 

[5:1] REGION SIZE Region Size of the region be configured, e.g. 4K, 8K, etc 

[0] SZENABLE Region enable bit. 

 
For full details on these fields please refer to the Cortex-M3 Technical Reference Manual. 

2.2.4 Sub-regions 

Each memory region is divided into 8 sub-regions; these can be individually disabled 
without affecting the rest of the region. Each sub region is 1/8th of the main region and can 
be disabled using the SRD fields in the Region Attribute and Size register. The lowest bit 
of the SRD field disables the sub-region with the lowest address. 

Sub-regions are useful for overlapping memory regions, for example, if you have a large 
region but would like different attributes for a small section of it. A sub-region in the larger 
region could be disabled and a second MPU region used for that sub-region to provide the 
required attributes. 

Note Sub-regions cannot be used on regions of size 32, 64 and 128 bytes. 

2.3 Stack and Heap Configuration 

2.3.1 Configuring Stack and heap 

The RealView Compilation Tools (RVCT) provide a number of methods of configuring the 
location for the stack and heap. The two main methods are to either re-implement the 
__user_initial_stackheap() function or to place the stack and heap in the scatter file 
using specific region names. 

The tools also support two main types of stack and heap implementations, namely the one 
and two region models. In the one region model, the stack and heap share a single area 
of memory. The heap grows up from the bottom of the memory region while the stack 
grows down from the top. 

In the two region model the heap and the stack each have their own memory region. The 
heap still grows upwards through memory and the stack still descends from the top of its 
region. Please refer to the RVCT Developer Guide and the RVCT Compiler and Libraries 
Guide for further information. 



  

 

Application Note 179 Copyright © 2007 ARM Limited. All rights reserved. 11 
ARM DAI 0179B   

Note You might want to use the MPU to place a region to detect overflows. 

One Region Model 

If you are using the one region model the easiest way to place the stack and heap region 
in memory is in the scatter file. To do this you will need to use the special region name 
ARM_LIB_STACKHEAP in your scatter file with the address and size of the stack and 
heap region.  See Example 2.6. 

Example 2.6 Example One Region Model scatter file extract 

;; Heap and stack share 1MB  

ARM_LIB_STACKHEAP 0x20100000 EMPTY 0x100000 

{ 

} 

Note EMPTY is used to indicate that it is intended that the region is not populated at link time. 

The initial stack pointer value can then be placed using the linker defined symbol 
Image$$ARM_LIB_STACKHEAP$$ZI$$Limit in the first entry (0x0) in your vector table. 

As an alternative to using the special region name, you can re-implement the 
__user_initial_stackheap() function. However, you must still ensure that you correctly 
specify the initial SP value in your vector table. Please refer to the RVCT Developer Guide 
and RVCT Compiler and Libraries Guide for information on 
__user_initial_stackheap(). 

Two Region Model 

To use the two region model you must specify two regions in the scatter file, one for the 
heap and one for the stack. These also have special region names of ARM_LIB_HEAP 
and ARM_LIB_STACK. You also need to add either IMPORT __use_two_region_memory 
from assembly language or #pragma import(__use_two_region_memory) from C. This 
informs the tools that you want to use the two region model and not the (default) one 
region model. 

Example 2.7 Example Two Region Model scatter file extract 

; Heap starts at 1MB and grows upwards 

ARM_LIB_HEAP 0x20100000 EMPTY 0x100000-0x8000  

{ 

} 

; Stack space starts at the end of the 2MB of RAM 

; and grows downwards for 32KB (indicated by the negative length) 

ARM_LIB_STACK 0x20200000 EMPTY -0x8000  

{ 

} 

 

The initial stack pointer value can then be placed using the linker-defined symbol 
Image$$ARM_LIB_STACK$$ZI$$Limit in the first entry, at 0x0, in your vector table. 

Again, the stack and heap can be alternatively placed by re-implementing 
__user_initial_stackheap() instead of using the special region. However, you must 
add the initial stack pointer to your vector table as before. 

