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Consider S = {x : x € (0,1)}. The least upper bound is 1. To see this, note that 1 is an upper
bound since x < 1 for all x in the set. Suppose a lower upper bound exists; then the lower bound
is of the form 1 — €, where € > 0 is a sufficiently small number. But 1 — € < max(%, 1-5)<1,
and max(%, 1—%) €S, which contradicts the assumption that 1 — €. Since this is true for any
€ > 0, it must follow that 1 is the least upper bound.

Similarly, the greatest lower bound is zero. Since x > 0 for all x € S, then zero is a lower bound.
Suppose € > 0 is a lower bound; then min(%, £) € S, which contradicts that € is a lower bound
since € > min(}, £).

The maximum value and minimum value does not exist. If a minimum value existed, then
0 < £ < 1 would be the minimum value. But § is in the set, contradicting that € is the minimum
value. Similarly, if a maximum value existed then the maximum value would be 1 — €, where
0<e<l.Butl—e<1-%<1,and 1—£ €, which contradicts the assumption that 1 — £ is

the maximum value.

The sequence is decreasing, so it follows that the maximum value occurs when n = 0; hence 1
is the maximum value. Since the maximum value is in the set, it also follows that 1 is the least
upper bound.

We now claim that O is the least upper bound of the set. It follows for all n > 0 that % >0, so
0 is an upper bound; hence the least upper bound exists. Suppose € > 0 were the least upper
bound. Then choose k such that % < €. Then 3%( is in the set, but is smaller than the least upper
bound, which is a contradiction.

There is no minimum value for the set. If a minimum value existed, then it would have to be of
the form %m for some integer m. But 3,,,% < %m, which would contradict the assumption that 3%
is the least element.
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The set {% cn=12,...}={-1,—3,—5,...}U{5,7,5---}. From this we see that max-
imum value of the set is % and the minimum value is —1. Since the maximum and minimum
values both are in the set, it follows that they are also the least upper bound and greatest lower
bounds of the set respectively.

Solving |sinx| < § on the interval [0,27], we have x € [0, Z) U (22 U ZZ) U (1Z,27]. Hence the

maximum value and least upper bound is 27 and the minimum value and greatest lower bound
is 0.

For parts (v) and (vi), we assume that the sets are subsets of the real numbers. Therefore for the
set {xeQ : — V2<x< 2}, the least upper bound is 2 and the greatest lower bound is —V2.
To show the least upper bound is 2, it is clear that x < /2 for all x in the set, so an upper bound
exists. Suppose /2 is not the least upper bound, then for some sufficiently small € > 0, v/2 — &
is the least upper bound (since the least upper bound can not be greater than v/2). However,
the rationals are dense; in other words, between any two distinct numbers there exists a rational
number, so there must exist a rational number r such that V2 —€ < r<+/2. Butrisin the set,
so this contradicts the assumption that v/2 — € is the least upper bound. Hence v/2 is the least
upper bound.

By a similar argument, —v/2 is the greatest lower bound. It also follows that no maximum and
minimum value exists. For example, if a maximum value existed, the maximum value would
have to be less than 2. Let 2 — & be the maximum value. But there exists r € Q such that



2 — & < r < 2, which contradicts that 2 — € is the maximum value. Proving that there is no
minimum value is similar.

(vi) We follow an identical argument to part (v), since the irrationals are dense as well. We omit the
details of the proof; the least upper bound and greatest lower bound are 2 and —+/2 respectively;
and the minimum and maximum values do not exist.

2 (SHE Section 11.1)

22. We have S = {1,2,3,4}. We have glb S = 1. By Theorem 10.1.4, for € = 101W’ there exists s € S
such that 1 <s < l—i-ﬁ. In this case, s = 1.

24. Wehave S={1,1,....(1)",...}. In this case, glb S = 0. By Theorem 10.1.4, for & = (1), there
exists s € S such that 0 < s < (§)*. Let n=2k+1. Then s = (3)*"! € Sand 0 < (3)**! =
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26. Let S ={ay,az,...,a,} be a non-empty set of real numbers.
(a) Consider the number M = |a;| + |az2| + ... + |a,|. Then |ax| < M for all k = 1,2,...,n.
Hence S is bounded.
(b) Since S is bounded above and below, then glb S and lub S both exist. Since S is a set of
finitely many numbers, it follows that

glb S = max{a;,az,...,a,} € S; lub § = min{a;,ay,...,a,} €.

3 (a) Since f(x) is a decreasing function, it follows that for all x < a, then f(x) < f(a). Hence, f(a)
is a lower bound for the set { f(x) : x < a}. Since a lower bound exists, the set must be bounded
below.

(b) Since the lower bound exists, it follows that the greatest lower bound also exists. Let m =
glb{f(x) : x <a}. We need to show that lim f(x) exists, so we need to show that for any

Xx—a-

€ > 0, there exists § > 0 such that a — § < x < a implies |f(x) —m| < €. Given € > 0, there
is some f(x) for x < a such that f(x) < m+ &€, since m is the greatest lower bound of the set.
Choose 6 = a — xg, where xq is arbitrary and less than a. If a — 6 < x < a, then xyp < x < a. But f
is decreasing, so f(xg) > f(x) if xo <x <a. Som < f(x) <m+e¢,o0r0 < f(x) —m < €, which
implies | f(x) —m| < &, which is what we needed to show.

4 (a) Suppose that A and B are bounded above, and o and 8 are the upper bounds of A and B respec-
tively. Therefore, for all x € A and forally € B, x < @ and y < 3.
Now suppose x € AUB. Then x € A or x € B. Therefore, either x < o or x < 3, which implies
x <max(c, ), so AUB must also be bounded above.
Similarly, if x € ANB, then x € A and x € B, so x < o and x < f3. Therefore, x < min(a, ), so
ANB is also bounded above.

(b) We prove that lub (A UB) = max(lub A,lub B). Assume that o = lub A and 8 = lub B. Now
suppose x € AUB. Then from part (a), it follows that x < max(e, ). Therefore lub (AUB) <
max(lub A, lub B).

To prove that lub (AUB) > max(lub A, lub B), we first note that for all € > 0, there exists x € A
such that x > o — € and there exists x € B such that x > 8 — & (Theorem 10.1.2). Then it follows
that for any € > 0, there exists x € A or x € B (that is, x € AU B) such that x > max(a, ) — €.
Therefore,

lub (AUB) > max(a,p) —¢€



for all € > 0. Since this is true for all € > 0, then it follows that
lub (AUB) > max(«, ).

Since lub (AUB) < max(a, ) and lub (AUB) > max(a, ), it must follow that lub (AUB) =
max(a, ), which completes the proof.

(c) Let o and B be defined in the same way as in part (b). If x € AN B, then x € A and x € B, so by
part (a), x < min(a, B). Since this is true for all x € AN B, then lub (ANB) < min(e, fB).

(d) It is not true that lub (AN B) = min(a, ). Consider the sets A = {0,1} and B = {0,2}. Then
o =1and =2, somin(a, ) = 1. However, lub (ANB) =0 # 1.



