
DEVELOPING ADOBE® AIR™
APPLICATIONS WITH
ADOBE® FLASH® CS3
PROFESSIONAL

ii
© 2008 Adobe Systems Incorporated. All rights reserved.

Developing Adobe® AIR™ Applications with Adobe® Flash® CS3 Professional

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software
described in it, is furnished under license and may be used or copied only in accordance with the terms of such
license. Except as permitted by any such license, no part of this guide may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior
written permission of Adobe Systems Incorporated. Please note that the content in this guide is protected under
copyright law even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not
be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsi-
bility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected
under copyright law. The unauthorized incorporation of such material into your new work could be a violation of
the rights of the copyright owner. Please be sure to obtain any permission required from the copyright owner.

Any references to company or person names in sample templates are for demonstration purposes only and are not
intended to refer to any actual organization or person.

Adobe, the Adobe logo, Acrobat, ActionScript, Adobe AIR, Adobe Media Player, ColdFusion, Dreamweaver, Flash,
Flex, Flex Builder, and Reader are either registered trademarks or trademarks of Adobe Systems Incorporated in the
United States and/or other countries.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. Apple, Macintosh, and Mac OS are trademarks of Apple Inc., registered in the United
States and other countries. Java and JavaScript are trademarks or registered trademarks of Sun Microsystems, Inc. in
the United States and other countries. All other trademarks are the property of their respective owners.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)

MPEG Layer-3 audio compression technology licensed by Fraunhofer IIS and Thomson Multimedia
(http://www.mp3licensing.com).

Speech compression and decompression technology licensed from Nellymoser, Inc. (www.nellymoser.com)

Video compression and decompression is powered by On2 TrueMotion video technology. © 1992-2005 On2
Technologies, Inc. All Rights Reserved. http://www.on2.com.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/)

This product contains either BSAFE and/or TIPEM software by RSA Security, Inc.

Sorenson Spark™ video compression and decompression technology licensed from Sorenson
Media, Inc.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

Notice to U.S. Government End Users. The Software and Documentation are “Commercial Items,” as that term is
defined at 48 C.F.R. §2.101, consisting of “Commercial Computer Software” and “Commercial Computer Software
Documentation,” as such terms are used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with
48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, the Commercial Computer Software
and Commercial Computer Software Documentation are being licensed to U.S. Government end users (a) only as
Commercial Items and (b) with only those rights as are granted to all other end users pursuant to the terms and
conditions herein. Unpublished-rights reserved under the copyright laws of the United States. Adobe Systems Incor-

iii
porated, 345 Park Avenue, San Jose, CA 95110-2704, USA. For U.S. Government End Users, Adobe agrees to comply
with all applicable equal opportunity laws including, if appropriate, the provisions of Executive Order 11246, as
amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of 1974 (38 USC 4212), and Section
503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60, 60-250,
and 60-741. The affirmative action clause and regulations contained in the preceding sentence shall be incorporated
by reference.

iv
Contents

Part 1: Installation instructions

Chapter 1: Adobe AIR installation

Chapter 2: Setting up Flash CS3 for Adobe AIR

Part 2: Getting started

Chapter 3: Introducing Adobe AIR

Chapter 4: Finding AIR Resources

Chapter 5: Creating your first AIR application using Flash CS3

Part 3: AIR development tools

Chapter 6: Adobe AIR Update for Flash CS3 Professional
Create an Adobe AIR file . 15

Setting Adobe AIR publish settings . 15

Preview an Adobe AIR application . 16

Debug an Adobe AIR application . 17

Creating AIR application and installer files . 17

Creating a custom application descriptor file . 22

Signing your application . 22

Part 4: Application development essentials

Chapter 7: AIR security
Installation and updates . 26

Sandboxes . 30

HTML security . 32

Scripting between content in different domains . 37

Writing to disk . 40

Working securely with untrusted content . 41

Best security practices for developers . 42

Code signing . 44

Chapter 8: Setting AIR application properties

Chapter 9: New functionality in Adobe AIR

Part 5: Windows, menus, and taskbars

Chapter 10: Working with native windows
AIR window basics . 58

v

Creating windows . 63

Managing windows . 69

Listening for window events . 75

Displaying full-screen windows . 76

Chapter 11: Screens
Screen basics . 78

Enumerating the screens . 79

Chapter 12: Working with native menus
AIR menu basics . 83

Creating native menus . 87

About context menus . 89

About context menus in HTML . 90

Defining native menus declaratively . 91

Displaying pop-up menus . 92

Handling menu events . 92

Example: Window and application menu . 94

Chapter 13: Taskbar icons

Part 6: Files and data

Chapter 14: Working with the file system
AIR file basics . 103

Working with File objects . 104

Getting file system information . 111

Working with directories . 112

Working with files . 114

Reading and writing files . 116

Chapter 15: Drag and drop
Drag and drop basics . 128

Supporting the drag-out gesture . 129

Supporting the drag-in gesture . 131

HTML Drag and drop . 133

Chapter 16: Copy and paste
Copy-and-paste basics . 142

Reading from and writing to the system clipboard . 143

HTML copy and paste . 143

Menu commands and keystrokes for copy and paste . 145

Clipboard data formats . 148

Chapter 17: Working with byte arrays
Reading and writing a ByteArray . 153

ByteArray example: Reading a .zip file . 158

vi
Chapter 18: Working with local SQL databases
About local SQL databases . 163

Creating and modifying a database . 167

Manipulating SQL database data . 169

Using synchronous and asynchronous database operations . 187

Strategies for working with SQL databases . 191

Chapter 19: Storing encrypted data

Part 7: HTML content

Chapter 20: About the HTML environment
Overview of the HTML environment . 199

AIR and Webkit extensions . 202

Chapter 21: Programming in HTML and JavaScript
About the HTMLLoader class . 214

Avoiding security-related JavaScript errors . 216

Accessing AIR API classes from JavaScript . 220

About URLs in AIR . 221

Making ActionScript objects available to JavaScript . 222

Accessing HTML DOM and JavaScript objects from ActionScript . 223

Using ActionScript libraries within an HTML page . 224

Converting Date and RegExp objects . 225

Manipulating an HTML stylesheet from ActionScript . 225

Cross-scripting content in different security sandboxes . 226

Chapter 22: Handling HTML-related events

Chapter 23: Scripting the HTML Container
Display properties of HTMLLoader objects . 235

Scrolling HTML content . 238

Accessing the HTML history list . 238

Setting the user agent used when loading HTML content . 239

Setting the character encoding to use for HTML content . 239

Defining browser-like user interfaces for HTML content . 240

Creating subclasses of the HTMLLoader class . 247

Part 8: Rich media content

Chapter 24: Adding PDF content

Chapter 25: Using digital rights management
Understanding the encrypted FLV workflow . 254

Changes to the NetStream class . 255

Using the DRMStatusEvent class . 257

Using the DRMAuthenticateEvent class . 257

Using the DRMErrorEvent class . 259

vii
Part 9: Interacting with the operating system

Chapter 26: Application launching and exit options

Chapter 27: Reading application settings

Chapter 28: Working with runtime and operating system information

Part 10: Networking and communications

Chapter 29: Monitoring network connectivity

Chapter 30: URL requests and networking
Using the URLRequest class . 279

Changes to the URLStream class . 282

Opening a URL in the default system web browser . 282

Chapter 31: Inter-application communication

Part 11: Distributing and updating applications

Chapter 32: Distributing, Installing, and Running AIR applications
Installing and running an AIR application from the desktop . 286

Installing and running AIR applications from a web page . 287

Digitally signing an AIR file . 294

Chapter 33: Updating AIR applications

Index . 303

1

Part 1: Installation instructions

Adobe AIR installation. .2
Setting up Flash CS3 for Adobe AIR .5

2

Chapter 1: Adobe AIR installation

Adobe® AIR™ allows you to run AIR applications on the desktop. You can install the runtime in the following ways:
• By installing the runtime separately (without also installing an AIR application)
• By installing an AIR application for the first time (you are prompted to also install the runtime)
• By setting up an AIR development environment such as the AIR SDK, Adobe® Flex™ Builder™ 3, or the Adobe
Flex™ 3 SDK (which includes the AIR command line development tools)
The runtime only needs to be installed once per computer.

Contents

• “System requirements for Adobe AIR” on page 2
• “Installing Adobe AIR” on page 3
• “Uninstalling Adobe AIR” on page 3
• “Installing and running the AIR sample applications” on page 3

System requirements for Adobe AIR
The system requirements for running Adobe AIR are:

• For basic Adobe AIR applications:

• For Adobe AIR applications using full-screen video with hardware scaling:

Windows Macintosh

Processor Intel® Pentium® 1.0 GHz or faster processor PowerPC® G3 1.0 GHz or faster processor or
Intel Core™ Duo 1.83 GHz or faster
processor

Memory 256 MB RAM 256 MB RAM

OS Windows 2000 Service Pack 4;
Windows XP SP2;
Vista

Mac OS X 10.4.10 or 10.5.x (PowerPC);
Mac OS X 10.4.x or 10.5.x (Intel)

Windows Macintosh

Processor Intel® Pentium® 2.0 GHz or faster processor PowerPC® G4 1.8GHz GHz or faster
processor or

Intel Core™ Duo 1.33GHz or faster
processor

Memory 512 MB of RAM; 32 MB video RAM 256 MB RAM; 32 MB video RAM

OS Windows 2000 Service Pack 4;
Windows XP SP2;
Vista

Mac OS X v.10.4.10 or v.10.5 (Intel or
PowerPC)

NOTE: The codec used to display H.264
video requires an Intel processor

ADOBE AIR 1
Developer Guide

3

Installing Adobe AIR
Use the following instructions to download and install the Windows® and Mac OS X versions of AIR.
To update the runtime, a user must have administrative privileges for the computer.

Install the runtime on a Windows computer
1 Download the runtime installation file.
2 Double-click the runtime installation file.
3 In the installation window, follow the prompts to complete the installation.

Install the runtime on a Mac computer
1 Download the runtime installation file.
2 Double-click runtime installation file.
3 In the installation window, follow the prompts to complete the installation.
4 If the Installer displays an Authenticate window, enter your Mac OS user name and password.

Uninstalling Adobe AIR
Once you have installed the runtime, you can uninstall using the following procedures.

Uninstall the runtime on a Windows computer
1 In the Windows Start menu, select Settings > Control Panel.
2 Select the Add or Remove Programs control panel.
3 Select “Adobe AIR” to uninstall the runtime.
4 Click the Change/Remove button.

Uninstall the runtime on a Mac computer
• Double-click the “Adobe AIR Uninstaller”, which is located in the /Applications folder.

Installing and running the AIR sample applications
Some sample applications are available that demonstrate AIR features. You can access and install them using the
following instructions:
1 Download and run the AIR sample applications. The compiled applications as well as the source code are
available.
2 To download and run a sample application, click the sample application Install Now button. You are prompted
to install and run the application.

http://www.adobe.com/go/learn_air_runtime_download
http://www.adobe.com/go/learn_air_runtime_download
http://www.adobe.com/go/learn_air_samples_download

ADOBE AIR 1
Developer Guide

4

3 If you choose to download sample applications and run them later, select the download links. You can run AIR
applications at any time by:
• On Windows, double-clicking the application icon on the desktop or selecting it from the Windows Start menu.
• On Mac OS, double-clicking the application icon, which is installed in the Applications folder of your user
directory (for example, in Macintosh HD/Users/JoeUser/Applications/) by default.
Note: Check the AIR release notes for updates to these instructions, which are located here:
http://www.adobe.com/go/learn_air_relnotes.

http://www.adobe.com/go/learn_air_relnotes

5

Chapter 2: Setting up Flash CS3 for Adobe
AIR

The Adobe® AIR™ Update for Adobe® Flash® CS3 Professional augments the Flash development environment with
elements that allow you to build AIR applications with Flash. It lets you create, test, and debug AIR application files
in Flash.

Contents
• “System requirements for the Adobe AIR Update for Flash” on page 5

• “Uninstalling the Adobe AIR update for Flash CS3” on page 5

• “Installing the Adobe AIR update for Flash” on page 6

• “AIR additions to Flash CS3” on page 7

System requirements for the Adobe AIR Update for
Flash
To use Flash CS3 to develop and run AIR applications, you must have the following software installed:

• Flash CS3 Professional

If you don't have a copy of Flash CS3 Professional, you can purchase it from the Adobe website:
http://www.adobe.com/products/flash/

• Adobe AIR

For information on installing Adobe AIR, see “Adobe AIR installation” on page 2

• Adobe AIR update for Flash CS3

If you’ve previously installed a version of the Adobe AIR update for Flash CS3, first uninstall it by following the steps
in “Uninstalling the Adobe AIR update for Flash CS3” on page 5. If you have not previously installed the Adobe AIR
update for Flash CS3, proceed to the section, “Installing the Adobe AIR update for Flash” on page 6.

Uninstalling the Adobe AIR update for Flash CS3
If you’ve previously installed the Adobe AIR update for Flash CS3, follow these steps to uninstall it before you install
a new Adobe AIR update for Flash CS3.

1 Delete the following folder:

(Windows) HD:\Program Files\Adobe\Adobe Flash CS3\AIK

(Mac) HD:/Applications/Adobe Flash CS3/AIK

ADOBE AIR 1
Developer Guide

6

2 Browse to the following location:

(Windows) HD:\Program Files\Adobe\Adobe Flash CS3\<lang>\First Run\Commands\

(Mac) HD:/Applications/Adobe Flash CS3/First Run/Commands

and delete the following files/folders:

• AIR folder

• AIR - Application and Installer Settings.jsfl

• AIR - Create AIR File.jsfl

3 Delete the following file:

(Windows) HD:\Program Files\Adobe\Adobe Flash CS3\<lang>\Configuration\External Libraries\FLAir.dll

(Mac) HD:/Applications/Adobe Flash CS3/Configuration/External Libraries/FLAir.bundle.

4 Delete the following file:

(Windows) HD:\Program Files\Adobe\Adobe Flash CS3\<lang>\Configuration\Players\AdobeAIR1_0.xml

(Mac) HD:/Applications/Adobe Flash CS3/Configuration/Players/ AdobeAIR1_0.xml

5 Browse to the following location:

(Windows) HD:\Document and Settings\<username>\Local Settings\Application Data\Adobe\Flash
CS3\<lang>\Configuration\Commands\ or

(Mac) HD:/Users/<username>/Library/Application Support/Adobe/Flash CS3/<lang>/Configu-
ration/Commands/

and delete the following files/folders:

• AIR folder

• AIR - Application and Installer Settings.jsfl

• AIR - Create AIR File.jsfl

Note: If you do not see the specified location on Windows, turn on "Show hidden files/folders" in folder options.

Installing the Adobe AIR update for Flash
Before you install the Adobe AIR update for Flash CS3, exit from Flash and also from any browsers that you have
open.

• Download the Adobe AIR update for Flash CS3.

• After you have downloaded the update, double click the update patch file to install it.

http://www.adobe.com/go/learn_air_download_AIRFlashUpdate_en

ADOBE AIR 1
Developer Guide

7

AIR additions to Flash CS3
After installing the Adobe AIR update, you can see the following changes in Flash:

• In the Publish Settings dialog box (File -> Publish Settings), on the Flash tab, a new entry in the Version menu
for Adobe AIR 1.0

• An updated Welcome screen that contains an entry for creating a Flash File (Adobe AIR)

(Windows) HD:\Program Files\Adobe\Adobe Flash CS3\en\FirstRun\StartPage

(Windows) HD:\Program Files\Adobe\Adobe Flash CS3\en\FirstRun\StartPage\resources

Note: On a MacIntosh computer, if Flash File (Adobe AIR) does not appear on the Welcome screen, delete the
following folder and restart Flash:

HD:/Users/<username>/Libraries/Application Support/Adobe/Flash CS3/<language>/Configu-
ration/StartPage

• New playerglobal.swc file that includes all ActionScript 3.0 APIs and Adobe AIR APIs in the ActionScript
3.0/Classes folder

(Windows) HD:\Program Files\Adobe\Adobe Flash CS3\en\Configuration\ActionScript 3.0 Classes

(Mac) HD:/Applications/Adobe Flash CS3/Configuration/ActionScript 3.0/Classes/

• New jsfl files (AIR - Application and Installer Settings.jsfl, AIR - Publish AIR File.jsfl)

(Windows) HD:\Program Files\Adobe\Adobe Flash CS3\en\FirstRun\Commands

(Mac) HD:/Applications/Adobe Flash CS3/First Run/Commands/

• Adobe AIR Software Development Kit (AIK)

(Windows) HD:\Program Files\Adobe\Adobe Flash CS3\AIK

• External library

(Windows) HD:\Program Files\Adobe\Adobe Flash CS3\en\Configuration\External Libraries

(Mac) HD:/Applications/Adobe Flash CS3/Configuration/External Libraries/

• Target configuration file

(Windows) HD:\Program Files\Adobe\Adobe Flash CS3\en\Configuration\Players\

(Mac) HD:/Applications/Adobe Flash CS3/Configuration/Players

8

Part 2: Getting started

Introducing Adobe AIR .9
Finding AIR Resources. .10
Creating your first AIR application using Flash CS3 .11

9

Chapter 3: Introducing Adobe AIR

Adobe® AIR™ is a cross-operating system runtime that allows you to leverage your existing web development skills
(Adobe® Flash® CS3 Professional, Adobe® Flex™, HTML, JavaScript®, Ajax) to build and deploy Rich Internet Appli-
cations (RIAs) to the desktop.
AIR enables you to work in familiar environments, to leverage the tools and approaches you find most comfortable,
and by supporting Flash, Flex, HTML, JavaScript, and Ajax, to build the best possible experience that meets your
needs.
For example, applications can be developed using one or a combination of the following technologies:
• Flash / Flex / ActionScript
• HTML / JavaScript / CSS / Ajax
• PDF can be leveraged with any application
As a result, AIR applications can be:
• Based on Flash or Flex: Application whose root content is Flash/Flex (SWF)
• Based on Flash or Flex with HTML or PDF. Applications whose root content is Flash/Flex (SWF) with HTML
(HTML, JS, CSS) or PDF content included
• HTML-based. Application whose root content is HTML, JS, CSS
• HTML-based with Flash/Flex or PDF. Applications whose root content is HTML with Flash/Flex (SWF) or PDF
content included
Users interact with AIR applications in the same way that they interact with native desktop applications. The runtime
is installed once on the user's computer, and then AIR applications are installed and run just like any other desktop
application.
The runtime provides a consistent cross-operating system platform and framework for deploying applications and
therefore eliminates cross-browser testing by ensuring consistent functionality and interactions across desktops.
Instead of developing for a specific operating system, you target the runtime, which has the following benefits:
• Applications developed for AIR run across multiple operating systems without any additional work by you. The
runtime ensures consistent and predictable presentation and interactions across all the operating systems supported
by AIR.
• Applications can be built faster by enabling you to leverage existing web technologies and design patterns and
extend your web based applications to the desktop without learning traditional desktop development technologies
or the complexity of native code. Easier than using lower level languages such as C and C++, developing applications
in AIR does away with the need to learn complex low-level APIs specific to each operating system.
When developing applications for AIR, you can leverage a rich set of frameworks and APIs:
• APIs specific to AIR provided by the runtime and the AIR framework
• ActionScript APIs used in SWF files and Flex framework (as well as other ActionScript based libraries and
frameworks)
AIR delivers a new paradigm that dramatically changes how applications can be created, deployed, and experienced.
You gain more creative control and can extend your Flash, Flex, HTML, and Ajax-based applications to the desktop,
without learning traditional desktop development technologies.

10

Chapter 4: Finding AIR Resources

For more information on developing AIR applications, see the following resources:

You can find articles, samples and presentations by both Adobe and community experts on the Adobe AIR
Developer Center at http://www.adobe.com/devnet/air/. You can also download Adobe AIR and related software
from there.
You can find a section specifically for Flash developers at http://www.adobe.com/devnet/air/flash/.
Visit the Adobe Support website, at http://www.adobe.com/support/, to find troubleshooting information for your
product and to learn about free and paid technical support options. Follow the Training link for access to Adobe
Press books, a variety of training resources, Adobe software certification programs, and more.

Source Location

Developing Adobe AIR applications with Adobe Flash CS3
Professional

http://www.adobe.com/go/learn_air_flash_en

Programming ActionScript 3.0 http://livedocs.adobe.com/flash/9.0/main

ActionScript 3.0 Language and Components Reference
(includes AIR)

http://livedocs.adobe.com/flash/9.0/main/ActionScriptLangRefV3

Adobe AIR Quick Starts for Flash CS3 http://www.adobe.com/go/learn_air_flash_qs_en

Using Flash http://livedocs.adobe.com/flash/9.0/UsingFlash

Using ActionScript 3.0 Components http://livedocs.adobe.com/flash/9.0/main

 http://www.adobe.com/devnet/air/flash/

http://www.adobe.com/support/
http://www.adobe.com/go/learn_air_flash_en
http://livedocs.adobe.com/flash/9.0/main
http://livedocs.adobe.com/flash/9.0/main/ActionScriptLangRefV3
http://www.adobe.com/go/learn_air_flash_qs_en
http://livedocs.adobe.com/flash/9.0/UsingFlash
http://livedocs.adobe.com/flash/9.0/main

11
Chapter 5: Creating your first AIR
application using Flash CS3

For a quick, hands-on demonstration of how Adobe® AIR™ works, follow the instructions in this topic to create and
package a simple “Hello World” AIR application using Adobe® Flash® CS3 Professional.
If you haven't already done so, download and install the Adobe AIR update for Flash CS3. For more information on
installing Adobe AIR for Flash CS3, see Setting up Flash CS3 for Adobe AIR.

Contents

• “Create the Hello World application in Flash” on page 11
• “Test the application” on page 11
• “Convert a Flash application to an Adobe AIR application” on page 13

Create the Hello World application in Flash
Creating an Adobe AIR application in Flash is much like creating any other Flash application. The differences are
that you begin by creating a Flash File (Adobe AIR) from the Welcome screen and conclude by creating application
and installer settings and installing your AIR application. The following procedure guides you through the process
of creating a simple Hello World application using Flash CS3.

To create the Hello World application
1 Start Flash.
2 In the Welcome Screen, click Flash File (Adobe AIR) to create an empty FLA file with Adobe AIR publish
settings.
3 Click OK to respond to the summary dialog, Authoring for Adobe AIR with Flash CS3. This dialog takes a few
seconds to come up the first time.
4 Select the Text tool in the Tools panel and create a static text field (the default) in the center of the Stage. Make
it wide enough to contain 15 -20 characters.
5 Enter the text “Hello World” in the text field.
6 Save the file, giving it a name (for example, helloAIR).

Test the application
To test the Hello World application
1 Press Ctrl + Enter or select Control ->Test Movie to test the application in Adobe AIR.
2 To use the Debug Movie feature, first add ActionScript code to the application. You can try it quickly by adding
a trace statement like the following:

trace("Running AIR application using Debug Movie");

3 Press Ctrl + Shift + Enter, or select Control->Debug Movie to run the application with Debug Movie.

ADOBE AIR 1
Developer Guide

12
4 Select the Commands > AIR - Applications and Installer Settings menu item to open the AIR - Application &
Installer Settings dialog.

5 Sign the Adobe AIR package with a self-signed digital certificate:
a Click the Set… button for the Digital Signature prompt to open the Digital Signature dialog box.
b Click the Create... button to open the Create Self-Signed Digital Certificate dialog box
c Complete the entries for Publisher name, Organizational unit, Organizational name, E-mail, Country,
Password, and Confirm Password.
d Specify the type of certificate. The certificate Type option refers to the level of security: 1024-RSA uses a
1024-bit key (less secure), and 2048-RSA uses a 2048-bit key (more secure).
e Save the information in a certificate file by completing the Save as entry or clicking the Browse... button to
browse to a folder location. (For example, C:/Temp/mycert.pfx). When you’re finished click OK.

ADOBE AIR 1
Developer Guide

13
f Flash returns you to the Digital Signature Dialog. The path and filename of the self-signed certificate that
you created appears in the Certificate text box. If not, enter the path and file name or click the Browse button to
locate and select it.
g Enter the same password in the Password text field of the Digital Signature dialog box as the password that
you assigned in step c and click OK. For more information about signing your Adobe AIR applications, see
“Signing your application” on page 22.

6 To create the application and installer file, click the Publish AIR file button. You must execute Test Movie or
Debug Movie to create the SWF and application.xml files before creating the AIR file.
7 To install the application, double click the AIR file (application.air) in the same folder where you saved your
application.
8 Click the Install button in the Application Install dialog.
9 Review the Installation Preferences and Location settings and make sure that the ‘Start application after instal-
lation’ checkbox is checked. Then click Continue.
10 Click Finish when the Installation Completed message appears.
The Hello World application looks like this illustration:

Convert a Flash application to an Adobe AIR
application
You can also convert an existing Flash application to an AIR application. For more information, see “Setting Adobe
AIR publish settings” on page 15.

14

Part 3: AIR development tools

Creating an AIR application using the command line tools .4
Using Flash CS3 for Adobe AIR applications .21

15
Chapter 6: Adobe AIR Update for Flash
CS3 Professional

The Adobe® AIR™ update for Adobe® Flash® CS3 Professional augments the authoring environment to allow you to
create, debug, and package Adobe AIR applications with Flash. The process of creating an Adobe AIR application
consists of creating an Adobe AIR FLA file, setting the appropriate publish settings, developing the application, and
creating the application and installer files that allow you to deploy the application.
Note: For information on the Adobe AIR ActionScript™ APIs that you can use in your application, see the Action-
Script 3.0 Language and Components Reference. To use classes in the air.net package, first drag the ServiceMonitorShim
component from the Components panel to the Library panel and then add the following import statement to your
ActionScript 3.0 code:
import air.net.*;

Contents

• “Create an Adobe AIR file” on page 15
• “Setting Adobe AIR publish settings” on page 15
• “Preview an Adobe AIR application” on page 16
• “Debug an Adobe AIR application” on page 17
• “Creating AIR application and installer files” on page 17
• “Creating a custom application descriptor file” on page 22
• “Signing your application” on page 22

Create an Adobe AIR file
You can create Flash File (Adobe AIR) documents using the Flash Welcome screen or create a Flash File (Action-
Script™ 3.0) and convert it to an Adobe AIR file through the Publish Settings dialog box. You cannot create an Adobe
AIR file, however, by using the New Document dialog box (File > New). For information on converting a Flash file
to an Adobe AIR file, see “Setting Adobe AIR publish settings” on page 15.
1 Start Flash or, if you have already started Flash, close any open documents to return to the Welcome screen.

Note: If you’ve disabled the Flash Welcome screen, you can display it again by selecting Edit > Preferences and
selecting Welcome Screen from the On Launch pop-up menu in the General category.

2 On the Welcome Screen, click Flash File (Adobe AIR).
An alert dialog box appears to tell you how to access the Adobe AIR application settings and how to access the
Help documentation. You can bypass this alert box in the future by selecting Don’t Show Me Again, but there
is no way to make it appear again.

Setting Adobe AIR publish settings
Use the Flash publish settings to examine or change the settings for an AIR file and to convert a Flash File (Action-
Script 3.0) document to a Flash File (Adobe AIR) document.

http://www.adobe.com/go/learn_air_aslr_en
http://www.adobe.com/go/learn_air_aslr_en
http://www.adobe.com/go/learn_air_aslr_en
http://www.adobe.com/go/learn_air_aslr_en

ADOBE AIR 1
Developer Guide

16
View Adobe AIR publish settings
1 From the Flash Welcome screen, open a Flash File (Adobe AIR) document.
2 Select File > Publish Settings and click the Flash tab to see the Adobe AIR publish settings.

Adobe AIR 1.0 is automatically selected in the Version menu when you open an Adobe AIR document. The
ActionScript™ version is automatically set to ActionScript 3.0. The Local playback security setting is dimmed
because it is irrelevant for an AIR SWF file.

If you opened a Flash FLA file, you can convert it to a Flash AIR file by changing the publish settings.

Convert a Flash FLA file to a Flash AIR file using the Publish Settings dialog box
1 Do one of the following:

• Open an existing Flash file.
• Use the Welcome screen or select File > New to create a new Flash file.

2 Select File > Publish Settings.
3 On the Flash tab, select Adobe AIR 1.0 from the Version pop-up menu.

The ActionScript version entry is disabled because ActionScript 3.0 is the only option for an AIR file.
The remaining default options are the same for both a Flash file and an Adobe AIR file.

4 Click the Publish button, and then click OK to close the Publish Settings dialog box. The Property inspector now
indicates that the Player target is Adobe AIR 1, when the Selection tool is selected.

Note: When you choose the Adobe AIR 1.0 profile, Flash automatically adds the location of the AIR player-
global.swc file to the Classpath environment variable. The AIR playerglobal.swc file enables you to use the Action-
Script AIR APIs. If you switch from Adobe AIR 1 to Adobe® Flash® Player 9, however, Flash does not automatically
revert to the default profile or change the Classpath setting to use the playerglobal.swc for Flash Player 9. If you
change the publish setting from Adobe AIR 1 to Flash Player 9, you must change the publish profile to Default.

For additional information on the Publish Settings dialog box, see Using Flash at
www.adobe.com/go/learn_fl_using.

Convert a Flash FLA file to a Flash AIR application using the Commands menu
1 Open your Flash FLA file.
2 If you’re opening a new Flash File (ActionScript 3.0), save it. If you don’t save it, a warning appears when you do
the next step.
3 Select Commands > AIR - Application And Installer Settings.

An alert box appears, asking if you want to convert the file to Adobe AIR publish settings.
4 Click OK to convert the FLA file to Adobe AIR publish settings. The AIR - Application And Installer Settings
dialog box appears.

For information on the AIR - Application And Installer Settings dialog box, see “Creating AIR application and
installer files” on page 17.

You can use the Test Movie, Debug Movie, and Create AIR File commands on the converted AIR FLA file.

Preview an Adobe AIR application
You can preview a Flash AIR SWF file as it would appear in the AIR application window. Previewing is useful when
you want to see what the visible aspects of the application look like without packaging and installing the application.

ADOBE AIR 1
Developer Guide

17
1 Make sure you’ve set the publish settings for an Adobe AIR application. For more information, see “Setting
Adobe AIR publish settings” on page 15.
2 Select Control > Test Movie or press Control+Enter.

If you have not set application settings through the AIR - Application And Installer Settings dialog box, Flash
generates a default application descriptor file (swfname-app.xml) for you in the same folder where the SWF file
is written. If you have set application settings using the AIR - Application And Installer Settings dialog box, the
application descriptor file reflects those settings.

Debug an Adobe AIR application
The Adobe AIR SWF file can be debugged just like a Flash Player 9 ActionScript 3.0 SWF file, except for remote
debugging.
1 Make sure that you have set Adobe AIR publishing settings.
2 Add ActionScript code to the Actions panel (Window > Actions). For testing, you could simply add a trace()
statement like the following one to the Actions panel, on the first frame of the Timeline:

trace("My application is running");

3 Select Debug > Debug Movie or Press Control+Shift+Enter.
Flash starts the ActionScript debugger and exports the SWF file with debug information.
If you have not set application settings through the AIR - Application And Installer Settings dialog box, Flash
generates a default application descriptor (swfname-app.xml) file for you in the same folder where the SWF file
is written. If you have set application settings using the AIR - Application And Installer Settings dialog box, the
application descriptor file reflects those settings.
When you select Debug > Debug Movie or Press Control+Shift+Enter to debug your application, Flash displays
an alert if your application does not include any ActionScript code.

Creating AIR application and installer files
After you’ve completed your application, create the AIR application and installer files to deploy it. Adobe AIR adds
two new menu items to the Flash Commands menu: AIR - Application And Installer Settings and AIR - Create AIR
File. After you have created the AIR application and installer settings, you can use the AIR-Create AIR File item to
re-create the AIR (.air) file with the existing settings.

Create the Adobe AIR application and installer files
1 In Flash, open the page or set of pages that make up your Adobe AIR application.
2 Save the Adobe AIR FLA file before you open the AIR - Application And Installer Settings dialog box.
3 Select Commands > AIR - Application And Installer Settings.
4 Complete the AIR - Application And Installer Settings dialog box, and then click Publish AIR File.

When you click the Publish AIR File button, the following files are packaged: the FLA file, the SWF file, the
application descriptor file, the application icon files, and the files listed in the Included Files text box. If you have
not already created a digital certificate, Flash displays the Digital Signature dialog box when you click the
Publish AIR File button.

ADOBE AIR 1
Developer Guide

18
The AIR - Application And Installer Settings dialog box is divided into two sections: Application Settings and
Installer Settings. For more information on these settings, see the following sections.

Application settings
The Application settings section of the AIR - Application And Installer Settings dialog box has the following options:
File Name The name of the main file of the application. Defaults to the name of the SWF file.
Name The name used by the installer to generate the application filename and the application folder. The name must
contain only valid characters for filenames or folder names. Defaults to the name of the SWF file.
Version Optional. Specifies a version number for your application. Defaults to blank.
ID Identifies your application with a unique ID. You can change the default ID if you prefer. Do not use spaces or
special characters in the ID. The only valid characters are 0-9, a-z, A-Z, . (dot), and - (dash), from 1 to 212 characters
in length. Defaults to com.adobe.example.application_name.
Description Optional. Lets you enter a description of the application to display when the user installs the appli-
cation. Defaults to blank.
Copyright Optional. Lets you enter a copyright notice to display when the user installs the application.
Window Style Specifies what window style (or chrome) to use for the user interface when the user runs the appli-
cation on their computer. You can specify System Chrome, which refers to the visual style that the operating system
uses. You can also specify Custom Chrome (opaque) or Custom Chrome (transparent). To display your application
without the system chrome, select None. System Chrome surrounds the application with the operating-system
standard window control. Custom Chrome (opaque) eliminates the standard system chrome and lets you create a
chrome of your own for the application. (You build the custom chrome directly in the FLA file.) Custom Chrome
(transparent) is like Custom Chrome (opaque), but it adds transparent capabilities to the edges of the page. These
capabilities allow for application windows that are not square or rectangular in shape.
Icon Optional. Lets you specify an icon for the application. The icon is shown after you install the application and
run it in Adobe AIR. You can specify four different sizes for the icon (128, 48, 32, and 16 pixels) to allow for the
different views in which the icon appears. For example, the icon can appear in the file browser in thumbnail, detail,
and tile views. It can also appear as a desktop icon and in the title of the AIR application window, as well as in other
places.
Defaults to the AIR application icon if no icon files are specified.
To specify an icon, click the Select Icon Images button in the AIR - Application And Installer Settings dialog box. In
the Icon images dialog box that appears, click the folder for each icon size and select the icon file to use. The files
must be in PNG (Portable Network Graphics) format.

ADOBE AIR 1
Developer Guide

19
The following illustration shows the Icon Images dialog box with the default Adobe AIR application icons.

Specifying different sizes of application icon images

If you specify an image, it must be of the size that you specify (128x128, 48x48, 32x32, or 16x16), or the application
installation fails. If you do not specify a file for a particular size, Adobe AIR uses the image of the closest size and
scales it to fit for the given occurrence.

Advanced Settings

The Settings button in the AIR - Application And Installer Settings dialog box allows you to specify advanced
settings for the application descriptor file. When you click the Settings button, the Advanced Settings dialog box
appears.
The Advanced Settings dialog box lets you specify any associated file types that the application should handle. For
example, if you wanted your application to be the principal application for handling HTML files, you would specify
that in the Associated File Types text box.
You can also specify settings for the following aspects of the application:
• The size and placement of the initial window
• The folder in which the application is installed
• The Program menu folder in which to place the application.
The dialog box has the following options:

ADOBE AIR 1
Developer Guide

20
Associated file types Lets you specify associated file types that the AIR application will handle. Click the Plus (+)
button to add a new file type to the text box. Clicking the Plus button displays the File Type Settings dialog box.
Clicking the Minus (-) button removes an item that is selected in the text box. Clicking the Pencil button displays the
File Type Settings dialog box and allows you to edit an item that you’ve selected in the text box. By default, the Minus
(-) and Pencil buttons are dimmed. Selecting an item in the text box enables the Minus (-) and Pencil buttons,
allowing you to remove or edit the item. The default value in the text box is None.
For more information on the file type settings for associated file types, see “File type settings” on page 20.
Initial window settings Lets you specify size and placement settings for the initial application window.
• Width: Specifies the initial width of the window in pixels. The value is blank by default.
• Height: Specifies the initial height of the window in pixels. The value is blank by default.
• X: Specifies the initial horizontal position of the window in pixels. The value is blank by default.
• Y: Specifies the initial vertical position of the window in pixels. The value is blank by default.
• Maximum Width and Maximum Height: Specify the maximum size of the window in pixels. These values are
blank by default.
• Minimum Width and Minimum Height: Specify the minimum size of the window in pixels. These values are
blank by default.
• Maximizable: Lets you specify whether the user can maximize the window. This option is selected (or true) by
default.
• Minimizable: Lets you specify whether the user can minimize the window. This option is selected (or true) by
default.
• Resizable: Lets you specify whether the user can resize the window. If this option is not selected, Maximum
Width, Maximum Height, Minimum Width, and Minimum Height are dimmed. This option is selected (or true) by
default.
• Visible: Lets you specify whether the application window is visible initially. The option is selected (or true) by
default.
Other Settings Lets you specify the following additional information regarding the installation:
• Install Folder: Specifies the folder in which the application is installed.
• Program Menu Folder: Specifies the name of the program menu folder for the application.
• Custom Update UI: Specifies what happens when a user opens an AIR file for an application that’s already
installed. By default, AIR displays a dialog box that allows the user to update the installed version with the version
in the AIR file. If you don’t want the user to make that decision and you want the application to have complete control
over its updates, select this option. Selecting this option overrides the default behavior and gives the application
control over its own updates.

File type settings

Flash displays the File Type Settings dialog box if you click the Plus (+) button or the Pencil button in the Advanced
Settings dialog box to add or edit associated file types for the application.
The only two required fields in this dialog box are Name and Extension. If you click OK and either of those fields is
blank, Flash displays an error dialog box.
You can specify the following settings for an associated file type:
Name The name of the file type (for example, Hypertext Markup Language, Text File, or Example).
Extension The filename extension (for example, html, txt, or xmpl), up to 39 basic alphanumeric characters, (A-Za-
z0-9), and without a leading period.
Description Optional. A description of the file type (for example, Adobe Video File).

ADOBE AIR 1
Developer Guide

21
Content type Optional. Specifies the MIME type for the file.
File Type Icon Settings Optional. Lets you specify an icon that’s associated with the file type. You can specify four
different sizes for the icon (128x128, 48x48, 32x32, and 16x16 pixels) to allow for the different views in which the
icon appears. For example, the icon can appear in the file browser in thumbnail, detail, and tile views.
If you specify an image, it must be of the size that you specify. If you do not specify a file for a particular size, AIR
uses the image of the closest size and scales it to fit for the given occurrence.
To specify an icon, either click the folder for the icon size and select an icon file to use or enter the path and filename
for the icon file in the text box next to the prompt. The icon file must be in PNG format.
After a new file type is created, it is shown in the File Type list box in the Advanced Settings dialog box.

Application descriptor file settings

The application settings that you specify are saved to the application_name-app.xml file. You have the option,
however, of indicating to Flash that you want to use a custom application descriptor file.
Use Custom Application Descriptor File Lets you browse to a custom application descriptor file. If you select Use
Custom Application Descriptor File, the Application Settings section of the dialog box is dimmed. To specify the
location of the custom application descriptor file, either enter it in the text field below Use Custom Application
Descriptor File or click the folder icon and browse to the location. For more information on the application
descriptor file, see “Creating a custom application descriptor file” on page 22.