2.3.2 8 byte Stack alignment 

The Application Binary Interface (ABI) for the ARM Architecture requires that the stack 
must be 8-byte aligned on all external interfaces, such as calls between functions in 



 Developing Software for Cortex-M3 

 

12 Copyright © 2007 ARM Limited. All rights reserved. Application Note 179 
  ARM DAI 0179B 

different source files. However, code does not need to maintain 8-byte stack alignment 
internally, for example in leaf functions.  

This means that when an interrupt or exception occurs the stack might not be correctly 8-
byte aligned. Revision 1 and later of the Cortex-M3 silicon can automatically align the 
stack pointer when an exception occurs. This behaviour must be enabled by setting 
STKALIGN (bit 9) in the Configuration Control Register at address 0xE000ED14. 

If you are using revision 0 of the Cortex-M3, this adjustment cannot be performed in 
hardware.  The compiler can generate code in your IRQ handlers that correctly aligns the 
stack. To do this you must prefix your IRQ handlers with __irq and use the 
--cpu=Cortex-M3-rev0 compiler switch, not --cpu=Cortex-M3. 

Note The --cpu=Cortex-M3-rev0 compiler switch is only supported in RVCT 3.0 SP1 (build 
586) and later versions. 

2.4 Instruction Set Support 

There are a number of instructions supported by the Cortex-M3 that the compiler cannot 
generate by itself, as these normally have a specific use and their function is not easily 
expressed in the C language. However these instructions can still be used either through 
the assembler, compiler intrinsics, or embedded assembly.  

Note More detail on the following instructions and the full instruction set can be found in the 
RVCT Assembler Guide or ARM Architecture Reference Manual. 

2.4.1 Memory Access Instructions 

The main memory instructions that the compiler cannot generate directly from C code are 
the load and store exclusive instructions, LDREX and STREX. These are used to perform 
exclusive memory accesses, for example to provide mutexes between different threads. 

2.4.2 Barrier Instructions 

The Cortex-M3 supports a number of barrier instructions. These can be used to ensure 
the completion of certain events before starting the next instruction or event. 

The ISB (Instruction Synchronization Barrier) flushes the pipeline in the processor, so that 
all instructions following the ISB are fetched from cache or memory, after the instruction 
has been completed. It ensures that changes to the system, for example the MPU, take 
immediate effect. 

The DSB (Data Synchronization Barrier) acts as a special kind of memory barrier. The 
DSB operation will complete when all explicit memory accesses before this instruction 
have completed. No instructions after the DSB will be executed until the DSB instruction 
has completed, that is, when all of the pending accesses have completed. 

The DMB (Data Memory Barrier) acts as a memory barrier. It has slightly different 
behaviour to DSB. The DMB instruction will ensure that any memory accesses before the 
DMB have completed before any memory access from instructions following the DMB 
instruction are performed. 

Example 2.8 shows a fragment of typical MPU code to show how these barrier 
instructions are used.  This involves creating small functions using the embedded 
assembler, each containing a single barrier instruction.  These functions can later be 
inlined by the linker. 



  

 

Application Note 179 Copyright © 2007 ARM Limited. All rights reserved. 13 
ARM DAI 0179B   

Example 2.8 Demonstration of barrier instructions using pseudo-intrinsics 

/* pseudo_intrinsics.c */ 
/* Small embedded assembly functions for barrier instructions. 
 * Link with armlink --inline ... */ 

__asm void __ISB(void) 
{ 
    ISB 
    BX lr 
} 

__asm void __DSB(void) 
{ 
    DSB 
    BX lr 
} 

/* scs.c - Initialize System Control Space registers */ 
void SCS_init(void) 
{ 
    /* Code to configure the MPU regions inserted here 
     * 
     * ....... 
     * 
     */ 

    /* Enable the MPU */ 
    SCS.MPU.Ctrl |= 1; 

    /* Force Memory Writes before continuing */ 
    __DSB(); 

    /* Flush and refill pipline with updated permissions */ 
    __ISB(); 
} 

2.4.3 Conditional Execution 

Unlike ARM instructions, most Thumb instructions are unconditional. Thumb-2 adds three 
conditional instructions in addition to the 16-bit conditional branch provided in the Thumb-
1 instruction set. These are: 

•  A 32-bit conditional branch. This has an improved branch range of +/- 1MB. 

•  16-bit CBZ (compare and branch on zero) and CBNZ (compare and branch on 
non-zero) instructions, with a branch range of +4 to +130 bytes.  For example, this 
can be generated for C code to branch out of a loop when counting down to zero. 

•  A 16-bit IT (if-then) instruction. The IT instruction can be used to make up to four 
following instructions conditional.  This is the instruction used most often in place 
of conditional execution, for example in a short if statement. 

The assembler can automatically generate appropriate IT instructions in place of a 
conditionally executed instruction. This is particularly useful when porting legacy ARM-
based code to the Cortex-M3. 

2.4.4 System “Hints” 

There are a number of “hint” instructions that can be used to direct the core to perform an 
operation if it is supported by your implementation. The instructions only provide an 
indication to the core and do not force the core to do as instructed. Some or all the hint 
instructions will execute as a NOP if they are not supported by your device. Table 2-3 
summarizes the hint instructions available in the Cortex-M3. 



 Developing Software for Cortex-M3 

 

14 Copyright © 2007 ARM Limited. All rights reserved. Application Note 179 
  ARM DAI 0179B 

Table 2-3 Hint Instructions 

Instruction Operation Description 

WFE Wait For Event Indicates to the processor to enter low power mode and wait for an event before 
waking. This requires no software intervention when woken. 

WFI Wait For Interrupt Indicates to the processor to enter low power mode and wait for an interrupt before 
waking. This requires no software intervention when woken. 

SEV Send Event Sends an event to all processors in a multi-processor system. 

2.5 Bit-Banding 

Bit-banding maps a complete word of memory onto a single bit in the bit-band region. For 
example, writing to one of the alias words will set or clear the corresponding bit in the bit-
band region. 

This allows every individual bit in the bit-banding region to be directly accessible from a 
word-aligned address using a single LDR instruction. It also allows individual bits to be 
toggled from C without performing a read-modify-write sequence of instructions. 

2.5.1 Address translation 

The Cortex-M3 has two 32MB regions that map onto the two 1MB bit-band regions.  The 
two regions are separate, one in the SRAM region and one in the peripheral region.  

Each bit in the bit-band region is addressed sequentially in the 32MB alias region. For 
example, the eighth bit in the bit-band region can be accessed using the eighth word in 
the 32MB alias region.  

2.5.2 Reading and writing to the bit-banding region 

When writing to the alias regions bit 0 of the 32 bit word is used to set the value at the bit-
banding region. Reading from the alias address will return the value from the bit-band 
region in bit 0 and the other bits will be cleared. 

You can also access the base bit-band region itself in the same way as normal memory, 
using word, half word, and byte accesses. 

2.5.3 Using bit-banding from C code 

Bit-banding can be used from C code using pre-processor macros to perform the 
accesses.  Example 2.9 demonstrates how you can do this. 

Example 2.9 Using bit-banding from C code using pre-processor macros 

#define BITBAND_SRAM_REF   0x20000000 
#define BITBAND_SRAM_BASE  0x22000000 
#define BITBAND_SRAM(a,b) ((BITBAND_SRAM_BASE + (a-BITBAND_SRAM_REF)*32 \ 
    + (b*4)))  // Convert SRAM address 
#define BITBAND_PERI_REF   0x40000000 
#define BITBAND_PERI_BASE  0x42000000 
#define BITBAND_PERI(a,b) ((BITBAND_PERI_BASE + (a-BITBAND_PERI_REF)*32 \ 
    + (b*4)))  // Convert PERI address 