Installer settings
The second section of the AIR - Application And Installer Settings dialog box contains settings that pertain to
installing the application.
Digital Signature All Adobe AIR applications must be signed to be installed on another system. For information
about assigning a digital signature to a Flash Adobe AIR application, see “Signing your application” on page 22.
Destination Specifies where to save the AIR file. The default location is the directory where you saved the FLA file.
Click the folder icon to select a different location. The default package name is the application name with the .air file
extension.
Included Files/Folders Specifies which additional files and folders to include in your application. Click the Plus (+)
button to add files, and the folder button to add folders. To delete a file or folder from your list, select the file or folder
and click the Minus (-) button.
By default, the application descriptor file and the main SWF file are automatically added to the package list. The
package list shows these files even if you have not yet published the Adobe AIR FLA file. The package list displays
the files and folders in a flat structure. Files in a folder are not listed, and full path names to files are shown but are
truncated if necessary.
Icon files are not included in the list. When Flash packages the files, it copies the icon files to a temporary folder that
is relative to the location of the SWF file. Flash deletes the folder after packaging is complete.

Failure to create application and installer files
The application and installer files fail to be created in the following instances:
• The application ID string has an incorrect length or contains invalid characters. The application ID string can
be from 1 to 212 characters and can include the following characters: 0-9, a-z, A-Z, . (dot), - (hyphen).
• Files in the installer list do not exist.
• The sizes of custom icon files are incorrect.

ADOBE AIR 1
Developer Guide

22
• The AIR destination folder does not have write access.
• You have not signed the application or have not specified that it is an Adobe AIRI application that will be signed
later.

Creating a custom application descriptor file
The application descriptor file is an XML file that you can edit with a text editor. To create a custom application
descriptor file, edit the values to specify the values you want. The default values are shown here:
• id = com.adobe.example.swfname
• fileName = swfname
• name = swfname
• version = 1.0
• description = blank
• copyright = blank
• initialWindow

• title = name
• content = swfname.swf
• systemChrome = standard, type = normal
• transparent = false
• visible = true

• icon
• image128x128 = icons/AIRApp_128.png
• image48x48 = icons/AIRApp_48.png
• image32x32 = icons/AIRApp_32.png
• image16x16 = icons/AIRApp_16.png

• customUpdateUI = false
• allowBrowserInvocation = false

Signing your application
All Adobe AIR applications must be signed to be installed on another system. Flash provides the ability, however, to
create unsigned Adobe AIR installer files so that the application can be signed later. These unsigned Adobe AIR
installer files are called an AIRI package. This capability provides for cases in which the certificate is on a different
machine or signing is handled separately from application development.

Sign an Adobe AIR application with a pre-purchased digital certificate from a root certificate authority
1 Click the Digital Signature Set button in the AIR - Application And Installer Settings dialog box. The Digital
Signature dialog box opens.

ADOBE AIR 1
Developer Guide

23
This dialog box has two radio buttons that allow you to either sign your Adobe AIR application with a digital
certificate or prepare an AIRI package. If you sign your AIR application, you can either use a digital certificate
granted by a root certificate authority or create a self-signed certificate. A self-signed certificate is easy to create
but is not as trustworthy as a certificate granted by a root certificate authority.

Digital Signature dialog box for signing an AIR application

2 Select a certificate file from the pop-up menu or click the Browse button to locate a certificate file.
3 Select the certificate.
4 Enter a password.
5 Click OK.

Create a self-signed digital certificate
1 Click the Create button. The Self-Signed Digital Certificate dialog box opens.
2 Complete the entries for Publisher Name, Organization Unit, Organization Name, Country, Password, and
Confirm Password.
3 Specify the type of certificate.

The Type option refers to the level of security that the certificate carries: 1024-RSA uses a 1024-bit key (less
secure), and 2048-RSA uses a 2048-bit key (more secure).

4 Save the information in a certificate file by completing the Save As entry or clicking the Browse button to browse
to a folder location.
5 Click OK.
6 In the Digital Signature dialog box, enter the password you assigned in the second step of this procedure and
click OK.
After you have set a digital certificate, the Set button changes to a Change button.
To have Flash remember the password you used for this session, click Remember Password For This Session.
If the Timestamp option is unselected when you click OK, a dialog box warns that the application will fail to install
when the digital certificate expires. If you click Yes in response to the warning, timestamping is disabled. If you click
No, the Timestamp option is automatically selected and timestamping is enabled.

ADOBE AIR 1
Developer Guide

24
You can also create an AIR Intermediate (AIRI) application without a digital signature. A user cannot install the
application on a desktop, however, until you add a digital signature.

Prepare an AIRI package that will be signed later
❖ In the Digital Signature dialog box, select Prepare An AIRI Package That Will Be Signed Later, and click OK.

The digital signature status changes to indicate that you have chosen to prepare an AIRI package that will be
signed later, and the Set button changes to a Change button.

25

Part 4: Application development
essentials

AIR security .26
Setting AIR application properties .45
New functionality in Adobe AIR .52

26
Chapter 7: AIR security

Although the Adobe® AIR™ security model is an evolution of the Adobe® Flash® Player security model, the security
contract is different from the security contract applied to content in a browser. This contract offers developers a
secure means of broader functionality for rich experiences with freedoms that would be inappropriate for a browser-
based application.
AIR applications run with the same user privileges as native applications. In general, these privileges allow for broad
access to operating system capabilities such as reading and writing files, starting applications, drawing to the screen,
and communicating with the network. Operating system restrictions that apply to native applications, such as user-
specific privileges, equally apply to AIR applications.
AIR applications are written using either compiled bytecode (SWF content) or interpreted script (JavaScript, HTML)
so that the runtime provides memory management. This minimizes the chances of AIR applications being affected
by vulnerabilities related to memory management, such as buffer overflows and memory corruption. These are some
of the most common vulnerabilities affecting desktop applications written in native code.

Contents

• “Installation and updates” on page 26
• “Sandboxes” on page 30
• “HTML security” on page 32
• “Scripting between content in different domains” on page 37
• “Writing to disk” on page 40
• “Working securely with untrusted content” on page 41
• “Best security practices for developers” on page 42
• “Code signing” on page 44

Installation and updates
AIR applications are distributed via AIR installer files which use the air extension. When Adobe AIR is installed
and an AIR installer file is opened, the runtime administers the installation process.
Note: Developers can specify a version, and application name, and a publisher source, but the initial application instal-
lation workflow itself cannot be modified. This restriction is advantageous for users because all AIR applications share
a secure, streamlined, and consistent installation procedure administered by the runtime. If application customization
is necessary, it can be provided when the application is first executed.

Contents

• “Runtime installation location” on page 27
• “Seamless install (runtime and application)” on page 27
• “Manual install” on page 27
• “Application installation flow” on page 27
• “Application destination” on page 28
• “The AIR file system” on page 28
• “AIR application storage” on page 28

ADOBE AIR 1
Developer Guide

27
• “Updating Adobe AIR” on page 29
• “Updating AIR applications” on page 29
• “Uninstalling an AIR application” on page 29
• “Uninstalling Adobe AIR” on page 29
• “Windows registry settings for administrators” on page 29

Runtime installation location
AIR applications first require the runtime to be installed on a user's computer, just as SWF files first require the Flash
Player browser plug-in to be installed.
The runtime is installed to the following location on a user's computer:
• Mac OS: /Library/Frameworks/
• Windows: C:\Program Files\Common Files\Adobe AI
On Mac OS, to install an updated version of an application, the user must have adequate system privileges to install
to the application directory. On Windows, a user must have administrative privileges.
The runtime can be installed in two ways: using the seamless install feature (installing directly from a web browser)
or via a manual install. For more information, see “Distributing, Installing, and Running AIR applications”
on page 286.

Seamless install (runtime and application)
The seamless install feature provides developers with a streamlined installation experience for users who do not have
Adobe AIR installed yet. In the seamless install method, the developer creates a SWF file that presents the application
for installation. When a user clicks in the SWF file to install the application, the SWF file attempts to detect the
runtime. If the runtime cannot be detected it is installed, and the runtime is activated immediately with the instal-
lation process for the developer's application.

Manual install
Alternatively, the user can manually download and install the runtime before opening an AIR file. The developer can
then distribute an AIR file by different means (for instance, via e-mail or an HTML link on a website). When the AIR
file is opened, the runtime begins to process the application installation.
For more information on this process, see “Distributing, Installing, and Running AIR applications” on page 286.

Application installation flow
The AIR security model allows users to decide whether to install an AIR application. The AIR install experience
provides several improvements over native application install technologies that make this trust decision easier for
users:
• The runtime provides a consistent installation experience on all operating systems, even when an AIR appli-
cation is installed from a link in a web browser. Most native application install experiences depend upon the browser
or other application to provide security information, if it is provided at all.
• The AIR application install experience identifies the source of the application and information about what privi-
leges are available to the application (if the user allows the installation to proceed).
• The runtime administers the installation process of an AIR application. An AIR application cannot manipulate
the installation process the runtime uses.

ADOBE AIR 1
Developer Guide

28
In general, users should not install any desktop application that comes from a source that they do not trust, or that
cannot be verified. The burden of proof on security for native applications is equally true for AIR applications as it
is for other installable applications.

Application destination
The installation directory can be set using one of the following two options:
1 The user customizes the destination during installation. The application installs to wherever the user specifies.
2 If the user does not change the install destination, the application installs to the default path as determined by
the runtime:
• Mac OS: ~/Applications/
• Windows XP and earlier: C:\Program Files\
• Windows Vista: ~/Apps/
If the developer specifies an installFolder setting in the application descriptor file, the application is installed to
a subpath of this directory.

The AIR file system
The install process for AIR applications copies all files that the developer has included within the AIR installer file
onto the user's local computer. The installed application is composed of:
• Windows: A directory containing all files included in the AIR installer file. The runtime also creates an exe file
during the installation of the AIR application.
• Mac OS: An app file that contains all of the contents of the AIR installer file. It can be inspected using the "Show
Package Contents" option in Finder. The runtime creates this app file as part of the installation of the AIR appli-
cation.
An AIR application is run by:
• Windows: Running the .exe file in the install folder, or a shortcut that corresponds to this file (such as a shortcut
on the Start Menu or desktop).
• Mac OS: Running the .app file or an alias that points to it.
The application file system also includes subdirectories related to the function of the application. For example, infor-
mation written to encrypted local storage is saved to a subdirectory in a directory named after the application
identifier of the application.

AIR application storage
AIR applications have privileges to write to any location on the user's hard drive; however, developers are encouraged
to use the app-storage:/ path for local storage related to their application. Files written to app-storage:/ from
an application are located in a standard location depending on the user's operating system:
• On Mac OS: the storage directory of an application is <appData>/<appId>/Local Store/ where <appData>
is the user's “preferences folder,” typically /Users/<user>/Library/Preferences
• On Windows: the storage directory of an application is <appData>\<appId>\Local Store\ where
<appData> is the user's CSIDL_APPDATA “Special Folder” typically C:\Documents and
Settings\<userName>\Application Data

You can access the application storage directory via the air.File.applicationStorageDirectory property. You can access
its contents using the resolvePath() method of the File class. For details, see “Working with the file system”
on page 103.

ADOBE AIR 1
Developer Guide

29
Updating Adobe AIR
When the user installs an AIR application that requires an updated version of the runtime, the runtime automatically
installs the required runtime update.
To update the runtime, a user must have administrative privileges for the computer.

Updating AIR applications
Development and deployment of software updates are one of the biggest security challenges facing native code appli-
cations. The AIR API provides a mechanism to improve this: the Updater.update() method can be invoked upon
launch to check a remote location for an AIR file. If an update is appropriate, the AIR file is downloaded, installed,
and the application restarts. Developers can use this class not only to provide new functionality but also respond to
potential security vulnerabilities.
Note: Developers can specify the version of an application by setting the version property of the application descriptor
file. AIR does not interpret the version string in any way. Thus version “3.0” is not assumed to be more current than
version “2.0.” It is up to the developer to maintain meaningful versioning. For details, see “Defining properties in the
application descriptor file” on page 46.

Uninstalling an AIR application
A user can uninstall an AIR application:
• On Windows: Using the Add/Remove Programs panel to remove the application.
• On Mac OS: Deleting the app file from the install location.
Removing an AIR application removes all files in the application directory. However, it does not remove files that the
application may have written to outside of the application directory. Removing AIR applications does not revert
changes the AIR application has made to files outside of the application directory.

Uninstalling Adobe AIR
AIR can be uninstalled:
• On Windows: by running Add/Remove Programs from the Control Panel, selecting Adobe AIR and selecting
“Remove”.
• On Mac OS: by running the Adobe AIR Uninstaller application in the Applications directory.

Windows registry settings for administrators
On Windows, administrators can configure a machine to prevent (or allow) AIR application installation and runtime
updates. These settings are contained in the Windows registry under the following key:
HKLM\Software\Policies\Adobe\AIR. They include the following:

Registry setting Description

AppInstallDisabled Specifies that AIR application installation and uninstallation are allowed. Set to 0 for “allowed,” set to 1
for “disallowed.”

UntrustedAppInstallDisabled Specifies that installation of untrusted AIR applications (applications that do not includes a trusted
certificate) is allowed (see “Digitally signing an AIR file” on page 294). Set to 0 for “allowed,” set to 1 for
“disallowed.”

UpdateDisabled Specifies that updating the runtime is allowed, either as a background task or as part of an explicit instal-
lation. Set to 0 for “allowed,” set to 1 for “disallowed.”

ADOBE AIR 1
Developer Guide

30
Sandboxes
AIR provides a comprehensive security architecture that defines permissions accordingly to each file in an AIR
application, both internal and external. Permissions are granted to files according to their origin, and are assigned
into logical security groupings called sandboxes.

Contents

• “About the AIR application sandboxes” on page 30
• “The application sandbox” on page 31
• “Privileges of content in non-application sandboxes” on page 32

About the AIR application sandboxes
The runtime security model of sandboxes is composed of the Flash Player security model with the addition of the
application sandbox. Files that are not in the application sandbox have security restrictions similar to those specified
by the Flash Player security model.
The runtime uses these security sandboxes to define the range of data that code may access and the operations it may
execute. To maintain local security, the files in each sandbox are isolated from the files of other sandboxes. For
example, a SWF file loaded into an AIR application from an external Internet URL is placed into a remote sandbox,
and does not by default have permission to script into files that reside in the application directory, which are assigned
to the application sandbox.
The following table describes each type of sandbox:

This topic focuses primarily on the application sandbox and its relationship to other sandboxes in the AIR appli-
cation. Developers that use content assigned to other sandboxes should read further documentation on the Flash
Player security model. See the “Flash Player Security” chapter in the Programming ActionScript 3.0
(http://www.adobe.com/go/flashCS3_progAS3_security) documentation and the Adobe Flash Player 9 Security
white paper (http://www.adobe.com/go/fp9_0_security).

Sandbox Description

application The file resides in the application directory and operates with the full set of AIR privileges.

remote The file is from an Internet URL, and operates under domain-based sandbox rules analogous to the rules
that apply to remote files in Flash Player. (There are separate remote sandboxes for each network domain,
such as http://www.example.com and https://foo.example.org.)

local-trusted The file is a local file and has the user has designated it as trusted , using either the Settings Manager or
a Flash Player trust configuration file. The file can both read from local data sources and communicate
with the Internet, but does not have the full set of AIR privileges.

local-with-networking The file is a local SWF file published with a networking designation, but has not been explicitly trusted by
the user. The file can communicate with the Internet but cannot read from local data sources. This
sandbox is only available to SWF content.

local-with-filesystem The file is a local scripting file that was not published with a networking designation and has not been
explicitly trusted by the user. This includes JavaScript files that have not been trusted. The file can read
from local data sources but cannot communicate with the Internet.

ADOBE AIR 1
Developer Guide

31
The application sandbox
When an application is installed, all files included within an AIR installer file are installed onto the user's computer
into an application directory. Developers can reference this directory in code through the app:/ URL scheme (see
“Using AIR URL schemes in URLs” on page 281). All files within the application directory tree are assigned to the
application sandbox when the application is run. Content in the application sandbox is blessed with the full privi-
leges available to an AIR application, including interaction with the local file system.
Many AIR applications use only these locally installed files to run the application. However, AIR applications are not
restricted to just the files within the application directory — they can load any type of file from any source. This
includes files local to the user's computer as well as files from available external sources, such as those on a local
network or on the Internet. File type has no impact on security restrictions; loaded HTML files have the same
security privileges as loaded SWF files from the same source.
Content in the application security sandbox has access to AIR APIs that content in other sandboxes are prevented
from using. For example, the NativeApplication.nativeApplication.applicationDescriptor property,
which returns the contents of the application descriptor file for the application, is restricted to content in the appli-
cation security sandbox. Another example of a restricted API is the FileStream class, which contains methods for
reading and writing to the local file system.
ActionScript APIs that are restricted to content in the application security sandbox are indicated with the AIR logo
in the Flex 3 Language Reference.
For HTML content (in an HTMLLoader object), all AIR JavaScript APIs (those that are available via the
window.runtime property, or via the air object when using the AIRAliases.js file) are available to content in the
application security sandbox. HTML content in another sandbox does not have access to the window.runtime
property, so this content cannot access the AIR APIs.

JavaScript and HTML restrictions

For HTML content in the application security sandbox, there are limitations on using APIs that can dynamically
transform strings into executable code after the code is loaded. This is to prevent the application from inadvertently
injecting (and executing) code from non-application sources (such as potentially insecure network domains). An
example is the use of the eval() function. For details, see “Code restrictions for content in different sandboxes” on
page 34.

Restrictions on img tags in ActionScript text field content

To prevent possible phishing attacks, img tags in HTML content in ActionScript TextField objects are ignored in
SWF content in the application security sandbox.

Restrictions on asfunction

Content in the application sandbox cannot use the asfunction protocol in HTML content in ActionScript 2.0 text
fields.

No access to the cross-domain persistent cache

SWF content in the application sandbox cannot use the cross-domain cache, a feature that was added to Flash Player
9 Update 3. This feature lets Flash Player persistently cache Adobe platform component content and reuse it in
loaded SWF content on demand (eliminating the need to reload the content multiple times).

ADOBE AIR 1
Developer Guide

32
Privileges of content in non-application sandboxes
Files loaded from a network or Internet location are assigned to the remote sandbox. Files loaded from outside the
application directory are assigned to either the local-with-filesystem, local-with-networking, or the
local-trusted sandbox; this depends on how the file was created and if the user has explicitly trusted the file
through the Flash Player Global Settings Manager. For details, see http://www.macromedia.com/support/documen-
tation/en/flashplayer/help/settings_manager.html.

JavaScript and HTML restrictions

Unlike content in the application security sandbox, JavaScript content in a non-application security sandbox can call
the eval() function to execute dynamically generated code at any time. However, there are restrictions to JavaScript
in a non-application security sandbox. These include:
• JavaScript code in a non-application sandbox does not have access to the window.runtime object, and as such
this code cannot execute AIR APIs.
• By default, content in a non-application security sandbox cannot use XMLHttpRequest calls to load data from
other domains other than the domain calling the request. However, application code can grant non-application
content permission to do so by setting an allowcrosscomainxhr attribute in the containing frame or iframe. For
more information, see “Scripting between content in different domains” on page 37.
• There are restrictions on calling the JavaScript window.open() method. For details, see “Restrictions on calling
the JavaScript window.open() method” on page 37.
For details, see “Code restrictions for content in different sandboxes” on page 34.

Restrictions on loading CSS, frame, iframe, and img elements

HTML content in remote (network) security sandboxes can only load CSS, frame, iframe, and img content from
remote domains (from network URLs).
HTML content in local-with-filesystem, local-with-networking, or local-trusted sandboxes can only load CSS,
frame, iframe, and img content from local sandboxes (not from application or network URLs).

HTML security
The runtime enforces rules and provides mechanisms for overcoming possible security vulnerabilities in HTML and
JavaScript. Content in the application sandbox and the non-application security sandbox (see “Sandboxes” on
page 30) have different privileges. When loading content into an iframe or frame, the runtime provides a secure
sandbox bridge mechanism that allows content in the frame or iframe to communicate securely with content in the
application security sandbox.
This topic describes the AIR HTML security architecture and how to use iframes, frames, and the sandbox bridge to
set up your application.
For more information, see “Avoiding security-related JavaScript errors” on page 216.

Contents

• “Overview on configuring your HTML-based application” on page 33
• “Code restrictions for content in different sandboxes” on page 34

http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager.html
http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager.html

ADOBE AIR 1
Developer Guide

33
Overview on configuring your HTML-based application
Frames and iframes provide a convenient structure for organizing HTML content in AIR. Frames provide a means
both for maintaining data persistence and for working securely with remote content.
Because HTML in AIR retains its normal, page-based organization, the HTML environment completely refreshes if
the top frame of your HTML content “navigates” to a different page. You can use frames and iframes to maintain data
persistence in AIR, much the same as you would for a web application running in a browser. Define your main appli-
cation objects in the top frame and they persist as long as you don’t allow the frame to navigate to a new page. Use
child frames or iframes to load and display the transient parts of the application. (There are a variety of ways to
maintain data persistence that can be used in addition to, or instead of, frames. These include cookies, local shared
objects, local file storage, the encrypted file store, and local database storage.)
HTML in AIR retains its normal, blurred line between executable code and data. Because of this, AIR puts content
in the top frame of the HTML environment into the application sandbox and restricts any operations, such as
eval(), that can convert a string of text into an executable object. This restriction is enforced even when an appli-
cation does not load remote content. To work securely with remote HTML content in AIR, you must use frames or
iframes. Even if you don’t load remote content, it may be more convenient to run content in a sandboxed child frame
so that the content can be run with no restrictions on eval(). (Sandboxing may be necessary when using some
JavaScript application frameworks.) For a complete list of the restrictions on JavaScript in the application sandbox,
see “Code restrictions for content in different sandboxes” on page 34.
Because HTML in AIR retains its ability to load remote, possibly insecure content, AIR enforces a same-origin policy
that prevents content in one domain from interacting with content in another. To allow interaction between appli-
cation content and content in another domain, you can set up a bridge to serve as the interface between a parent and
a child frame.

Setting up a parent-child sandbox relationship

AIR adds the sandboxRoot and documentRoot attributes to the HTML frame and iframe elements. These attributes
let you treat application content as if it came from another domain:

The following example maps content installed in the sandbox subdirectory of the application to run in the remote
sandbox and the www.example.com domain:
<iframe

src="ui.html"
sandboxRoot="http://www.example.com/local/"
documentRoot="app:/sandbox/">

</iframe>

Setting up a bridge between parent and child frames in different sandboxes or domains

AIR adds the childSandboxBridge and parentSandboxBridge properties to the window object of any child
frame. These properties let you define bridges to serve as interfaces between a parent and a child frame. Each bridge
goes in one direction:

Attribute Description

sandboxRoot The URL to use for determining the sandbox and domain in which to place the frame content. The file:,
http:, or https: URL schemes must be used.

documentRoot The URL from which to load the frame content. The file:, app:, or app-storage: URL schemes must
be used.

ADOBE AIR 1
Developer Guide

34
childSandboxBridge The childSandboxBridge property allows the child frame to expose an interface to
content in the parent frame. To expose an interface, you set the childSandbox property to a function or object in
the child frame. You can then access the object or function from content in the parent frame. The following example
shows how a script running in a child frame can expose an object containing a function and a property to its parent:
var interface = {};
interface.calculatePrice = function(){

return .45 + 1.20;
}
interface.storeID = "abc"
window.childSandboxBridge = interface;

If this child content is in an iframe assigned an id of "child", you can access the interface from parent content by
reading the childSandboxBridge property of the frame:
var childInterface = document.getElementById("child").childSandboxBridge;
air.trace(childInterface.calculatePrice()); //traces "1.65"
air.trace(childInterface.storeID)); //traces "abc"

parentSandboxBridge The parentSandboxBridge property allows the parent frame to expose an interface to
content in the child frame. To expose an interface, you set the parentSandbox property of the child frame to a
function or object in the parent frame. You can then access the object or function from content in the child frame.
The following example shows how a script running in the parent frame can expose an object containing a save
function to a child:
var interface = {};
interface.save = function(text){

var saveFile = air.File("app-storage:/save.txt");
//write text to file

}
document.getElementById("child").parentSandboxBridge = interface;

Using this interface, content in the child frame could save text to a file named save.txt. However, it would not have
any other access to the file system. In general, application content should expose the narrowest possible interface to
other sandboxes. The child content could call the save function as follows:
var textToSave = "A string.";
window.parentSandboxBridge.save(textToSave);

If child content attempts to set a property of the parentSandboxBridge object, the runtime throws a SecurityError
exception. If parent content attempts to set a property of the childSandboxBridge object, the runtime throws a
SecurityError exception.

Code restrictions for content in different sandboxes
As discussed in the introduction to this topic, “HTML security” on page 32, the runtime enforces rules and provides
mechanisms for overcoming possible security vulnerabilities in HTML and JavaScript. This topic lists those restric-
tions. If code attempts to call these restricted APIs, the runtime throws an error with the message “Adobe AIR
runtime security violation for JavaScript code in the application security sandbox.”
For more information, see “Avoiding security-related JavaScript errors” on page 216.

Restrictions on using the JavaScript eval() function and similar techniques

For HTML content in the application security sandbox, there are limitations on using APIs that can dynamically
transform strings into executable code after the code is loaded (after the onload event of the body element has been
dispatched and the onload handler function has finished executing). This is to prevent the application from
inadvertently injecting (and executing) code from non-application sources (such as potentially insecure network
domains).

ADOBE AIR 1
Developer Guide

35
For example, if your application uses string data from a remote source to write to the innerHTML property of a
DOM element, the string could include executable (JavaScript) code that could perform insecure operations.
However, while the content is loading, there is no risk of inserting remote strings into the DOM.
One restriction is in the use of the JavaScript eval() function. Once code in the application sandbox is loaded and
after processing of the onload event handler, you can only use the eval() function in limited ways. The following
rules apply to the use of the eval() function after code is loaded from the application security sandbox:
• Expressions involving literals are allowed. For example:

eval("null");

eval("3 + .14");

eval("'foo'");

• Object literals are allowed, as in the following:
{ prop1: val1, prop2: val2 }

• Object literal setter/getters are prohibited, as in the following:
{ get prop1() { ... }, set prop1(v) { ... } }

• Array literals are allowed, as in the following:
[val1, val2, val3]

• Expressions involving property reads are prohibited, as in the following:
a.b.c

• Function invocation is prohibited.
• Function definitions are prohibited.
• Setting any property is prohibited.
• Function literals are prohibited.
However, while the code is loading, before the onload event, and during execution the onload event handler
function, these restrictions do not apply to content in the application security sandbox.
For example, after code is loaded, the following code results in the runtime throwing an exception:
eval("alert(44)");
eval("myFunction(44)");
eval("NativeApplication.applicationID");

Dynamically generated code, such as that which is made when calling the eval() function, would pose a security
risk if allowed within the application sandbox. For example, an application may inadvertently execute a string loaded
from a network domain, and that string may contain malicious code. For example, this could be code to delete or
alter files on the user’s computer. Or it could be code that reports back the contents of a local file to an untrusted
network domain.
Ways to generate dynamic code are the following:
• Calling the eval() function.
• Using innerHTML properties or DOM functions to insert script tags that load a script outside of the application
directory.
• Using innerHTML properties or DOM functions to insert script tags that have inline code (rather than loading a
script via the src attribute).
• Setting the src attribute for a script tags to load a JavaScript file that is outside of the application directory.
• Using the javascript URL scheme (as in href="javascript:alert('Test')").

ADOBE AIR 1
Developer Guide

36
• Using the setInterval() or setTimout()function where the first parameter (defining the function to run
asynchronously) is a string (to be evaluated) rather than a function name (as in setTimeout('x = 4', 1000)).
• Calling document.write() or document.writeln().
Code in the application security sandbox can only use these methods while content is loading.
These restrictions do not prevent using eval() with JSON object literals. This lets your application content work
with the JSON JavaScript library. However, you are restricted from using overloaded JSON code (with event
handlers).
For other Ajax frameworks and JavaScript code libraries, check to see if the code in the framework or library works
within these restrictions on dynamically generated code. If they do not, include any content that uses the framework
or library in a non-application security sandbox. For details, see “Privileges of content in non-application sandboxes”
on page 32 and “Scripting between application and non-application content” on page 41. Adobe maintains a list of
Ajax frameworks known to support the application security sandbox, at http://www.adobe.com/go/airappsandbox-
frameworks.
Unlike content in the application security sandbox, JavaScript content in a non-application security sandbox can call
the eval() function to execute dynamically generated code at any time.

Restrictions on access to AIR APIs (for non-application sandboxes)

JavaScript code in a non-application sandbox does not have access to the window.runtime object, and as such this
code cannot execute AIR APIs. If content in a non-application security sandbox calls the following code, the appli-
cation throws a TypeError exception:
try {

window.runtime.flash.system.NativeApplication.nativeApplication.exit();
}
catch (e)
{

alert(e);
}

The exception type is TypeError (undefined value), because content in the non-application sandbox does not
recognize the window.runtime object, so it is seen as an undefined value.
You can expose runtime functionality to content in a non-application sandbox by using a script bridge. For details,
see and “Scripting between application and non-application content” on page 41.

Restrictions on using XMLHttpRequest calls

HTML content n the application security sandbox cannot use synchronous XMLHttpRequest methods to load data
from outside of the application sandbox while the HTML content is loading and during onLoad event.
By default, HTML content in non-application security sandboxes are not allowed to use the JavaScript XMLHttpRe-
quest object to load data from domains other than the domain calling the request. A frame or iframe tag can include
an allowcrosscomainxhr attribute. Setting this attribute to any non-null value allows the content in the frame or
iframe to use the Javascript XMLHttpRequest object to load data from domains other than the domain of the code
calling the request:
<iframe id="UI"

src="http://example.com/ui.html"
sandboxRoot="http://example.com/"
allowcrossDomainxhr="true"
documentRoot="app:/">

</iframe>

For more information, see “Scripting between content in different domains” on page 37.

http://www.adobe.com/go/airappsandboxframeworks
http://www.adobe.com/go/airappsandboxframeworks

ADOBE AIR 1
Developer Guide

37
Restrictions on loading CSS, frame, iframe, and img elements (for content in non-application sandboxes)

HTML content in remote (network) security sandboxes can only load CSS, frame, iframe, and img content from
remote sandboxes (from network URLs).
HTML content in local-with-filesystem, local-with-networking, or local-trusted sandboxes can only load CSS,
frame, iframe, and img content from local sandboxes (not from application or remote sandboxes).

Restrictions on calling the JavaScript window.open() method

If a window that is created via a call to the JavaScript window.open() method displays content from a non-appli-
cation security sandbox, the window’s title begins with the title of the main (launching) window, followed by a colon
character. You cannot use code to move that portion of the title of the window off screen.
Content in non-application security sandboxes can only successfully call the JavaScript window.open() method in
response to an event triggered by a user mouse or keyboard interaction. This prevents non-application content from
creating windows that might be used deceptively (for example, for phishing attacks). Also, the event handler for the
mouse or keyboard event cannot set the window.open() method to execute after a delay (for example by calling the
setTimeout() function).
Content in remote (network) sandboxes can only use the window.open() method to open content in remote
network sandboxes. It cannot use the window.open() method to open content from the application or local
sandboxes.
Content in the local-with-filesystem, local-with-networking, or local-trusted sandboxes (see “Sandboxes”
on page 30) can only use the window.open() method to open content in local sandboxes. It cannot use
window.open()to open content from the application or remote sandboxes.

Errors when calling restricted code

If you call code that is restricted from use in a sandbox due to these security restrictions, the runtime dispatches a
JavaScript error: "Adobe AIR runtime security violation for JavaScript code in the application security sandbox."
For more information, see “Avoiding security-related JavaScript errors” on page 216.

Scripting between content in different domains
AIR applications are granted special privileges when they are installed. It is crucial that the same privileges not be
leaked to other content, including remote files and local files that are not part of the application.

Contents

• “About the AIR sandbox bridge” on page 37
• “Sandbox bridge example (SWF)” on page 38
• “Sandbox bridge example (HTML)” on page 40
• “Limiting API exposure” on page 40

About the AIR sandbox bridge
Normally, content from other domains cannot call scripts in other domains. To protect AIR applications from
accidental leakage of privileged information or control, the following restrictions are placed on content in the
application security sandbox (content installed with the application):
• Code in the application security sandbox cannot allow cross-scripting to other sandboxes by calling the
Security.allowDomain() method. Calling this method from the application security sandbox has no effect.

ADOBE AIR 1
Developer Guide

38
• Importing non-application content into the application sandbox by setting the
LoaderContext.securityDomain or the LoaderContext.applicationDomain property is prevented.
There are still cases where the main AIR application requires content from a remote domain to have controlled access
to scripts in the main AIR application, or vice versa. To accomplish this, the runtime provides a sandbox bridge
mechanism, which serves as a gateway between the two sandboxes. A sandbox bridge can provide explicit interaction
between remote and application security sandboxes.
The sandbox bridge exposes two objects that both loaded and loading scripts can access:
• The parentSandboxBridge object lets loading content expose properties and functions to scripts in the loaded
content.
• The childSandboxBridge object lets loaded content expose properties and function to scripts in the loading
content.
Objects exposed via the sandbox bridge are passed by value, not by reference. All data is serialized. This means that
the objects exposed by one side of the bridge cannot be set by the other side, and that objects exposed are all untyped.
Also, you can only expose simple objects and functions; you cannot expose complex objects.
If child content attempts to set a property of the parentSandboxBridge object, the runtime throws a SecurityError
exception. Similarly, if parent content attempts to set a property of the childSandboxBridge object, the runtime
throws a SecurityError exception.

Sandbox bridge example (SWF)
Suppose an AIR music store application wants to allow remote SWF files to broadcast the price of albums, but does
not want the remote SWF file to disclose whether the price is a sale price. To do this, a StoreAPI class provides a
method to acquire the price, but obscures the sale price. An instance of this StoreAPI class is then assigned to the
parentSandboxBridge property of the LoaderInfo object of the Loader object that loads the remote SWF.
The following is the code for the AIR music store:
<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute"
title="Music Store" creationComplete="initApp()">

<mx:Script>
import flash.display.Loader;
import flash.net.URLRequest;

private var child:Loader;
private var isSale:Boolean = false;

private function initApp():void {
var request:URLRequest =

new URLRequest("http://[www.yourdomain.com]/PriceQuoter.swf")

child = new Loader();
child.contentLoaderInfo.parentSandboxBridge = new StoreAPI(this);
child.load(request);
container.addChild(child);

}
public function getRegularAlbumPrice():String {

return "$11.99";
}
public function getSaleAlbumPrice():String {

return "$9.99";
}
public function getAlbumPrice():String {

if(isSale) {
return getSaleAlbumPrice();

ADOBE AIR 1
Developer Guide

39
}
else {

return getRegularAlbumPrice();
}

}
</mx:Script>
<mx:UIComponent id="container" />

</mx:WindowedApplication>

The StoreAPI object calls the main application to retrieve the regular album price, but returns “Not available” when
the getSaleAlbumPrice() method is called. The following code defines the StoreAPI class:
public class StoreAPI
{

private static var musicStore:Object;

public function StoreAPI(musicStore:Object)
{

this.musicStore = musicStore;
}

public function getRegularAlbumPrice():String {
return musicStore.getRegularAlbumPrice();

}

public function getSaleAlbumPrice():String {
return "Not available";

}

public function getAlbumPrice():String {
return musicStore.getRegularAlbumPrice();

}
}

The following code represents an example of a PriceQuoter SWF file that reports the store’s price, but cannot report
the sale price:
package
{

import flash.display.Sprite;
import flash.system.Security;
import flash.text.*;

public class PriceQuoter extends Sprite
{

private var storeRequester:Object;

public function PriceQuoter() {
trace("Initializing child SWF");
trace("Child sandbox: " + Security.sandboxType);
storeRequester = loaderInfo.parentSandboxBridge;

var tf:TextField = new TextField();
tf.autoSize = TextFieldAutoSize.LEFT;
addChild(tf);

tf.appendText("Store price of album is: " + storeRequester.getAlbumPrice());
tf.appendText("\n");
tf.appendText("Sale price of album is: " + storeRequester.getSaleAlbumPrice());

}
}

}

ADOBE AIR 1
Developer Guide

40
Sandbox bridge example (HTML)
In HTML content, the parentSandboxBridge and childSandboxBridge properties are added to the JavaScript
window object of a child document. For an example of how to set up bridge functions in HTML content, see “Setting
up a sandbox bridge interface” on page 228.

Limiting API exposure
When exposing sandbox bridges, it's important to expose high-level APIs that limit the degree to which they can be
abused. Keep in mind that the content calling your bridge implementation may be compromised (for example, via a
code injection). So, for example, exposing a “readFile(path:String)” method (that reads the contents of an
arbitrary file) via a bridge is vulnerable to abuse. It would be better to expose a “readApplicationSetting()” API
that doesn't take a path and reads a specific file. The more semantic approach limits the damage that an application
can do once part of it is compromised.

See also

• “Cross-scripting content in different security sandboxes” on page 226
• “The application sandbox” on page 31
• “Privileges of content in non-application sandboxes” on page 32

Writing to disk
Applications running in a web browser have only limited interaction with the user's local file system. Web browsers
implement security policies that ensure that a user's computer cannot be compromised as a result of loading web
content. For example, SWF files running through Flash Player in a browser cannot directly interact with files already
on a user's computer. Shared objects and cookies can be written to a user's computer for the purpose of maintaining
user preferences and other data, but this is the limit of file system interaction. Because AIR applications are natively
installed, they have a different security contract, one which includes the capability to read and write across the local
file system.
This freedom comes with high responsibility for developers. Accidental application insecurities jeopardize not only
the functionality of the application, but also the integrity of the user's computer. For this reason, developers should
read “Best security practices for developers” on page 42.
AIR developers can access and write files to the local file system using several URL scheme conventions:

Note: AIR applications cannot modify content using the app: URL scheme. Also, the application directory may be read
only because of administrator settings.

URL scheme Description

app:/ An alias to the application directory. Files accessed from this path are assigned the application sandbox and have
the full privileges granted by the runtime.

app-storage:/ An alias to the local storage directory, standardized by the runtime. Files accessed from this path are assigned a
non-application sandbox.

file:/// An alias that represents the root of the user's hard disk. A file accessed from this path is assigned an application
sandbox if the file exists in the application directory, and a non-application sandbox otherwise.

ADOBE AIR 1
Developer Guide

41
Unless there are administrator restrictions to the user's computer, AIR applications are privileged to write to any
location on the user's hard drive. Developers are advised to use the app-storage:/ path for local storage related to
their application. Files written to app-storage:/ from an application are put in a standard location:
• On Mac OS: the storage directory of an application is <appData>/<appId>/Local Store/ where <appData>
is the user's preferences folder. This is typically /Users/<user>/Library/Preferences
• On Windows: the storage directory of an application is <appData>\<appId>\Local Store\ where <appData>
is the user's CSIDL_APPDATA Special Folder. This is typically C:\Documents and
Settings\<userName>\Application Data

If an application is designed to interact with existing files in the user's file system, be sure to read “Best security
practices for developers” on page 42.

Working securely with untrusted content
Content not assigned to the application sandbox can provide additional scripting functionality to your application,
but only if it meets the security criteria of the runtime. This topic explains the AIR security contract with non-appli-
cation content.

Contents

• “Security.allowDomain()” on page 41
• “Scripting between application and non-application content” on page 41
• “Protection against dynamically generating unsafe SWF content” on page 42

Security.allowDomain()
AIR applications restrict scripting access for non-application content more stringently than the Flash Player 9
browser plug-in restricts scripting access for untrusted content. For example, in Flash Player in the browser, when a
SWF file that is assigned to the local-trusted sandbox calls the System.allowDomain() method, scripting access
is granted to any SWF loaded from the specified domain, reassigning this remote file from the remote sandbox to
the local-trusted sandbox. The analogous approach is not permitted from application content in AIR applica-
tions, since it would grant unreasonable access unto the non-application file into the user's file system. Remote files
cannot directly access the application sandbox, regardless of calls to the Security.allowDomain() method.

Scripting between application and non-application content
AIR applications that script between application and non-application content have more complex security arrange-
ments. Files that are not in the application sandbox are only allowed to access the properties and methods of files in
the application sandbox through the use of a sandbox bridge. A sandbox bridge acts as a gateway between application
content and non-application content, providing explicit interaction between the two files. When used correctly,
sandbox bridges provide an extra layer of security, restricting non-application content from accessing object refer-
ences that are part of application content.
The benefit of sandbox bridges is best illustrated through example. Suppose an AIR music store application wants to
provide an API to advertisers who want to create their own SWF files, with which the store application can then
communicate. The store wants to provide advertisers with methods to look up artists and CDs from the store, but
also wants to isolate some methods and properties from the third-party SWF file for security reasons.

ADOBE AIR 1
Developer Guide

42
A sandbox bridge can provide this functionality. By default, content loaded externally into an AIR application at
runtime does not have access to any methods or properties in the main application. With a custom sandbox bridge
implementation, a developer can provide services to the remote content without exposing these methods or
properties. Consider the sandbox bridge as a pathway between trusted and untrusted content, providing communi-
cation between loader and loadee content without exposing object references.
For more information on how to securely use sandbox bridges, see “Scripting between content in different domains”
on page 37.

Protection against dynamically generating unsafe SWF content
The Loader.loadBytes() method provides a way for an application to generate SWF content from a byte array.
However, injection attacks on data loaded from remote sources could do severe damage when loading content. This
is especially true when loading data into the application sandbox, where the generated SWF content can access the
full set of AIR APIs.
There are legitimate uses for using the loadBytes() method without generating executable SWF code. You can use
the loadBytes() method to generate an image data to control the timing of image display, for example. There are
also legitimate uses that do rely on executing code, such as dynamic creation of SWF content for audio playback. In
AIR, by default the loadBytes() method does not let you load SWF content; it only allows you to load image
content. In AIR, the loaderContext property of the loadBytes() method has an
allowLoadBytesCodeExecution property, which you can set to true to explicitly allow the application to use
loadBytes() to load executable SWF content. The following code shows how to use this feature:
var loader:Loader = new Loader();
var loaderContext:LoaderContext = new LoaderContext();
loaderContext.allowLoadBytesCodeExecution = true;
loader.loadBytes(bytes, loaderContext);

If you call loadBytes() to load SWF content and the allowLoadBytesCodeExecution property of the Loader-
Context object is set to false (the default), the Loader object throws a SecurityError exception.
Note: In a future release of Adobe AIR, this API may change. When that occurs, you may need to recompile content that
uses the allowLoadBytesCodeExecution property of the LoaderContext class.

Best security practices for developers
Although AIR applications are built using web technologies, it is important for developers to note that they are not
working within the browser security sandbox. This means that it is possible to build AIR applications that can do
harm to the local system, either intentionally or unintentionally. AIR attempts to minimize this risk, but there are
still ways where vulnerabilities can be introduced. This topic covers important potential insecurities.

Contents

• “Risk from importing files into the application security sandbox” on page 43
• “Risk from using an external source to determine paths” on page 43
• “Risk from using, storing, or transmitting insecure credentials” on page 43
• “Risk from a downgrade attack” on page 43

ADOBE AIR 1
Developer Guide

43
Risk from importing files into the application security sandbox
Files that exist in the application directory are assigned to the application sandbox and have the full privileges of the
runtime. Applications that write to the local file system are advised to write to app-storage:/. This directory exists
separately from the application files on the user's computer, hence the files are not assigned to the application
sandbox and present a reduced security risk. Developers are advised to consider the following:
• Include a file in an AIR file (in the installed application) only if it is necessary.
• Include a scripting file in an AIR file (in the installed application) only if its behavior is fully understood and
trusted.
• Do not write to or modify content in the application directory. The runtime prevents applications from writing
or modifying files and directories using the app:/ URL scheme by throwing a SecurityError exception.
• Do not use data from a network source as parameters to methods of the AIR API that may lead to code execution.
This includes use of the Loader.loadBytes() method and the JavaScript eval() function.

Risk from using an external source to determine paths
An AIR application can be compromised when using external data or content. For this reason, take special care when
using data from the network or file system. The onus of trust is ultimately up to the developer and the network
connections they make, but loading foreign data is inherently risky, and should not be used for input into sensitive
operations. Developers are advised against the following:
• Using data from a network source to determine a file name
• Using data from a network source to construct a URL that the application uses to send private information

Risk from using, storing, or transmitting insecure credentials
Storing user credentials on the user's local file system inherently introduces the risk that these credentials may be
compromised. Developers are advised to consider the following:
• If credentials must be stored locally, to encrypt the credentials when writing to the local file system. The runtime
provides an encrypted storage unique to each installed application, via the EncryptedLocalStore class. For details,
see “Storing encrypted data” on page 196.
• Do not transmit unencrypted user credentials to a network source unless that source is trusted.
• Never specify a default password in credential creation — let users create their own. Users who leave the default
expose their credentials to an attacker that already knows the default password

Risk from a downgrade attack
During application install, the runtime checks to ensure that a version of the application is not currently installed. If
an application is already installed, the runtime compares the version string against the version that is being installed.
If this string is different, the user can choose to upgrade their installation. The runtime does not guarantee that the
newly installed version is newer than the older version, only that it is different. An attacker can distribute an older
version to the user to circumvent a security weakness. For this reason, the developer is advised to make version
checks when the application is run. It is a good idea to have applications check the network for required updates.
That way, even if an attacker gets the user to run an old version, that old version will recognize that it needs to be
updated. Also, using a clear versioning scheme for your application makes it more difficult to trick users into
installing a downgraded version. For details on providing application versions, see “Defining properties in the appli-
cation descriptor file” on page 46.

ADOBE AIR 1
Developer Guide

44
Code signing
All AIR installer files are required to be code signed. Code signing is a cryptographic process of confirming that the
specified origin of software is accurate. AIR applications can be signed either by linking a certificate from an external
certificate authority (CA) or by constructing your own certificate. A commercial certificate from a well-known CA
is strongly recommended and provides assurance to your users that they are installing your application, not a forgery.
However, self-signed certificates can be created using adt from the SDK or using either Flash, Flex Builder, or
another application that uses adt for certificate generation. Self-signed certificates do not provide any assurance that
the application being installed is genuine.
For more information about digitally signing AIR applications, see “Digitally signing an AIR file” on page 294 and
“Creating an AIR application using the command line tools” on page 4.

45
Chapter 8: Setting AIR application
properties

Aside from all the files and other assets that make up an AIR application, each AIR application requires an appli-
cation descriptor file—an XML file which defines the basic properties of the application.
When developing AIR applications using Adobe® AIR™ Update for Adobe® Flash® CS3 Professional, the application
descriptor file is automatically generated when you create an AIR project. You can access a panel to change the appli-
cation descriptor settings from the menu Commands > AIR - Application and Installer Settings. You can also edit
the application descriptor file by hand.

Contents

• “The application descriptor file structure” on page 45
• “Defining properties in the application descriptor file” on page 46

The application descriptor file structure
The application descriptor file contains the properties that affect the entire application, such as its name, version,
copyright, and so on. Any file name can be used for the application descriptor file. When you create an AIR file using
the default settings in Flash CS3, the application descriptor file is renamed to application.xml and placed inside
a special directory in the AIR package.
Here's an example application descriptor file:
<?xml version="1.0" encoding="utf-8" ?>
<application xmlns="http://ns.adobe.com/air/application/1.0"

minimumPatchLevel="1047">
<id>com.example.HelloWorld</id>
<version>2.0</version>
<filename>Hello World</filename>
<name>Example Co. AIR Hello World</name>
<description>

The Hello World sample file from the Adobe AIR documentation.
</description>
<copyright>Copyright (c) 2006 Example Co.</copyright>
<initialWindow>

<title>Hello World</title>
<content>

HelloWorld-debug.swf
</content>
<systemChrome>none</systemChrome>
<transparent>true</transparent>
<visible>true</visible>
<minimizable>true</minimizable>
<maximizable>false</maximizable>
<resizable>false</resizable>
<width>640</width>
<height>480</height>
<minSize>320 240</minSize>
<maxSize>1280 960</maxSize>

</initialWindow>

ADOBE AIR 1
Developer Guide

46
<installFolder>Example Co/Hello World</installFolder>
<programMenuFolder>Example Co</programMenuFolder>
<icon>

<image16x16>icons/smallIcon.png</image16x16>
<image32x32>icons/mediumIcon.png</image32x32>
<image48x48>icons/bigIcon.png</image48x48>
<image128x128>icons/biggestIcon.png</image128x128>

</icon>
<customUpdateUI>true</customUpdateUI>
<allowBrowserInvocation>false</allowBrowserInvocation>
<fileTypes>

<fileType>
<name>adobe.VideoFile</name>
<extension>avf</extension>
<description>Adobe Video File</description>
<contentType>application/vnd.adobe.video-file</contentType>
<icon>

<image16x16>icons/avfIcon_16.png</image16x16>
<image32x32>icons/avfIcon_32.png</image32x32>
<image48x48>icons/avfIcon_48.png</image48x48>
<image128x128>icons/avfIcon_128.png</image128x128>

</icon>
</fileType>

</fileTypes>
</application>

Defining properties in the application descriptor file
At its root, the application descriptor file contains an application property that has several attributes:
<application version="1.0"

xmlns="http://ns.adobe.com/air/application/1.0"
minimumPatchLevel="5331">

xmlns The AIR namespace, which you must define as the default XML namespace. The namespace changes with
each major release of AIR (but not with minor patches). The last segment of the namespace, such as “1.0” indicates
the runtime version required by the application.
minimumPatchLevel Together with the AIR namespace, this property determines the version of the runtime
required by the application. The application installer prompts the user to download and install the required version
or patch, if necessary.

Defining the basic application information
The following elements define application ID, version, name, file name, description, and copyright information:
<id>com.example.samples.TestApp</id>
<version>2.0</version>
<filename>TestApp</filename>
<name>Example Co. Test Application</name>
<description>An MP3 player.</description>
<copyright>Copyright (c) 2006 [YourCompany, Inc.]</copyright>

id An identifier string unique to the application, known as the application ID. The attribute value is restricted to
the following characters:
• 0–9
• a–z

ADOBE AIR 1
Developer Guide

47
• A–Z
• . (dot)
• - (hyphen)
The value must contain 1 to 212 characters. This element is required.
The id string typically uses a dot-separated hierarchy, in alignment with a reversed DNS domain address, a Java
package or class name, or an OS X Universal Type Identifier. The DNS-like form is not enforced, and AIR does not
create any association between the name and actual DNS domains.
version Specifies the version information for the application. (It has no relation to the version of the runtime). The
version string is an application-defined designator. AIR does not interpret the version string in any way. Thus,
version “3.0” is not assumed to be more current than version “2.0.” Examples: "1.0", ".4", "0.5", "4.9", "1.3.4a".
This element is required.
filename The string to use as a filename of the application (without extension) when the application is installed.
The application file launches the AIR application in the runtime. If no name value is provided, the filename is also
used as the name of the installation folder. This element is required.
The filename property can contain any Unicode (UTF-8) character except the following, which are prohibited from
use as filenames on various file systems:

The filename value cannot end in a period.
name (Optional, but recommended) The title displayed by the AIR application installer. If provided, the name value
is also used as the name of the installation folder (within the folder specified in the installFolder element).
description (Optional) Displayed in the AIR application installer.
copyright (Optional) The copyright information for the AIR application. On Mac OS, the copyright text appears
in the About dialog box for the installed application, and it is used in the NSHumanReadableCopyright field in the
Info.plist file for the application.

Defining the installation folder and program menu folder
The installation and program menu folders are defined with the following property settings:
<installFolder>Acme</installFolder>
<programMenuFolder>Acme/Applications</programMenuFolder>

installFolder (Optional) Identifies the subdirectory of the default installation directory.

Character Hex Code

various 0x00 – x1F

* x2A

" x22

: x3A

> x3C

< x3E

? x3F

\ x5C

| x7C

ADOBE AIR 1
Developer Guide

48
On Windows, the default installation subdirectory is the Program Files directory. On Mac OS, it is the /Applications
directory. For example, if the installFolder property is set to "Acme" and an application is named "ExampleApp",
then the application is installed in C:\Program Files\Acme\ExampleApp on Windows and in /Applica-
tions/Acme/Example.app on MacOS.
Use the forward-slash (/) character as the directory separator character if you want to specify a nested subdirectory,
as in the following:
<installFolder>Acme/Power Tools</installFolder>

The installFolder property can contain any Unicode (UTF-8) character except those that are prohibited from use
as folder names on various file systems (see the filename property above for the list of exceptions).
The installFolder property is optional. If you specify no installFolder property, the application is installed in
a subdirectory of the default installation directory, based on the name property.
programMenuFolder (Optional) Identifies the location in which to place shortcuts to the application in the All
Programs menu of the Windows operating system. (This setting is currently ignored on other operating systems.)
The restrictions on the characters that are allowed in the value of the property are the same as those for the
installFolder property.

Defining the properties of the initial application window
When an AIR application is loaded, the runtime uses the values in the initialWindow element to create the initial
window for the application. The runtime then loads the SWF or HTML file specified in the content element into
the window.
<initialWindow>

<content>AIRTunes.swf</content>
<title>AIR Tunes</title>
<systemChrome>none</systemChrome>
<transparent>true</transparent>
<visible>true</visible>
<minimizable>true</minimizable>
<maximizable>true</maximizable>
<resizable>true</resizable>
<width>400</width>
<height>600</height>
<x>150</x>
<y>150</y>
<minSize>300 300</minSize>
<maxSize>800 800</maxSize>

</initialWindow>

The child elements of the initialWindow element set the properties of the window into which the root content file
is loaded.
content The value specified for the content element is the URL for the main content file of the application. This
may be either a SWF file or an HTML file. The URL is specified relative to the root of the application installation
folder. (When running an AIR application with ADL, the URL is relative to the folder containing the application
descriptor file. You can use the root-dir parameter of ADL to specify a different root directory.)
Note: Because the value of the content element is treated as a URL, characters in the name of the content file must be
URL encoded according to the rules defined in RFC 1738. Space characters, for example, must be encoded as %20.
title (Optional) The window title.
systemChrome (Optional) If you set this attribute to standard, the standard system chrome supplied by the
operating system is displayed. If you set it to none, no system chrome is displayed. The system chrome setting cannot
be changed at run time.

http://tools.ietf.org/html/rfc1738

ADOBE AIR 1
Developer Guide

49
transparent (Optional) Set to "true" if you want the application window to support alpha blending. A window
with transparency may draw more slowly and require more memory. The transparent setting cannot be changed at
run time.
Important: You can only set transparent to true when systemChrome is none.
visible (Optional) Set to true if you want the main window to be visible as soon as it is created. The default value
is false.
You may want to leave the main window hidden initially, so that changes to the window’s position, the window’s size,
and the layout of its contents are not shown. You can then display the window by setting the
stage.nativeWindow.visible property (for the main window) to true. For details, see “Working with native
windows” on page 58.
x, y, width, height (Optional) The initial bounds of the main window of the application. If you do not set these
values, the window size is determined by the settings in the root SWF file or, in the case of HTML, by the operating
system.
minSize, maxSize (Optional) The minimum and maximum sizes of the window. If you do not set these values,
they are determined by the operating system.
minimizable, maximizable, resizable (Optional) Specifies whether the window can be minimized,
maximized, and resized. By default, these settings default to true.
Note: On operating systems, such as Mac OS X, for which maximizing windows is a resizing operation, both maximi-
zable and resizable must be set to false to prevent the window from being zoomed or resized.

Specifying icon files
The icon property specifies one or more icon files to be used for the application. Including an icon is optional. If you
do not specify an icon property, the operating system displays a default icon.
The path specified is relative to the application root directory. Icon files must be in the PNG format. You can specify
all of the following icon sizes:
<icon>

<image16x16>icons/smallIcon.png</image16x16>
<image32x32>icons/mediumIcon.png</image32x32>
<image48x48>icons/bigIcon.png</image48x48>
<image128x128>icons/biggestIcon.png</image128x128>

</icon>

If an element for a given size is present, the image in the file must be exactly the size specified. If all sizes are not
provided, the closest size is scaled to fit for a given use of the icon by the operating system.
Note: The icons specified are not automatically added to the AIR package. The icon files must be included in their correct
relative locations when the application is packaged.
For best results, provide an image for each of the available sizes. In addition, make sure that the icons look
presentable in both 16- and 32-bit color modes.

Providing a custom user interface for application updates
AIR installs and updates applications using the default installation dialogs. However, you can provide your own user
interface for updating an application. To indicate that your application should handle the update process itself, set
the customUpdateUI element to true:
<customUpdateUI>true</customUpdateUI>

ADOBE AIR 1
Developer Guide

50
When the installed version of your application has the customUpdateUI element set to true and the user then
double-clicks the AIR file for a new version or installs an update of the application using the seamless install feature,
the runtime opens the installed version of the application, rather than the default AIR application installer. Your
application logic can then determine how to proceed with the update operation. (The application ID and publisher
ID in the AIR file must match those in the installed application for an upgrade to proceed.)
Note: The customUpdateUI mechanism only comes into play when the application is already installed and the user
double-clicks the AIR installation file containing an update or installs an update of the application using the seamless
install feature. You can download and start an update through your own application logic, displaying your custom UI
as necessary, whether or not customUpdateUI is true.
For more information, see “Updating AIR applications” on page 299.

Allowing browser invocation of the application
If you specify the following setting, the installed AIR application can be launched via the browser invocation feature
(by the user clicking a link in a page in a web browser):
<allowBrowserInvocation>true</allowBrowserInvocation>

The default value is false.
If you set this value to true, be sure to consider security implications, described in “Browser invocation”
on page 266.
For more information, see “Installing and running AIR applications from a web page” on page 287.

Declaring file type associations
The fileTypes element allows you to declare the file types with which an AIR application can be associated. When
an AIR application is installed, any declared file type is registered with the operating system and, if these file types
are not already associated with another application, they are associated with the AIR application. To override an
existing association between a file type and another application, use the
NativeApplication.setAsDefaultApplication() method at run time (preferably with the user’s permission).
Note: The runtime methods can only manage associations for the file types declared in the application descriptor.
<fileTypes>

<fileType>
<name>adobe.VideoFile</name>
<extension>avf</extension>
<description>Adobe Video File</description>
<contentType>application/vnd.adobe.video-file</contentType>
<icon>

<image16x16>icons/AIRApp_16.png</image16x16>
<image32x32>icons/AIRApp_32.png</image32x32>
<image48x48>icons/AIRApp_48.png</image48x48>
<image128x128>icons/AIRApp_128.png</image128x128>

</icon>
</fileType>

</fileTypes>

The fileTypes element is optional. If present, it may contain any number of fileType elements.
The name and extension elements are required for each fileType declaration that you include. The same name
can be used for multiple extensions. The extension uniquely identifies the file type. (Note that the extension is
specified without the preceding period.) The description element is optional and is displayed to the user by the
operating system user interface. The contentType property is also optional, but helps the operating system to locate
the best application to open a file under some circumstances. The value should be the MIME type of the file content.

ADOBE AIR 1
Developer Guide

51
Icons can be specified for the file extension, using the same format as the application icon element. The icon files
must also be included in the AIR installation file (they are not packaged automatically).
When a file type is associated with an AIR application, the application will be invoked whenever a user opens a file
of that type. If the application is already running, AIR will dispatch the InvokeEvent object to the running instance.
Otherwise, AIR will launch the application first. In both cases, the path to the file can be retrieved from the
InvokeEvent object dispatched by the NativeApplication object. You can use this path to open the file.

See also
• “Managing file associations” on page 272
• “Capturing command line arguments” on page 264

52
Chapter 9: New functionality in Adobe
AIR

This topic provides an overview of the new functionality in Adobe® AIR™ that is not available to SWF content
running in Adobe® Flash® Player.
• New runtime classes
• Runtime classes with new functionality
• Service monitoring framework classes

New runtime classes
The following runtime classes are new in Adobe AIR. They are not available to SWF content running in the browser:

Class Package

BrowserInvokeEvent flash.events

Clipboard flash.desktop

ClipboardFormats flash.desktop

ClipboardTransferMode flash.desktop

CompressionAlgorithm flash.utils

DockIcon flash.desktop

DRMAuthenticateEvent flash.events

DRMErrorEvent flash.events

DRMStatusEvent flash.events

EncryptedLocalStore flash.data

File flash.filesystem

FileListEvent flash.events

FileMode flash.filesystem

FileStream flash.filesystem

FocusDirection flash.display

HTMLHistoryItem flash.html

HTMLHost flash.html

HTMLLoader flash.html

HTMLPDFCapability flash.html

HTMLUncaughtScriptExceptionEvent flash.events

http://www.adobe.com/go/learn_air_aslr_en?flash/events/BrowserInvokeEvent.html
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/Clipboard.html
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/ClipboardFormats.html
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/ClipboardTransferMode.html
http://www.adobe.com/go/learn_air_aslr_en?flash/utils/CompressionAlgorithm.html
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/DockIcon.html
http://www.adobe.com/go/learn_air_aslr_en?flash/events/DRMAuthenticateEvent.html
http://www.adobe.com/go/learn_air_aslr_en?flash/events/DRMErrorEvent.html
http://www.adobe.com/go/learn_air_aslr_en?flash/events/DRMStatusEvent.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/EncryptedLocalStore.html
http://www.adobe.com/go/learn_air_aslr_en?flash/filesystem/File.html
http://www.adobe.com/go/learn_air_aslr_en?flash/events/FileListEvent.html
http://www.adobe.com/go/learn_air_aslr_en?flash/filesystem/FileMode.html
http://www.adobe.com/go/learn_air_aslr_en?flash/filesystem/FileStream.html
http://www.adobe.com/go/learn_air_aslr_en?flash/display/FocusDirection.html
http://www.adobe.com/go/learn_air_aslr_en?flash/html/HTMLHistoryItem.html
http://www.adobe.com/go/learn_air_aslr_en?flash/html/HTMLHost.html
http://www.adobe.com/go/learn_air_aslr_en?flash/html/HTMLLoader.html
http://www.adobe.com/go/learn_air_aslr_en?flash/html/HTMLPDFCapability.html
http://www.adobe.com/go/learn_air_aslr_en?flash/events/HTMLUncaughtScriptExceptionEvent.html

ADOBE AIR 1
Developer Guide

53
HTMLWindowCreateOptions flash.html

Icon flash.desktop

InteractiveIcon flash.desktop

InvokeEvent flash.events

NativeApplication flash.desktop

NativeDragActions flash.desktop

NativeDragEvent flash.events

NativeDragManager flash.desktop

NativeDragOptions flash.desktop

NativeMenu flash.display

NativeMenuItem flash.display

NativeWindow flash.display

NativeWindowBoundsEvent flash.events

NativeWindowDisplayState flash.display

NativeWindowDisplayStateEvent flash.events

NativeWindowInitOptions flash.display

NativeWindowResize flash.display

NativeWindowSystemChrome flash.display

NativeWindowType flash.display

NotificationType flash.desktop

OutputProgressEvent flash.events

RevocationCheckSettings flash.security

Screen flash.display

ScreenMouseEvent flash.events

SignatureStatus flash.security

SignerTrustSettings flash.security

SQLCollationType flash.data

SQLColumnNameStyle flash.data

SQLColumnSchema flash.data

SQLConnection flash.data

SQLError flash.errors

SQLErrorEvent flash.events

SQLErrorOperation flash.errors

Class Package

http://www.adobe.com/go/learn_air_aslr_en?flash/html/HTMLWindowCreateOptions.html
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/Icon.html
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/InteractiveIcon.html
http://www.adobe.com/go/learn_air_aslr_en?flash/events/InvokeEvent.html
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/NativeApplication.html
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/NativeDragActions.html
http://www.adobe.com/go/learn_air_aslr_en?flash/events/NativeDragEvent.html
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/NativeDragManager.html
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/NativeDragOptions.html
http://www.adobe.com/go/learn_air_aslr_en?flash/display/NativeMenu.html
http://www.adobe.com/go/learn_air_aslr_en?flash/display/NativeMenuItem.html
http://www.adobe.com/go/learn_air_aslr_en?flash/display/NativeWindow.html
http://www.adobe.com/go/learn_air_aslr_en?flash/events/NativeWindowBoundsEvent.html
http://www.adobe.com/go/learn_air_aslr_en?flash/display/NativeWindowDisplayState.html
http://www.adobe.com/go/learn_air_aslr_en?flash/events/NativeWindowDisplayStateEvent.html
http://www.adobe.com/go/learn_air_aslr_en?flash/display/NativeWindowInitOptions.html
http://www.adobe.com/go/learn_air_aslr_en?flash/display/NativeWindowResize.html
http://www.adobe.com/go/learn_air_aslr_en?flash/display/NativeWindowSystemChrome.html
http://www.adobe.com/go/learn_air_aslr_en?flash/display/NativeWindowType.html
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/NotificationType.html
http://www.adobe.com/go/learn_air_aslr_en?flash/events/OutputProgressEvent.html
http://www.adobe.com/go/learn_air_aslr_en?flash/security/RevocationCheckSettings.html
http://www.adobe.com/go/learn_air_aslr_en?flash/display/Screen.html
http://www.adobe.com/go/learn_air_aslr_en?flash/events/ScreenMouseEvent.html
http://www.adobe.com/go/learn_air_aslr_en?flash/security/SignatureStatus.html
http://www.adobe.com/go/learn_air_aslr_en?flash/security/SignerTrustSettings.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLCollationType.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLColumnNameStyle.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLColumnSchema.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLConnection.html
http://www.adobe.com/go/learn_air_aslr_en?flash/errors/SQLError.html
http://www.adobe.com/go/learn_air_aslr_en?flash/events/SQLErrorEvent.html
http://www.adobe.com/go/learn_air_aslr_en?flash/errors/SQLErrorOperation.html

ADOBE AIR 1
Developer Guide

54
Also, the flash.security package includes the IURIDereferencer interface.

SQLEvent flash.events

SQLIndexSchema flash.data

SQLResult flash.data

SQLSchema flash.data

SQLSchemaResult flash.data

SQLStatement flash.data

SQLTableSchema flash.data

SQLTransactionLockType flash.data

SQLTriggerSchema flash.data

SQLUpdateEvent flash.events

SQLViewSchema flash.data

SystemTrayIcon flash.desktop

Updater flash.desktop

URLRequestDefaults flash.net

XMLSignatureValidator flash.utils

Class Package

http://www.adobe.com/go/learn_air_aslr_en?flash/security/IURIDereferencer.html
http://www.adobe.com/go/learn_air_aslr_en?flash/events/SQLEvent.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLIndexSchema.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLResult.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLSchema.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLSchemaResult.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLStatement.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLTableSchema.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLTransactionLockType.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLTriggerSchema.html
http://www.adobe.com/go/learn_air_aslr_en?flash/events/SQLUpdateEvent.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLViewSchema.html
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/SystemTrayIcon.html
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/Updater.html
http://www.adobe.com/go/learn_air_aslr_en?flash/net/URLRequestDefaults.html
http://www.adobe.com/go/learn_air_aslr_en?flash/security/XMLSignatureValidator.html

ADOBE AIR 1
Developer Guide

55
Runtime classes with new functionality
The following classes are available to SWF content running in the browser, but AIR provides additional properties
or methods:

Class Property or Method

Event DISPLAYING

EXITING

HTML_BOUNDS_CHANGE

HTML_DOM_INITIALIZE

HTML_RENDER

LOCATION_CHANGE

NETWORK_CHANGE

USER_IDLE

USER_PRESENT

FileReference uploadUnencoded()

HTTPStatusEvent HTTP_RESPONSE_STATUS

responseURL

responseHeaders

KeyboardEvent commandKey

controlKey

LoaderContext allowLoadBytesCodeExecution

LoaderInfo parentSandboxBridge

childSandboxBridge

NetStream resetDRMVouchers()

setDRMAuthenticationCredentials()

URLRequest followRedirects

manageCookies

shouldAuthenticate

shouldCacheResponse

userAgent

userCache

setLoginCredentials()

URLStream httpResponseStatus event

Stage nativeWindow

Security APPLICATION

http://www.adobe.com/go/learn_air_aslr_en?flash/events/Event.html
http://www.adobe.com/go/learn_air_aslr_en?flash/net/FileReference.html
http://www.adobe.com/go/learn_air_aslr_en?flash/events/HTTPStatusEvent.html
http://www.adobe.com/go/learn_air_aslr_en?flash/events/KeyboardEvent.html
http://www.adobe.com/go/learn_air_aslr_en?flash/system/LoaderContext.html
http://www.adobe.com/go/learn_air_aslr_en?flash/display/LoaderInfo.html
http://www.adobe.com/go/learn_air_aslr_en?flash/net/NetStream.html
http://www.adobe.com/go/learn_air_aslr_en?flash/net/URLRequest.html
http://www.adobe.com/go/learn_air_aslr_en?flash/net/URLStream.html
http://www.adobe.com/go/learn_air_aslr_en?flash/display/Stage.html
http://www.adobe.com/go/learn_air_aslr_en?flash/system/Security.html

ADOBE AIR 1
Developer Guide

56
Most of these new properties and methods are available only to content in the AIR application security sandbox.
However, the new members in the URLRequest classes are also available to content running in other sandboxes.
The ByteArray.compress() and ByteArray.uncompress() methods each include a new algorithm parameter,
allowing you to choose between deflate and zlib compression.

Service monitoring framework classes
The air.net package contains classes for network detection. This package is only available to content running in
Adobe AIR. It is included in the ServiceMonitor.swc file.
The package includes the following classes:
• ServiceMonitor
• SocketMonitor
• URLMonitor

http://www.adobe.com/go/learn_air_aslr_en?air/net/ServiceMonitor.html
http://www.adobe.com/go/learn_air_aslr_en?air/net/SocketMonitor.html
http://www.adobe.com/go/learn_air_aslr_en?air/net/URLMonitor.html

57

Part 5: Windows, menus, and taskbars

Working with native windows. .58
Screens .78
Working with native menus. .83
Taskbar icons .97

58
Chapter 10: Working with native windows

You use the classes provided by the Adobe® AIR® native window API to create and manage desktop windows.

Contents

• “AIR window basics” on page 58
• “Creating windows” on page 63
• “Managing windows” on page 69
• “Listening for window events” on page 75
• “Displaying full-screen windows” on page 76

Quick Starts (Adobe AIR Developer Center)

• Interacting with a window
• Customizing the look and feel of a native window
• Creating toast-style windows
• Controlling the display order of windows
• Creating resizable, non-rectangular windows

Language Reference

• NativeWindow
• NativeWindowInitOptions

More Information

• Adobe AIR Developer Center for Flash (search for ‘AIR windows’)

AIR window basics
AIR provides an easy-to-use, cross-platform window API for creating native operating system windows using Flash®,
Flex™, and HTML programming techniques.
With AIR, you have a wide latitude in developing the look and feel of your application. The windows you create can
look like a standard desktop application, matching Apple style when run on the Mac, and conforming to Microsoft
conventions when run on Windows. Or you can use the skinnable, extensible chrome provided by the Flex
framework to establish your own style no matter where your application is run. You can even draw your own
windows with vector and bitmap artwork with full support for transparency and alpha blending against the desktop.
Tired of rectangular windows? Draw a round one.

Contents

• “Windows in AIR” on page 59
• “Native window classes” on page 60
• “Native window event flow” on page 60
• “Properties controlling native window style and behavior” on page 61
• “A visual window catalog” on page 62

http://www.adobe.com/go/learn_air_aslr_en?flash/display/NativeWindow.html
http://www.adobe.com/go/learn_air_aslr_en?flash/display/NativeWindowInitOptions.html
http://www.adobe.com/go/learn_air_qs_window_flash_en
http://www.adobe.com/go/learn_air_qs_nonrectwindow_flash_en
http://www.adobe.com/go/learn_air_qs_customwindow_flash_en
http://www.adobe.com/go/learn_air_qs_toastwindow_flash_en
http://www.adobe.com/go/learn_air_qs_zorder_flash_en
http://www.adobe.com/devnet/air/flash/

ADOBE AIR 1
Developer Guide

59
Windows in AIR
AIR supports three distinct APIs for working with windows: the ActionScript-oriented NativeWindow class, the Flex
framework mx:WindowedApplication and mx:Window classes, which “wrap” the NativeWindow class, and, in the
HTML environment, the JavaScript Window class.

ActionScript windows

When you create windows with the NativeWindow class, you use the Flash Player stage and display list directly. To
add a visual object to a NativeWindow, you add the object to the display list of the window stage or to another display
object on the stage.

Flex Framework windows

The Flex Framework defines its own window components that wrap the NativeWindow API. These components,
mx:WindowedApplication and mx:Window, cannot be used outside the framework and thus cannot be used in AIR
applications developed with Flash Authoring.

HTML windows

When you create HTML windows, you use HTML, CSS, and JavaScript to display content. To add a visual object to
an HTML window, you add that content to the HTML DOM. HTML windows are a special category of
NativeWindow. The AIR host defines a nativeWindow property in HTML windows that provides access to the
underlying NativeWindow instance. You can use this property to access the NativeWindow properties, methods, and
events described here.
Note: The JavaScript Window object also has methods for scripting the containing window, such as moveTo() and
close(). Where overlapping methods are available, you can use the method that is most convenient.

The initial application window

The first window of your application is automatically created for you by AIR. AIR sets the properties and content of
the window using the parameters specified in the initialWindow element of the application descriptor file.
If the root content is a SWF file, AIR creates a NativeWindow instance, loads the SWF file, and adds it to the window
stage. If the root content is an HTML file, AIR creates an HTML window and loads the HTML.
For more information about the window properties specified in the application descriptor, see “The application
descriptor file structure” on page 45.

ADOBE AIR 1
Developer Guide

60
Native window classes
The native window API contains the following classes:

Native window event flow
Native windows dispatch events to notify interested components that an important change is about to occur or has
already occurred. Many window-related events are dispatched in pairs. The first event warns that a change is about
to happen. The second event announces that the change has been made. You can cancel a warning event, but not a
notification event. The following sequence illustrates the flow of events that occurs when a user clicks the maximize
button of a window:
1 The NativeWindow object dispatches a displayStateChanging event.
2 If no registered listeners cancel the event, the window maximizes.
3 The NativeWindow object dispatches a displayStateChange event.

In addition, the NativeWindow object also dispatches events for related changes to the window size and position.
The window does not dispatch warning events for these related changes. The related events are:
a A move event is dispatched if the top, left corner of the window moved because of the maximize operation.
b A resize event is dispatched if the window size changed because of the maximize operation.

A NativeWindow object dispatches a similar sequence of events when minimizing, restoring, closing, moving, and
resizing a window.
The warning events are only dispatched when a change is initiated through window chrome or other operating-
system controlled mechanism. When you call a window method to change the window size, position, or display state,
the window only dispatches an event to announce the change. You can dispatch a warning event, if desired, using the
window dispatchEvent() method, then check to see if your warning event has been canceled before proceeding
with the change.
For detailed information about the window API classes, methods, properties, and events, see the ActionScript 3.0
Language Reference for Adobe AIR (http://www.adobe.com/go/learn_air_aslr).
For general information about using the Flash display list, see the “Display Programming” section of the
Programming ActionScript 3.0 (http://www.adobe.com/go/programmingAS3) reference.

Package Classes

flash.display • NativeWindow

• NativeWindowInitOptions

Window string constants are defined in the following classes:

• NativeWindowDisplayState

• NativeWindowResize

• NativeWindowSystemChrome

• NativeWindowType

flash.events • NativeWindowBoundsEvent

• NativeWindowDisplayStateEvent

http://www.adobe.com/go/programmingAS3
http://www.adobe.com/go/learn_flex3_aslr
http://www.adobe.com/go/learn_flex3_aslr

ADOBE AIR 1
Developer Guide

61
Properties controlling native window style and behavior
The following properties control the basic appearance and behavior of a window:
• type

• systemChrome

• transparent

When you create a window, you set these properties on the NativeWindowInitOptions object passed to the window
constructor. AIR reads the properties for the initial application window from the application descriptor. (Except the
type property, which cannot be set in the application descriptor and is always set to normal.) The properties cannot
be changed after window creation.
Some settings of these properties are mutually incompatible: systemChrome cannot be set to standard when either
transparent is true or type is lightweight.

Window types

The AIR window types combine chrome and visibility attributes of the native operating system to create three
functional types of window. Use the constants defined in the NativeWindowType class to reference the type names in
code. AIR provides the following window types:

Window chrome

Window chrome is the set of controls that allow users to manipulate a window in the desktop environment. Chrome
elements include the title bar, title bar buttons, border, and resize grippers.

System chrome

You can set the systemChrome property to standard or none. Choose standard system chrome to give your
window the set of standard controls created and styled by the user’s operating system. Choose none to provide your
own chrome for the window. Use the constants defined in the NativeWindowSystemChrome class to reference the system
chrome settings in code.
System chrome is managed by the system. Your application has no direct access to the controls themselves, but can
react to the events dispatched when the controls are used. When you use standard chrome for a window, the
transparent property must be set to false and the type property must be normal or utility.

Custom chrome

When you create a window with no system chrome then you must add your own chrome controls to handle the inter-
actions between a user and the window. You are also free to make transparent, non-rectangular windows.

Window transparency

To allow alpha blending of a window with the desktop or other windows, set the window transparent property to
true. The transparent property must be set before the window is created and cannot be changed.

Type Description

Normal A typical window. Normal windows use the full-size style of chrome and appear on the Windows task bar and
the Mac OS X window menu.

Utility A tool palette. Utility windows use a slimmer version of the system chrome and do not appear on the Windows
task bar and the Mac OS-X window menu.

Lightweight Lightweight windows have no chrome and do not appear on the Windows task bar or the Mac OS X window
menu. In addition, lightweight windows do not have the System (Alt+Space) menu on Windows. Lightweight
windows are suitable for notification bubbles and controls such as combo-boxes that open a short-lived display
area. When the lightweight type is used, systemChrome must be set to none.

ADOBE AIR 1
Developer Guide

62
A transparent window has no default background. Any window area not occupied by a display object is invisible. If
a display object has an alpha setting of less than one, then anything below the object shows through, including other
display objects in the same window, other windows, and the desktop. Rendering large alpha-blended areas can be
slow, so the effect should be used conservatively.
Transparent windows are useful when you want to create applications with borders that are irregular in shape or that
“fade out” or appear to be invisible.
Transparency cannot be used with windows that have system chrome.

Transparency in an HTML application window

By default the background of HTML content displayed in HTML windows and HTMLLoader objects is opaque,
event if the containing window is transparent. To turn off the default background displayed for HTML content, set
the paintsDefaultBackground property to false. The following example creates an HTMLLoader and turns off
the default background:
var html:HTMLLoader = new HTMLLoader();
html.paintsDefaultBackground = false;

This example uses JavaScript to turn off the default background of an HTML window:
window.htmlLoader.paintsDefaultBackground = false;

If an element in the HTML document sets a background color, the background of that element is not transparent.
Setting a partial transparency (or opacity) value is not supported. However, you can use a transparent PNG-format
graphic as the background for a page or a page element to achieve a similar visual effect.

A visual window catalog
The following table illustrates the visual effects of different combinations of window property settings on the Mac
OS X and Windows operating systems:

Window settings Mac OS X Microsoft Windows
Type: normal
SystemChrome: standard
Transparent: false

Type: utility
SystemChrome: standard
Transparent: false

ADOBE AIR 1
Developer Guide

63
Note: The following system chrome elements are not supported by AIR: the OS X Toolbar, the OS X Proxy Icon, Windows
title bar icons, and alternate system chrome.

Creating windows
AIR automatically creates the first window for an application, but you can create any additional windows you need.
To create a native window, use the NativeWindow constructor method. To create an HTML window, either use the
HTMLLoader createRootWindow() method or, from an HTML document, call the JavaScript window.open()
method.