#define MAILBOX   0x20004000 
#define TIMER     0x40004000 
// Mailbox bit 0 
#define MBX_B0    *((volatile unsigned int *)(BITBAND_SRAM(MAILBOX,0))) 
// Mailbox bit 7 
#define MBX_B7    *((volatile unsigned int *)(BITBAND_SRAM(MAILBOX,7))) 
// Timer bit 0 
#define TIMER_B0  *((volatile unsigned char *)(BITBAND_PERI(TIMER,0))) 



  

 

Application Note 179 Copyright © 2007 ARM Limited. All rights reserved. 15 
ARM DAI 0179B   

// Timer bit 7 
#define TIMER_B7  *((volatile unsigned char *)(BITBAND_PERI(TIMER,7))) 

int main(void) 
{ 
    unsigned int temp = 0; 

    MBX_B0 = 1;            // Word write 
    temp = MBX_B7;         // Word read 
    TIMER_B0 = temp;       // Byte write 
    return TIMER_B7;       // Byte read 
} 

2.6 Execution Modes 

2.6.1 Operating Modes 

The Cortex-M3 supports privileged and User (non-privileged) execution. Code run as 
Privileged has full access rights whereas code executed as User has limited access 
rights. The limitations include restrictions on instruction use such as MSR fields, access to 
memory and peripherals based on system design, and restrictions imposed by the MPU 
configuration. 

The processor supports two operation modes, Thread mode and Handler mode. Thread 
mode is entered on reset and normally on return from an exception. When in Thread 
mode, code can be executed as either Privileged or Unprivileged. 

Handler mode will be entered as a result of an exception. Code in Handler mode is always 
executed as Privileged, therefore the core will automatically switch to Privileged mode 
when exceptions occur. 

You can change between Privileged Thread mode and User Thread mode when returning 
from an exception by modifying the EXC_RETURN value in the link register (R14).  You 
can also change from Privileged Thread to User Thread mode by clearing CONTROL[0] 
using an MSR instruction. However, you cannot directly change to privileged mode from 
unprivileged mode without going through an exception, for example an SVC. 

2.6.2 Main and Process Stacks 

The Cortex-M3 supports two different stacks, a main stack and a process stack. To do 
this the Cortex-M3 has two stack pointers (R13), one of which is banked out depending on 
the stack in use. This means that only one stack pointer is visible as R13 at a time. 
However, both stack pointers can be accessed using the MRS and MSR instructions. 

The main stack is used at reset, and is always used in Handler mode (when entering an 
exception handler). The process stack pointer is only available as the current stack pointer 
when in Thread mode. You can select which stack pointer (main or process) is used in 
Thread mode in one of two ways, either by using the EXC_RETURN value when exiting 
from Handler Mode or while in Thread Mode by writing to CONTROL[1] using an MSR 
instruction. 

Note The process stack pointer will need to be initialized by your context switch code or your 
initialization code. 

2.7 Supervisor Calls (SVC) 

As with previous ARM cores there is an instruction, SVC (formerly SWI), that generates a 
supervisor call. Supervisor calls are normally used to request privileged operations or 
access to system resources from an operating system. 

The SVC instruction has a number embedded within it, often referred to as the SVC 
number. This is sometimes used to indicate what the caller is requesting. On previous 
ARM cores you had to extract the SVC number from the instruction using the return 



 Developing Software for Cortex-M3 

 

16 Copyright © 2007 ARM Limited. All rights reserved. Application Note 179 
  ARM DAI 0179B 

address in the link register, and the other SVC arguments were already available in R0 
through R3. 

On the Cortex-M3, the core saves the argument registers to the stack on the initial 
exception entry.  A late-arriving exception, taken before the first instruction of the SVC 
handler executes, might corrupt the copy of the arguments still held in R0 to R3. This 
means that the stack copy of the arguments must be used by the SVC handler. Any return 
value must also be passed back to the caller by modifying the stacked register values. In 
order to do this, a short piece of assembly code must be implemented as the start of the 
SVC handler. This identifies which stack the registers were saved to, extracts the SVC 
number from the instruction, and passes the number and a pointer to the arguments to the 
main body of the handler written in C. 