Contents

• “Specifying window initialization properties” on page 63
• “Creating the initial application window” on page 64
• “Creating a NativeWindow” on page 64
• “Creating an HTML window” on page 65
• “Adding content to a window” on page 66
• “Example: Creating a native window” on page 69

Specifying window initialization properties
The initialization properties of a window cannot be changed after the desktop window is created. These immutable
properties and their default values include:

Type: Any
SystemChrome: none
Transparent: false

Type: Any
SystemChrome: none
Transparent: true

Property Default value

systemChrome standard

type normal

transparent false

Window settings Mac OS X Microsoft Windows

ADOBE AIR 1
Developer Guide

64
Set the properties for the initial window created by AIR in the application descriptor file. The main window of an
AIR application is always type, normal. (Additional window properties can be specified in the descriptor file, such
as visible, width, and height, but these properties can be changed at any time.)
Set the properties for other native and HTML windows created by your application using the NativeWindowInitOp-
tions class. When you create a window, you must pass a NativeWindowInitOptions object specifying the window
properties to either the NativeWindow constructor function or the HTMLLoader createRootWindow() method.
The following code creates a NativeWindowInitOptions object for a utility window:
var options:NativeWindowInitOptions = new NativeWindowInitOptions();
options.systemChrome = NativeWindowSystemChrome.STANDARD;
options.type = NativeWindowType.UTILITY
options.transparent = false;
options.resizable = false;
options.maximizable = false;

Setting systemChrome to standard when transparent is true or type is lightweight is not supported.
Note: You cannot set the initialization properties for a window created with the JavaScript window.open() function.
You can, however, override how these windows are created by implementing your own HTMLHost class.

Creating the initial application window
AIR creates the initial application window based on the properties specified in the application descriptor and loads
the file referenced in the content element. The content must be a SWF or an HTML file.
The initial window can be the main window of your application or it can merely serve to launch one or more other
windows. You do not have to make it visible at all.
The Flash authoring tool automatically creates the SWF file and adds the appropriate reference to the application
descriptor when you test or publish a project for AIR. The main timeline serves as the entry point for your appli-
cation.
When your application launches, AIR creates a window and loads the application SWF file. To control the desktop
window with ActionScript, you use the nativeWindow property of the Stage object to get a reference to the
NativeWindow object. You can then set the properties of the window and call window methods.
The following example activates the main window in the maximized state (from the first frame of a Flash FLA):
import flash.display.NativeWindow;

var mainWindow:NativeWindow = this.stage.nativeWindow;
mainWindow.maximize();
mainWindow.activate();

Creating a NativeWindow
To create a NativeWindow, pass a NativeWindowInitOptions object to the NativeWindow constructor:
var options:NativeWindowInitOptions = new NativeWindowInitOptions();
options.systemChrome = NativeWindowSystemChrome.STANDARD;
options.transparent = false;
var newWindow:NativeWindow = new NativeWindow(options);

maximizable true

minimizable true

resizable true

Property Default value

ADOBE AIR 1
Developer Guide

65
The window is not shown until you set the visible property to true or call the activate() method.
Once the window is created, you can initialize its properties and load content into the window using the stage
property and Flash display list techniques.
In almost all cases, you should set the stage scaleMode property of a new native window to noScale (use the
StageScaleMode.NO_SCALE constant). The Flash scale modes are designed for situations in which the application
author does not know the aspect ratio of the application display space in advance. The scale modes let the author
choose the least-bad compromise: clip the content, stretch or squash it, or pad it with empty space. Since you control
the display space in AIR (the window frame), you can size the window to the content or the content to the window
without compromise.
Note: To determine the maximum and minimum window sizes allowed on the current operating system, use the
following static NativeWindow properties:
var maxOSSize:Point = NativeWindow.systemMaxSize;
var minOSSize:Point = NativeWindow.systemMinSize;

Creating an HTML window
To create an HTML window, you can either call the JavaScript Window.open() method, or you can call the AIR
HTMLLoader class createRootWindow() method.

HTML content in any security sandbox can use the standard JavaScript Window.open() method. If the content is
running outside the application sandbox, the open() method can only be called in response to user interaction, such
as a mouse click or keypress. When open() is called, a window with system chrome is created to display the content
at the specified URL. For example:

newWindow = window.open("xmpl.html", "logWindow", "height=600, width=400, top=10, left=10");

Note: You can extend the HTMLHost class in ActionScript to customize the window created with the JavaScript
window.open() function. See “About extending the HTMLHost class” on page 240.
Content in the application security sandbox has access to the more powerful method of creating windows,
HTMLLoader.createRootWindow(). With this method, you can specify all the creation options for a new window.
For example, the following code creates a lightweight type window without system chrome that is 300x400 pixels in
size:

var options = new air.NativeWindowInitOptions();
options.systemChrome = "none";
options.type = "lightweight";

var windowBounds = new air.Rectangle(200,250,300,400);
newHTMLLoader = air.HTMLLoader.createRootWindow(true, options, true, windowBounds);
newHTMLLoader.load(new air.URLRequest("xmpl.html"));

Note: If the content loaded by a new window is outside the application security sandbox, the window object does not
have the AIR properties: runtime, nativeWindow, or htmlLoader.
Windows created with the createRootWindow() method remain independent from the opening window. The
parent and opener properties of the JavaScript Window object are null. The opening window can access the
Window object of the new window using the HTMLLoader reference returned by the createRootWindow()
function. In the context of the previous example, the statement newHTMLLoader.window would reference the JavaS-
cript Window object of the created window.

ADOBE AIR 1
Developer Guide

66
Adding content to a window
How you add content to an AIR window depends on the type of window. You can create a movie clip and use the
timeline to control the application state. With HTML, you declaratively define the basic content of the window. You
can embed resources in the application SWF or you can load them from separate application files. Flash and HTML
content can all be created on the fly and added to a window dynamically.
When you load SWF content, or HTML content containing JavaScript, you must take the AIR security model into
consideration. Any content in the application security sandbox, that is, content installed with your application and
loadable with the app: URL scheme, has full privileges to access all the AIR APIs. Any content loaded from outside
this sandbox cannot access the AIR APIs. JavaScript content outside the application sandbox is not able to use the
runtime, nativeWindow, or htmlLoader properties of the JavaScript Window object.
To allow safe cross-scripting, you can use a sandbox bridge to provide a limited interface between application content
and non-application content. In HTML content, you can also map pages of your application into a non-application
sandbox to allow the code on that page to cross-script external content. See “AIR security” on page 26.

Loading a SWF or image

You can load Flash or images into the display list of a native window using the flash.display.Loader class:
package {

import flash.display.Sprite;
import flash.events.Event;
import flash.net.URLRequest;
import flash.display.Loader;

public class LoadedSWF extends Sprite
{

public function LoadedSWF(){
var loader:Loader = new Loader();
loader.load(new URLRequest("visual.swf"));
loader.contentLoaderInfo.addEventListener(Event.COMPLETE,loadFlash);

}

private function loadFlash(event:Event):void{
addChild(event.target.loader);

}
}

}

You can load a SWF file that contains library code for use in an HTML-based application. The simplest way to load
a SWF in an HTML window is to use the script tag, but you can also use the Loader API directly.
Note: Older SWF files created using ActionScript 1 or 2 share global states such as class definitions, singletons, and global
variables if they are loaded into the same window. If such a SWF file relies on untouched global states to work correctly,
it cannot be loaded more than once into the same window, or loaded into the same window as another SWF file using
overlapping class definitions and variables. This content can be loaded into separate windows.

Loading HTML content into a NativeWindow

To load HTML content into a NativeWindow, you can either add an HTMLLoader object to the window stage and
load the HTML content into the HTMLLoader, or create a window that already contains an HTMLLoader object by
using the HTMLLoader.createRootWindow()method. The following example displays HTML content within a 300
by 500 pixel display area on the stage of a native window:
//newWindow is a NativeWindow instance
var htmlView:HTMLLoader = new HTMLLoader();
html.width = 300;

ADOBE AIR 1
Developer Guide

67
html.height = 500;

//set the stage so display objects are added to the top-left and not scaled
newWindow.stage.align = "TL";
newWindow.stage.scaleMode = "noScale";
newWindow.stage.addChild(htmlView);

//urlString is the URL of the HTML page to load
htmlView.load(new URLRequest(urlString));

Loading SWF content within an HTML page

You can load Flash or Flex SWF files in an HTML page using standard <object> tags. The SWF content is loaded
into its own environment with an independent stage. The following tag can be used to display a SWF file on a page:
<object type="application/x-shockwave-flash" width="100%" height="100%">

<movie movie="app:/SWFFile.swf"/>
</object>

You can also use a script to load content dynamically:
<script>
function showSWF(urlString){

var display = document.getElementById("flexDisplay");
display.appendChild(createSWFObject(urlString,650,650));

}

function createSWFObject(urlString, width, height){
var SWFObject = document.createElement("object");

 SWFObject.setAttribute("type","application/x-shockwave-flash");
 SWFObject.setAttribute("width","100%");
 SWFObject.setAttribute("height","100%");
 var movieParam = document.createElement("param");
 movieParam.setAttribute("name","movie");
 movieParam.setAttribute("value",urlString);
 SWFObject.appendChild(movieParam);
 return SWFObject;
}
</script>

Adding SWF content as an overlay on an HTML window

Because HTML windows are contained within a NativeWindow instance, you can add Flash display objects both
above and below the HTML layer in the display list.
To add a display object above the HTML layer, use the addChild() method of the window.nativeWindow.stage
property. The addChild() method adds content layered above any existing content in the window.
To add a display object below the HTML layer, use the addChildAt() method of the
window.nativeWindow.stage property, passing in a value of zero for the index parameter. Placing an object at the
zero index moves existing content, including the HTML display, up one layer and insert the new content at the
bottom. For content layered underneath the HTML page to be visible, you must set the paintsDefaultBackground
property of the HTMLlLoader object to false. In addition, any elements of the page that set a background color, will
not be transparent. If, for example, you set a background color for the body element of the page, none of the page
will be transparent.
The following example illustrates how to add a Flash display objects as overlays and underlays to an HTML page.
The example creates two simple shape objects, adds one below the HTML content and one above. The example also
updates the shape position based on the enterFrame event.
<html>
<head>

ADOBE AIR 1
Developer Guide

68
<title>Bouncers</title>
<script src="AIRAliases.js" type="text/javascript"></script>
<script language="JavaScript" type="text/javascript">
air.Shape = window.runtime.flash.display.Shape;

function Bouncer(radius, color){
this.radius = radius;
this.color = color;

//velocity
this.vX = -1.3;
this.vY = -1;

//Create a Shape object and draw a circle with its graphics property
this.shape = new air.Shape();
this.shape.graphics.lineStyle(1,0);
this.shape.graphics.beginFill(this.color,.9);
this.shape.graphics.drawCircle(0,0,this.radius);
this.shape.graphics.endFill();

//Set the starting position
this.shape.x = 100;
this.shape.y = 100;

//Moves the sprite by adding (vX,vY) to the current position
this.update = function(){

this.shape.x += this.vX;
this.shape.y += this.vY;

//Keep the sprite within the window
if(this.shape.x - this.radius < 0){

this.vX = -this.vX;
}
if(this.shape.y - this.radius < 0){

this.vY = -this.vY;
}
if(this.shape.x + this.radius > window.nativeWindow.stage.stageWidth){

this.vX = -this.vX;
}
if(this.shape.y + this.radius > window.nativeWindow.stage.stageHeight){

this.vY = -this.vY;
}

};
}

function init(){
//turn off the default HTML background
window.htmlLoader.paintsDefaultBackground = false;
var bottom = new Bouncer(60,0xff2233);
var top = new Bouncer(30,0x2441ff);

//listen for the enterFrame event
window.htmlLoader.addEventListener("enterFrame",function(evt){

bottom.update();
top.update();

});

//add the bouncing shapes to the window stage
window.nativeWindow.stage.addChildAt(bottom.shape,0);

ADOBE AIR 1
Developer Guide

69
window.nativeWindow.stage.addChild(top.shape);
}
</script>
<body onload="init();">
<h1>de Finibus Bonorum et Malorum</h1>
<p>Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium
doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis
et quasi architecto beatae vitae dicta sunt explicabo.</p>
<p style="background-color:#FFFF00; color:#660000;">This paragraph has a background
color.</p>
<p>At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis
praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias
excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui
officia deserunt mollitia animi, id est laborum et dolorum fuga.</p>
</body>
</html>

Example: Creating a native window
The following example illustrates how to create a native window:
public function createNativeWindow():void {

//create the init options
var options:NativeWindowInitOptions = new NativeWindowInitOptions();
options.transparent = false;
options.systemChrome = NativeWindowSystemChrome.STANDARD;
options.type = NativeWindowType.NORMAL;

//create the window
var newWindow:NativeWindow = new NativeWindow(options);
newWindow.title = "A title";
newWindow.width = 600;
newWindow.height = 400;

newWindow.stage.align = StageAlign.TOP_LEFT;
newWindow.stage.scaleMode = StageScaleMode.NO_SCALE;

//activate and show the new window
newWindow.activate();

}

Managing windows
You use the properties and methods of the NativeWindow class to manage the appearance, behavior, and life cycle
of desktop windows.

Contents

• “Getting a NativeWindow instance” on page 70
• “Activating, showing, and hiding windows” on page 70
• “Maximizing, minimizing, and restoring a window” on page 72
• “Changing the window display order” on page 70
• “Closing a window” on page 71
• “Allowing cancellation of window operations” on page 71

ADOBE AIR 1
Developer Guide

70
• “Example: Minimizing, maximizing, restoring and closing a window” on page 72
• “Example: Resizing and moving windows” on page 74

Getting a NativeWindow instance
To manipulate a window, you must first get the window instance. You can get a window instance from one of the
following places:
The window constructor That is, the window constructor for a new NativeWindow.
The window stage That is, stage.nativeWindow.
Any display object on the stage That is, myDisplayObject.stage.nativeWindow.
A window event The target property of the event object references the window that dispatched the event.
The global nativeWindow property of an HTMLLoader or HTML window That is, window.nativeWindow.
The nativeApplication object NativeApplication.nativeApplication.activeWindow references the active
window of an application (but returns null if the active window is not a window of this AIR application). The
NativeApplication.nativeApplication.openedWindows array contains all of the windows in an AIR appli-
cation that have not been closed.

Activating, showing, and hiding windows
To activate a window, call the NativeWindow activate() method. Activating a window brings the window to the
front, gives it keyboard and mouse focus, and, if necessary, makes it visible by restoring the window or setting the
visible property to true. Activating a window does not change the ordering of other windows in the application.
Calling the activate() method causes the window to dispatch an activate event.
To show a hidden window without activating it, set the visible property to true. This brings the window to the
front, but will not assign the focus to the window.
To hide a window from view, set its visible property to false. Hiding a window suppresses the display of both the
window, any related task bar icons, and, on MacOS X, the entry in the Windows menu.
Note: On Mac OS X, it is not possible to completely hide a minimized window that has a dock icon. If the visible
property is set to false on a minimized window, the dock icon for the window is still displayed. If the user clicks the
icon, the window is restored to a visible state and displayed.

Changing the window display order
AIR provides several methods for directly changing the display order of windows. You can move a window to the
front of the display order or to the back; you can move a window above another window or behind it. At the same
time, the user can reorder windows by activating them.
You can keep a window in front of other windows by setting its alwaysInFront property to true. If more than one
window has this setting, then the display order of these windows is sorted among each other, but they are always
sorted above windows with alwaysInFront set to false. Windows in the top-most group are also displayed above
windows in other applications, even when the AIR application is not active. Because this behavior can be disruptive
to a user, setting alwaysInFront to true should only be done when necessary and appropriate. Examples of
justified uses include:
• Temporary pop-up windows for controls such as tooltips, pop-up lists, custom menus, or combo boxes. Because
these windows should close when they lose focus, the annoyance of blocking a user from viewing another window
can be avoided.

ADOBE AIR 1
Developer Guide

71
• Extremely urgent error messages and alerts. When an irrevocable change may occur if the user does not respond
in a timely manner, it may be justified to push an alert window to the forefront. However, most errors and alerts can
be handled in the normal window display order.
• Short-lived toast-style windows.
Note: AIR does not enforce proper use of the alwaysInFront property. However, if your application disrupts a user’s
workflow, it is likely to be consigned to that same user’s trash can.
The NativeWindow class provides the following properties and methods for setting the display order of a window
relative to other windows:

Note: If a window is hidden (visible is false) or minimized, then calling the display order methods has no effect.

Closing a window
To close a window, use the NativeWindow.close() method.
Closing a window unloads the contents of the window, but if other objects have references to this content, the content
objects will not be destroyed. The NativeWindow.close() method executes asynchronously, the application that is
contained in the window continues to run during the closing process. The close method dispatches a close event
when the close operation is complete. The NativeWindow object is still technically valid, but accessing most
properties and methods on a closed window generates an IllegalOperationError. You cannot reopen a closed
window. Check the closed property of a window to test whether a window has been closed. To simply hide a window
from view, set the NativeWindow.visible property to false.
If the Nativeapplication.autoExit property is true, which is the default, then the application exits when its last
window closes.

Allowing cancellation of window operations
When a window uses system chrome, user interaction with the window can be canceled by listening for, and
canceling the default behavior of the appropriate events. For example, when a user clicks the system chrome close
button, the closing event is dispatched. If any registered listener calls the preventDefault() method of the event,
then the window does not close.

Member Description

alwaysInFront property Specifies whether the window is displayed in the top-most group of windows.

In almost all cases, false is the best setting. Changing the value from false to true brings the
window to the front of all windows (but does not activate it). Changing the value from true to false
orders the window behind windows remaining in the top-most group, but still in front of other windows.
Setting the property to its current value for a window does not change the window display order.

orderToFront() Brings the window to the front.

orderInFrontOf() Brings the window directly in front of a particular window.

orderToBack() Sends the window behind other windows.

orderBehind() Sends the window directly behind a particular window.

activate() Brings the window to the front (along with making the window visible and assigning focus).

ADOBE AIR 1
Developer Guide

72
When a window does not use system chrome, notification events for intended changes are not automatically
dispatched before the change is made. Hence, if you call the methods for closing a window, changing the window
state, or set any of the window bounds properties, the change cannot be canceled. To notify components in your
application before a window change is made, your application logic can dispatch the relevant notification event using
the dispatchEvent() method of the window.
For example, the following logic implements a cancelable event handler for a window close button:
public function onCloseCommand(event:MouseEvent):void{

var closingEvent:Event = new Event(Event.CLOSING,true,true);
dispatchEvent(closing);
if(!closingEvent.isDefaultPrevented()){

win.close();
}

}

The dispatchEvent() method returns false if the event preventDefault() method is called by a listener.
However, it can also return false for other reasons, so it is better to explicitly use the isDefaultPrevented()
method to test whether the change should be canceled.

Maximizing, minimizing, and restoring a window
To maximize the window, use the NativeWindow maximize() method.
myWindow.maximize();

To minimize the window, use the NativeWindow minimize() method.
myWindow.minimize();

To restore the window (that is, return it to the size that it was before it was either minimized or maximized), use the
NativeWindow restore() method.
myWindow.restore();

Note: The behavior that results from maximizing an AIR window is different from the Mac OS X standard behavior.
Rather than toggling between an application-defined “standard” size and the last size set by the user, AIR windows toggle
between the size last set by the application or user and the full usable area of the screen.

Example: Minimizing, maximizing, restoring and closing a window
The following ActionScript example for Flash creates four clickable text fields that trigger the NativeWindow
minimize(), maximize(), restore(), and close() methods:
package
{

import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.text.TextField;

public class MinimizeExample extends Sprite
{

public function MinimizeExample():void
{

var minTextBtn:TextField = new TextField();
minTextBtn.x = 10;
minTextBtn.y = 10;
minTextBtn.text = "Minimize";
minTextBtn.background = true;
minTextBtn.border = true;
minTextBtn.selectable = false;
addChild(minTextBtn);

ADOBE AIR 1
Developer Guide

73
minTextBtn.addEventListener(MouseEvent.CLICK, onMinimize);

var maxTextBtn:TextField = new TextField();
maxTextBtn.x = 120;
maxTextBtn.y = 10;
maxTextBtn.text = "Maximize";
maxTextBtn.background = true;
maxTextBtn.border = true;
maxTextBtn.selectable = false;
addChild(maxTextBtn);
maxTextBtn.addEventListener(MouseEvent.CLICK, onMaximize);

var restoreTextBtn:TextField = new TextField();
restoreTextBtn.x = 230;
restoreTextBtn.y = 10;
restoreTextBtn.text = "Restore";
restoreTextBtn.background = true;
restoreTextBtn.border = true;
restoreTextBtn.selectable = false;
addChild(restoreTextBtn);
restoreTextBtn.addEventListener(MouseEvent.CLICK, onRestore);

var closeTextBtn:TextField = new TextField();
closeTextBtn.x = 340;
closeTextBtn.y = 10;
closeTextBtn.text = "Close Window";
closeTextBtn.background = true;
closeTextBtn.border = true;
closeTextBtn.selectable = false;
addChild(closeTextBtn);
closeTextBtn.addEventListener(MouseEvent.CLICK, onCloseWindow);

}
function onMinimize(event:MouseEvent):void
{

this.stage.nativeWindow.minimize();
}
function onMaximize(event:MouseEvent):void
{

this.stage.nativeWindow.maximize();
}
function onRestore(event:MouseEvent):void
{

this.stage.nativeWindow.restore();
}
function onCloseWindow(event:MouseEvent):void
{

this.stage.nativeWindow.close();
}

}
}

Resizing and moving a window
When a window uses system chrome, the chrome provides drag controls for resizing the window and moving around
the desktop. If a window does not use system chrome you must add your own controls to allow the user to resize and
move the window.
Note: To resize or move a window, you must first obtain a reference to the NativeWindow instance. For information
about how to obtain a window reference, see “Getting a NativeWindow instance” on page 70.

ADOBE AIR 1
Developer Guide

74
Resizing a window

To resize a window, use the NativeWindow startResize() method. When this method is called from a mouseDown
event, the resizing operation is driven by the mouse and completes when the operating system receives a mouseUp
event. When calling startResize(), you pass in an argument that specifies the edge or corner from which to resize
the window.
The scale mode of the stage determines how the window stage and its contents behaves when a window is resized.
Keep in mind that the stage scale modes are designed for situations, such as a web browser, where the application is
not in control of the size or aspect ratio of its display space. In general, you get the best results by setting the stage
scaleMode property to StageScaleMode.NO_SCALE. If you want the contents of the window to scale, you can still
set the scaleX and scaleY parameters in response to the window bounds changes.

Moving a window

To move a window without resizing it, use the NativeWindow startMove() method. Like the startResize()
method, when the startMove() method is called from a mouseDown event, the move process is mouse-driven and
completes when the operating system receives a mouseUp event.
For more information about the startResize and startMove methods, see the ActionScript 3.0 Language Reference
for Adobe AIR (http://www.adobe.com/go/learn_air_aslr).

Example: Resizing and moving windows
The following example shows how to initiate resizing and moving operations on a window:
package
{

import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.display.NativeWindowResize;

public class NativeWindowResizeExample extends Sprite
{

public function NativeWindowResizeExample():void
{

// Fills a background area.
this.graphics.beginFill(0xFFFFFF);
this.graphics.drawRect(0, 0, 400, 300);
this.graphics.endFill();

// Creates a square area where a mouse down will start the resize.
var resizeHandle:Sprite =

createSprite(0xCCCCCC, 20, this.width - 20, this.height - 20);
resizeHandle.addEventListener(MouseEvent.MOUSE_DOWN, onStartResize);

// Creates a square area where a mouse down will start the move.
var moveHandle:Sprite = createSprite(0xCCCCCC, 20, this.width - 20, 0);
moveHandle.addEventListener(MouseEvent.MOUSE_DOWN, onStartMove);

}

public function createSprite(color:int, size:int, x:int, y:int):Sprite
{

var s:Sprite = new Sprite();
s.graphics.beginFill(color);
s.graphics.drawRect(0, 0, size, size);
s.graphics.endFill();
s.x = x;
s.y = y;
this.addChild(s);

http://www.adobe.com/go/learn_flex3_aslr
http://www.adobe.com/go/learn_flex3_aslr

ADOBE AIR 1
Developer Guide

75
return s;
}

public function onStartResize(event:MouseEvent):void
{

this.stage.nativeWindow.startResize(NativeWindowResize.BOTTOM_RIGHT);
}

public function onStartMove(event:MouseEvent):void
{

this.stage.nativeWindow.startMove();
}

}
}

Listening for window events
To listen for the events dispatched by a window, register a listener with the window instance. For example, to listen
for the closing event, register a listener with the window as follows:
myWindow.addEventListener(Event.CLOSING, onClosingEvent);

When an event is dispatched, the target property references the window sending the event.
Most window events have two related messages. The first message signals that a window change is imminent (and
can be canceled), while the second message signals that the change has occurred. For example, when a user clicks the
close button of a window, the closing event message is dispatched. If no listeners cancel the event, the window closes
and the close event is dispatched to any listeners.
Typically, the warning events, such as closing, are only dispatched when system chrome has been used to trigger
an event. Calling the window close() method, for example, does not automatically dispatch the closing event—
only the close event is dispatched. You can, however, construct a closing event object and dispatch it using the
window dispatchEvent() method.
The window events that dispatch an Event object are:

The window events that dispatch an NativeWindowBoundsEvent object are:

Event Description

activate Dispatched when the window receives focus.

deactivate Dispatched when the window loses focus

closing Dispatched when the window is about to close. This only occurs automatically when the system chrome close
button is pressed or, on Mac OS X, when the Quit command is invoked.

close Dispatched when the window has closed.

Event Description

moving Dispatched immediately before the top-left corner of the window changes position, either as a result of moving,
resizing or changing the window display state.

move Dispatched after the top-left corner has changed position.

resizing Dispatched immediately before the window width or height changes either as a result of resizing or a display
state change.

resize Dispatched after the window has changed size.

ADOBE AIR 1
Developer Guide

76
For NativeWindowBoundsEvent events, you can use the beforeBounds and afterBounds properties to determine
the window bounds before and after the impending or completed change.
The window events that dispatch an NativeWindowDisplayStateEvent object are:

For NativeWindowDisplayStateEvent events, you can use the beforeDisplayState and afterDisplayState
properties to determine the window display state before and after the impending or completed change.

Displaying full-screen windows
Setting the displayState property of the Stage to StageDisplayState.FULL_SCREEN_INTERACTIVE puts the
window in full-screen mode, and keyboard input is permitted in this mode. (In SWF content running in a browser,
keyboard input is not permitted). To exit full-screen mode, the user presses the Escape key.
For example, the following Flex code defines a simple AIR application that sets up a simple full-screen terminal:
<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"

layout="vertical"
applicationComplete="init()" backgroundColor="0x003030" focusRect="false">
<mx:Script>

<![CDATA[
private function init():void
{

stage.displayState = StageDisplayState.FULL_SCREEN_INTERACTIVE;
focusManager.setFocus(terminal);
terminal.text = "Welcome to the dumb terminal app. Press the ESC key to

exit..\n";
terminal.selectionBeginIndex = terminal.text.length;
terminal.selectionEndIndex = terminal.text.length;

}
]]>

</mx:Script>
<mx:TextArea

id="terminal"
height="100%" width="100%"
scroll="false"
backgroundColor="0x003030"
color="0xCCFF00"
fontFamily="Lucida Console"
fontSize="44"/>

</mx:WindowedApplication>

The following ActionScript example for Flash simulates a simple full-screen text terminal:
{

import flash.display.Sprite;
import flash.display.StageDisplayState;
import flash.text.TextField;
import flash.text.TextFormat;

public class FullScreenTerminalExample extends Sprite
{

Event Description

displayStateChanging Dispatched immediately before the window display state changes.

displayStateChange Dispatched after the window display state has changed.

ADOBE AIR 1
Developer Guide

77
public function FullScreenTerminalExample():void
{

var terminal:TextField = new TextField();
terminal.multiline = true;
terminal.wordWrap = true;
terminal.selectable = true;
terminal.background = true;
terminal.backgroundColor = 0x00333333;

this.stage.displayState = StageDisplayState.FULL_SCREEN_INTERACTIVE;

addChild(terminal);
terminal.width = 550;
terminal.height = 400;

terminal.text = "Welcome to the dumb terminal application. Press the ESC key to
exit.\n_";

var tf:TextFormat = new TextFormat();
tf.font = "Courier New";
tf.color = 0x00CCFF00;
tf.size = 12;
terminal.setTextFormat(tf);

terminal.setSelection(terminal.text.length - 1, terminal.text.length);
}

}
}

78
Chapter 11: Screens

Use the Adobe® AIR® Screen class to access information about the desktop display screens attached to a computer.

Contents

• “Screen basics” on page 78
• “Enumerating the screens” on page 79

Quick Starts (Adobe AIR Developer Center)

• Measuring the virtual desktop

Language Reference

• Screen

More information

• Adobe AIR Developer Center for Flash (search for ‘AIR screens’)

Screen basics
The screen API contains a single class, Screen, which provides static members for getting system screen information,
and instance members for describing a particular screen.
A computer system can have several monitors or displays attached, which can correspond to several desktop screens
arranged in a virtual space. The AIR Screen class provides information about the screens, their relative arrangement,
and their usable space. If more than one monitor maps to the same screen, only one screen exists. If the size of a
screen is larger than the display area of the monitor, there is no way to determine which portion of the screen is
currently visible.

http://www.adobe.com/go/learn_air_aslr_en?flash/display/Screen.html
http://www.adobe.com/devnet/air/flash/
http://www.adobe.com/go/learn_air_qs_virtualdesktop_flash_en

ADOBE AIR 1
Developer Guide

79
A screen represents an independent desktop display area. Screens are described as rectangles within the virtual
desktop. The top-left corner of screen designated as the primary display is the origin of the virtual desktop
coordinate system. All values used to describe a screen are provided in pixels.

In this screen arrangement, two screens exist on the virtual desktop. The coordinates of the top-left corner of the main screen (#1) are always
(0,0). If the screen arrangement is changed to designate screen #2 as the main screen, then the coordinates of screen #1 become negative.
Menubars, taskbars, and docks are excluded when reporting the usable bounds for a screen.

For detailed information about the screen API class, methods, properties, and events, see the AIR ActionScript 3.0
Language Reference for Adobe AIR (http://www.adobe.com/go/learn_air_aslr).

Enumerating the screens
You can enumerate the screens of the virtual desktop with the following screen methods and properties:

You should not save the values returned by the Screen class methods and properties. The user or operating system
can change the available screens and their arrangement at any time.

Method or Property Description

Screen.screens Provides an array of Screen objects describing the available screens. Note that the order of the array is
not significant.

Screen.mainScreen Provides a Screen object for the main screen. On Mac OS X, the main screen is the screen displaying the
menu bar. On Windows, the main screen is the system-designated primary screen.

Screen.getScreensForRectangle() Provides an array of Screen objects describing the screens intersected by the given rectangle. The rect-
angle passed to this method is in pixel coordinates on the virtual desktop. If no screens intersect the rect-
angle, then the array is empty. You can use this method to find out on which screens a window is
displayed.

ADOBE AIR 1
Developer Guide

80
The following example uses the screen API to move a window between multiple screens in response to pressing the
arrow keys. To move the window to the next screen, the example gets the screens array and sorts it either vertically
or horizontally (depending on the arrow key pressed). The code then walks through the sorted array, comparing each
screen to the coordinates of the current screen. To identify the current screen of the window, the example calls
Screen.getScreensForRectangle(), passing in the window bounds.
package {

import flash.display.Sprite;
import flash.display.Screen;
import flash.events.KeyboardEvent;
import flash.ui.Keyboard;
import flash.display.StageAlign;
import flash.display.StageScaleMode;

public class ScreenExample extends Sprite
{

public function ScreenExample()
{

stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO_SCALE;

stage.addEventListener(KeyboardEvent.KEY_DOWN,onKey);

}

private function onKey(event:KeyboardEvent):void{
if(Screen.screens.length > 1){

switch(event.keyCode){
case Keyboard.LEFT :

moveLeft();
break;

case Keyboard.RIGHT :
moveRight();
break;

case Keyboard.UP :
moveUp();
break;

case Keyboard.DOWN :
moveDown();
break;

}
}

}

private function moveLeft():void{
var currentScreen = getCurrentScreen();
var left:Array = Screen.screens;
left.sort(sortHorizontal);
for(var i:int = 0; i < left.length - 1; i++){

if(left[i].bounds.left < stage.nativeWindow.bounds.left){
stage.nativeWindow.x +=

left[i].bounds.left - currentScreen.bounds.left;
stage.nativeWindow.y += left[i].bounds.top - currentScreen.bounds.top;

}
}

}

private function moveRight():void{
var currentScreen:Screen = getCurrentScreen();
var left:Array = Screen.screens;
left.sort(sortHorizontal);

ADOBE AIR 1
Developer Guide

81
for(var i:int = left.length - 1; i > 0; i--){
if(left[i].bounds.left > stage.nativeWindow.bounds.left){

stage.nativeWindow.x +=
left[i].bounds.left - currentScreen.bounds.left;

stage.nativeWindow.y += left[i].bounds.top - currentScreen.bounds.top;
}

}
}

private function moveUp():void{
var currentScreen:Screen = getCurrentScreen();
var top:Array = Screen.screens;
top.sort(sortVertical);
for(var i:int = 0; i < top.length - 1; i++){

if(top[i].bounds.top < stage.nativeWindow.bounds.top){
stage.nativeWindow.x += top[i].bounds.left - currentScreen.bounds.left;
stage.nativeWindow.y += top[i].bounds.top - currentScreen.bounds.top;
break;

}
}

}

private function moveDown():void{
var currentScreen:Screen = getCurrentScreen();

var top:Array = Screen.screens;
top.sort(sortVertical);
for(var i:int = top.length - 1; i > 0; i--){

if(top[i].bounds.top > stage.nativeWindow.bounds.top){
stage.nativeWindow.x += top[i].bounds.left - currentScreen.bounds.left;
stage.nativeWindow.y += top[i].bounds.top - currentScreen.bounds.top;
break;

}
}

}

private function sortHorizontal(a:Screen,b:Screen):int{
if (a.bounds.left > b.bounds.left){

return 1;
} else if (a.bounds.left < b.bounds.left){

return -1;
} else {return 0;}

}

private function sortVertical(a:Screen,b:Screen):int{
if (a.bounds.top > b.bounds.top){

return 1;
} else if (a.bounds.top < b.bounds.top){

return -1;
} else {return 0;}

}

private function getCurrentScreen():Screen{
var current:Screen;
var screens:Array = Screen.getScreensForRectangle(stage.nativeWindow.bounds);
(screens.length > 0) ? current = screens[0] : current = Screen.mainScreen;
return current;

}
}

}

ADOBE AIR 1
Developer Guide

82

83
Chapter 12: Working with native menus

Use the classes in the native menu API to define application, window, context, and pop-up menus.

Contents

• “AIR menu basics” on page 83
• “Creating native menus” on page 87
• “About context menus” on page 89
• “About context menus in HTML” on page 90
• “Defining native menus declaratively” on page 91
• “Displaying pop-up menus” on page 92
• “Handling menu events” on page 92
• “Example: Window and application menu” on page 94

Quick Starts (Adobe AIR Developer Center)

• Adding native menus to an AIR application
• Adding native menus to an AIR application

Language Reference

• NativeMenu
• NativeMenuItem

More information

• Adobe AIR Developer Center for Flash (search for ’AIR menus’)

AIR menu basics
The native menu classes allow you to access the native menu features of the operating system on which your appli-
cation is running. NativeMenu objects can be used for application menus (available on OS X), window menus
(available on Windows), context menus, and pop-up menus.

Contents

• “AIR menu classes” on page 84
• “Menu varieties” on page 84
• “Menu structure” on page 85
• “Menu events” on page 86
• “Key equivalents for menu commands” on page 86
• “Mnemonics” on page 87
• “Menu item state” on page 87
• “Attaching an object to a menu item” on page 87

http://www.adobe.com/go/learn_air_aslr_en?flash/display/NativeMenu.html
http://www.adobe.com/go/learn_air_aslr_en?flash/display/NativeMenuItem.html
http://www.adobe.com/go/learn_air_qs_menus_en
http://www.adobe.com/devnet/air/flash/
http://www.adobe.com/go/learn_air_qs_menus_flash_en

ADOBE AIR 1
Developer Guide

84
AIR menu classes
The Adobe® AIR™ Menu classes include:

Menu varieties
AIR supports the following types of menus:
Application menus An application menu is a global menu that applies to the entire application. Application menus
are supported on Mac OS X, but not on Windows. On Mac OS X, the operating system automatically creates an appli-
cation menu. You can use the AIR menu API to add items and submenus to the standard menus. You can add
listeners for handling the existing menu commands. Or you can remove existing items.
Window menus A window menu is associated with a single window and is displayed below the title bar. Menus can
be added to a window by creating a NativeMenu object and assigning it to the menu property of the NativeWindow

object. Window menus are supported on the Windows operating system, but not on Mac OS X. Native menus can
only be used with windows that have system chrome.
Context menus Context menus open in response to a right-click or command-click on an interactive object in SWF
content or a document element in HTML content. You can create a context menu using the AIR NativeMenu class.
(You can also use the legacy Adobe® Flash® ContextMenu class.) In HTML content, you can use the Webkit HTML
and JavaScript APIs to add context menus to an HTML element.
Dock and system tray icon menus These icon menus are similar to context menus and are assigned to an application
icon in the Mac OS X dock or Windows notification area. Dock and system tray icon menus use the NativeMenu
class. On Mac OS X, the items in the menu are added above the standard operating system items. On Windows, there
is no standard menu.
Pop-up menus An AIR pop-up menu is like a context menu, but is not necessarily associated with a particular appli-
cation object or component. Pop-up menus can be displayed anywhere in a window by calling the display()
method of any NativeMenu object.
Custom menus Native menus are drawn entirely by the operating system and, as such, exist outside the Flash and
HTML rendering models. You are free to create your own non-native menus using MXML, ActionScript, or JavaS-
cript. The AIR menu classes do not provide any facility for controlling the drawing of native menus.

Default menus

The following default menus are provided by the operating system or a built-in AIR class:
• Application menu on Mac OS X
• Dock icon menu on Mac OS X
• Context menu for selected text and images in HTML content
• Context menu for selected text in a TextField object (or an object that extends TextField)

Package Classes

flash.display • NativeMenu

• NativeMenuItem

flash.ui • ContextMenu

• ContextMenuItem

flash.events • Event

• ContextMenuEvent

ADOBE AIR 1
Developer Guide

85
Menu structure
Menus are hierarchical in nature. NativeMenu objects contain child NativeMenuItem objects. NativeMenuItem
objects that represent submenus, in turn, can contain NativeMenu objects. The top- or root-level menu object in the
structure represents the menu bar for application and window menus. (Context, icon, and pop-up menus don’t have
a menu bar).
The following diagram illustrates the structure of a typical menu. The root menu represents the menu bar and
contains two menu items referencing a File submenu and an Edit submenu. The File submenu in this structure
contains two command items and an item that references an Open Recent Menu submenu, which, itself, contains
three items. The Edit submenu contains three commands and a separator.

Defining a submenu requires both a NativeMenu and a NativeMenuItem object. The NativeMenuItem object defines
the label displayed in the parent menu and allows the user to open the submenu. The NativeMenu object serves as a
container for items in the submenu. The NativeMenuItem object references the NativeMenu object through the
NativeMenuItem submenu property.
To view a code example that creates this menu see “Example: Window and application menu” on page 94.

ADOBE AIR 1
Developer Guide

86
Menu events
NativeMenu and NativeMenuItem objects both dispatch displaying and select events:
Displaying: Immediately before a menu is displayed, the menu and its menu items dispatch a displaying event to
any registered listeners. The displaying event gives you an opportunity to update the menu contents or item
appearance before it is shown to the user. For example, in the listener for the displaying event of an “Open Recent”
menu, you could change the menu items to reflect the current list of recently viewed documents.
The target property of the event object is always the menu that is about to be displayed. The currentTarget is the
object on which the listener is registered: either the menu itself, or one of its items.
Note: The displaying event is also dispatched whenever the state of the menu or one of its items is accessed.
Select: When a command item is chosen by the user, the item dispatches a select event to any registered listeners.
Submenu and separator items cannot be selected and so never dispatch a select event.
A select event bubbles up from a menu item to its containing menu, on up to the root menu. You can listen for
select events directly on an item and you can listen higher up in the menu structure. When you listen for the
select event on a menu, you can identify the selected item using the event target property. As the event bubbles
up through the menu hierarchy, the currentTarget property of the event object identifies the current menu object.
Note: ContextMenu and ContextMenuItem objects dispatch menuItemSelect and menuSelect events as well as
select and displaying events.

Key equivalents for menu commands
You can assign a key equivalent (sometimes called an accelerator) to a menu command. The menu item dispatches
a select event to any registered listeners when the key, or key combination is pressed. The menu containing the
item must be part of the menu of the application or the active window for the command to be invoked.
Key equivalents have two parts, a string representing the primary key and an array of modifier keys that must also
be pressed. To assign the primary key, set the menu item keyEquivalent property to the single character string for
that key. If you use an uppercase letter, the shift key is added to the modifier array automatically.
On Mac OS X, the default modifier is the command key (Keyboard.COMMAND). On Windows, it is the control key
(Keyboard.CONTROL). These default keys are automatically added to the modifier array. To assign different modifier
keys, assign a new array containing the desired key codes to the keyEquivalentModifiers property. The default
array is overwritten. Whether or not you use the default modifiers or assign your own modifier array, the shift key
is added if the string you assign to the keyEquivalent property is an uppercase letter. Constants for the key codes
to use for the modifier keys are defined in the Keyboard class.
The assigned key equivalent string is automatically displayed beside the menu item name. The format depends on
the user’s operating system and system preferences.
Note: If you assign the Keyboard.COMMAND value to a key modifier array on the Windows operating system, no key
equivalent is displayed in the menu. However, the control key must be used to activate the menu command.
The following example assigns Ctrl+Shift+G as the key equivalent for a menu item:
var item:NativeMenuItem = new NativeMenuItem("Ungroup");
item.keyEquivalent = "G";

This example assigns Ctrl+Shift+G as the key equivalent by setting the modifier array directly:
var item:NativeMenuItem = new NativeMenuItem("Ungroup");
item.keyEquivalent = "G";
item.keyEquivalentModifiers = [Keyboard.CONTROL];

Note: Key equivalents are only triggered for application and window menus. If you add a key equivalent to a context or
pop-up menu, the key equivalent is displayed in the menu label, but the associated menu command is never invoked.

ADOBE AIR 1
Developer Guide

87
Mnemonics
Mnemonics are part of the operating system keyboard interface to menus. Both Mac OS X and Windows allow users
to open menus and select commands with the keyboard, but there are subtle differences. On Mac OS X, the user
types the first letter or two of the menu or command and then types return.
On Windows, only a single letter is significant. By default, the significant letter is the first character in the label, but
if you assign a mnemonic to the menu item, then the significant character becomes the designated letter. If two items
in a menu have the same significant character (whether or not a mnemonic has been assigned), then the user’s
keyboard interaction with the menu changes slightly. Instead of pressing a single letter to select the menu or
command, the user must press the letter as many times as necessary to highlight the desired item and then press the
enter key to complete the selection. To maintain a consistent behavior, it is advisable to assign a unique mnemonic
to each item in a menu for window menus.
Specify the mnemonic character as an index into the label string. The index of the first character in a label is 0. Thus,
to use “r” as the mnemonic for a menu item labeled, “Format,” you would set the mnemonicIndex property equal to 2.
var item:NativeMenuItem = new NativeMenuItem("Format");
item.mnemonicIndex = 2;

Menu item state
Menu items have the two state properties, checked and enabled:
checked Set to true to display a check mark next to the item label.
var item:NativeMenuItem = new NativeMenuItem("Format");
item.checked = true;

enabled Toggle the value between true and false to control whether the command is enabled. Disabled items are
visually “grayed-out” and do not dispatch select events.
var item:NativeMenuItem = new NativeMenuItem("Format");
item.enabled = false;

Attaching an object to a menu item
The data property of the NativeMenuItem class allows you to reference an arbitrary object in each item. For
example, in an “Open Recent” menu, you could assign the File object for each document to each menu item.
var file:File = File.applicationStorageDirectory.resolvePath("GreatGatsby.pdf")
var menuItem:NativeMenuItem = docMenu.addItem(new NativeMenuItem(file.name));
menuItem.data = file;

Creating native menus
This topic describes how to create the various types of native menu supported by AIR.
• “Creating a root menu object” on page 88
• “Creating a submenu” on page 88
• “Creating a menu command” on page 89
• “Creating a menu separator line” on page 89

ADOBE AIR 1
Developer Guide

88
Creating a root menu object
To create a NativeMenu object to serve as the root of the menu, use the NativeMenu constructor:
var root:NativeMenu = new NativeMenu();

For application and window menus, the root menu represents the menu bar and should only contain items that open
submenus. Context menu and pop-up menus do not have a menu bar, so the root menu can contain commands and
separator lines as well as submenus.
After the menu is created, you can add menu items. Items appear in the menu in the order in which they are added,
unless you add the items at a specific index using the addItemAt() method of a menu object.
Assign the menu as an application, window, icon, or context menu, or display it as a pop-up menu as shown in the
following sections:

Setting the application menu
NativeApplication.nativeApplication.menu = root;

Note: Mac OS X defines a menu containing standard items for every application. Assigning a new NativeMenu object
to the menu property of the NativeApplication object replaces the standard menu. You can also use the standard menu
instead of replacing it.

Setting a window menu
nativeWindowObject.menu = root;

Setting a context menu on an interactive object
interactiveObject.contextMenu = root;

Setting a dock icon menu
DockIcon(NativeApplication.nativeApplication.icon).menu = root;

Note: Mac OS X defines a standard menu for the application dock icon. When you assign a new NativeMenu to the
menu property of the DockIcon object, the items in that menu are displayed above the standard items. You cannot
remove, access, or modify the standard menu items.

Setting a system tray icon menu
SystemTrayIcon(NativeApplication.nativeApplication.icon).menu = root;

Displaying a menu as a pop-up
root.display(stage, x, y);

Creating a submenu
To create a submenu, you add a NativeMenuItem object to the parent menu and then assign the NativeMenu object
defining the submenu to the item’s submenu property. AIR provides two ways to create submenu items and their
associated menu object:
You can create a menu item and its related menu object in one step with the addSubmenu() method:
var editMenuItem:NativeMenuItem = root.addSubmenu(new NativeMenu(), "Edit");

You can also create the menu item and assign the menu object to its submenu property separately:
var editMenuItem:NativeMenuItem = root.addItem("Edit", false);
editMenuItem.submenu = new NativeMenu();

ADOBE AIR 1
Developer Guide

89
Creating a menu command
To create a menu command, add a NativeMenuItem object to a menu and add an event listener referencing the
function implementing the menu command:
var copy:NativeMenuItem = new NativeMenuItem("Copy", false);
copy.addEventListener(Event.SELECT, onCopyCommand);
editMenu.addItem(copy);

You can listen for the select event on the command item itself (as shown in the example), or you can listen for the
select event on a parent menu object.
Note: Menu items that represent submenus and separator lines do not dispatch select events and so cannot be used as
commands.

Creating a menu separator line
To create a separator line, create a NativeMenuItem, setting the isSeparator parameter to true in the constructor.
Then add the separator item to the menu in the correct location:
var separatorA:NativeMenuItem = new NativeMenuItem("A", true);
editMenu.addItem(separatorA);

The label specified for the separator, if any, is not displayed.

See also
• “About context menus” on page 89
• “Defining native menus declaratively” on page 91

About context menus
In SWF content, any object that inherits from InteractiveObject can be given a context menu by assigning a menu
object to its contextMenu property. The menu object assigned to contextMenu can either be of type NativeMenu
or of type ContextMenu.
The legacy context menu API classes allow you to use existing ActionScript code that already contains context
menus. If you use the ContextMenu class, you must use the ContextMenuItem class with it; you cannot add Native-
MenuItem objects to a ContextMenu object, nor can you add ContextMenuItem objects to a NativeMenu object. The
primary drawback to using the context menu API is that it does not support submenus.
Although the ContextMenu class includes methods, such as addItem(), that are inherited from the NativeMenu
class, these methods add items to the incorrect items array. In a context menu, all items must be added to the
customItems array, not the items array. Either use NativeMenu objects for context menus, or use only the non-
inherited ContextMenu methods and properties for adding and managing items in the menu.
The following example creates a Sprite and adds a simple edit context menu:
var sprite:Sprite = new Sprite();
sprite.contextMenu = createContextMenu()
private function createContextMenu():ContextMenu{

var editContextMenu:ContextMenu = new ContextMenu();
var cutItem:ContextMenuItem = new ContextMenuItem("Cut")
cutItem.addEventListener(ContextMenuEvent.MENU_ITEM_SELECT, doCutCommand);
editContextMenu.customItems.push(cutItem);

var copyItem:ContextMenuItem = new ContextMenuItem("Copy")
copyItem.addEventListener(ContextMenuEvent.MENU_ITEM_SELECT, doCopyCommand);

ADOBE AIR 1
Developer Guide

90
editContextMenu.customItems.push(copyItem);

var pasteItem:ContextMenuItem = new ContextMenuItem("Paste")
pasteItem.addEventListener(ContextMenuEvent.MENU_ITEM_SELECT, doPasteCommand);
editContextMenu.customItems.push(pasteItem);

return editContextMenu
}
private function doCutCommand(event:ContextMenuEvent):void{trace("cut");}
private function doCopyCommand(event:ContextMenuEvent):void{trace("copy");}
private function doPasteCommand(event:ContextMenuEvent):void{trace("paste");}

Note: In contrast to SWF content displayed in a browser environment, context menus in AIR do not have any built-in
commands.

About context menus in HTML
In HTML content, the contextmenu event can be used to display a context menu. By default, a context menu is
displayed automatically when the user invokes the context menu event on selected text (by right-clicking or
command-clicking the text). To prevent the default menu from opening, listen for the contextmenu event and call
the event object’s preventDefault() method:
function showContextMenu(event){

event.preventDefault();
}

You can then display a custom context menu using DHTML techniques or by displaying an AIR native context menu.
The following example displays a native context menu by calling the menu display() method in response to the
HTML contextmenu event:
<html>
<head>
<script src="AIRAliases.js" language="JavaScript" type="text/javascript"></script>
<script language="javascript" type="text/javascript">

function showContextMenu(event){
event.preventDefault();
contextMenu.display(window.nativeWindow.stage, event.clientX, event.clientY);

}

function createContextMenu(){
var menu = new air.NativeMenu();
var command = menu.addItem(new air.NativeMenuItem("Custom command"));
command.addEventListener(air.Event.SELECT, onCommand);
return menu;

}

function onCommand(){
air.trace("Context command invoked.");

}

var contextMenu = createContextMenu();
</script>
</head>
<body>
<p oncontextmenu="showContextMenu(event)" style="-khtml-user-select:auto;">Custom context
menu.</p>
</body>
</html>

ADOBE AIR 1
Developer Guide

91
Defining native menus declaratively
Coding the properties of a menu and menu items can be a bit tedious. However, since menus have a natural hierar-
chical structure, it is straightforward to write a function that creates a menu using an XML-formatted definition.
The following class extends NativeMenu, taking an XML object in its constructor, to do just that:
package
{

import flash.display.NativeMenu;
import flash.display.NativeMenuItem;
import flash.events.Event;

public class DeclarativeMenu extends NativeMenu
{

public function DeclarativeMenu(XMLMenuDefinition:XML):void
{

super();
addChildrenToMenu(this, XMLMenuDefinition.children());

}

private function addChildrenToMenu(menu:NativeMenu,
children:XMLList):NativeMenuItem

{
var menuItem:NativeMenuItem;
var submenu:NativeMenu;

for each (var child:XML in children)
{

if (String(child.@label).length > 0)
{

menuItem = new NativeMenuItem(child.@label);
menuItem.name = child.name();

}
else
{

menuItem = new NativeMenuItem(child.name());
menuItem.name = child.name();

}
menu.addItem(menuItem);
if (child.children().length() > 0)
{

menuItem.submenu = new NativeMenu();
addChildrenToMenu(menuItem.submenu,child.children());

}
}
return menuItem;

}
} //End class

} //End package

To create a menu with this class, pass an XML menu definition as follows:
var menuDefinition:XML =

<root>
<FileMenu label='File'>

<NewMenu label='New'>
<NewTextFile label='Text file'/>
<NewFolder label='Folder'/>
<NewProject label='Project'/>

</NewMenu>
<OpenCommand label='Open'/>

ADOBE AIR 1
Developer Guide

92
<SaveCommand label='Save'/>
</FileMenu>
<EditMenu label='Edit'>

<CutCommand label='Cut'/>
<CopyCommand label='Copy'/>
<PasteCommand label='Paste'/>

</EditMenu>
<FoodItems label='Food Items'>

<Jellyfish/>
<Tripe/>
<Gizzard/>

</FoodItems>
</root>;

var test:DeclarativeMenu = new DeclarativeMenu(menuDefinition);

To listen for menu events, you could listen at the root menu level and use the event.target.name property to detect
which command was selected. You could also look up items in the menu by name and add individual event listeners.

Displaying pop-up menus
You can display any NativeMenu object at an arbitrary time and location above a window, by calling the menu
display() method. The method requires a reference to the stage; thus, only content in the application sandbox can
display a menu as a pop-up.
The following method displays the menu defined by a NativeMenu object named popupMenu in response to a mouse
click:
private function onMouseClick(event:MouseEvent):void {

popupMenu.display(event.target.stage, event.stageX, event.stageY);
}

Note: The menu does not need to be displayed in direct response to an event. Any method can call the display()
function.

Handling menu events
A menu dispatches events when the user selects the menu or when the user selects a menu item.

Contents

• “Events summary for menu classes” on page 93
• “Selecting menu events” on page 93
• “Displaying menu events” on page 94

ADOBE AIR 1
Developer Guide

93
Events summary for menu classes
Add event listeners to menus or individual items to handle menu events.

Selecting menu events
To handle a click on a menu item, add an event listener for the select event to the NativeMenuItem object:
var menuCommandX:NativeMenuItem = new NativeMenuItem("Command X");
menuCommand.addEventListener(Event.SELECT, doCommandX)

Because select events bubble up to the containing menus, you can also listen for select events on a parent menu.
When listening at the menu level, you can use the event object target property to determine which menu command
was selected. The following example traces the label of the selected command:
var colorMenuItem:NativeMenuItem = new NativeMenuItem("Choose a color");
var colorMenu:NativeMenu = new NativeMenu();
colorMenuItem.submenu = colorMenu;

var red:NativeMenuItem = new NativeMenuItem("Red");
var green:NativeMenuItem = new NativeMenuItem("Green");
var blue:NativeMenuItem = new NativeMenuItem("Blue");
colorMenu.addItem(red);
colorMenu.addItem(green);
colorMenu.addItem(blue);

if(NativeApplication.supportsMenu){
NativeApplication.nativeApplication.menu.addItem(colorMenuItem);
NativeApplication.nativeApplication.menu.addEventListener(Event.SELECT, colorChoice);

} else if (NativeWindow.supportsMenu){
var windowMenu:NativeMenu = new NativeMenu();
this.stage.nativeWindow.menu = windowMenu;
windowMenu.addItem(colorMenuItem);
windowMenu.addEventListener(Event.SELECT, colorChoice);

}

function colorChoice(event:Event):void {
var menuItem:NativeMenuItem = event.target as NativeMenuItem;
trace(menuItem.label + " has been selected");

}

If you are using the ContextMenuItem class, you can listen for either the select event or the menuItemSelect
event. The menuItemSelect event gives you additional information about the object owning the context menu, but
does not bubble up to the containing menus.

Object Events dispatched

NativeMenu NativeMenuEvent.DISPLAYING

NativeMenuEvent.SELECT (propagated from child items and submenus)

NativeMenuItem NativeMenuEvent.SELECT

NativeMenuEvent.DISPLAYING (propagated from parent menu)

ContextMenu ContextMenuEvent.MENU_SELECT

ContextMenuItem ContextMenuEvent.MENU_ITEM_SELECT

NativeMenu.SELECT

ADOBE AIR 1
Developer Guide

94
Displaying menu events
To handle the opening of a menu, you can add a listener for the displaying event, which is dispatched before a
menu is displayed. You can use the displaying event to update the menu, for example by adding or removing items,
or by updating the enabled or checked states of individual items.

Example: Window and application menu
The following example creates the menu shown in “Menu structure” on page 85.
The menu is designed to work both on Windows, for which only window menus are supported, and on Mac OS X,
for which only application menus are supported. To make the distinction, the MenuExample class constructor
checks the static supportsMenu properties of the NativeWindow and NativeApplication classes. If
NativeWindow.supportsMenu is true, then the constructor creates a NativeMenu object for the window and then
creates and adds the File and Edit submenus. If NativeApplication.supportsMenu is true, then the constructor
creates and adds the File and Edit menus to the existing menu provided by the OS X operating system.
The example also illustrates menu event handling. The select event is handled at the item level and also at the menu
level. Each menu in the chain from the menu containing the selected item to the root menu responds to the select
event. The displaying event is used with the “Open Recent” menu. Just before the menu is opened, the items in the
menu are refreshed from the recent Documents array (which doesn’t actually change in this example). Although not
shown in this example, you can also listen for displaying events on individual items.
package {

import flash.display.NativeMenu;
import flash.display.NativeMenuItem;
import flash.display.NativeWindow;
import flash.display.Sprite;
import flash.events.Event;
import flash.filesystem.File;
import flash.desktop.NativeApplication;

public class MenuExample extends Sprite
{

private var recentDocuments:Array =
new Array(new File("app-storage:/GreatGatsby.pdf"),

 new File("app-storage:/WarAndPeace.pdf"),
 new File("app-storage:/Iliad.pdf"));

public function MenuExample()
{

var fileMenu:NativeMenuItem;
var editMenu:NativeMenuItem;

if (NativeWindow.supportsMenu){
stage.nativeWindow.menu = new NativeMenu();
stage.nativeWindow.menu.addEventListener(Event.SELECT, selectCommandMenu);
fileMenu = stage.nativeWindow.menu.addItem(new NativeMenuItem("File"));
fileMenu.submenu = createFileMenu();
editMenu = stage.nativeWindow.menu.addItem(new NativeMenuItem("Edit"));
editMenu.submenu = createEditMenu();

}

if (NativeApplication.supportsMenu){
NativeApplication.nativeApplication.menu.addEventListener(Event.SELECT,

selectCommandMenu);

ADOBE AIR 1
Developer Guide

95
fileMenu = NativeApplication.nativeApplication.menu.addItem(new
NativeMenuItem("File"));

fileMenu.submenu = createFileMenu();
editMenu = NativeApplication.nativeApplication.menu.addItem(new

NativeMenuItem("Edit"));
editMenu.submenu = createEditMenu();

}
}

public function createFileMenu():NativeMenu {
var fileMenu:NativeMenu = new NativeMenu();
fileMenu.addEventListener(Event.SELECT, selectCommandMenu);

var newCommand:NativeMenuItem = fileMenu.addItem(new NativeMenuItem("New"));
newCommand.addEventListener(Event.SELECT, selectCommand);
var saveCommand:NativeMenuItem = fileMenu.addItem(new NativeMenuItem("Save"));
saveCommand.addEventListener(Event.SELECT, selectCommand);
var openRecentMenu:NativeMenuItem =

fileMenu.addItem(new NativeMenuItem("Open Recent"));
openRecentMenu.submenu = new NativeMenu();
openRecentMenu.submenu.addEventListener(Event.DISPLAYING,

updateRecentDocumentMenu);
openRecentMenu.submenu.addEventListener(Event.SELECT, selectCommandMenu);

return fileMenu;
}

public function createEditMenu():NativeMenu {
var editMenu:NativeMenu = new NativeMenu();
editMenu.addEventListener(Event.SELECT, selectCommandMenu);

var copyCommand:NativeMenuItem = editMenu.addItem(new NativeMenuItem("Copy"));
copyCommand.addEventListener(Event.SELECT, selectCommand);
copyCommand.keyEquivalent = "c";
var pasteCommand:NativeMenuItem =

editMenu.addItem(new NativeMenuItem("Paste"));
pasteCommand.addEventListener(Event.SELECT, selectCommand);
pasteCommand.keyEquivalent = "v";
editMenu.addItem(new NativeMenuItem("", true));
var preferencesCommand:NativeMenuItem =

editMenu.addItem(new NativeMenuItem("Preferences"));
preferencesCommand.addEventListener(Event.SELECT, selectCommand);

return editMenu;
}

private function updateRecentDocumentMenu(event:Event):void {
trace("Updating recent document menu.");
var docMenu:NativeMenu = NativeMenu(event.target);

for each (var item:NativeMenuItem in docMenu.items) {
docMenu.removeItem(item);

}

for each (var file:File in recentDocuments) {
var menuItem:NativeMenuItem =

docMenu.addItem(new NativeMenuItem(file.name));
menuItem.data = file;
menuItem.addEventListener(Event.SELECT, selectRecentDocument);

}
}

ADOBE AIR 1
Developer Guide

96
private function selectRecentDocument(event:Event):void {
trace("Selected recent document: " + event.target.data.name);

}

private function selectCommand(event:Event):void {
trace("Selected command: " + event.target.label);

}

private function selectCommandMenu(event:Event):void {
if (event.currentTarget.parent != null) {

var menuItem:NativeMenuItem =
findItemForMenu(NativeMenu(event.currentTarget));

if (menuItem != null) {
trace("Select event for \"" +

event.target.label +
"\" command handled by menu: " +
menuItem.label);

}
} else {

trace("Select event for \"" +
event.target.label +
"\" command handled by root menu.");

}
}

private function findItemForMenu(menu:NativeMenu):NativeMenuItem {
for each (var item:NativeMenuItem in menu.parent.items) {

if (item != null) {
if (item.submenu == menu) {

return item;
}

}
}
return null;

}
}

}

97
Chapter 13: Taskbar icons

Many operating systems provide a taskbar, such as the Mac OS X dock, that can contain an icon to represent an appli-
cation. Adobe® AIR® provides an interface for interacting with the application task bar icon through the
NativeApplication.nativeApplication.icon property.

Contents

• “About taskbar icons” on page 97
• “Dock icons” on page 98
• “System Tray icons” on page 98
• “Window taskbar icons and buttons” on page 100

Quick Starts (Adobe AIR Developer Center)

• Using the system tray and dock icons

Language Reference

• DockIcon
• SystemTrayIcon

More Information

• Adobe AIR Developer Center for Flash (search for ’AIR taskbar icons’)

About taskbar icons
AIR creates the NativeApplication.nativeApplication.icon object automatically. The object type is either
DockIcon or SystemTrayIcon, depending on the operating system. You can determine which of these InteractiveIcon
subclasses that AIR supports on the current operating system using the NativeApplication.supportsDockIcon
and NativeApplication.supportsSystemTrayIcon properties. The InteractiveIcon base class provides the
properties width, height, and bitmaps, which you can use to change the image used for the icon. However,
accessing properties specific to DockIcon or SystemTrayIcon on the wrong operating system generates a runtime
error.
To set or change the image used for an icon, create an array containing one or more images and assign it to the
NativeApplication.nativeApplication.icon.bitmaps property. The size of taskbar icons can be different on
different operating systems. To avoid image degradation due to scaling, you can add multiple sizes of images to the
bitmaps array. If you provide more than one image, AIR selects the size closest to the current display size of the
taskbar icon, scaling it only if necessary. The following example sets the image for a taskbar icon using two images:
NativeApplication.nativeApplication.icon.bitmaps =

[bmp16x16.bitmapData, bmp128x128.bitmapData];

To change the icon image, assign an array containing the new image or images to the bitmaps property. You can
animate the icon by changing the image in response to an enterFrame or timer event.
To remove the icon from the notification area on Windows, or restore the default icon appearance on Mac OS X, set
bitmaps to an empty array:
NativeApplication.nativeApplication.icon.bitmaps = [];

http://www.adobe.com/go/learn_air_qs_systray_flash_en
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/DockIcon.html
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/SystemTrayIcon.html
http://www.adobe.com/devnet/air/flash/

ADOBE AIR 1
Developer Guide

98
Dock icons
AIR supports dock icons when NativeApplication.supportsDockIcon is true. The
NativeApplication.nativeApplication.icon property represents the application icon on the dock (not a
window dock icon).
Note: AIR does not support changing window icons on the dock under Mac OS X. Also, changes to the application dock
icon only apply while an application is running — the icon reverts to its normal appearance when the application termi-
nates.

Dock icon menus
You can add commands to the standard dock menu by creating a NativeMenu object containing the commands and
assigning it to the NativeApplication.nativeApplication.icon.menu property. The items in the menu are
displayed above the standard dock icon menu items.

Bouncing the dock
You can bounce the dock icon by calling the NativeApplication.nativeApplication.icon.bounce() method.
If you set the bounce() priority parameter to informational, then the icon bounces once. If you set it to critical,
then the icon bounces until the user activates the application. Constants for the priority parameter are defined in
the NotificationType class.
Note: The icon does not bounce if the application is already active.

Dock icon events
When the dock icon is clicked, the NativeApplication object dispatches an invoke event. If the application is not
running, the system launches it. Otherwise, the invoke event is delivered to the running application instance.

System Tray icons
AIR supports system tray icons when NativeApplication.supportsSystemTrayIcon is true, which is currently
the case only on Windows. On Windows, system tray icons are displayed in the notification area of the taskbar. No
icon is displayed by default. To show an icon, assign an array containing BitmapData objects to the icon bitmaps
property. To change the icon image, assign an array containing the new images to bitmaps. To remove the icon, set
bitmaps to null.

System tray icon menus
You can add a menu to the system tray icon by creating a NativeMenu object and assigning it to the
NativeApplication.nativeApplication.icon.menu property (no default menu is provided by the operating
system). Access the system tray icon menu by right-clicking the icon.

System tray icon tooltips
Add a tooltip to an icon by setting the tooltip property:
NativeApplication.nativeApplication.icon.tooltip = "Application name";

ADOBE AIR 1
Developer Guide

99
System tray icon events
The SystemTrayIcon object referenced by the NativeApplication.nativeApplication.icon property dispatches a
ScreenMouseEvent for click, mouseDown, mouseUp, rightClick, rightMouseDown, and rightMouseUp events.
You can use these events, along with an icon menu, to allow users to interact with your application when it has no
visible windows.

Example: Creating an application with no windows
The following example creates an AIR application which has a system tray icon, but no visible windows. The system
tray icon has a menu with a single command for exiting the application.
package
{

import flash.display.Loader;
import flash.display.NativeMenu;
import flash.display.NativeMenuItem;
import flash.display.NativeWindow;
import flash.display.Sprite;
import flash.desktop.SystemTrayIcon;
import flash.events.Event;
import flash.net.URLRequest;
import flash.desktop.NativeApplication;

public class SysTrayApp extends Sprite
{

public function SysTrayApp():void{
NativeApplication.nativeApplication.autoExit = false;
var icon:Loader = new Loader();
var iconMenu:NativeMenu = new NativeMenu();
var exitCommand:NativeMenuItem = iconMenu.addItem(new NativeMenuItem("Exit"));

exitCommand.addEventListener(Event.SELECT, function(event:Event):void {
NativeApplication.nativeApplication.icon.bitmaps = [];
NativeApplication.nativeApplication.exit();

});

if (NativeApplication.supportsSystemTrayIcon) {
NativeApplication.nativeApplication.autoExit = false;
icon.contentLoaderInfo.addEventListener(Event.COMPLETE, iconLoadComplete);
icon.load(new URLRequest("icons/AIRApp_16.png"));

var systray:SystemTrayIcon =
NativeApplication.nativeApplication.icon as SystemTrayIcon;

systray.tooltip = "AIR application";
systray.menu = iconMenu;

}

if (NativeApplication.supportsDockIcon){
icon.contentLoaderInfo.addEventListener(Event.COMPLETE,iconLoadComplete);
icon.load(new URLRequest("icons/AIRApp_128.png"));
var dock:DockIcon = NativeApplication.nativeApplication.icon as DockIcon;
dock.menu = iconMenu;

}
}

stage.nativeWindow.close();
}

private function iconLoadComplete(event:Event):void
{

NativeApplication.nativeApplication.icon.bitmaps =

ADOBE AIR 1
Developer Guide

100
[event.target.content.bitmapData];
}

}
}

Note: The example assumes that there are image files named AIRApp_16.png and AIRApp_128.png in an icons
subdirectory of the application. (Sample icon files, which you can copy to your project folder, are included in the AIR
SDK.)

Window taskbar icons and buttons
Iconified representations of windows are typically displayed in the window area of a taskbar or dock to allow users
to easily access background or minimized windows. The Mac OS X dock displays an icon for your application as well
as an icon for each minimized window. The Microsoft Windows taskbar displays a button containing the progam
icon and title for each normal-type window in your application.

Highlighting the taskbar window button
When a window is in the background, you can notify the user that an event of interest related to the window has
occurred. On Mac OS X, you can notify the user by bouncing the application dock icon (as described in “Bouncing
the dock” on page 98). On Windows, you can highlight the window taskbar button by calling the notifyUser()
method of the NativeWindow instance. The type parameter passed to the method determines the urgency of the
notification:
• NotificationType.CRITICAL: the window icon flashes until the user brings the window to the foreground.
• NotificationType.INFORMATIONAL: the window icon highlights by changing color.
The following statement highlights the taskbar button of a window:
stage.nativeWindow.notifyUser(NotificationType.CRITICAL);

Calling the NativeWindow.notifyUser() method on an operating system that does not support window-level
notification has no effect. Use the NativeWindow.supportsNotification property to determine if window notifi-
cation is supported.

Creating windows without taskbar buttons or icons
On the Windows operating system, windows created with the types utility or lightweight do not appear on the
taskbar. Invisible windows do not appear on the taskbar, either.
Because the initial window is necessarily of type, normal, in order to create an application without any windows
appearing in the taskbar, you must either close the initial window or leave it invisible. To close all windows in your
application without terminating the application, set the autoExit property of the NativeApplication object to false
before closing the last window. To simply prevent the initial window from ever becoming visible, add
<visible>false</visible> to the <initalWindow> element of the application descriptor file (and do not set the
visible property to true or call the activate() method of the window).
In new windows opened by the application, set the type property of the NativeWindowInitOption object passed to
the window constructor to NativeWindowType.UTILITY or NativeWindowType.LIGHTWEIGHT.
On Mac OS X, windows that are minimized are displayed on the dock taskbar. You can prevent the minimized icon
from being displayed by hiding the window instead of minimizing it. The following example listens for a
nativeWindowDisplayState change event and cancels it if the window is being minimized. Instead the handler
sets the window visible property to false:

ADOBE AIR 1
Developer Guide

101
private function preventMinimize(event:NativeWindowDisplayStateEvent):void{
if(event.afterDisplayState == NativeWindowDisplayState.MINIMIZED){

event.preventDefault();
event.target.visible = false;

}
}

If a window is minimized on the Mac OS X dock when you set the visible property to false, the dock icon is not
removed. A user can still click the icon to make the window reappear.

102

Part 6: Files and data

Working with the file system. .103
Drag and drop .127
Copy and paste .142
Working with local SQL databases .162
Working with byte arrays. .153

103
Chapter 14: Working with the file system

You use the classes provided by the Adobe® AIR™ file system API to access the file system of the host computer. Using
these classes, you can access and manage directories and files, create directories and files, write data to files, and so
on. Information on understanding and using the File API classes is available in the following categories:

Contents

• “AIR file basics” on page 103
• “Working with File objects” on page 104
• “Getting file system information” on page 111
• “Working with directories” on page 112
• “Working with files” on page 114
• “Reading and writing files” on page 116

Quick Starts (Adobe AIR Developer Center)

• Building a text-file editor

Language Reference

• File
• FileStream
• FileMode

More information

• Adobe AIR Developer Center for Flash (search for ’AIR filesystem’)

AIR file basics
Adobe AIR provides classes that you can use to access, create, and manage both files and folders. These classes,
contained in the flash.filesystem package, are used as follows:

Some methods in the File class have both synchronous and asynchronous versions:
• File.copyTo() and File.copyToAsync()
• File.deleteDirectory() and File.deleteDirectoryAsync()

File classes Description

File File object represents a path to a file or directory. You use a file object to create a pointer to a file or folder, initi-
ating interaction with the file or folder.

FileMode The FileMode class defines string constants used in the fileMode parameter of the open() and
openAsync() methods of the FileStream class. The fileMode parameter of these methods determines
the capabilities available to the FileStream object once the file is opened, which include writing, reading,
appending, and updating.

FileStream FileStream object is used to open files for reading and writing. Once you’ve created a File object that points to
a new or existing file, you pass that pointer to the FileStream object so that you can open and then manipulate
data within the file.

http://www.adobe.com/go/learn_air_aslr_en?flash/filesystem/File.html
http://www.adobe.com/go/learn_air_aslr_en?flash/filesystem/FileStream.html
http://www.adobe.com/go/learn_air_aslr_en?flash/filesystem/FileMode.html
http://www.adobe.com/devnet/air/flash/
http://www.adobe.com/go/learn_air_qs_textedit_flash_en

ADOBE AIR 1
Developer Guide

104
• File.deleteFile() and File.deleteFileAsync()
• File.getDirectoryListing() and File.getDirectoryListingAsync()
• File.moveTo() and File.moveToAsync()
• File.moveToTrash() and File.moveToTrashAsync()
Also, FileStream operations work synchronously or asynchronously depending on how the FileStream object opens
the file: by calling the open() method or by calling the openAsync() method.
The asynchronous versions let you initiate processes that run in the background and dispatch events when complete
(or when error events occur). Other code can execute while these asynchronous background processes are taking
place. With asynchronous versions of the operations, you must set up event listener functions, using the
addEventListener() method of the File or FileStream object that calls the function.
The synchronous versions let you write simpler code that does not rely on setting up event listeners. However, since
other code cannot execute while a synchronous method is executing, important processes such as display object
rendering and animation may be paused.

Working with File objects
A File object is a pointer to a file or directory in the file system.
The File class extends the FileReference class. The FileReference class, which is available in Adobe® Flash® Player as
well as AIR, represents a pointer to a file, but the File class adds properties and methods that are not exposed in Flash
Player (in a SWF file running in a browser), due to security considerations.

Contents

• “About the File class” on page 104
• “Paths of File objects” on page 105
• “Pointing a File object to a directory” on page 105
• “Pointing a File object to a file” on page 107
• “Modifying File paths” on page 109
• “Supported URL schemes” on page 109
• “Finding the relative path between two files” on page 109
• “Obtaining canonical versions of file names” on page 110
• “Working with packages and symbolic links” on page 110

About the File class
You can use the File class for the following:
• Getting the path to special directories, including the user directory, the user's documents directory, the directory
from which the application was launched, and the application directory
• Coping files and directories
• Moving files and directories
• Deleting files and directories (or moving them to the trash)
• Listing files and directories contained in a directory
• Creating temporary files and folders
Once a File object points to a file path, you can use it to read and write file data, using the FileStream class.

ADOBE AIR 1
Developer Guide

105
A File object can point to the path of a file or directory that does not yet exist. You can use such a File object in
creating a file or directory.

Paths of File objects
Each File object has two properties that each define its path:

The File class includes properties for pointing to standard directories on both Mac and Windows.

Pointing a File object to a directory
There are different ways to set a File object to point to a directory.

Pointing to the user’s home directory

You can point a File object to the user's home directory. On Windows, the home directory is the parent of the "My
Documents" directory (for example, "C:\Documents and Settings\userName\My Documents"). On Mac OS, it is the
Users/userName directory. The following code sets a File object to point to an AIR Test subdirectory of the home
directory:
var file:File = File.userDirectory.resolvePath("AIR Test");

Pointing to the user’s documents directory

You can point a File object to the user's documents directory. On Windows, this is typically the "My Documents"
directory (for example, "C:\Documents and Settings\userName\My Documents"). On Mac OS, it is the
Users/userName/Documents directory. The following code sets a File object to point to an AIR Test subdirectory of
the documents directory:
var file:File = File.documentsDirectory.resolvePath("AIR Test");

Pointing to the desktop directory

You can point a File object to the desktop. The following code sets a File object to point to an AIR Test subdirectory
of the desktop:
var file:File = File.desktopDirectory.resolvePath("AIR Test");

Pointing to the application storage directory

You can point a File object to the application storage directory. For every AIR application, there is a unique associated
path that defines the application storage directory. This directory is unique to each application and user. You may
want to use this directory to store user-specific, application-specific data (such as user data or preferences files). For
example, the following code points a File object to a preferences file, prefs.xml, contained in the application storage
directory:

Property Description

nativePath Specifies the platform-specific path to a file. For example, on Windows a path might be "c:\Sample direc-
tory\test.txt" whereas on Mac OS it could be "/Sample directory/test.txt". A nativePath property uses the
backslash (\) character as the directory separator character on Windows, and it uses the forward slash (/) char-
acter on Mac OS.

url This may use the file URL scheme to point to a file. For example, on Windows a path might be
"file:///c:/Sample%20directory/test.txt" whereas on Mac OS it could be "file:///Sample%20directory/test.txt".
The runtime includes other special URL schemes besides file and are described in “Supported URL
schemes” on page 109.

ADOBE AIR 1
Developer Guide

106
var file:File = File.applicationStorageDirectory;
file = file.resolvePath("prefs.xml");

The application storage directory location is based on the user name, the application ID, and the publisher ID:
• On Mac OS—In:

/Users/user name/Library/Preferences/applicationID.publisherID/Local Store/

For example:
/Users/babbage/Library/Preferences/com.example.TestApp.02D88EEED35F84C264A183921344EEA3
53A629FD.1/Local Store

• On Windows—In the documents and Settings directory, in:
user name/Application Data/applicationID.publisherID/Local Store/

For example:
C:\Documents and Settings\babbage\Application
Data\com.example.TestApp.02D88EEED35F84C264A183921344EEA353A629FD.1\Local Store

The URL (and url property) for a File object created with File.applicationStorageDirectory uses the app-
storage URL scheme (see “Supported URL schemes” on page 109), as in the following:
var dir:File = File.applicationStorageDirectory;
dir = dir.resolvePath("preferences");
trace(dir.url); // app-storage:/preferences

Pointing to the application directory

You can point a File object to the directory in which the application was installed, known as the application directory.
You can reference this directory using the File.applicationDirectory property. You may use this directory to
examine the application descriptor file or other resources installed with the application. For example, the following
code points a File object to a directory named images in the application directory:
var dir:File = File.applicationDirectory;
dir = dir.resolvePath("images");

The URL (and url property) for a File object created with File.applicationDirectory uses the app URL scheme
(see “Supported URL schemes” on page 109), as in the following:
var dir:File = File.applicationDirectory;
dir = dir.resolvePath("images");
trace(dir.url); // app:/images

Pointing to the filesystem root

The File.getRootDirectories() method lists all root volumes, such as C: and mounted volumes, on a Windows
computer. On Mac, this method always returns the unique root directory for the machine (the "/" directory).

Pointing to an explicit directory

You can point the File object to an explicit directory by setting the nativePath property of the File object, as in the
following example (on Windows):
var file:File = new File();
file.nativePath = "C:\\AIR Test\\";

ADOBE AIR 1
Developer Guide

107
Navigating to relative paths

You can use the resolvePath() method to obtain a path relative to another given path. For example, the following
code sets a File object to point to an "AIR Test" subdirectory of the user's home directory:
var file:File = File.userDirectory;
file = file.resolvePath("AIR Test");

You can also use the url property of a File object to point it to a directory based on a URL string, as in the following:
var urlStr:String = "file:///C:/AIR Test/";
var file:File = new File()
file.url = urlStr;

For more information, see “Modifying File paths” on page 109.