Example 2-8 below shows an example SVC handler. This code tests the EXC_RETURN 
value set by the processor to determine which stack pointer was in use when the SVC 
was called. On most systems this will be unnecessary, because in a typical system design 
supervisor calls will only be made from user code which uses the process stack.  In this 
case, the assembly code can consist of a single MSR instruction followed by a tailcall 
branch (B instruction) to the C body of the handler. 

Example 2.8 Example SVC Handler 

__asm void SVCHandler(void) 
{ 
    IMPORT SVCHandler_main 

    TST    lr, #4 
    MRSEQ  r0, MSP 
    MRSNE  r0, PSP 
    B      SVCHandler_main 
} 

void SVCHandler_main(unsigned int * svc_args) 
{ 
    unsigned int svc_number; 
    /* 
     * Stack contains: 
     * r0, r1, r2, r3, r12, r14, the return address and xPSR 
     * First argument (r0) is svc_args[0] 
     */ 
    svc_number = ((char *)svc_args[6])[-2]; 
    switch(svc_number) 
    { 
        case SVC_00: 
            /* Handle SVC 00 */ 
            break; 

        case SVC_01: 
            /* Handle SVC 01 */ 
            break; 

        default: 
            /* Unknown SVC */ 
            break; 
    } 
} 

Example 2.9 shows how you can declare different declarations for a number of SVCs. 
__svc is a compiler keyword that replaces a function call with an SVC instruction 
containing the specified number.  



  

 

Application Note 179 Copyright © 2007 ARM Limited. All rights reserved. 17 
ARM DAI 0179B   

Example 2.9 Example of calling an SVC from C code 

#define SVC_00 0x00 
#define SVC_01 0x01 

void __svc(SVC_00) svc_zero(const char *string); 
void __svc(SVC_01) svc_one(const char *string); 

 
int call_system_func(void) 
{ 
  svc_zero("String to pass to SVC handler zero"); 
  svc_one("String to pass to a different OS function"); 
} 

2.8 System Timer (SysTick) 

2.8.1 About the SysTick 

The SCS also includes a system timer (SysTick) that can be used by an operating system 
to ease porting from another platform. The SysTick can be polled by software or can be 
configured to generate an interrupt. The SysTick interrupt has its own entry in the vector 
table and therefore can have its own handler. 

The SysTick is configured through the four registers described in table 2-4. 

Table 2-4 SysTick Registers 

Name Address Description 

SysTick Control and Status 0xE000E010 Basic control of SysTick e.g. enable, clock source, interrupt or poll. 

SysTick Reload Value 0xE000E014 Value to load Current Value register when 0 is reached. 

SysTick Current Value 0xE000E018 The current value of the count down. 

SysTick Calibration Value 0xE000E01C Might contain the number of ticks to generate a 10ms interval and other 
information, depending on the implementation. 

 

2.8.2 Configuring SysTick 

To configure the SysTick you need to load the SysTick Reload Value register with the 
interval required between SysTick events. The timer interrupt or COUNTFLAG bit (in the 
SysTick Control and Status register) is activated on the transition from 1 to 0, therefore it 
activates every n+1 clock ticks. If a period of 100 is required 99 should be written to the 
SysTick Reload Value register. The SysTick Reload Value register supports values 
between 1 and 0x00FFFFFF. 

If you want to use the SysTick to generate an event at a timed interval, for example 1ms, 
you can use the SysTick Calibration Value Register to scale your value for the Reload 
register. The SysTick Calibration Value Register is a read-only register that contains the 
number of pulses for a period of 10ms, in the TENMS field (bits 0 to 23). This register also 
has a SKEW bit (30) that is used to indicate that the calibration for 10ms in the TENMS 
section is not exactly 10ms due to small variations in clock frequency. Bit 31 is used to 
indicate if the reference clock is provided. 

The Control and Status Register allows you to select between polling the timer by reading 
COUNTFLAG, bit 16, or the SysTick generating an interrupt. 