Letting the user browse to select a directory

The File class includes the browseForDirectory() method, which presents a system dialog box in which the user
can select a directory to assign to the object. The browseForDirectory() method is asynchronous. It dispatches a
select event if the user selects a directory and clicks the Open button, or it dispatches a cancel event if the user
clicks the Cancel button.
For example, the following code lets the user select a directory and outputs the directory path upon selection:
var file:File = new File();
file.addEventListener(Event.SELECT, dirSelected);
file.browseForDirectory("Select a directory");
function dirSelected(e:Event):void {

trace(file.nativePath);
}

Pointing to the directory from which the application was invoked

You can get the directory location from which an application is invoked, by checking the currentDirectory
property of the InvokeEvent object dispatched when the application is invoked. For details, see “Capturing command
line arguments” on page 264.

Pointing a File object to a file
There are different ways to set the file to which a File object points.

Pointing to an explicit file path

You can use the resolvePath() method to obtain a path relative to another given path. For example, the following
code sets a File object to point to a log.txt file within the application storage directory:
var file:File = File.applicationStorageDirectory;
file = file.resolvePath("log.txt");

You can use the url property of a File object to point it to a file or directory based on a URL string, as in the following:
var urlStr:String = "file:///C:/AIR Test/test.txt";
var file:File = new File()
file.url = urlStr;

You can also pass the URL to the File() constructor function, as in the following:
var urlStr:String = "file:///C:/AIR Test/test.txt";
var file:File = new File(urlStr);

ADOBE AIR 1
Developer Guide

108
The url property always returns the URI-encoded version of the URL (for example, blank spaces are replaced with
"%20):
file.url = "file:///c:/AIR Test";
trace(file.url); // file:///c:/AIR%20Test

You can also use the nativePath property of a File object to set an explicit path. For example, the following code,
when run on a Windows computer, sets a File object to the test.txt file in the AIR Test subdirectory of the C: drive:
var file:File = new File();
file.nativePath = "C:/AIR Test/test.txt";

You can also pass this path to the File() constructor function, as in the following:
var file:File = new File("C:/AIR Test/test.txt");

On Windows, you can use the forward slash (/) or backslash (\) character as the path delimiter for the nativePath
property. On Mac OS, use the forward slash (/) character as the path delimiter for the nativePath:
var file:File = new File(/Users/dijkstra/AIR Test/test.txt");

For more information, see “Modifying File paths” on page 109.

Enumerating files in a directory

You can use the getDirectoryListing() method of a File object to get an array of File objects pointing to files and
subdirectories at the root level of a directory. For more information, see “Enumerating directories” on page 112.

Letting the user browse to select a file

The File class includes the following methods that present a system dialog box in which the user can select a file to
assign to the object:
• browseForOpen()

• browseForSave()

• browseForOpenMultiple()

These methods are each asynchronous. The browseForOpen() and browseForSave() methods dispatch the select
event when the user selects a file (or a target path, in the case of browseForSave()). With the browseForOpen() and
browseForSave() methods, upon selection the target File object points to the selected files. The
browseForOpenMultiple() method dispatches a selectMultiple event when the user selects files. The
selectMultiple event is of type FileListEvent, which has a files property that is an array of File objects (pointing
to the selected files).
For example, the following code presents the user with an “Open” dialog box in which the user can select a file:
var fileToOpen:File = File.documentsDirectory;
selectTextFile(fileToOpen);

function selectTextFile(root:File):void
{

var txtFilter:FileFilter = new FileFilter("Text", "*.as;*.css;*.html;*.txt;*.xml");
root.browseForOpen("Open", [txtFilter]);
root.addEventListener(Event.SELECT, fileSelected);

}

function fileSelected(event:Event):void
{

trace(fileToOpen.nativePath);
}

ADOBE AIR 1
Developer Guide

109
If the application has another browser dialog box open when you call a browse method, the runtime throws an Error
exception.

Modifying File paths
You can also modify the path of an existing File object by calling the resolvePath() method or by modifying the
nativePath or url property of the object, as in the following examples (on Windows):
var file1:File = File.documentsDirectory;
file1 = file1.resolvePath("AIR Test");
trace(file1.nativePath); // C:\Documents and Settings\userName\My Documents\AIR Test
var file2:File = File.documentsDirectory;
file2 = file2.resolvePath("..");
trace(file2.nativePath); // C:\Documents and Settings\userName
var file3:File = File.documentsDirectory;
file3.nativePath += "/subdirectory";
trace(file3.nativePath); // C:\Documents and Settings\userName\My Documents\subdirectory
var file4:File = new File();
file.url = "file:///c:/AIR Test/test.txt"
trace(file3.nativePath); // C:\AIR Test\test.txt

When using the nativePath property, you use either the forward slash (/) or backslash (\) character as the directory
separator character on Windows; use the forward slash (/) character on Mac OS. On Windows, remember to type
the backslash character twice in a string literal.

Supported URL schemes
You can use any of the following URL schemes in defining the url property of a File object:

Finding the relative path between two files
You can use the getRelativePath() method to find the relative path between two files:
var file1:File = File.documentsDirectory.resolvePath("AIR Test");
var file2:File = File.documentsDirectory
file2 = file2.resolvePath("AIR Test/bob/test.txt");

trace(file1.getRelativePath(file2)); // bob/test.txt

URL scheme Description

file Use to specify a path relative to the root of the file system. For example:

file:///c:/AIR Test/test.txt

The URL standard specifies that a file URL takes the form file://<host>/<path>. As a special case,
<host> can be the empty string, which is interpreted as "the machine from which the URL is being inter-
preted." For this reason, file URLs often have three slashes (///).

app Use to specify a path relative to the root directory of the installed application (the directory that contains the
application.xml file for the installed application). For example, the following path points to an images subdi-
rectory of the directory of the installed application:

app:/images

app-storage Use to specify a path relative to the application store directory. For each installed application, AIR defines a
unique application store directory, which is a useful place to store data specific to that application. For
example, the following path points to a prefs.xml file in a settings subdirectory of the application store direc-
tory:

app-storage:/settings/prefs.xml

ADOBE AIR 1
Developer Guide

110
The second parameter of the getRelativePath() method, the useDotDot parameter, allows for .. syntax to be
returned in results, to indicate parent directories:
var file1:File = File.documentsDirectory;
file1 = file1.resolvePath("AIR Test");
var file2:File = File.documentsDirectory;
file2 = file2.resolvePath("AIR Test/bob/test.txt");
var file3:File = File.documentsDirectory;
file3 = file3.resolvePath("AIR Test/susan/test.txt");

trace(file2.getRelativePath(file1, true)); // ../..
trace(file3.getRelativePath(file2, true)); // ../../bob/test.txt

Obtaining canonical versions of file names
File and path names are usually not case sensitive. In the following, two File objects point to the same file:
File.documentsDirectory.resolvePath("test.txt");
File.documentsDirectory.resolvePath("TeSt.TxT");

However, documents and directory names do include capitalization. For example, the following assumes that there
is a folder named AIR Test in the documents directory, as in the following examples:
var file:File = File.documentsDirectory.resolvePath("AIR test");
trace(file.nativePath); // ... AIR test
file.canonicalize();
trace(file.nativePath); // ... AIR Test

The canonicalize method converts the nativePath object to use the correct capitalization for the file or directory
name.
You can also use the canonicalize() method to convert short file names ("8.3" names) to long file names on
Windows, as in the following examples:
var path:File = new File();
path.nativePath = "C:\\AIR~1";
path.canonicalize();
trace(path.nativePath); // C:\AIR Test

Working with packages and symbolic links
Various operating systems support package files and symbolic link files:
Packages On Mac OS, directories can be designated as packages and show up in the Mac OS Finder as a single file
rather than as a directory.
Symbolic links Symbolic links allow a file to point to another file or directory on disk. Although similar, symbolic
links are not the same as aliases. An alias is always reported as a file (rather than a directory), and reading or writing
to an alias or shortcut never affects the original file or directory that it points to. On the other hand, a symbolic link
behaves exactly like the file or directory it points to. It can be reported as a file or a directory, and reading or writing
to a symbolic link affects the file or directory that it points to, not the symbolic link itself.
The File class includes the isPackage and isSymbolicLink properties for checking if a File object references a
package or symbolic link.
The following code iterates through the user’s desktop directory, listing subdirectories that are not packages:
var desktopNodes:File = File.desktopDirectory.getDirectoryListing();
for (var i:uint = 0; i < desktopNodes.length; i++)
{

if (desktopNodes[i].isDirectory && !!desktopNodes[i].isPackage)

ADOBE AIR 1
Developer Guide

111
{
trace(desktopNodes[i].name);

}
}

The following code iterates through the user’s desktop directory, listing files and directories that are not symbolic
links:
var desktopNodes:File = File.desktopDirectory.getDirectoryListing();
for (var i:uint = 0; i < desktopNodes.length; i++)
{

if (!desktopNodes[i].isSymbolicLink)
{

trace(desktopNodes[i].name);
}

}

The canonicalize() method changes the path of a symbolic link to point to the file or directory to which the link
refers. The following code iterates through the user’s desktop directory, and reports the paths referenced by files that
are symbolic links:
var desktopNodes:File = File.desktopDirectory.getDirectoryListing();
for (var i:uint = 0; i < desktopNodes.length; i++)
{

if (desktopNodes[i].isSymbolicLink)
{

var linkNode:File = desktopNodes[i] as File;
linkNode.canonicalize();
trace(linkNode.nativePath);

}
}

Getting file system information
The File class includes the following static properties that provide some useful information about the file system:

The Capabilities class also includes useful system information that may be useful when working with files:

Property Description

File.lineEnding The line-ending character sequence used by the host operating system. On Mac OS, this is the line-feed char-
acter. On Windows, this is the carriage return character followed by the line-feed character.

File.separator The host operating system's path component separator character. On Mac OS, this is the forward slash (/) char-
acter. On Windows, it is the backslash (\) character.

File.systemCharset The default encoding used for files by the host operating system. This pertains to the character set used by the
operating system, corresponding to its language.

Property Description

Capabilities.hasIME Specifies whether the player is running on a system that does (true) or does not (false) have an input
method editor (IME) installed.

Capabilities.language Specifies the language code of the system on which the player is running.

Capabilities.os Specifies the current operating system.

ADOBE AIR 1
Developer Guide

112
Working with directories
The runtime provides you with capabilities to work with directories on the local file system.
For details on creating File objects that point to directories, see “Pointing a File object to a directory” on page 105.

Contents

• “Creating directories” on page 112
• “Creating a temporary directory” on page 112
• “Enumerating directories” on page 112
• “Copying and moving directories” on page 113
• “Deleting directory contents” on page 113

Creating directories
The File.createDirectory() method lets you create a directory. For example, the following code creates a
directory named AIR Test as a subdirectory of the user's home directory:
var dir:File = File.userDirectory.resolvePath("AIR Test");
dir.createDirectory();

If the directory exists, the createDirectory() method does nothing.
Also, in some modes, a FileStream object creates directories when opening files. Missing directories are created when
you instantiate a FileStream instance with the fileMode parameter of the FileStream() constructor set to
FileMode.APPEND or FileMode.WRITE. For more information, see “Workflow for reading and writing files”
on page 117.

Creating a temporary directory
The File class includes a createTempDirectory() method, which creates a directory in the temporary directory
folder for the System, as in the following example:
var temp:File = File.createTempDirectory();

The createTempDirectory() method automatically creates a unique temporary directory (saving you the work of
determining a new unique location).
You may use a temporary directory to temporarily store temporary files used for a session of the application. Note
that there is a createTempFile() method for creating new, unique temporary files in the System temporary
directory.
You may want to delete the temporary directory before closing the application, as it is not automatically deleted.

Enumerating directories
You can use the getDirectoryListing() method or the getDirectoryListingAsync() method of a File object
to get an array of File objects pointing to files and subfolders in a directory.
For example, the following code lists the contents of the user's documents directory (without examining subdirec-
tories):
var directory:File = File.documentsDirectory;
var contents:Array = directory.getDirectoryListing();
for (var i:uint = 0; i < contents.length; i++)
{

ADOBE AIR 1
Developer Guide

113
trace(contents[i].name, contents[i].size);
}

When using the asynchronous version of the method, the directoryListing event object has a files property
that is the array of File objects pertaining to the directories:
var directory:File = File.documentsDirectory;
directory.getDirectoryListingAsync();
directory.addEventListener(FileListEvent.DIRECTORY_LISTING, dirListHandler);

function dirListHandler(event:FileListEvent):void
{

var contents:Array = event.files;
for (var i:uint = 0; i < contents.length; i++)
{

trace(contents[i].name, contents[i].size);
}

}

Copying and moving directories
You can copy or move a directory, using the same methods as you would to copy or move a file. For example, the
following code copies a directory synchronously:
var sourceDir:File = File.documentsDirectory.resolvePath("AIR Test");
var resultDir:File = File.documentsDirectory.resolvePath("AIR Test Copy");
sourceDir.copyTo(resultDir);

When you specify true for the overwrite parameter of the copyTo() method, all files and folders in an existing
target directory are deleted and replaced with the files and folders in the source directory (even if the target file does
not exist in the source directory).
The directory that you specify as the newLocation parameter of the copyTo() method specifies the path to the
resulting directory; it does not specify the parent directory that will contain the resulting directory.
For details, see “Copying and moving files” on page 115.

Deleting directory contents
The File class includes a deleteDirectory() method and a deleteDirectoryAsync() method. These methods
delete directories, the first working synchronously, the second working asynchronously (see “AIR file basics”
on page 103). Both methods include a deleteDirectoryContents parameter (which takes a Boolean value); when
this parameter is set to true (the default value is false) the call to the method deletes non-empty directories;
otherwise, only empty directories are deleted.
For example, the following code synchronously deletes the AIR Test subdirectory of the user's documents directory:
var directory:File = File.documentsDirectory.resolvePath("AIR Test");
directory.deleteDirectory(true);

The following code asynchronously deletes the AIR Test subdirectory of the user's documents directory:
var directory:File = File.documentsDirectory.resolvePath("AIR Test");
directory.addEventListener(Event.COMPLETE, completeHandler)
directory.deleteDirectoryAsync(true);

function completeHandler(event:Event):void {
trace("Deleted.")

}

ADOBE AIR 1
Developer Guide

114
Also included are the moveToTrash() and moveToTrashAsync() methods, which you can use to move a directory
to the System trash. For details, see “Moving a file to the trash” on page 116.

Working with files
Using the AIR file API, you can add basic file interaction capabilities to your applications. For example, you can read
and write files, copy and delete files, and so on. Since your applications can access the local file system, refer to “AIR
security” on page 26, if you haven't already done so.
Note: You can associate a file type with an AIR application (so that double-clicking it opens the application). For details,
see “Managing file associations” on page 272.

Contents

• “Getting file information” on page 114
• “Copying and moving files” on page 115
• “Deleting a file” on page 115
• “Moving a file to the trash” on page 116
• “Creating a temporary file” on page 116

Getting file information
The File class includes the following properties that provide information about a file or directory to which a File
object points:

File property Description

creationDate The creation date of the file on the local disk.

creator Obsolete—use the extension property. (This property reports the Macintosh creator type of the file, which
is only used in Mac OS versions prior to Mac OS X.)

exists Whether the referenced file or directory exists.

extension The file extension, which is the part of the name following (and not including) the final dot ("."). If there is no
dot in the filename, the extension is null.

icon An Icon object containing the icons defined for the file.

isDirectory Whether the File object reference is to a directory.

modificationDate The date that the file or directory on the local disk was last modified.

name The name of the file or directory (including the file extension, if there is one) on the local disk.

nativePath The full path in the host operating system representation. See “Paths of File objects” on page 105.

parent The folder that contains the folder or file represented by the File object. This property is null if the File object
references a file or directory in the root of the filesystem.

size The size of the file on the local disk in bytes.

type Obsolete—use the extension property. (On the Macintosh, this property is the four-character file type,
which is only used in Mac OS versions prior to Mac OS X.)

url The URL for the file or directory. See “Paths of File objects” on page 105.

ADOBE AIR 1
Developer Guide

115
For details on these properties, see the File class entry in the AIR ActionScript 3.0 Language Reference for Adobe AIR
(http://www.adobe.com/go/learn_air_aslr).

Copying and moving files
The File class includes two methods for copying files or directories: copyTo() and copyToAsync(). The File class
includes two methods for moving files or directories: moveTo() and moveToAsync(). The copyTo() and moveTo()
methods work synchronously, and the copyToAsync() and moveToAsync() methods work asynchronously (see
“AIR file basics” on page 103).
To copy or move a file, you set up two File objects. One points to the file to copy or move, and it is the object that
calls the copy or move method; the other points to the destination (result) path.
The following copies a test.txt file from the AIR Test subdirectory of the user's documents directory to a file named
copy.txt in the same directory:
var original:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
var newFile:File = File.resolvePath("AIR Test/copy.txt");
original.copyTo(newFile, true);

In this example, the value of overwrite parameter of the copyTo() method (the second parameter) is set to true.
By setting this to true, an existing target file is overwritten. This parameter is optional. If you set it to false (the
default value), the operation dispatches an IOErrorEvent event if the target file exists (and the file is not copied).
The “Async” versions of the copy and move methods work asynchronously. Use the addEventListener() method
to monitor completion of the task or error conditions, as in the following code:
var original = File.documentsDirectory;
original = original.resolvePath("AIR Test/test.txt");

var destination:File = File.documentsDirectory;
destination = destination.resolvePath("AIR Test 2/copy.txt");

original.addEventListener(Event.COMPLETE, fileMoveCompleteHandler);
original.addEventListener(IOErrorEvent.IO_ERROR, fileMoveIOErrorEventHandler);
original.moveToAsync(destination);

function fileMoveCompleteHandler(event:Event):void {
trace(event.target); // [object File]

}
function fileMoveIOErrorEventHandler(event:IOErrorEvent):void {

trace("I/O Error.");
}

The File class also includes the File.moveToTrash() and File.moveToTrashAsync() methods, which move a file
or directory to the system trash.

Deleting a file
The File class includes a deleteFile() method and a deleteFileAsync() method. These methods delete files, the
first working synchronously, the second working asynchronously (see “AIR file basics” on page 103).
For example, the following code synchronously deletes the test.txt file in the user's documents directory:
var file:File = File.documentsDirectory.resolvePath("test.txt");
file.deleteFile();

The following code asynchronously deletes the test.txt file of the user's documents directory:
var file:File = File.documentsDirectory.resolvePath("test.txt");

http://www.adobe.com/go/learn_flex3_aslr
http://www.adobe.com/go/learn_flex3_aslr

ADOBE AIR 1
Developer Guide

116
file.addEventListener(Event.COMPLETE, completeHandler)
file.deleteFileAsync();

function completeHandler(event:Event):void {
trace("Deleted.")

}

Also included are the moveToTrash() and moveToTrashAsync methods, which you can use to move a file or
directory to the System trash. For details, see “Moving a file to the trash” on page 116.

Moving a file to the trash
The File class includes a moveToTrash() method and a moveToTrashAsync() method. These methods send a file
or directory to the System trash, the first working synchronously, the second working asynchronously (see “AIR file
basics” on page 103).
For example, the following code synchronously moves the test.txt file in the user's documents directory to the System
trash:
var file:File = File.documentsDirectory.resolvePath("test.txt");
file.moveToTrash();

Creating a temporary file
The File class includes a createTempFile() method, which creates a file in the temporary directory folder for the
System, as in the following example:
var temp:File = File.createTempFile();

The createTempFile() method automatically creates a unique temporary file (saving you the work of determining
a new unique location).
You may use a temporary file to temporarily store information used in a session of the application. Note that there
is also a createTempDirectory() method, for creating a unique temporary directory in the System temporary
directory.
You may want to delete the temporary file before closing the application, as it is not automatically deleted.

Reading and writing files
The FileStream class lets AIR applications read and write to the file system.

Contents

• “Workflow for reading and writing files” on page 117
• “Working with FileStream objects” on page 118
• “Example: Reading an XML file into an XML object” on page 124
• “Example: Reading and writing data with random access” on page 125

ADOBE AIR 1
Developer Guide

117
Workflow for reading and writing files
The workflow for reading and writing files is as follows.

1. Initialize a File object that points to the path.

This is the path of the file that you want to work with (or a file that you will later create).
var file:File = File.documentsDirectory;
file = file.resolvePath("AIR Test/testFile.txt");

This example uses the File.documentsDirectory property and the resolvePath() method of a File object to
initialize the File object. However, there are many other ways to point a File object to a file. For more information,
see “Pointing a File object to a file” on page 107.

2. Initialize a FileStream object.

3. Call the open() method or the openAsync() method of the FileStream object.

The method you call depends on whether you want to open the file for synchronous or asynchronous operations.
Use the File object as the file parameter of the open method. For the fileMode parameter, specify a constant from
the FileMode class that specifies the way in which you will use the file.
For example, the following code initializes a FileStream object that is used to create a file and overwrite any existing
data:
var fileStream:FileStream = new FileStream();
fileStream.open(file, FileMode.WRITE);

For more information, see “Initializing a FileStream object, and opening and closing files” on page 118 and
“FileStream open modes” on page 118.

4. If you opened the file asynchronously (using the openAsync() method), add and set up event listeners for
the FileStream object.

These event listener methods respond to events dispatched by the FileStream object in a variety of situations, such
as when data is read in from the file, when I/O errors are encountered, or when the complete amount of data to be
written has been written.
For details, see “Asynchronous programming and the events generated by a FileStream object opened asynchro-
nously” on page 122.

5. Include code for reading and writing data, as needed.

There are many methods of the FileStream class related to reading and writing. (They each begin with "read" or
"write".) The method you choose to use to read or write data depends on the format of the data in the target file.
For example, if the data in the target file is UTF-encoded text, you may use the readUTFBytes() and
writeUTFBytes() methods. If you want to deal with the data as byte arrays, you may use the readByte(),
readBytes(), writeByte(), and writeBytes() methods. For details, see “Data formats, and choosing the read
and write methods to use” on page 123.
If you opened the file asynchronously, then be sure that enough data is available before calling a read method. For
details, see “The read buffer and the bytesAvailable property of a FileStream object” on page 121.

6. Call the close() method of the FileStream object when you are done working with the file.

This makes the file available to other applications.
For details, see “Initializing a FileStream object, and opening and closing files” on page 118.

ADOBE AIR 1
Developer Guide

118
To see a sample application that uses the FileStream class to read and write files, see the following articles at the
Adobe AIR Developer Center:
• Building a text-file editor

Working with FileStream objects
The FileStream class defines methods for opening, reading, and writing files.

Contents

• FileStream open modes
• FileStream open modes
• The position property of a FileStream object
• The read buffer and the bytesAvailable property of a FileStream object
• Asynchronous programming and the events generated by a FileStream object opened asynchronously
• Data formats, and choosing the read and write methods to use

FileStream open modes

The open() and openAsync() methods of a FileStream object each include a fileMode parameter, which defines
some properties for a file stream, including the following:
• The ability to read from the file
• The ability to write to the file
• Whether data will always be appended past the end of the file (when writing)
• What to do when the file does not exist (and when its parent directories do not exist)
The following are the various file modes (which you can specify as the fileMode parameter of the open() and
openAsync() methods):

Initializing a FileStream object, and opening and closing files

When you open a FileStream object, you make it available to read and write data to a file. You open a FileStream
object by passing a File object to the open() or openAsync() method of the FileStream object:
var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
var myFileStream:FileStream = new FileStream();
myFileStream.open(myFile, FileMode.READ);

The fileMode parameter (the second parameter of the open() and openAsync() methods), specifies the mode in
which to open the file: for read, write, append, or update. For details, see the previous section, “FileStream open
modes” on page 118.

File mode Description

FileMode.READ Specifies that the file is open for reading only.

FileMode.WRITE Specifies that the file is open for writing. If the file does not exist, it is created when the FileStream object is
opened. If the file does exist, any existing data is deleted.

FileMode.APPEND Specifies that the file is open for appending. The file is created if it does not exist. If the file exists, existing data
is not overwritten, and all writing begins at the end of the file.

FileMode.UPDATE Specifies that the file is open for reading and writing. If the file does not exist, it is created. Specify this mode
for random read/write access to the file. You can read from any position in the file, and when writing to the file,
only the bytes written overwrite existing bytes (all other bytes remain unchanged).

http://www.adobe.com/go/learn_air_qs_textedit_flash_en

ADOBE AIR 1
Developer Guide

119
If you use the openAsync() method to open the file for asynchronous file operations, set up event listeners to handle
the asynchronous events:
var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
var myFileStream:FileStream = new FileStream();
myFileStream.addEventListener(Event.COMPLETE, completeHandler);
myFileStream.addEventListener(ProgressEvent.PROGRESS, progressHandler);
myFileStream.addEventListener(IOErrorEvent.IOError, errorHandler);
myFileStream.open(myFile, FileMode.READ);

function completeHandler(event:Event):void {
// ...

}

function progressHandler(event:ProgressEvent):void {
// ...

}

function errorHandler(event:IOErrorEvent):void {
// ...

}

The file is opened for synchronous or asynchronous operations, depending upon whether you use the open() or
openAsync() method. For details, see “AIR file basics” on page 103.
If you set the fileMode parameter to FileMode.READ or FileMode.UPDATE in the open method of the FileStream
object, data is read into the read buffer as soon as you open the FileStream object. For details, see “The read buffer
and the bytesAvailable property of a FileStream object” on page 121.
You can call the close() method of a FileStream object to close the associated file, making it available for use by
other applications.

The position property of a FileStream object

The position property of a FileStream object determines where data is read or written on the next read or write
method.
Before a read or write operation, set the position property to any valid position in the file.
For example, the following code writes the string "hello" (in UTF encoding) at position 8 in the file:
var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
var myFileStream:FileStream = new FileStream();
myFileStream.open(myFile, FileMode.UPDATE);
myFileStream.position = 8;
myFileStream.writeUTFBytes("hello");

When you first open a FileStream object, the position property is set to 0.
Before a read operation, the value of position must be at least 0 and less than the number of bytes in the file (which
are existing positions in the file).
The value of the position property is modified only in the following conditions:
• When you explicitly set the position property.
• When you call a read method.
• When you call a write method.

ADOBE AIR 1
Developer Guide

120
When you call a read or write method of a FileStream object, the position property is immediately incremented by
the number of bytes that you read or write. Depending on the read method you use, the position property is either
incremented by the number of bytes you specify to read or by the number of bytes available. When you call a read or
write method subsequently, it reads or writes starting at the new position.
var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
var myFileStream:FileStream = new FileStream();
myFileStream.open(myFile, FileMode.UPDATE);
myFileStream.position = 4000;
trace(myFileStream.position); // 4000
myFileStream.writeBytes(myByteArray, 0, 200);
trace(myFileStream.position); // 4200

There is, however, one exception: for a FileStream opened in append mode, the position property is not changed
after a call to a write method. (In append mode, data is always written to the end of the file, independent of the value
of the position property.)
For a file opened for asynchronous operations, the write operation does not complete before the next line of code is
executed. However, you can call multiple asynchronous methods sequentially, and the runtime executes them in
order:
var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
var myFileStream:FileStream = new FileStream();
myFileStream.openAsync(myFile, FileMode.WRITE);
myFileStream.writeUTFBytes("hello");
myFileStream.writeUTFBytes("world");
myFileStream.addEventListener(Event.CLOSE, closeHandler);
myFileStream.close();
trace("started.");

closeHandler(event:Event):void
{

trace("finished.");
}

The trace output for this code is the following:
started.
finished.

You can specify the position value immediately after you call a read or write method (or at any time), and the next
read or write operation will take place starting at that position. For example, note that the following code sets the
position property right after a call to the writeBytes() operation, and the position is set to that value (300) even
after the write operation completes:
var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
var myFileStream:FileStream = new FileStream();
myFileStream.openAsync(myFile, FileMode.UPDATE);
myFileStream.position = 4000;
trace(myFileStream.position); // 4000
myFileStream.writeBytes(myByteArray, 0, 200);
myFileStream.position = 300;
trace(myFileStream.position); // 300

ADOBE AIR 1
Developer Guide

121
The read buffer and the bytesAvailable property of a FileStream object

When a FileStream object with read capabilities (one in which the fileMode parameter of the open() or
openAsync() method was set to READ or UPDATE) is opened, the runtime stores the data in an internal buffer. The
FileStream object begins reading data into the buffer as soon as you open the file (by calling the open() or
openAsync() method of the FileStream object).
For a file opened for synchronous operations (using the open() method), you can always set the position pointer
to any valid position (within the bounds of the file) and begin reading any amount of data (within the bounds of the
file), as shown in the following code (which assumes that the file contains at least 100 bytes):
var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
var myFileStream:FileStream = new FileStream();
myFileStream.open(myFile, FileMode.READ);
myFileStream.position = 10;
myFileStream.readBytes(myByteArray, 0, 20);
myFileStream.position = 89;
myFileStream.readBytes(myByteArray, 0, 10);

Whether a file is opened for synchronous or asynchronous operations, the read methods always read from the
"available" bytes, represented by the bytesAvalable property. When reading synchronously, all of the bytes of the
file are available all of the time. When reading asynchronously, the bytes become available starting at the position
specified by the position property, in a series of asynchronous buffer fills signaled by progress events.
For files opened for synchronous operations, the bytesAvailable property is always set to represent the number of
bytes from the position property to the end of the file (all bytes in the file are always available for reading).
For files opened for asynchronous operations, you need to ensure that the read buffer has consumed enough data
before calling a read method. For a file opened asynchronously, as the read operation progresses, the data from the
file, starting at the position specified when the read operation started, is added to the buffer, and the
bytesAvailable property increments with each byte read. The bytesAvailable property indicates the number of
bytes available starting with the byte at the position specified by the position property to the end of the buffer.
Periodically, the FileStream object sends a progress event.
For a file opened asynchronously, as data becomes available in the read buffer, the FileStream object periodically
dispatches the progress event. For example, the following code reads data into a ByteArray object, bytes, as it is
read into the buffer:
var bytes:ByteArray = new ByteArray();
var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
var myFileStream:FileStream = new FileStream();
myFileStream.addEventListener(ProgressEvent.PROGRESS, progressHandler);
myFileStream.openAsync(myFile, FileMode.READ);

function progressHandler(event:ProgressEvent):void
{

myFileStream.readBytes(bytes, myFileStream.position, myFileStream.bytesAvailable);
}

For a file opened asynchronously, only the data in the read buffer can be read. Furthermore, as you read the data, it
is removed from the read buffer. For read operations, you need to ensure that the data exists in the read buffer before
calling the read operation. For example, the following code reads 8000 bytes of data starting from position 4000 in
the file:
var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
var myFileStream:FileStream = new FileStream();
myFileStream.addEventListener(ProgressEvent.PROGRESS, progressHandler);
myFileStream.addEventListener(Event.COMPLETE, completed);

ADOBE AIR 1
Developer Guide

122
myFileStream.openAsync(myFile, FileMode.READ);
myFileStream.position = 4000;

var str:String = "";

function progressHandler(event:Event):void
{

if (myFileStream.bytesAvailable > 8000)
{

str += myFileStream.readMultiByte(8000, "iso-8859-1");
}

}

During a write operation, the FileStream object does not read data into the read buffer. When a write operation
completes (all data in the write buffer is written to the file), the FileStream object starts a new read buffer (assuming
that the associated FileStream object was opened with read capabilities), and starts reading data into the read buffer,
starting from the position specified by the position property. The position property may be the position of the
last byte written, or it may be a different position, if the user specifies a different value for the position object after
the write operation.

Asynchronous programming and the events generated by a FileStream object opened asynchronously

When a file is opened asynchronously (using the openAsync() method), reading and writing files are done
asynchronously. As data is read into the read buffer and as output data is being written, other ActionScript code can
execute.
This means that you need to register for events generated by the FileStream object opened asynchronously.
By registering for the progress event, you can be notified as new data becomes available for reading, as in the
following code:
var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
var myFileStream:FileStream = new FileStream();
myFileStream.addEventListener(ProgressEvent.PROGRESS, progressHandler);
myFileStream.openAsync(myFile, FileMode.READ);
var str:String = "";

function progressHandler(event:ProgressEvent):void
{

str += myFileStream.readMultiByte(myFileStream.bytesAvailable, "iso-8859-1");
}

You can read the entire data by registering for the complete event, as in the following code:
var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
var myFileStream:FileStream = new FileStream();
myFileStream.addEventListener(Event.COMPLETE, completed);
myFileStream.openAsync(myFile, FileMode.READ);
var str:String = "";
function completeHandler(event:Event):void
{

str = myFileStream.readMultiByte(myFileStream.bytesAvailable, "iso-8859-1");
}

ADOBE AIR 1
Developer Guide

123
In much the same way that input data is buffered to enable asynchronous reading, data that you write on an
asynchronous stream is buffered and written to the file asynchronously. As data is written to a file, the FileStream
object periodically dispatches an OutputProgressEvent object. An OutputProgressEvent object includes a
bytesPending property that is set to the number of bytes remaining to be written. You can register for the
outputProgress event to be notified as this buffer is actually written to the file, perhaps in order to display a
progress dialog. However, in general, it is not necessary to do so. In particular, you may call the close() method
without concern for the unwritten bytes. The FileStream object will continue writing data and the close event will
be delivered after the final byte is written to the file and the underlying file is closed.

Data formats, and choosing the read and write methods to use

Every file is a set of bytes on a disk. In ActionScript, the data from a file can always be represented as a ByteArray.
For example, the following code reads the data from a file into a ByteArray object named bytes:
var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
var myFileStream:FileStream = new FileStream();
myFileStream.addEventListener(Event.COMPLETE, completed);
myFileStream.openAsync(myFile, FileMode.READ);
var bytes:ByteArray = new ByteArray();

function completeHandler(event:Event):void
{

myFileStream.readBytes(bytes, 0, myFileStream.bytesAvailable);
}

Similarly, the following code writes data from a ByteArray named bytes to a file:
var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
var myFileStream:FileStream = new FileStream();
myFileStream.open(myFile, FileMode.WRITE);
myFileStream.writeBytes(bytes, 0, bytes.length);

However, often you do not want to store the data in an ActionScript ByteArray object. And often the data file is in a
specified file format.
For example, the data in the file may be in a text file format, and you may want to represent such data in a String
object.
For this reason, the FileStream class includes read and write methods for reading and writing data to and from types
other than ByteArray objects. For example, the readMultiByte() method lets you read data from a file and store it
to a string, as in the following code:
var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
var myFileStream:FileStream = new FileStream();
myFileStream.addEventListener(Event.COMPLETE, completed);
myFileStream.openAsync(myFile, FileMode.READ);
var str:String = "";

function completeHandler(event:Event):void
{

str = myFileStream.readMultiByte(myFileStream.bytesAvailable, "iso-8859-1");
}

The second parameter of the readMultiByte() method specifies the text format that ActionScript uses to interpret
the data ("iso-8859-1" in the example). ActionScript supports common character set encodings, and these are listed
in the ActionScript 3.0 Language Reference (see Supported character sets at http://livedocs.macro-
media.com/flex/2/langref/charset-codes.html).

http://livedocs.macromedia.com/flex/2/langref/charset-codes.html

ADOBE AIR 1
Developer Guide

124
The FileStream class also includes the readUTFBytes() method, which reads data from the read buffer into a string
using the UTF-8 character set. Since characters in the UTF-8 character set are of variable length, do not use
readUTFBytes() in a method that responds to the progress event, since the data at the end of the read buffer may
represent an incomplete character. (This is also true when using the readMultiByte() method with a variable-
length character encoding.) For this reason, read the entire set of data when the FileStream object dispatches the
complete event.
There are also similar write methods, writeMultiByte() and writeUTFBytes(), for working with String objects
and text files.
The readUTF() and the writeUTF() methods (not to be confused with readUTFBytes() and writeUTFBytes())
also read and write the text data to a file, but they assume that the text data is preceded by data specifying the length
of the text data, which is not a common practice in standard text files.
Some UTF-encoded text files begin with a "UTF-BOM" (byte order mark) character that defines the endianness as
well as the encoding format (such as UTF-16 or UTF-32).
For an example of reading and writing to a text file, see “Example: Reading an XML file into an XML object”
on page 124.
The readObject() and writeObject() are convenient ways to store and retrieve data for complex ActionScript
objects. The data is encoded in AMF (ActionScript Message Format). This format is proprietary to ActionScript.
Applications other than AIR, Flash Player, Flash Media Server, and Flex Data Services do not have built-in APIs for
working with data in this format.
There are some other read and write methods (such as readDouble() and writeDouble()). However, if you use
these, make sure that the file format matches the formats of the data defined by these methods.
File formats are often more complex than simple text formats. For example, an MP3 file includes compressed data
that can only be interpreted with the decompression and decoding algorithms specific to MP3 files. MP3 files also
may include ID3 tags that contain metatag information about the file (such as the title and artist for a song). There
are multiple versions of the ID3 format, but the simplest (ID3 version 1) is discussed in the “Example: Reading and
writing data with random access” on page 125 section.
Other files formats (for images, databases, application documents, and so on) have different structures, and to work
with their data in ActionScript, you must understand how the data is structured.

Example: Reading an XML file into an XML object
The following examples demonstrate how to read and write to a text file that contains XML data.
To read from the file, initialize the File and FileStream objects, call the readUTFBytes() method of the FileStream
and convert the string to an XML object:
var file:File = File.documentsDirectory.resolvePath("AIR Test/preferences.xml");
var fileStream:FileStream = new FileStream();
fileStream.open(file, FileMode.READ);
var prefsXML:XML = XML(fileStream.readUTFBytes(fileStream.bytesAvailable));
fileStream.close();

Similarly, writing the data to the file is as easy as setting up appropriate File and FileStream objects, and then calling
a write method of the FileStream object. Pass the string version of the XML data to the write method as in the
following code:
var prefsXML:XML = <prefs><autoSave>true</autoSave></prefs>;
var file:File = File.documentsDirectory.resolvePath("AIR Test/preferences.xml");
fileStream = new FileStream();
fileStream.open(file, FileMode.WRITE);

ADOBE AIR 1
Developer Guide

125
var outputString:String = '<?xml version="1.0" encoding="utf-8"?>\n';
outputString += prefsXML.toXMLString();

fileStream.writeUTFBytes(outputString);
fileStream.close();

These examples use the readUTFBytes() and writeUTFBytes() methods, because they assume that the files are in
UTF-8 format. If not, you may need to use a different method (see “Data formats, and choosing the read and write
methods to use” on page 123).
The previous examples use FileStream objects opened for synchronous operation. You can also open files for
asynchronous operations (which rely on event listener functions to respond to events). For example, the following
code shows how to read an XML file asynchronously:
var file:File = File.documentsDirectory.resolvePath("AIR Test/preferences.xml");
var fileStream:FileStream = new FileStream();
fileStream.addEventListener(Event.COMPLETE, processXMLData);
fileStream.openAsync(file, FileMode.READ);
var prefsXML:XML;

function processXMLData(event:Event):void
{

prefsXML = XML(fileStream.readUTFBytes(fileStream.bytesAvailable));
fileStream.close();

}

The processXMLData() method is invoked when the entire file is read into the read buffer (when the FileStream
object dispatches the complete event). It calls the readUTFBytes() method to get a string version of the read data,
and it creates an XML object, prefsXML, based on that string.

Example: Reading and writing data with random access
MP3 files can include ID3 tags, which are sections at the beginning or end of the file that contain metadata identi-
fying the recording. The ID3 tag format itself has different revisions. This example describes how to read and write
from an MP3 file that contains the simplest ID3 format (ID3 version 1.0) using "random access to file data", which
means that it reads from and writes to arbitrary locations in the file.
An MP3 file that contains an ID3 version 1 tag includes the ID3 data at the end of the file, in the final 128 bytes.
When accessing a file for random read/write access, it is important to specify FileMode.UPDATE as the fileMode
parameter for the open() or openAsync() method:
var file:File = File.documentsDirectory.resolvePath("My Music/Sample ID3 v1.mp3");
var fileStr:FileStream = new FileStream();
fileStr.open(file, FileMode.UPDATE);

This lets you both read and write to the file.
Upon opening the file, you can set the position pointer to the position 128 bytes before the end of the file:
fileStr.position = file.size - 128;

This code sets the position property to this location in the file because the ID3 v1.0 format specifies that the ID3
tag data is stored in the last 128 bytes of the file. The specification also says the following:
• The first 3 bytes of the tag contain the string "TAG".
• The next 30 characters contain the title for the MP3 track, as a string.
• The next 30 characters contain the name of the artist, as a string.