By default the SysTick is configured for polling mode. In this mode, user code must read 
COUNTFLAG to ascertain if the SysTick event had occurred. This is indicated by 
COUNTFLAG being set. Reading of the Control and Status register clears the 
COUNTFLAG bit. To configure the SysTick to generate an interrupt you should set 
TICKINT (bit 1 of the SysTick Control and Status register) HIGH. You will also need to 



 Developing Software for Cortex-M3 

 

18 Copyright © 2007 ARM Limited. All rights reserved. Application Note 179 
  ARM DAI 0179B 

enable the appropriate interrupt in the NVIC. You must also select the clock source using 
CLKSOURCE (bit 2). Setting this to 1 selects the core clock and zero selects the external 
reference clock. 

The Timer is enabled by setting bit 0 of the SysTick Status and Control register. 

2.9 RVCT 3.0 Options 

2.9.1 Compiler and Assembler Options 

When building code you will need to specify the correct CPU on your compiler and 
assembler command lines, as by default the RVCT 3.0 tools will build code for an ARM 
architecture v4T core. 

To do this you must add --cpu name to your command line, where name is either Cortex-
M3 or Cortex-M3-rev0. You do not need to add --thumb to your command line as the 
Cortex-M3 is a Thumb-2 only core. The compiler will automatically generate Thumb-2 
instructions and the assembler will only accept valid Thumb-2 instructions.  

2.9.2 Linker Options 

You do not need to specify any specific options to the linker to generate a suitable image 
for a Cortex-M3. The linker can obtain the required information from the object files 
specified on the linker command line. 

However, we recommend that you use a scatter file (--scatter filename) as the 
memory map of the Cortex-M3 cannot easily be represented using command-line options 
available in the linker.  You must also specify an entry point for the image using the 
--entry switch.  Normally this will be the same entry point that you have specified as your 
reset handler in the exception table. 



  

 

Application Note 179 Copyright © 2007 ARM Limited. All rights reserved. 19 
ARM DAI 0179B   

3 Moving Existing ARM Projects to the Cortex-M3 

This section discusses the steps that you must take to migrate an existing ARM project, 
for example an ARM7TDMI-based application, to a new Cortex-M3 platform. 

General approach to project migration 

As with any migration of a project to a new target platform, the best strategy is usually to 
build up the functionality gradually, starting with a minimal version of the project.  You can 
do this easily using comments or preprocessor macros to remove sections of the 
functionality. This also allows the functions to be easily reintroduced later in the migration 
process, one at a time, to allow for thorough testing of each platform-dependent function. 

3.1 General code modifications 

Most platform-independent sections of your code will usually work correctly on the Cortex-
M3 without modification.  However, there are certain features of the code that you might 
need to modify and update for the new target. 

3.1.1 Modifications to C code 

When migrating a project from an ARM7 core to the Cortex-M3, you must recompile all of 
your C code for Thumb-2 with an appropriate --cpu option as described in Section 2.9.1.  
This includes any third-party libraries.   

Legacy Thumb-1 code is binary compatible with the Cortex-M3, and such code can be run 
on the new processor.  However, in RVCT 3.0 the linker cannot protect you from 
accidentally linking object files and libraries that contain some ARM instructions.  It is 
recommended that all code is recompiled for Thumb-2 if at all possible. If you need to use 
legacy objects or libraries, you must manually check that no ARM instructions are included 
in the linked image. If you have third-party libraries that are targeted at an ARM7, you 
might need to contact your supplier for a Thumb-2 version of their library. 

The source code itself might also require some minor changes.  In particular, state-
changing pragma directives (“#pragma arm” and “#pragma thumb”) no longer apply and 
must be removed.  Inline assembly code does not support compilation for Thumb-2, 
therefore such code must be rewritten using C, C++ or embedded assembly code. 

3.1.2 Modifications to assembly code 

Special care should be taken when porting assembly code. 

If present, directives that cause assembly of ARM instructions (ARM or CODE32) must be 
removed or changed to THUMB in every case. Most existing code should then assemble 
without difficulty if you ensure that you provide the correct --cpu option on the assembler 
command line. However, some rare instructions that are supported by the ARM instruction 
set and not the Thumb-2 instruction set might need modification.  