ADOBE AIR 1
Developer Guide

126
• The next 30 characters contain the name of the album, as a string.
• The next 4 characters contain the year, as a string.
• The next 30 characters contain the comment, as a string.
• The next byte contains a code indicating the track's genre.
• All text data is in ISO 8859-1 format.
The id3TagRead() method checks the data after it is read in (upon the complete event):
function id3TagRead():void
{

if (fileStr.readMultiByte(3, "iso-8859-1").match(/tag/i))
{

var id3Title:String = fileStr.readMultiByte(30, "iso-8859-1");
var id3Artist:String = fileStr.readMultiByte(30, "iso-8859-1");
var id3Album:String = fileStr.readMultiByte(30, "iso-8859-1");
var id3Year:String = fileStr.readMultiByte(4, "iso-8859-1");
var id3Comment:String = fileStr.readMultiByte(30, "iso-8859-1");
var id3GenreCode:String = fileStr.readByte().toString(10);

}
}

function id3TagRead()
{

if (fileStr.readMultiByte(3, "iso-8859-1").match(/tag/i))
{

var id3Title = fileStr.readMultiByte(30, "iso-8859-1");
var id3Artist = fileStr.readMultiByte(30, "iso-8859-1");
var id3Album = fileStr.readMultiByte(30, "iso-8859-1");
var id3Year = fileStr.readMultiByte(4, "iso-8859-1");
var id3Comment = fileStr.readMultiByte(30, "iso-8859-1");
var id3GenreCode = fileStr.readByte().toString(10);

}
}

You can also perform a random-access write to the file. For example, you could parse the id3Title variable to
ensure that it is correctly capitalized (using methods of the String class), and then write a modified string, called
newTitle, to the file, as in the following:
fileStr.position = file.length - 125; // 128 - 3
fileStr.writeMultiByte(newTitle, "iso-8859-1");

To conform with the ID3 version 1 standard, the length of the newTitle string should be 30 characters, padded at
the end with the character code 0 (String.fromCharCode(0)).

127
Chapter 15: Drag and drop

Use the classes in the drag-and-drop API to support user-interface drag-and-drop gestures. A gesture in this sense is
an action by the user, mediated by both the operating system and your application, expressing an intent, in this case,
to copy, move, or link information. A drag-out gesture occurs when the user drags an object out of a component or
application. A drag-in gesture occurs when the user drags in an object from outside a component or application.
With the drag-and-drop API, you can allow a user to drag data between applications and between components
within an application. Supported transfer formats include:
• Bitmaps
• Files
• HTML-formatted text
• Text
• URLs
• Serialized objects
• Object references (only valid within the originating application)

Contents

• “Drag and drop basics” on page 128
• “Supporting the drag-out gesture” on page 129
• “Supporting the drag-in gesture” on page 131
• “HTML Drag and drop” on page 133

Quick Starts (Adobe AIR Developer Center)

• Supporting drag-and-drop and copy-and-paste

Language Reference

• NativeDragManager
• NativeDragOptions
• Clipboard
• NativeDragEvent

More Information

• Adobe AIR Developer Center for Flash (search for ‘AIR drag and drop’)

http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/NativeDragManager.html
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/NativeDragOptions.html
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/DragManager.html
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/Clipboard.html
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/DragOptions.html
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/Clipboard.html
http://www.adobe.com/go/learn_air_aslr_en?flash/events/NativeDragEvent.html
http://www.adobe.com/devnet/air/flash/
http://www.adobe.com/go/learn_air_qs_dragdrop_flash_en

ADOBE AIR 1
Developer Guide

128
Drag and drop basics
The drag-and-drop API contains the following classes.

Drag-and-drop gesture stages

The drag-and-drop gesture has three stages:
Initiation A user initiates a drag-and-drop operation by dragging from a component, or an item in a component, while
holding down the mouse button. The component that is the source of the dragged item is typically designated as the
drag initiator and dispatches nativeDragStart and nativeDragComplete events. An Adobe® AIR™ application
starts a drag operation by calling the NativeDragManager.doDrag() method in response to a mouseDown or
mouseMove event.
Dragging While holding down the mouse button, the user moves the mouse cursor to another component, application,
or to the desktop. AIR optionally displays a proxy image during the drag. As long as the drag is underway, the initiator
object dispatches nativeDragUpdate events. When the user moves the mouse over a possible drop target in an AIR
application, the drop target dispatches a nativeDragEnter event. The event handler can inspect the event object to
determine whether the dragged data is available in a format that the target accepts and, if so, let the user drop the
data onto it by calling the NativeDragManager.acceptDragDrop() method.
As long as the drag gesture remains over an interactive object, that object dispatches nativeDragOver events. When
the drag gesture leaves the interactive object, it dispatches a nativeDragExit event.
Drop The user releases the mouse over an eligible drop target. If the target is an AIR application or component, then
the component dispatches a nativeDragDrop event. The event handler can access the transferred data from the
event object. If the target is outside AIR, the operating system or another application handles the drop. In both cases,
the initiating object dispatches a nativeDragComplete event (if the drag started from within AIR).
The NativeDragManager class controls both drag-in and drag-out gestures. All the members of the NativeDrag-
Manager class are static, do not create an instance of this class.

The Clipboard object

Data that is dragged into or out of an application or component is contained in a Clipboard object. A single
Clipboard object can make available different representations of the same information to increase the likelihood that
another application can understand and use the data. For example, an image could be included as image data, a
serialized Bitmap object, and as a file. Rendering of the data in a format can be deferred to a rendering function that
is not called until the data is read.

Package Classes

flash.desktop • NativeDragManager

• NativeDragOptions

• Clipboard

Constants used with the drag-and-drop API are defined in the following classes:

• NativeDragActions

• ClipboardFormat

• ClipboardTransferModes

flash.events NativeDragEvent

ADOBE AIR 1
Developer Guide

129
Once a drag gesture has started, the Clipboard object can only be accessed from within an event handler for the
nativeDragEnter, nativeDragOver, and nativeDragDrop events. After the drag gesture has ended, the Clipboard
object cannot be read or reused.
An application object can be transferred as a reference and as a serialized object. References are only valid within the
originating application. Serialized object transfers are valid between AIR applications, but can only be used with
objects that remain valid when serialized and deserialized. Objects that are serialized are converted into the Action
Message Format for ActionScript 3 (AMF3), a string-based data-transfer format.

Supporting the drag-out gesture
To support the drag-out gesture, you must create a Clipboard object in response to a mouseDown event and send it
to the NativeDragManager.doDrag() method. Your application can then listen for the nativeDragComplete
event on the initiating object to determine what action to take when the user completes or abandons the gesture.

Contents

• “Preparing data for transfer” on page 129
• “Starting a drag-out operation” on page 130
• “Completing a drag-out transfer” on page 131

Preparing data for transfer
To prepare data or an object for dragging, create a Clipboard object and add the information to be transferred in one
or more formats. You can use the standard data formats to pass data that can be translated automatically to native
clipboard formats, and application-defined formats to pass objects. If it is computationally expensive to convert the
information to be transferred into a particular format, you can supply the name of a handler function to perform the
conversion. The function is called if and only if the receiving component or application reads the associated format.
For more information, see “Clipboard data formats” on page 148.
The following example illustrates how to create a Clipboard object containing a bitmap in several formats: a Bitmap
object, a native bitmap format, and a file list format containing the file from which the bitmap was originally loaded:
import flash.desktop.Clipboard;
import flash.display.Bitmap;
import flash.filesystem.File;
public function createClipboard(image:Bitmap, sourceFile:File):Clipboard{

var transfer:Clipboard = new Clipboard();
transfer.setData("CUSTOM_BITMAP", image, true); //Flash object by value and by reference
transfer.setData(ClipboardFormats.BITMAP_FORMAT, image.bitmapData, false);
transfer.setData(ClipboardFormats.FILE_LIST_FORMAT, new Array(sourceFile), false);
return transfer;

}

ADOBE AIR 1
Developer Guide

130
Starting a drag-out operation
To start a drag operation, call the NativeDragManager.doDrag() method in response to a mouse down event. The
doDrag() method is a static method that takes the following parameters:

The following example illustrates how to start a drag operation for a bitmap object loaded from a file. The example
loads an image and, on a mouseDown event, starts the drag operation.
package
{
import flash.desktop.NativeDragManager;
import flash.display.Sprite;
import flash.display.Loader;
import flash.system.LoaderContext;
import flash.net.URLRequest;
import flash.geom.Point;
import flash.desktop.Clipboard;
import flash.display.Bitmap;
import flash.filesystem.File;
import flash.events.Event;
import flash.events.MouseEvent;

public class DragOutExample extends Sprite {
protected var fileURL:String = "app:/image.jpg";
protected var display:Bitmap;

private function init():void {
loadImage();

}
private function onMouseDown(event:MouseEvent):void {

var bitmapFile:File = new File(fileURL);
var transferObject:Clipboard = createClipboard(display, bitmapFile);
NativeDragManager.doDrag(this,

transferObject,
display.bitmapData,
new Point(-mouseX,-mouseY));

}
public function createClipboard(image:Bitmap, sourceFile:File):Clipboard {

var transfer:Clipboard = new Clipboard();
transfer.setData("bitmap",

image,
true);

Parameter Description

initiator The object from which the drag originates, and which dispatches the dragStart and dragComplete
events. The initiator must be an interactive object.

clipboard The Clipboard object containing the data to be transferred. The Clipboard object is referenced in the Native-
DragEvent objects dispatched during the drag-and-drop sequence.

dragImage (Optional) A BitmapData object to display during the drag. The image can specify an alpha value. (Note:
Microsoft Windows always applies a fixed alpha fade to drag images).

offset (Optional) A Point object specifying the offset of the drag image from the mouse hotspot. Use negative coor-
dinates to move the drag image up and left relative to the mouse cursor. If no offset is provided, the top, left
corner of the drag image is positioned at the mouse hotspot.

actionsAllowed (Optional) A NativeDragOptions object specifying which actions (copy, move, or link) are valid for the drag
operation. If no argument is provided, all actions are permitted. The DragOptions object is referenced in
NativeDragEvent objects to enable a potential drag target to check that the allowed actions are compatible
with the purpose of the target component. For example, a “trash” component might only accept drag gestures
that allow the move action.

ADOBE AIR 1
Developer Guide

131
// ActionScript 3 Bitmap object by value and by reference
transfer.setData(ClipboardFormats.BITMAP_FORMAT,

image.bitmapData,
false);
// Standard BitmapData format

transfer.setData(ClipboardFormats.FILE_LIST_FORMAT,
new Array(sourceFile),
false);
// Standard file list format

return transfer;
}
private function loadImage():void {

var url:URLRequest = new URLRequest(fileURL);
var loader:Loader = new Loader();
loader.load(url,new LoaderContext());
loader.contentLoaderInfo.addEventListener(Event.COMPLETE, onLoadComplete);

}
private function onLoadComplete(event:Event):void {

display = event.target.loader.content;
var flexWrapper:UIComponent = new UIComponent();
flexWrapper.addChild(event.target.loader.content);
addChild(flexWrapper);
flexWrapper.addEventListener(MouseEvent.MOUSE_DOWN, onMouseDown);

}
}
}

Completing a drag-out transfer
When a user drops the dragged item by releasing the mouse, the initiator object dispatches a nativeDragComplete
event. You can check the dropAction property of the event object and then take the appropriate action. For example,
if the action is NativeDragAction.MOVE, you could remove the source item from its original location. The user can
abandon a drag gesture by releasing the mouse button while the cursor is outside an eligible drop target. The drag
manager sets the dropAction property for an abandoned gesture to NativeDragAction.NONE.

Supporting the drag-in gesture
To support the drag-in gesture, your application (or, more typically, a visual component of your application) must
respond to nativeDragEnter or nativeDragOver events.

Contents

• “Steps in a typical drop operation” on page 131
• “Acknowledging a drag-in gesture” on page 132
• “Completing the drop” on page 132
• “Updating the visual appearance of a component” on page 133
• “Tracking mouse position during a drag-in gesture” on page 133

Steps in a typical drop operation
The following sequence of events is typical for a drop operation:
1 The user drags a clipboard object over a component.
2 The component dispatches a nativeDragEnter event.

ADOBE AIR 1
Developer Guide

132
3 The nativeDragEnter event handler examines the event object to check the available data formats and allowed
actions. If the component can handle the drop, it calls NativeDragManager.acceptDragDrop().
4 The NativeDragManager changes the mouse cursor to indicate that the object can be dropped.
5 The user drops the object over the component.
6 The receiving component dispatches a nativeDragDrop event.
7 The receiving component reads the data in the desired format from the Clipboard object within the event object.
8 If the drag gesture originated within an AIR application, then the initiating interactive object dispatches a
nativeDragComplete event. If the gesture originated outside AIR, no feedback is sent.

Acknowledging a drag-in gesture
When a user drags a clipboard item into the bounds of a visual component, the component dispatches
nativeDragEnter and nativeDragOver events. To determine whether the component can accept the clipboard
item, the handlers for these events can check the clipboard and allowedActions properties of the event object.
To signal that the component can accept the drop, the event handler must call the
NativeDragManager.acceptDragDrop() method, passing a reference to the receiving component. If more than
one registered event listener calls the acceptDragDrop() method, the last handler in the list takes precedence. The
acceptDragDrop() call remains valid until the mouse leaves the bounds of the accepting object, triggering the
nativeDragExit event.
If more than one action is permitted in the allowedActions parameter passed to doDrag(), the user can indicate
which of the allowed actions they intend to perform by holding down a modifier key. The drag manager changes the
cursor image to tell the user which action would occur if they completed the drop. The intended action is reported
by the dropAction property of the NativeDragEvent object. The action set for a drag gesture is advisory only. The
components involved in the transfer must implement the appropriate behavior. To complete a move action, for
example, the drag initiator might remove the dragged item and the drop target might add it.
Your drag target can limit the drop action to one of the three possible actions by setting the dropAction property of
NativeDragManager class. If a user tries to choose a different action using the keyboard, then the NativeDrag-
Manager displays the unavailable cursor. Set the dropAction property in the handlers for both the
nativeDragEnter and the nativeDragOver events.
The following example illustrates an event handler for a nativeDragEnter or nativeDragOver event. This handler
only accepts a drag-in gesture if the clipboard being dragged contains text-format data.
import flash.desktop.NativeDragManager;
import flash.events.NativeDragEvent;

public function onDragIn(event:NativeDragEvent):void{
NativeDragManager.dropAction = NativeDragActions.MOVE;
if(event.clipboard.hasFormat(ClipboardFormats.TEXT_FORMAT)){

NativeDragManager.acceptDragDrop(this); //’this’ is the receiving component
}

}

Completing the drop
When the user drops a dragged item on an interactive object that has accepted the gesture, the interactive object
dispatches a nativeDragDrop event. The handler for this event can extract the data from the clipboard property
of the event object.
When the clipboard contains an application-defined format, the transferMode parameter passed to the getData()
method of the Clipboard object determines whether the drag manager returns a reference or a serialized version of
the object.

ADOBE AIR 1
Developer Guide

133
The following example illustrates an event handler for the nativeDragDrop event:
import flash.desktop.Clipboard;
import flash.events.NativeDragEvent;

public function onDrop(event:NativeDragEvent):void {
if (event.clipboard.hasFormat(ClipboardFormats.TEXT_FORMAT)) {
var text:String =

String(event.clipboard.getData(ClipboardFormats.TEXT_FORMAT,
ClipboardTransferMode.ORIGINAL_PREFERRED));

}

Once the event handler exits, the Clipboard object is no longer valid. Any attempt to access the object or its data
generates an error.

Updating the visual appearance of a component
A component can update its visual appearance based on the NativeDragEvent events. The following table describes
the types of changes that a typical component would make in response to the different events:

Tracking mouse position during a drag-in gesture
While a drag gesture remains over a component, that component dispatches nativeDragOver events. These events
are dispatched every few milliseconds and also whenever the mouse moves. The nativeDragOver event object can
be used to determine the position of the mouse over the component. Having access to the mouse position can be
helpful in situations where the receiving component is complex, but is not made up of sub-components. For example,
if your application displayed a bitmap containing a street map and you wanted to highlight zones on the map when
the user dragged information into them, you could use the mouse coordinates reported in the nativeDragOver
event to track the mouse position within the map.

HTML Drag and drop
To drag data into and out of an HTML-based application (or into and out of the HTML displayed in an
HTMLLoader), you can use HTML drag and drop events. The HTML drag-and-drop API allows you to drag to and
from DOM elements in the HTML content.

Event Description

nativeDragStart The initiating interactive object can use the nativeDragStart event to provide visual feedback that the
drag gesture originated from that interactive object.

nativeDragUpdate The initiating interactive object can use the nativeDragUpdate event to update its state during the gesture.

nativeDragEnter A potential receiving interactive object can use this event to take the focus, or indicate visually that it can or
cannot accept the drop.

nativeDragOver A potential receiving interactive object can use this event to respond to the movement of the mouse within
the interactive object, such as when the mouse enters a “hot” region of a complex component such as a street
map display.

nativeDragExit A potential receiving interactive object can use this event to restore its state when a drag gesture moves
outside its bounds.

nativeDragComplete The initiating interactive object can use this event to update its associated data model, such as by removing
an item from a list, and to restore its visual state.

ADOBE AIR 1
Developer Guide

134
Note: You can also use the AIR NativeDragEvent and NativeDragManager APIs by listening for events on the
HTMLLoader object containing the HTML content. However, the HTML API is better integrated with the HTML DOM
and gives you control of the default behavior.

Contents

• “Default drag-and-drop behavior” on page 134
• “Drag-and-drop events in HTML” on page 134
• “MIME types for the HTML drag-and-drop” on page 136
• “Drag effects in HTML” on page 136
• “Dragging data out of an HTML element” on page 137
• “Dragging data into an HTML element” on page 137
• “Example: Overriding the default HTML drag-in behavior” on page 138
• “Handling file drops in non-application HTML sandboxes” on page 140

Default drag-and-drop behavior
THe HTML environment provides default behavior for drag-and-drop gestures involving text, images, and URLs.
Using the default behavior, you can always drag these types of data out of an element. However, you can only drag
text into an element and only to elements in an editable region of a page. When you drag text between or within
editable regions of a page, the default behavior performs a move action. When you drag text to an editable region
from a non-editable region or from outside the application, then the default behavior performs a copy action.
You can override the default behavior by handling the drag-and-drop events yourself. To cancel the default behavior,
you must call the preventDefault() methods of the objects dispatched for the drag-and-drop events. You can then
insert data into the drop target and remove data from the drag source as necessary to perform the chosen action.
By default, the user can select and drag any text, and drag images and links. You can use the WebKit CSS property, -
webkit-user-select to control how any HTML element can be selected. For example, if you set -webkit-user-
select to none, then the element contents are not selectable and so cannot be dragged. You can also use the -
webkit-user-drag CSS property to control whether an element as a whole can be dragged. However, the contents
of the element are treated separately. The user could still drag a selected portion of the text. For more information,
see “Extensions to CSS” on page 212.

Drag-and-drop events in HTML
The events dispatched by the initiator element from which a drag originates, are:

Event Description

dragstart Dispatched when the user starts the drag gesture. The handler for this event can prevent the drag, if necessary,
by calling the preventDefault() method of the event object. To control whether the dragged data can be
copied, linked, or moved, set the effectAllowed property. Selected text, images, and links are put onto the clip-
board by the default behavior, but you can set different data for the drag gesture using the dataTransfer prop-
erty of the event object.

drag Dispatched continuously during the drag gesture.

dragend Dispatched when the user releases the mouse button to end the drag gesture.

ADOBE AIR 1
Developer Guide

135
The events dispatched by a drag target are:

The event object dispatched in response to these events is similar to a mouse event. You can use mouse event
properties such as (clientX, clientY) and (screenX, screenY), to determine the mouse position.
The most important property of a drag event object is dataTransfer, which contains the data being dragged. The
dataTransfer object itself has the following properties and methods:

Event Description

dragover Dispatched continuously while the drag gesture remains within the element boundaries. The handler for this
event should set the dataTransfer.dropEffect property to indicate whether the drop will result in a copy, move,
or link action if the user releases the mouse.

dragenter Dispatched when the drag gesture enters the boundaries of the element.

If you change any properties of a dataTransfer object in a dragenter event handler, those changes are quickly
overridden by the next dragover event. On the other hand, there is a short delay between a dragenter and the
first dragover event that can cause the cursor to flash if different properties are set. In many cases, you can use
the same event handler for both events.

dragleave Dispatched when the drag gesture leaves the element boundaries.

drop Dispatched when the user drops the data onto the element. The data being dragged can only be accessed
within the handler for this event.

Property or Method Description

effectAllowed The effect allowed by the source of the drag. Typically, the handler for the dragstart event sets this value. See
“Drag effects in HTML” on page 136.

dropEffect The effect chosen by the target or the user. If you set the dropEffect in a dragover or dragenter
event handler, then AIR updates the mouse cursor to indicate the effect that occurs if the user releases the
mouse. If the dropEffect set does not match one of the allowed effects, no drop is allowed and the unavail-
able cursor is displayed. If you have not set a dropEffect in response to the latest dragover or
dragenter event, then the user can choose from the allowed effects with the standard operating system
modifier keys.

The final effect is reported by the dropEffect property of the object dispatched for dragend. If the user
abandons the drop by releasing the mouse outside an eligible target, then dropEffect is set to none.

types An array containing the MIME type strings for each data format present in the dataTransfer object.

getData(mimeType) Gets the data in the format specified by the mimeType parameter.

The getData() method can only be called in response to the drop event.

setData(mimeType) Adds data to the dataTransfer in the format specified by the mimeType parameter. You can add data in
multiple formats by calling setData() for each MIME type. Any data placed in the dataTransfer object
by the default drag behavior is cleared.

The setData() method can only be called in response to the dragstart event.

clearData(mimeType) Clears any data in the format specified by the mimeType parameter.

setDragImage(image,
offsetX, offsetY)

Sets a custom drag image. The setDragImage() method can only be called in response to the dragstart
event.

ADOBE AIR 1
Developer Guide

136
MIME types for the HTML drag-and-drop
The MIME types to use with the dataTransfer object of an HTML drag-and-drop event include:

You can also use other MIME strings, including application-defined strings. However, other applications may not be
able to recognize or use the transferred data. It is your responsibility to add data to the dataTransfer object in the
expected format.
Important: Only code running in the application sandbox can access dropped files. Attempting to read or set any
property of a File object within a non-application sandbox generates a security error. See “Handling file drops in non-
application HTML sandboxes” on page 140 for more information.

Drag effects in HTML
The initiator of the drag gesture can limit the allowed drag effects by setting the dataTransfer.effectAllowed
property in the handler for the dragstart event. The following string values can be used:

The target of the drag gesture can set the dataTransfer.dropEffect property to indicate the action that is taken
if the user completes the drop. If the drop effect is one of the allowed actions, then the system displays the appropriate
copy, move, or link cursor. If not, then the system displays the unavailable cursor. If no drop effect is set by the target,
the user can choose from the allowed actions with the modifier keys.
Set the dropEffect value in the handlers for both the dragover and dragenter events:
function doDragStart(event) {

event.dataTransfer.setData("text/plain","Text to drag");
event.dataTransfer.effectAllowed = "copyMove";

}

Data format MIME type

Text "text/plain"

HTML "text/html"

URL "text/uri-list"

Bitmap "image/x-vnd.adobe.air.bitmap"

File list "application/x-vnd.adobe.air.file-list"

String value Description

"none" No drag operations are allowed.

"copy" The data will be copied to the destination, leaving the original in place.

"link" The data will be shared with the drop destination using a link back to the original.

"move” The data will be copied to the destination and removed from the original location.

"copyLink" The data can be copied or linked.

"copyMove" The data can be copied or moved.

"linkMove" The data can be linked or moved.

"all" The data can be copied, moved, or linked. All is the default effect when you prevent the default behavior.

ADOBE AIR 1
Developer Guide

137
function doDragOver(event) {
event.dataTransfer.dropEffect = "copy";

}

function doDragEnter(event) {
event.dataTransfer.dropEffect = "copy";

}

Note: Although you should always set the dropEffect property in the handler for dragenter, be aware that the next
dragover event resets the property to its default value. Set dropEffect in response to both events.

Dragging data out of an HTML element
The default behavior allows most content in an HTML page to be copied by dragging. You can control the content
allowed to be dragged using CSS properties -webkit-user-select and -webkit-user-drag.
Override the default drag-out behavior in the handler for the dragstart event. Call the setData() method of the
dataTransfer property of the event object to put your own data into the drag gesture.
To indicate which drag effects a source object supports when you are not relying on the default behavior, set the
dataTransfer.effectAllowed property of the event object dispatched for the dragstart event. You can choose
any combination of effects. For example, if a source element supports both copy and link effects, set the property to
"copyLink".

Setting the dragged data

Add the data for the drag gesture in the handler for the dragstart event with the dataTransfer property. Use the
dataTransfer.setData() method to put data onto the clipboard, passing in the MIME type and the data to
transfer.
For example, if you had an image element in your application, with the id imageOfGeorge, you could use the
following dragstart event handler. This example adds representations of a picture of George in several data formats,
which increases the likelihood that other applications can use the dragged data.
function dragStartHandler(event){

event.dataTransfer.effectAllowed = "copy";

var dragImage = document.getElementById("imageOfGeorge");
var dragFile = new air.File(dragImage.src);
event.dataTransfer.setData("text/plain","A picture of George");
event.dataTransfer.setData("image/x-vnd.adobe.air.bitmap", dragImage);
event.dataTransfer.setData("application/x-vnd.adobe.air.file-list",

new Array(dragFile));
}

Note: When you call the setData() method of dataTransfer object, no data is added by the default drag-and-drop
behavior.

Dragging data into an HTML element
The default behavior only allows text to be dragged into editable regions of the page. You can specify that an element
and its children can be made editable by including the contenteditable attribute in the opening tag of the element.
You can also make an entire document editable by setting the document object designMode property to "on".
You can support alternate drag-in behavior on a page by handling the dragenter, dragover, and drop events for
any elements that can accept dragged data.

ADOBE AIR 1
Developer Guide

138
Enabling drag-in

To handle the drag-in gesture, you must first cancel the default behavior. Listen for the dragenter and dragover
events on any HTML elements you want to use as drop targets. In the handlers for these events, call the
preventDefault() method of the dispatched event object. Canceling the default behavior allows non-editable
regions to receive a drop.

Getting the dropped data

You can access the dropped data in the handler for the ondrop event:
function doDrop(event){

droppedText = event.dataTransfer.getData("text/plain");
}

Use the dataTransfer.getData() method to read the data onto the clipboard, passing in the MIME type of the
data format to read. You can find out which data formats are available using the types property of the
dataTransfer object. The types array contains the MIME type string of each available format.
When you cancel the default behavior in the dragenter or dragover events, you are responsible for inserting any
dropped data into its proper place in the document. No API exists to convert a mouse position into an insertion point
within an element. This limitation can make it difficult to implement insertion-type drag gestures.

Example: Overriding the default HTML drag-in behavior
This example implements a drop target that displays a table showing each data format available in the dropped item.
The default behavior is used to allow text, links, and images to be dragged within the application. The example
overrides the default drag-in behavior for the div element that serves as the drop target. The key step to enabling
non-editable content to accept a drag-in gesture is to call the preventDefault() method of the event object
dispatched for both the dragenter and dragover events. In response to a drop event, the handler converts the
transferred data into an HTML row element and inserts the row into a table for display.
<html>
<head>
<title>Drag-and-drop</title>
<script language="javascript" type="text/javascript" src="AIRAliases.js"></script>
<script language="javascript">

function init(){
var target = document.getElementById('target');
target.addEventListener("dragenter", dragEnterOverHandler);
target.addEventListener("dragover", dragEnterOverHandler);
target.addEventListener("drop", dropHandler);

var source = document.getElementById('source');
source.addEventListener("dragstart", dragStartHandler);
source.addEventListener("dragend", dragEndHandler);

emptyRow = document.getElementById("emptyTargetRow");
}

function dragStartHandler(event){
event.dataTransfer.effectAllowed = "copy";

}

function dragEndHandler(event){
air.trace(event.type + ": " + event.dataTransfer.dropEffect);

}

ADOBE AIR 1
Developer Guide

139
function dragEnterOverHandler(event){
event.preventDefault();

}

var emptyRow;
function dropHandler(event){

for(var prop in event){
air.trace(prop + " = " + event[prop]);

}
var row = document.createElement('tr');
row.innerHTML = "<td>" + event.dataTransfer.getData("text/plain") + "</td>" +

"<td>" + event.dataTransfer.getData("text/html") + "</td>" +
"<td>" + event.dataTransfer.getData("text/uri-list") + "</td>" +
"<td>" + event.dataTransfer.getData("application/x-vnd.adobe.air.file-list") +
"</td>";

var imageCell = document.createElement('td');
if((event.dataTransfer.types.toString()).search("image/x-vnd.adobe.air.bitmap") > -

1){
imageCell.appendChild(event.dataTransfer.getData("image/x-

vnd.adobe.air.bitmap"));
}
row.appendChild(imageCell);
var parent = emptyRow.parentNode;
parent.insertBefore(row, emptyRow);

}
</script>
</head>
<body onLoad="init()" style="padding:5px">
<div>

<h1>Source</h1>
 <p>Items to drag:</p>

<ul id="source">
 Plain text.
 HTML formatted text.
 A URL.

 <li style="-webkit-user-drag:none;">
 Uses "-webkit-user-drag:none" style.

 <li style="-webkit-user-select:none;">
 Uses "-webkit-user-select:none" style.

</div>
<div id="target" style="border-style:dashed;">

<h1 >Target</h1>
 <p>Drag items from the source list (or elsewhere).</p>
 <table id="displayTable" border="1">
 <tr><th>Plain text</th><th>Html text</th><th>URL</th><th>File list</th><th>Bitmap
Data</th></tr>
 <tr
id="emptyTargetRow"><td> </td><td> </td><td> </td><td> </td><td>
</td></tr>
 </table>
 </div>
</div>
</body>
</html>

ADOBE AIR 1
Developer Guide

140
Handling file drops in non-application HTML sandboxes
Non-application content cannot access the File objects that result when files are dragged into an AIR application.
Nor is it possible to pass one of these File objects to application content through a sandbox bridge. (The object
properties must be accessed during serialization.) However, you can still drop files in your application by listening
for the AIR nativeDragDrop events on the HTMLLoader object.
Normally, if a user drops a file into a frame that hosts non-application content, the drop event does not propagate
from the child to the parent. However, since the events dispatched by the HTMLLoader (which is the container for
all HTML content in an AIR application) are not part of the HTML event flow, you can still receive the drop event
in application content.
To receive the event for a file drop, the parent document adds an event listener to the HTMLLoader object using the
reference provided by window.htmlLoader:
window.htmlLoader.addEventListener("nativeDragDrop",function(event){

var filelist = event.clipboard.getData(air.ClipboardFormats.FILE_LIST_FORMAT);
air.trace(filelist[0].url);

});

The following example uses a parent document that loads a child page into a remote sandbox (http://localhost/). The
parent listens for the nativeDragDrop event on the HTMLLoader object and traces out the file url.
<html>
<head>
<title>Drag-and-drop in a remote sandbox</title>
<script language="javascript" type="text/javascript" src="AIRAliases.js"></script>
<script language="javascript">

window.htmlLoader.addEventListener("nativeDragDrop",function(event){
var filelist = event.clipboard.getData(air.ClipboardFormats.FILE_LIST_FORMAT);
air.trace(filelist[0].url);

});
</script>
</head>
<body>
 <iframe src="child.html"
 sandboxRoot="http://localhost/"
 documentRoot="app:/"
 frameBorder="0" width="100%" height="100%">
 </iframe>
</body>
</html>

The child document must present a valid drop target by preventing the Event object preventDefault() method in
the HTML dragenter and dragover event handlers or the drop event can never occur.
<html>
<head>

<title>Drag and drop target</title>
<script language="javascript" type="text/javascript">

function preventDefault(event){
event.preventDefault();

}
</script>

</head>
<body ondragenter="preventDefault(event)" ondragover="preventDefault(event)">
<div>
<h1>Drop Files Here</h1>
</div>
</body>
</html>

ADOBE AIR 1
Developer Guide

141
See also
• “Programming in HTML and JavaScript” on page 214

142
Chapter 16: Copy and paste

Use the classes in the clipboard API to copy information to and from the system clipboard. The data formats that
can be transferred into or out of an Adobe® AIR™ application include:
• Bitmaps
• Files
• Text
• URL strings
• Serialized objects
• Object references (only valid within the originating application)

Contents

• “Copy-and-paste basics” on page 142
• “Reading from and writing to the system clipboard” on page 143
• “HTML copy and paste” on page 143
• “Menu commands and keystrokes for copy and paste” on page 145
• “Clipboard data formats” on page 148

Quick Starts (Adobe AIR Developer Center)

• Supporting drag-and-drop and copy and paste

Language Reference

• Clipboard
• ClipboardFormats
• ClipboardTransferMode

More Information

• Adobe AIR Developer Center for Flash (search for ’AIR copy and paste’)

Copy-and-paste basics

The copy-and-paste API contains the following classes.

Package Classes

flash.desktop • Clipboard

Constants used with the copy-and-paste API are defined in the following classes:

• ClipboardFormats

• ClipboardTransferMode

http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/Clipboard.html
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/ClipboardFormats.html
http://www.adobe.com/go/learn_air_aslr_en?flash/desktop/ClipboardTransferMode.html
http://www.adobe.com/devnet/air/flash/
http://www.adobe.com/go/learn_air_qs_dragdrop_flash_en

ADOBE AIR 1
Developer Guide

143
The static Clipboard.generalClipboard property represents the operating system clipboard. Access the system
clipboard through the static Clipboard.generalClipboard property. The Clipboard class provides methods for
reading and writing data to clipboard objects. Clipboard objects are also used to transfer data through the drag-and-
drop API.
The HTML environment provides an alternate API for copy and paste. Either API can be used by code running
within the application sandbox, but only the HTML API can be used in non-application content.
The HTMLLoader and TextField classes implement default behavior for the normal copy and paste keyboard
shortcuts. To implement copy and paste shortcut behavior for custom components, you can listen for these
keystrokes directly. You can also use native menu commands along with key equivalents to respond to the
keystrokes indirectly.
Different representations of the same information can be made available in a single Clipboard object to increase the
ability of other applications to understand and use the data. For example, an image might be included as image data,
a serialized Bitmap object, and as a file. Rendering of the data in a format can be deferred so that the format is not
actually created until the data in that format is read.

Reading from and writing to the system clipboard
To read the operating system clipboard, call the getData() method of the Clipboard.generalClipbooard object,
passing in the name of the format to read:
import flash.desktop.Clipboard;
import flash.desktop.ClipboardFormats;

if(Clipboard.generalClipboard.hasFormat(ClipboardFormats.TEXT_FORMAT)){
var text:String = Clipboard.generalClipboard.getData(ClipboardFormats.TEXT_FORMAT);

}

To write to the clipboard, add the data to the Clipboard.generalClipboard object in one or more formats. Any
existing data in the same format is overwritten automatically. However, it is a good practice to also clear the system
clipboard before writing new data to it to make sure that unrelated data in any other formats is also deleted.
import flash.desktop.Clipboard;
import flash.desktop.ClipboardFormats;

var textToCopy:String = "Copy to clipboard.";
Clipboard.generalClipboard.clear();
Clipboard.generalClipboard.setData(ClipboardFormats.TEXT_FORMAT, textToCopy, false);

Note: Only code running in the application sandbox can access the system clipboard directly. In non-application HTML
content, you can only access the clipboard through the clipboardData property of an event object dispatched by one of
the HTML copy or paste events.

HTML copy and paste
The HTML environment provides its own set of events and default behavior for copy and paste. Only code running
in the application sandbox can access the system clipboard directly through the AIR
Clipboard.generalClipboard object. JavaScript code in a non-application sandbox can access the clipboard
through the event object dispatched in response to one of the copy or paste events dispatched by an element in an
HTML document.

ADOBE AIR 1
Developer Guide

144
Copy and paste events include: copy, cut, and paste. The object dispatched for these events provides access to the
clipboard through the clipboardData property.

Contents

• “Default behavior” on page 144
• “Using the clipboardData property of the event object” on page 144

Default behavior
By default, AIR copies selected items in response to the copy command, which can be generated either by a keyboard
shortcut or a context menu. Within editable regions, AIR cuts text in response to the cut command or pastes text to
the cursor or selection in response to the paste command.
To prevent the default behavior, your event handler can call the preventDefault() method of the dispatched event
object.

Using the clipboardData property of the event object
The clipboardData property of the event object dispatched as a result of one of the copy or paste events allows you
to read and write clipboard data.
To write to the clipboard when handling a copy or cut event, use the setData() method of the clipboardData
object, passing in the data to copy and the MIME type:
function customCopy(event){

event.clipboardData.setData("text/plain", "A copied string.");
}

To access the data that is being pasted, you can use the getData() method of the clipboardData object, passing in
the MIME type of the data format. The available formats are reported by the types property.
function customPaste(event){

var pastedData = event.clipboardData("text/plain");
}

The getData() method and the types property can only be accessed in the event object dispatched by the paste
event.
The following example illustrates how to override the default copy and paste behavior in an HTML page. The copy
event handler italicizes the copied text and copies it to the clipboard as HTML text. The cut event handler copies
the selected data to the clipboard and removes it from the document. The paste handler inserts the clipboard
contents as HTML and bolds the insertion as well.
<html>
<head>

<title>Copy and Paste</title>
<script language="javascript" type="text/javascript">

function onCopy(event){
var selection = window.getSelection();
event.clipboardData.setData("text/html","<i>" + selection + "</i>");
event.preventDefault();

}

function onCut(event){
 var selection = window.getSelection();
 event.clipboardData.setData("text/html","<i>" + selection + "</i>");
 var range = selection.getRangeAt(0);
 range.extractContents();

ADOBE AIR 1
Developer Guide

145
event.preventDefault();
}

function onPaste(event){
var insertion = document.createElement("b");
insertion.innerHTML = event.clipboardData.getData("text/html");
 var selection = window.getSelection();
 var range = selection.getRangeAt(0);
 range.insertNode(insertion);
event.preventDefault();

}
</script>

</head>
<body onCopy="onCopy(event)"

 onPaste="onPaste(event)"
 onCut="onCut(event)">

<p>Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium
doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore
veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam
voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur
magni dolores eos qui ratione voluptatem sequi nesciunt.</p>
</body>
</html>

Menu commands and keystrokes for copy and paste
Copy and paste functionality is commonly triggered through menu commands and keyboard shortcuts. On OS X,
an edit menu with the copy and paste commands is automatically created by the operating system, but you must add
listeners to these menu commands to hook up your own copy and paste functions. On Windows, you can add a
native edit menu to any window that uses system chrome. (You can also create non-native menus with ActionScript,
or, in HTML content, you can use DHTML, but that is beyond the scope of this discussion.
To trigger copy and paste commands in response to keyboard shortcuts, you can either assign key equivalents to the
appropriate command items in a native application or window menu, or you can listen for the keystrokes directly.