If any CODE16 directives are present, be aware that these will assemble without warning if 
changed to THUMB, however there might be subtle differences in behavior. This is because 
CODE16 assembles according to the legacy Thumb-1 syntax rules. For example, under the 
CODE16 syntax rules many instructions without an S suffix will encode to flag-setting 
variants. Under the syntax rules of the THUMB directive the S suffix must be explicitly 
specified. 

The assembler will insert IT instructions as necessary for instructions that are to be 
conditionally executed.  For example, a single “ADDSNE r0, r0, r1” instruction (followed 
by an unconditional instruction) would become: “IT NE” followed by “ADDS r0, r0, r1” 

Be careful of core-specific and architecture-specific instructions.  These include: 

•  coprocessor instructions 



 Moving Existing ARM Projects to the Cortex-M3 

 

20 Copyright © 2007 ARM Limited. All rights reserved. Application Note 179 
  ARM DAI 0179B 

•  state or mode changes and other accesses to the PSR 

•  the SWP instruction, which has been replaced by LDREX and STREX 

•  some addressing modes are not supported by LDM and STM instructions 

•  some other instructions that have additional restrictions in Thumb-2, for example 
LDR and STR instructions with a register offset and an immediate shift. 

You might need to rewrite these portions of your code to cater for the programmer’s 
model of the Cortex-M3.  The assembler will generate a warning or error if it finds any 
incompatibilities.  Remember that most status and control registers are memory-mapped 
in the Cortex-M3 and that the supported modes are very different from an ARM7TDMI; 
any code which changes state or mode must be modified if appropriate or removed.  
Likewise, code which accesses coprocessors must be removed, unless this will be 
emulated by a handler for the Usage Fault exception. 

Also beware of code which uses the value of the PC in address arithmetic.  Because 
Thumb-2 uses mixed 16- and 32-bit instructions, the value of the PC is always the 
address of the current instruction plus 4 when used in a data processing operation. 

3.2 Changes to startup code 

The startup code consists of the reset handler of your application, together with any 
initialization functions that set up the environment and peripherals before the main body of 
your application can run.  This is specific to a particular core and target. 

If your system is simple, it might be sufficient to specify the C library entry point (the 
__main() function) as your reset handler in the vector table, and perform additional 
initialization from the main() function in your own code.  However, if there are peripherals 
that require critical initialization, you might need to write a short assembly code function to 
act as your initial reset handler before branching to __main().  Also be aware that code 
accessing some devices, for example the MPU, might need one or more of the memory 
barrier instructions after writing to these registers to ensure that the changes take effect 
immediately.  If your project previously targeted a platform supporting an MPU or MMU, 
the associated code must be revised. 

For all Cortex-M3 projects, you must create the new vector table as described in section 
2.1 and add the initial stack pointer and address of your reset handler at 0x0 and 0x4 
respectively. 

3.3 Changes to Exception Handling 

Your exception handlers must be adapted for the Cortex-M3. 

You will not normally need a low-level handler in assembly language, because re-entrancy 
is handled by the core.  If your low-level handler performs additional work, you might need 
to split some of this into separate functions which can be called from the new handlers. 
Remember to mark your IRQ handlers using the __irq keyword for clarity and to ensure 
that the compiler can maintain the stack alignment for Cortex-M3 revision 0 hardware. 

The Cortex-M3 has no FIQ input. Any peripheral that signals an FIQ on the ARM7TDMI 
project must be moved to a high-priority vectored interrupt, or the Cortex-M3’s NMI signal.  
You might need to check that the handler for this kind of interrupt does not expect to use 
the banked FIQ registers, as these will now need to be stacked as for another normal IRQ 
handler. 

Finally, you must write a new initialization function to configure the NVIC including the 
interrupt priorities.  Interrupts can then be enabled before entering your main application 
code. 

Critical sections and exception behavior 

On the Cortex-M3, exception prioritization, nesting of exceptions, and saving of corruptible 
registers is handled entirely by the core to provide very efficient handling and minimize 



  

 

Application Note 179 Copyright © 2007 ARM Limited. All rights reserved. 21 
ARM DAI 0179B   

interrupt latency.  This means that interrupts remain enabled by the core on entry to every 
exception handler.  In addition, if interrupts are disabled when returning from an exception 
they will not be automatically re-enabled by the processor.  It is not possible to perform an 
atomic enabling of interrupts and return from an exception. If you have disable interrupts 
temporarily in your handler, they must be re-enabled first and then a separate instruction 
used to return.  Exceptions might therefore occur immediately before the exception return. 

These features of the exception model might impact on critical sections in the code, 
depending on the system design.  Critical sections are those that require interrupts to be 
disabled for the duration of their execution so that they are executed as an uninterruptible 
block, for example the context switching code in an operating system. Certain legacy code 
might make assumptions that interrupts will be disabled on entry to exception handlers 
and will only be enabled explicitly by the code once any critical sections have been 
completed.  These assumptions do not hold under the new exception model of the Cortex-
M3, and such code might need to be rewritten to take account of this. 

3.4 Retargeting for new device 

You must also perform additional steps to retarget the build on to the Cortex-M3, for 
example, defining the new memory map in the scatter file. This includes placement of 
structures over registers for the System Control Space, and the addition of library stack 
and heap regions as necessary.  If your project uses a timer, you might want to modify the 
code to use the SysTick functionality provided by the SCS.  See Section 2.8.2. 

3.5 Exploiting new features of the Cortex-M3 

Once the original project has been retargeted to the new platform, you might wish to 
modify the project to take advantage of the new features provided by the Cortex-M3.  Most 
of the new instructions available in architecture v7-M will be used automatically if you 
recompile your code for Thumb-2.  However, certain features of the Cortex-M3 require 
manual code changes in order to take advantage of them. In particular, you might wish to: 

•  Modify the initialization code to enable the MPU. 

•  Make use of the sleep modes provided by the core to reduce power consumption. 

•  Exploit bit-banding to improve the performance of bit modifications, if any of your 
data or peripherals are located in an appropriate bit-band region. 

See Section 2.5 for a description of how to use the bit-banding functionality. Details of how 
to configure the MPU can be found in Section 2.2, and full details of the MPU registers are 
in the Cortex-M3 Technical Reference Manual.  This also provides details of the sleep 
modes supported by the core. 

 



 Debugging with the Cortex-M3 

 

22 Copyright © 2007 ARM Limited. All rights reserved. Application Note 179 
  ARM DAI 0179B 

4 Debugging with the Cortex-M3 

The Cortex-M3 provides sophisticated debug capabilities.  These include: 

•  A flash patch and breakpoint unit to allow a debugger to set up hardware 
breakpoints over a flash or ROM region. 

•  A data watchpoint and trace unit to provide support for watchpoints and ETM 
triggers. 

•  An optional ETM (Embedded Trace Macrocell) for instruction and data tracing. 

•  An ITM (Instrumentation Trace Macrocell) which allows printf-style debugging 
using application-driven tracing of events, for example from an operating system. 

In addition, the structure of the processor means that debug accesses are performed 
through a DAP (Debug Access Port).  This is connected to the rest of the system, 
including the core, through the bus matrix.  This means that you can carry out certain 
debug operations while the core itself is still running, if this is supported by your debugger. 
For example, you do not need to stop the core to be able to read from or write to external 
memory.  This functionality is supported by RVD 3.0 when connecting to a hardware 
target.  At the time of writing, RVD does not support the trace features of the Cortex-M3. 

RVDS 3.0 also includes an ISSM (Instruction Set System Model) of the Cortex-M3. This 
provides simulation of the core, NVIC and other key features of the processor. It also 
models one UART peripheral and three additional timer peripherals.  However, the model 
only simulates the breakpoint and watchpoint debug logic. The trace components are not 
modeled. 