Contents

• “Starting a copy or paste operation with a menu command” on page 145
• “Starting a copy or paste command with a keystroke” on page 147

Starting a copy or paste operation with a menu command
To trigger a copy or paste operation with a menu command, you must add listeners for the select event on the menu
items that call your handler functions.
When your handler function is called, you can find the object to be copied from or pasted into using the focus
property of the stage. You can then call the appropriate method of the focused object (or a general fallback method,
if no object has focus) to carry out the copy, cut, or paste logic. For example, the following copy event handler checks
whether the focused object is of the correct type, in this case, a class named Scrap, and then calls the object’s
doCopy() method.
function copyCommand(event:Event):void{

if(NativeApplication.nativeApplication.activeWindow.stage.focus is Scrap){
Scrap(NativeApplication.nativeApplication.activeWindow.stage.focus).doCopy();

} else {
NativeApplication.nativeApplication.copy();

ADOBE AIR 1
Developer Guide

146
}
}

If copyCommand() in the example does not recognize the class of the focused object, it calls the NativeApplication
copy() method. The NativeApplication copy() method sends an internal copy command to the focused object.
The internal command is only recognized by the TextArea and HTMLLoader objects. Similar commands are
available for cut, paste, select all, and for the TextArea only, clear, undo, and redo.
Note: There is no API provided to respond to these internal commands in a custom component. You must either extend
the TextArea or HTMLLoader classes, or include one of these objects in your custom component. If you include a
TextArea or HTMLLoader, your component must manage the focus such that the TextArea or HTMLLoader object
always keeps the focus when the component itself has focus.
In HTML content, the default copy and paste behavior can be triggered using the NativeApplication edit
commands. The following example creates an edit menu for an editable HTML document:
<html>
<head>

<title>Edit Menu</title>
<script src="AIRAliases.js" type="text/javascript"></script>
<script language="javascript" type="text/javascript">

function init(){
document.designMode = "On";
addEditMenu();

}

function addEditMenu(){
var menu = new air.NativeMenu
var edit = menu.addSubmenu(new air.NativeMenu(), "Edit");

var copy = edit.submenu.addItem(new air.NativeMenuItem("Copy"));
var cut = edit.submenu.addItem(new air.NativeMenuItem("Cut"));
var paste = edit.submenu.addItem(new air.NativeMenuItem("Paste"));
var selectAll = edit.submenu.addItem(new air.NativeMenuItem("Select All"));

copy.addEventListener(air.Event.SELECT, function(){
air.NativeApplication.nativeApplication.copy();

});
cut.addEventListener(air.Event.SELECT, function(){

air.NativeApplication.nativeApplication.cut();
});
paste.addEventListener(air.Event.SELECT, function(){

air.NativeApplication.nativeApplication.paste();
});

selectAll.addEventListener(air.Event.SELECT, function(){
air.NativeApplication.nativeApplication.selectAll();

});

copy.keyEquivalent = "c";
cut.keyEquivalent = "x";
paste.keyEquivalent = "v";
selectAll.keyEquivalent = "a";

if(air.NativeWindow.supportsMenu){
window.nativeWindow.menu = menu;

} else if (air.NativeApplication.supportsMenu){
air.NativeApplication.nativeApplication.menu = menu;

}
}

ADOBE AIR 1
Developer Guide

147
</script>
</head>
<body onLoad="init()">

<p>Neque porro quisquam est qui dolorem ipsum
quia dolor sit amet, consectetur, adipisci velit.</p>

</body>
</html>

The previous example replaces the application menu on Mac OS X, but you can also make use of the default Edit
menu by finding the existing items and adding event listeners to them.
If you use a context menu to invoke a copy or paste command, you can use the contextMenuOwner property of the
ContextMenuEvent object dispatched when the menu is opened or an item is selected to determine which object is
the proper target of the copy or paste command.

Finding default menu items on Mac OS X

To find the default edit menu and the specific copy, cut, and paste command items in the application menu on Mac
OS X, you can search through the menu hierarchy using the label property of the NativeMenuItem objects. For
example, the following function takes a name and finds the item with the matching label in the menu:
private function findItemByName(menu:NativeMenu,

 name:String,
 recurse:Boolean = false):NativeMenuItem{

var searchItem:NativeMenuItem = null;
for each (var item:NativeMenuItem in menu.items){

if(item.label == name){
searchItem = item;
break;

}
if((item.submenu != null) && recurse){

 searchItem = findItemByName(item.submenu, name);
}

}
return searchItem;

}

You can set the recurse parameter to true to include submenus in the search, or false to include only the passed-
in menu.

Starting a copy or paste command with a keystroke
If your application uses native window or application menus for copy and paste, you can add key equivalents to the
menu items to implement keyboard shortcuts. Otherwise, you can listen for the relevant keystrokes yourself, as
demonstrated in the following example:
private function init():void{

stage.addEventListener(KeyboardEvent.KEY_DOWN, keyListener);
}
private function keyListener(event:KeyboardEvent):void{

if(event.ctrlKey){
event.preventDefault();
switch(String.fromCharCode(event.charCode)){

case "c":
NativeApplication.nativeApplication.copy();
break;

case "x":
NativeApplication.nativeApplication.cut();
break;

case "v":

ADOBE AIR 1
Developer Guide

148
NativeApplication.nativeApplication.paste();
break;

case "a":
NativeApplication.nativeApplication.selectAll();
break;

case "z":
NativeApplication.nativeApplication.undo();
break;

case "y":
NativeApplication.nativeApplication.redo();
break;

}
}

}

In HTML content, the keyboard shortcuts for copy and paste commands are implemented by default. It is not
possible to trap all of the keystrokes commonly used for copy and paste using a key event listener. If you need to
override the default behavior, a better strategy is to listen for the copy and paste events themselves.

Clipboard data formats
Clipboard formats describe the data placed in a Clipboard object. AIR automatically translates the standard data
formats between ActionScript data types and system clipboard formats. In addition, application objects can be
transferred within and between AIR applications using application-defined formats.
A Clipboard object can contain representations of the same information in different formats. For example, a
Clipboard object representing a Sprite could include a reference format for use within the same application, a
serialized format for use by another AIR application, a bitmap format for use by an image editor, and a file list format,
perhaps with deferred rendering to encode a PNG file, for copying or dragging a representation of the Sprite to the
file system.

Contents

• “Standard data formats” on page 148
• “Custom data formats” on page 149
• “Deferred rendering” on page 150

Standard data formats
The constants defining the standard format names are provided in the ClipboardFormats class:

Constant Description

TEXT_FORMAT Text-format data is translated to and from the ActionScript String class.

BITMAP_FORMAT Bitmap-format data is translated to and from the ActionScript BitmapData class.

FILE_LIST_FORMAT File-list-format data is translated to and from an array of ActionScript File objects.

URL_FORMAT URL-format data is translated to and from the ActionScript String class.

ADOBE AIR 1
Developer Guide

149
When copying and pasting data in response to a copy, cut, or paste event in HTML content, MIME types must be
used instead of the ClipboardFormat strings. The valid data MIME types are:

Custom data formats
You can use application-defined custom formats to transfer objects as references or as serialized copies. References
are only valid within the same AIR application. Serialized objects can be transferred between Adobe AIR applica-
tions, but can only be used with objects that remain valid when serialized and deserialized. Objects can usually be
serialized if their properties are either simple types or serializable objects.
To add a serialized object to a Clipboard object, set the serializable parameter to true when calling the
Clipboard.setData() method. The format name can be one of the standard formats or an arbitrary string defined
by your application.

Transfer modes

When an object is written to the clipboard using a custom data format, the object data can be read from the clipboard
either as reference or as a serialized copy of the original object. AIR defines four transfer modes that determine
whether objects are transferred as references or as serialized copies:

Reading and writing custom data formats

You can use any string that does not begin with the reserved prefix air: for the format parameter when writing an
object to the clipboard. Use the same string as the format to read the object. The following examples illustrate how
to read and write objects to the clipboard:
public function createClipboardObject(object:Object):Clipboard{

var transfer:Clipboard = new Clipboard();
transfer.setData("object", object, true);

}

To extract a serialized object from the clipboard object (after a drop or paste operation), use the same format name
and the cloneOnly or clonePreferred transfer modes.
var transfer:Object = clipboard.getData("object", ClipboardTransferMode.CLONE_ONLY);

A reference is always added to the Clipboard object. To extract the reference from the clipboard object (after a drop
or paste operation), instead of the serialized copy, use the originalOnly or originalPreferred transfer modes:
var transferredObject:Object =

MIME type Description

Text "text/plain"

URL "text/uri-list"

Bitmap "image/x-vnd.adobe.air.bitmap"

File list "application/x-vnd.adobe.air.file-list"

Transfer mode Description

ClipboardTransferModes.ORIGINAL_ONLY Only a reference is returned. If no reference is available, a null value is returned.

ClipboardTransferModes.ORIGINAL_PREFFERED A reference is returned, if available. Otherwise a serialized copy is returned.

ClipboardTransferModes.CLONE_ONLY Only a serialized copy is returned. If no serialized copy is available, then a null
value is returned.

ClipboardTransferModes.CLONE_PREFFERED A serialized copy is returned, if available. Otherwise a reference is returned.

ADOBE AIR 1
Developer Guide

150
clipboard.getData("object", ClipboardTransferMode.ORIGINAL_ONLY);

References are only valid if the Clipboard object originates from the current AIR application. Use the
originalPreferred transfer mode to access the reference when it is available, and the serialized clone when the
reference is not available.

Deferred rendering
If creating a data format is computationally expensive, you can use deferred rendering by supplying a function that
supplies the data on demand. The function is only called if a receiver of the drop or paste operation requests data in
the deferred format.
The rendering function is added to a Clipboard object using the setDataHandler() method. The function must
return the data in the appropriate format. For example, if you called
setDataHandler(ClipboardFormat.TEXT_FORMAT, writeText), then the writeText() function must return
a string.
If a data format of the same type is added to a Clipboard object with the setData() method, that data will take prece-
dence over the deferred version (the rendering function is never called). The rendering function may or may not be
called again if the same clipboard data is accessed a second time.

Pasting text using a deferred rendering function

The following example illustrates how to implement a deferred rendering function.
When the Copy button in the example is pressed, the application clears the system clipboard to ensure that no data
is left over from previous clipboard operations, then puts the renderData() function onto the clipboard with the
clipboard setDataHandler() method.
When the Paste button is pressed, the application accesses the clipboard and sets the destination text. Since the text
data format on the clipboard has been set with a function rather than a string, the clipboard will call the
renderData() function. The renderData() function returns the text in the source text, which is then assigned to
the destination text.
Notice that if you edit the source text before pressing the Paste button, the edit will be reflected in the pasted text,
even when the edit occurs after the copy button was pressed. This is because the rendering function doesn’t copy the
source text until the paste button is pressed. (When using deferred rendering in a real application, you might want
to store or protect the source data in some way to prevent this problem.)
package
{

import flash.desktop.Clipboard;
import flash.desktop.ClipboardFormats;
import flash.display.Sprite;
import flash.text.TextField;
import flash.events.MouseEvent;

public class DeferredRenderingExample extends Sprite
{

var sourceTxt:TextField;
var destinationTxt:TextField;

public function DeferredRenderingExample():void
{

sourceTxt = createTextField(10, 10, 210, 380, false);
addChild(sourceTxt);
sourceTxt.text = "Neque porro quisquam est qui dolorem "

+ "ipsum quia dolor sit amet, consectetur, adipisci velit."

ADOBE AIR 1
Developer Guide

151
destinationTxt = createTextField(330, 10, 210, 380, false);
addChild(destinationTxt);

var copyBtn:TextField = createTextField(230, 50, 90, 20, true);
copyBtn.text = "Copy";
addChild(copyBtn);
copyBtn.addEventListener(MouseEvent.CLICK, onCopy);

var pasteBtn:TextField = createTextField(230, 80, 90, 20, true);
pasteBtn.text = "Paste";
addChild(pasteBtn);
pasteBtn.addEventListener(MouseEvent.CLICK, onPaste);

}
private function createTextField(x:Number, y:Number,

width:Number, height:Number, isBtn:Boolean = false):TextField
{

var newTxt:TextField = new TextField();
newTxt.x = x;
newTxt.y = y;
newTxt.height = height;
newTxt.width = width;
newTxt.border = true;
newTxt.background = true;

if (isBtn)
{

newTxt.backgroundColor = 0xDDDDDDEE;
newTxt.selectable = false;

}
else
{

newTxt.multiline = true;
newTxt.wordWrap = true;
newTxt.backgroundColor = 0xEEEEEEEE;

}
return newTxt;

}
public function onCopy(event:MouseEvent):void
{

Clipboard.generalClipboard.clear();
Clipboard.generalClipboard.setDataHandler(ClipboardFormats.TEXT_FORMAT,

renderData);
}
public function onPaste(event:MouseEvent):void
{

destinationTxt.text =
Clipboard.generalClipboard.getData(ClipboardFormats.TEXT_FORMAT) as String;

}
public function renderData():String
{

trace("Rendering data");
var sourceStr:String = sourceTxt.text;
if (sourceTxt.selectionEndIndex > sourceTxt.selectionBeginIndex)
{

// something is selected
return sourceStr.substring(sourceTxt.selectionBeginIndex,

sourceTxt.selectionEndIndex);
}
else
{

return sourceStr;

ADOBE AIR 1
Developer Guide

152
}
}

}
}

153
Chapter 17: Working with byte arrays

The ByteArray class allows you to read from and write to a binary stream of data, which is essentially an array of
bytes. This class provides a way to access data at the most elemental level. Because computer data consists of bytes,
or groups of 8 bits, the ability to read data in bytes means that you can access data for which classes and access
methods do not exist. The ByteArray class allows you to parse any stream of data, from a bitmap to a stream of data
traveling over the network, at the byte level.

The writeObject() method allows you to write an object in serialized Action Message Format (AMF) to a
ByteArray, while the readObject() method allows you to read a serialized object from a ByteArray to a variable of
the original data type. You can serialize any object except for display objects, which are those objects that can be
placed on the display list. You can also assign serialized objects back to custom class instances if the custom class is
available to the runtime. After converting an object to AMF, you can efficiently transfer it over a network connection
or save it to a file.

The sample Adobe® AIR™ application described here reads a .zip file as an example of processing a byte stream;
extracting a list of the files that the .zip file contains and writing them to the desktop.

Contents
• “Reading and writing a ByteArray” on page 153

• “ByteArray example: Reading a .zip file” on page 158

Reading and writing a ByteArray
The ByteArray class is part of the flash.utils package. To create a ByteArray object in ActionScript 3.0, import the
ByteArray class and invoke the constructor, as shown in the following example:

import flash.utils.ByteArray;
var stream:ByteArray = new ByteArray();

Contents
• “ByteArray methods” on page 153

• “The position property” on page 154

• “The bytesAvailable and length properties” on page 155

• “The endian property” on page 155

• “The compress() and uncompress() methods” on page 155

• “Reading and writing objects” on page 156

ByteArray methods
Any meaningful data stream is organized into a format that you can analyze to find the information that you want.
A record in a simple employee file, for example, would probably include an ID number, a name, an address, a phone
number, and so on. An MP3 audio file contains an ID3 tag that identifies the title, author, album, publishing date,
and genre of the file that’s being downloaded. The format allows you to know the order in which to expect the data
on the data stream. It allows you to read the byte stream intelligently.

ADOBE AIR 1
Developer Guide

154
The ByteArray class includes several methods that make it easier to read from and write to a data stream. Some of
these methods include readBytes() and writeBytes(), readInt() and writeInt(), readFloat() and
writeFloat(), readObject() and writeObject(), and readUTFBytes() and writeUTFBytes(). These
methods enable you to read data from the data stream into variables of specific data types and write from specific
data types directly to the binary data stream.

For example, the following code reads a simple array of strings and floating-point numbers and writes each element
to a ByteArray. The organization of the array allows the code to call the appropriate ByteArray methods
(writeUTFBytes() and writeFloat()) to write the data. The repeating data pattern makes it possible to read the
array with a loop.

// The following example reads a simple Array (groceries), made up of strings
// and floating-point numbers, and writes it to a ByteArray.

import flash.utils.ByteArray;

// define the grocery list Array
var groceries:Array = ["milk", 4.50, "soup", 1.79, "eggs", 3.19, "bread" , 2.35]
// define the ByteArray
var bytes:ByteArray = new ByteArray();
// for each item in the array
for (var i:int = 0; i < groceries.length; i++) {

bytes.writeUTFBytes(groceries[i++]); //write the string and position to the next
item

bytes.writeFloat(groceries[i]);// write the float
trace("bytes.position is: " + bytes.position);//display the position in ByteArray

}
trace("bytes length is: " + bytes.length);// display the length

The position property
The position property stores the current position of the pointer that indexes the ByteArray during reading or writing.
The initial value of the position property is 0 (zero) as shown in the following code:

var bytes:ByteArray = new ByteArray();
trace("bytes.position is initially: " + bytes.position); // 0

When you read from or write to a ByteArray, the method that you use updates the position property to point to the
location immediately following the last byte that was read or written. For example, the following code writes a string
to a ByteArray and afterward the position property points to the byte immediately following the string in the
ByteArray:

var bytes:ByteArray = new ByteArray();
trace("bytes.position is initially: " + bytes.position); // 0
bytes.writeUTFBytes("Hello World!");
trace("bytes.position is now: " + bytes.position);// 12

Likewise, a read operation increments the position property by the number of bytes read.

var bytes:ByteArray = new ByteArray();

trace("bytes.position is initially: " + bytes.position); // 0
bytes.writeUTFBytes("Hello World!");
trace("bytes.position is now: " + bytes.position);// 12
bytes.position = 0;
trace("The first 6 bytes are: " + (bytes.readUTFBytes(6)));//Hello
trace("And the next 6 bytes are: " + (bytes.readUTFBytes(6)));// World!

Notice that you can set the position property to a specific location in the ByteArray to read or write at that offset.

ADOBE AIR 1
Developer Guide

155
The bytesAvailable and length properties
The length and bytesAvailable properties tell you how long a ByteArray is and how many bytes remain in it
from the current position to the end. The following example illustrates how you can use these properties. The
example writes a String of text to the ByteArray and then reads the ByteArray one byte at a time until it encounters
either the character “a” or the end (bytesAvailable <= 0).

var bytes:ByteArray = new ByteArray();
var text:String = "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus etc.";

bytes.writeUTFBytes(text); // write the text to the ByteArray
trace("The length of the ByteArray is: " + bytes.length);// 70
bytes.position = 0; // reset position
while (bytes.bytesAvailable > 0 && (bytes.readUTFBytes(1) != 'a')) {

//read to letter a or end of bytes
}
if (bytes.position < bytes.bytesAvailable) {

trace("Found the letter a; position is: " + bytes.position); // 23
trace("and the number of bytes available is: " + bytes.bytesAvailable);// 47

}

The endian property
Computers can differ in how they store multibyte numbers, that is, numbers that require more than 1 byte of
memory to store them. An integer, for example, can take 4 bytes, or 32 bits, of memory. Some computers store the
most significant byte of the number first, in the lowest memory address, and others store the least significant byte
first. This attribute of a computer, or of byte ordering, is referred to as being either big endian (most significant byte
first) or little endian (least significant byte first). For example, the number 0x31323334 would be stored as follows for
big endian and little endian byte ordering, where a0 represents the lowest memory address of the 4 bytes and a3
represents the highest:

The endian property of the ByteArray class allows you to denote this byte order for multibyte numbers that you are
processing. The acceptable values for this property are either "bigEndian" or "littleEndian" and the Endian
class defines the constants BIG_ENDIAN and LITTLE_ENDIAN for setting the endian property with these strings.

The compress() and uncompress() methods
The compress() method allows you to compress a ByteArray in accordance with a compression algorithm that you
specify as a parameter. The uncompress() method allows you to uncompress a compressed ByteArray in accor-
dance with a compression algorithm. After calling compress() and uncompress(), the length of the byte array is
set to the new length and the position property is set to the end.

Big Endian

a0 a1 a2 a3

31 32 33 34

Little Endian

a0 a1 a2 a3

34 33 32 31

ADOBE AIR 1
Developer Guide

156
The CompressionAlgorithm class defines constants that you can use to specify the compression algorithm. AIR
supports both the deflate and zlib algorithms. The deflate compression algorithm is used in several compression
formats, such as zlib, gzip, and some zip implementations. The zlib compressed data format is described at
http://www.ietf.org/rfc/rfc1950.txt and the deflate compression algorithm is described at
http://www.ietf.org/rfc/rfc1951.txt.

The following example compresses a ByteArray called bytes using the deflate algorithm:

bytes.compress(CompressionAlgorithm.DEFLATE);

The following example uncompresses a compressed ByteArray using the deflate algorithm:

bytes.uncompress(CompressionAlgorithm.DEFLATE);

Reading and writing objects
The readObject() and writeObject() methods read an object from and write an object to a ByteArray, encoded
in serialized Action Message Format (AMF). AMF is a proprietary message protocol created by Adobe and used by
various ActionScript 3.0 classes, including Netstream, NetConnection, NetStream, LocalConnection, and Shared
Objects.

A one-byte type marker describes the type of the encoded data that follows. AMF uses the following 13 data types:

value-type = undefined-marker | null-marker | false-marker | true-marker | integer-type |
double-type | string-type | xml-doc-type | date-type | array-type | object-type |
xml-type | byte-array-type

The encoded data follows the type marker unless the marker represents a single possible value, such as null or true
or false, in which case nothing else is encoded.

There are two versions of AMF: AMF0 and AMF3. AMF 0 supports sending complex objects by reference and allows
endpoints to restore object relationships. AMF 3 improves AMF 0 by sending object traits and strings by reference,
in addition to object references, and by supporting new data types that were introduced in ActionScript 3.0. The
ByteArray.objectEcoding property specifies the version of AMF that is used to encode the object data. The
flash.net.ObjectEncoding class defines constants for specifying the AMF version: ObjectEncoding.AMF0 and
ObjectEncoding.AMF3.

The following example calls writeObject() to write an XML object to a ByteArray, which it then compresses using
the Deflate algorithm and writes to the order file on the desktop. The example uses a label to display the message
“Wrote order file to desktop!” in the AIR window when it is finished.

import flash.filesystem.*;
import flash.utils.ByteArray;

// Label component must be in Library
import fl.controls.Label;

var bytes:ByteArray = new ByteArray();
var myLabel:Label = new Label();
myLabel.move(150, 150);
myLabel.width = 200;
addChild(myLabel);

var myXML:XML =
 <order>

 <item id='1'>
 <menuName>burger</menuName>

http://www.ietf.org/rfc/rfc1950.txt
http://www.ietf.org/rfc/rfc1951.txt

ADOBE AIR 1
Developer Guide

157
 <price>3.95</price>
 </item>
 <item id='2'>

 <menuName>fries</menuName>
 <price>1.45</price>

 </item>
 </order>

// Write XML object to ByteArray
bytes.writeObject(myXML);
bytes.position = 0;//reset position to beginning
bytes.compress(CompressionAlgorithm.DEFLATE);// compress ByteArray
outFile("order", bytes);
myLabel.text = "Wrote order file to desktop!";

function outFile(fileName:String, data:ByteArray):void {
var outFile:File = File.desktopDirectory; // dest folder is desktop
outFile = outFile.resolvePath(fileName); // name of file to write
var outStream:FileStream = new FileStream();
// open output file stream in WRITE mode
outStream.open(outFile, FileMode.WRITE);
// write out the file
outStream.writeBytes(data, 0, data.length);
// close it
outStream.close();

}

The readObject() method reads an object in serialized AMF from a ByteArray and stores it in an object of the
specified type. The following example reads the order file from the desktop into a ByteArray (inBytes), uncom-
presses it, and calls readObject() to store it in the XML object orderXML. The example uses a for each() loop
construct to add each node to a text area for display. The example also displays the value of the objectEncoding
property along with a header for the contents of the order file.

import flash.filesystem.*;
import flash.utils.ByteArray;

// TextArea component must be in Library
import fl.controls.TextArea;

var inBytes:ByteArray = new ByteArray();
// define text area for displaying XML content
var myTxt:TextArea = new TextArea();
myTxt.width = 550;
myTxt.height = 400;
addChild(myTxt);
//display objectEncoding and file heading
myTxt.text = "Object encoding is: " + inBytes.objectEncoding + "\n\n" + "order file:

\n\n";
readFile("order", inBytes);

inBytes.position = 0; // reset position to beginning
inBytes.uncompress(CompressionAlgorithm.DEFLATE);
inBytes.position = 0;//reset position to beginning
// read XML Object
var orderXML:XML = inBytes.readObject();

//for each node in orderXML
for each(var child:XML in orderXML) {

// append child node to text area

ADOBE AIR 1
Developer Guide

158
myTxt.text += child + "\n";
}

// read specified file into byte array
function readFile(fileName:String, data:ByteArray) {

var inFile:File = File.desktopDirectory; // source folder is desktop
inFile = inFile.resolvePath(fileName); // name of file to read
var inStream:FileStream = new FileStream();
inStream.open(inFile, FileMode.READ);
inStream.readBytes(data, 0, data.length);
inStream.close();

}

ByteArray example: Reading a .zip file
This example demonstrates how to read a simple .zip file containing several files of different types. It does so by
extracting relevant data from the metadata for each file, uncompressing each file into a ByteArray and writing the
file to the desktop.

The general structure of a .zip file is based on the specification by PKWARE Inc., which is maintained at
http://www.pkware.com/documents/casestudies/APPNOTE.TXT. First is a file header and file data for the first file
in the .zip archive, followed by a file header and file data pair for each additional file. (The structure of the file header
is described later.) Next, the .zip file optionally includes a data descriptor record (usually when the output zip file was
created in memory rather than saved to a disk). Next are several additional optional elements: archive decryption
header, archive extra data record, central directory structure, Zip64 end of central directory record, Zip64 end of
central directory locator, and end of central directory record.

The code in this example is written to only parse zip files that do not contain folders and it does not expect data
descriptor records. It ignores all information following the last file data.

The format of the file header for each file is as follows:

file header signature 4 bytes

required version 2 bytes

general-purpose bit flag 2 bytes

compression method 2 bytes (8=DEFLATE; 0=UNCOMPRESSED)

last modified file time 2 bytes

last modified file date 2 bytes

crc-32 4 bytes

compressed size 4 bytes

uncompressed size 4 bytes

file name length 2 bytes

extra field length 2 bytes

file name variable

extra field variable

http://www.pkware.com/documents/casestudies/APPNOTE.TXT

ADOBE AIR 1
Developer Guide

159
Following the file header is the actual file data, which can be either compressed or uncompressed, depending on the
compression method flag. The flag is 0 (zero) if the file data is uncompressed, 8 if the data is compressed using the
DEFLATE algorithm, or another value for other compression algorithms.

The user interface for this example consists of a label and a text area (taFiles). The application writes the following
information to the text area for each file it encounters in the .zip file: the file name, the compressed size, and the
uncompressed size.

The beginning of the program performs the following tasks:

• Imports the required classes

import flash.filesystem.*;
import flash.utils.ByteArray;
import flash.events.Event;

• Defines the user interface
import fl.controls.*;

//requires TextArea and Label components in the Library
var taFiles = new TextArea();
var output = new Label();
taFiles.setSize(320, 150);
taFiles.move(10, 30);
output.move(10, 10);
output.width = 150;
output.text = "Contents of HelloAir.zip";
addChild(taFiles);
addChild(output);

• Defines the bytes ByteArray
var bytes:ByteArray = new ByteArray();

• Defines variables to store metadata from the file header
// variables for reading fixed portion of file header
var fileName:String = new String();
var flNameLength:uint;
var xfldLength:uint;
var offset:uint;
var compSize:uint;
var uncompSize:uint;
var compMethod:int;
var signature:int;

• Defines File (zfile) and FileStream (zStream) objects to represent the .zip file, and specifies the location of the
.zip file from which the files are extracted—a file named “HelloAIR.zip” in the desktop directory.

// File variables for accessing .zip file
var zfile:File = File.desktopDirectory.resolvePath("HelloAIR.zip");
var zStream:FileStream = new FileStream();

The program begins by opening the .zip file in READ mode.

zStream.open(zfile, FileMode.READ);

It then sets the endian property of bytes to LITTLE_ENDIAN to indicate that the byte order of numeric fields has
the least significant byte first.

bytes.endian = Endian.LITTLE_ENDIAN;

ADOBE AIR 1
Developer Guide

160
Next, a while() statement begins a loop that continues until the current position in the file stream is greater than
or equal to the size of the file.

while (zStream.position < zfile.size)
{

The first statement inside the loop reads the first 30 bytes of the file stream into the ByteArray bytes. The first 30
bytes make up the fixed-size part of the first file header.

// read fixed metadata portion of local file header
zStream.readBytes(bytes, 0, 30);

Next, the code reads an integer (signature) from the first bytes of the 30-byte header. The ZIP format definition
specifies that the signature for every file header is the hexadecimal value 0x04034b50; if the signature is different it
means that the code has moved beyond the file portion of the .zip file and there are no more files to extract. In that
case the code exits the while loop immediately rather than waiting for the end of the byte array.

bytes.position = 0;
signature = bytes.readInt();
// if no longer reading data files, quit
if (signature != 0x04034b50)
{

break;
}

The next part of the code reads the header byte at offset position 8 and stores the value in the variable compMethod.
This byte contains a value indicating the compression method that was used to compress this file. Several
compression methods are allowed, but in practice nearly all .zip files use the DEFLATE compression algorithm. If
the current file is compressed with DEFLATE compression, compMethod is 8; if the file is uncompressed,
compMethod is 0.

bytes.position = 8;
compMethod = bytes.readByte(); // store compression method (8 == Deflate)

Following the first 30 bytes is a variable-length portion of the header that contains the file name and, possibly, an
extra field. The variable offset stores the size of this portion. The size is calculated by adding the file name length
and extra field length, read from the header at offsets 26 and 28.

offset = 0;// stores length of variable portion of metadata
bytes.position = 26; // offset to file name length
flNameLength = bytes.readShort();// store file name
offset += flNameLength; // add length of file name
bytes.position = 28;// offset to extra field length
xfldLength = bytes.readShort();
offset += xfldLength;// add length of extra field

Next the program reads the variable-length portion of the file header for the number of bytes stored in the offset
variable.

// read variable length bytes between fixed-length header and compressed file data
zStream.readBytes(bytes, 30, offset);

The program reads the file name from the variable length portion of the header and displays it in the text area along
with the compressed (zipped) and uncompressed (original) sizes of the file.

bytes.position = 30;
fileName = bytes.readUTFBytes(flNameLength); // read file name
taFiles.appendText(fileName + "\n"); // write file name to text area
bytes.position = 18;
compSize = bytes.readUnsignedInt(); // store size of compressed portion
taFiles.appendText("\tCompressed size is: " + compSize + '\n');
bytes.position = 22; // offset to uncompressed size

ADOBE AIR 1
Developer Guide

161
uncompSize = bytes.readUnsignedInt(); // store uncompressed size
taFiles.appendText("\tUncompressed size is: " + uncompSize + '\n');

The example reads the rest of the file from the file stream into bytes for the length specified by the compressed size,
overwriting the file header in the first 30 bytes. The compressed size is accurate even if the file is not compressed
because in that case the compressed size is equal to the uncompressed size of the file.

// read compressed file to offset 0 of bytes; for uncompressed files
// the compressed and uncompressed size is the same
zStream.readBytes(bytes, 0, compSize);

Next, the example uncompresses the compressed file and calls the outfile() function to write it to the output file
stream. It passes outfile() the file name and the byte array containing the file data.

if (compMethod == 8) // if file is compressed, uncompress
{

bytes.uncompress(CompressionAlgorithm.DEFLATE);
}
outFile(fileName, bytes); // call outFile() to write out the file

The closing brace indicates the end of the while loop and of the application code, except for the outFile() method.
Execution loops back to the beginning of the while loop and continues processing the next bytes in the .zip file—
either extracting another file or ending processing of the .zip file if the last file has been processed.

} // end of while loop

The outfile() function opens an output file in WRITE mode on the desktop, giving it the name supplied by the
filename parameter. It then writes the file data from the data parameter to the output file stream (outStream) and
closes the file.

function outFile(fileName:String, data:ByteArray):void
{

var outFile:File = File.desktopDirectory; // destination folder is desktop
outFile = outFile.resolvePath(fileName); // name of file to write
var outStream:FileStream = new FileStream();
// open output file stream in WRITE mode
outStream.open(outFile, FileMode.WRITE);
// write out the file
outStream.writeBytes(data, 0, data.length);
// close it
outStream.close();

}

162
Chapter 18: Working with local SQL
databases

Adobe AIR includes the capability of creating and working with local SQL databases. The runtime includes a SQL
database engine with support for many standard SQL features, using the open source SQLite database system. A local
SQL database can be used for storing local, persistent data. For instance, it can be used for application data, appli-
cation user settings, documents, or any other type of data that you might want your application to save locally.

Contents

• “About local SQL databases” on page 163
• “Creating and modifying a database” on page 167
• “Manipulating SQL database data” on page 169
• “Using synchronous and asynchronous database operations” on page 187
• “Strategies for working with SQL databases” on page 191

Language Reference

• SQLCollationType
• SQLColumnNameStyle
• SQLColumnSchema
• SQLConnection
• SQLError
• SQLErrorEvent
• SQLErrorOperation
• SQLEvent
• SQLIndexSchema
• SQLMode
• SQLResult
• SQLSchema
• SQLSchemaResult
• SQLStatement
• SQLTableSchema
• SQLTransactionLockType
• SQLTriggerSchema
• SQLUpdateEvent
• SQLViewSchema

More information

• Adobe AIR Developer Center for Flash (search for ‘AIR SQL’)

http://www.adobe.com/devnet/air/flash/
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLCollationType.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLColumnNameStyle.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLColumnSchema.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLConnection.html
http://www.adobe.com/go/learn_air_aslr_en?flash/errors/SQLError.html
http://www.adobe.com/go/learn_air_aslr_en?flash/events/SQLErrorEvent.html
http://www.adobe.com/go/learn_air_aslr_en?flash/errors/SQLErrorOperation.html
http://www.adobe.com/go/learn_air_aslr_en?flash/events/SQLEvent.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLIndexSchema.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLMode.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLResult.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLSchema.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLSchemaResult.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLStatement.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLTableSchema.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLTransactionLockType.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLTriggerSchema.html
http://www.adobe.com/go/learn_air_aslr_en?flash/events/SQLUpdateEvent.html
http://www.adobe.com/go/learn_air_aslr_en?flash/data/SQLViewSchema.html

ADOBE AIR 1
Developer Guide

163
About local SQL databases
Adobe AIR includes a SQL-based relational database engine that runs within the runtime, with data stored locally
in database files on the computer on which the AIR application runs (for example, on the computer’s hard drive).
Because the database runs and data files are stored locally, a database can be used by an AIR application regardless
of whether a network connection is available. Thus, the runtime’s local SQL database engine provides a convenient
mechanism for storing persistent, local application data, particularly if you have experience with SQL and relational
databases.

Contents

• “Uses for local SQL databases” on page 163
• “About AIR databases and database files” on page 163
• “About relational databases” on page 164
• “About SQL” on page 164
• “About SQL database classes” on page 165
• “About synchronous and asynchronous execution modes” on page 166

Uses for local SQL databases
The AIR local SQL database functionality can be used for any purpose for which you might want to store application
data on a user’s local computer. Adobe AIR includes several mechanisms for storing data locally, each of which has
different advantages. The following are some possible uses for a local SQL database in your AIR application:
• For a data-oriented application (for example an address book), a database can be used to store the main appli-
cation data.
• For a document-oriented application, where users create documents to save and possibly share, each document
could be saved as a database file, in a user-designated location. (Note, however, that any AIR application would be
able to open the database file, so a separate encryption mechanism would be recommended for potentially sensitive
documents.)
• For a network-aware application, a database can be used to store a local cache of application data, or to store data
temporarily when a network connection isn’t available. You could create a mechanism for synchronizing the local
database with the network data store.
• For any application, a database can be used to store individual users’ application settings, such as user options or
application information like window size and position.

About AIR databases and database files
An individual Adobe AIR local SQL database is stored as a single file in the computer’s file system. The runtime
includes the SQL database engine that manages creation and structuring of database files and manipulation and
retrieval of data from a database file. The runtime does not specify how or where database data is stored on the file
system; rather, each database is stored completely within a single file. You specify the location in the file system where
the database file is stored. A single AIR application can access one or many separate databases (that is, separate
database files). Because the runtime stores each database as a single file on the file system, you can locate your
database as needed by the design of your application and file access constraints of the operating system. Each user
can have a separate database file for their specific data, or a database file can be accessed by all application users on
a single computer for shared data. Because the data is local to a single computer, data is not automatically shared
among users on different computers. The local SQL database engine doesn’t provide any capability to execute SQL
statements against a remote or server-based database.

ADOBE AIR 1
Developer Guide

164
About relational databases
A relational database is a mechanism for storing (and retrieving) data on a computer. Data is organized into tables:
rows represent records or items, and columns (sometimes called “fields”) divide each record into individual values.
For example, an address book application could contain a “friends” table. Each row in the table would represent a
single friend stored in the database. The table’s columns would represent data such as first name, last name, birth
date, and so forth. For each friend row in the table, the database stores a separate value for each column.
Relational databases are designed to store complex data, where one item is associated with or related to items of
another type. In a relational database, any data that has a one-to-many relationship—where a single record can be
related to multiple records of a different type—should be divided among different tables. For example, suppose you
want your address book application to store multiple phone numbers for each friend; this is a one-to-many
relationship. The “friends” table would contain all the personal information for each friend. A separate “phone
numbers” table would contain all the phone numbers for all the friends.
In addition to storing the data about friends and phone numbers, each table would need a piece of data to keep track
of the relationship between the two tables—to match individual friend records with their phone numbers. This data
is known as a primary key—a unique identifier that distinguishes each row in a table from other rows in that table.
The primary key can be a “natural key,” meaning it’s one of the items of data that naturally distinguishes each record
in a table. In the “friends” table, if you knew that none of your friends share a birth date, you could use the birth date
column as the primary key (a natural key) of the “friends” table. If there is no natural key, you would create a separate
primary key column such as a “friend id”—an artificial value that the application uses to distinguish between rows.
Using a primary key, you can set up relationships between multiple tables. For instance, suppose the “friends” table
has a column “friend id” that contains a unique number for each row (each friend). The related “phone numbers”
table can be structured with two columns: one with the “friend id” of the friend to whom the phone number belongs,
and one with the actual phone number. That way, no matter how many phone numbers a single friend has, they can
all be stored in the “phone numbers” table and can be linked to the related friend using the “friend id” primary key.
When a primary key from one table is used in a related table to specify the connection between the records, the value
in the related table is known as a foreign key. Unlike many databases, the AIR local database engine does not allow
you to create foreign key constraints, which are constraints that automatically check that an inserted or updated
foreign key value has a corresponding row in the primary key table. Nevertheless, foreign key relationships are an
important part of the structure of a relational database, and foreign keys should be used when creating relationships
between tables in your database.

About SQL
Structured Query Language (SQL) is used with relational databases to manipulate and retrieve data. SQL is a
descriptive language rather than a procedural language. Instead of giving the computer instructions on how it should
retrieve data, a SQL statement describes the set of data you want. The database engine determines how to retrieve
that data.
The SQL language has been standardized by the American National Standards Institute (ANSI). The Adobe AIR
local SQL database supports most of the SQL-92 standard. For specific descriptions of the SQL language supported
in Adobe AIR, see the appendix “SQL support in local databases” in the ActionScript 3.0 Language and Components
Reference.

ADOBE AIR 1
Developer Guide

165

About SQL database classes
To work with local SQL databases in ActionScript 3.0, you use instances of these classes in the flash.data package:

To obtain schema information describing the structure of a database, you use these classes in the flash.data package:

Other classes in the flash.data package provide constants that are used with the SQLConnection class and the
SQLColumnSchema class:

In addition, the following classes in the flash.events package represent the events (and supporting constants) that
you use:

Class Description

flash.data.SQLConnection Provides the means to create and open databases (database files), as well as methods for performing data-
base-level operations and for controlling database transactions.

flash.data.SQLStatement Represents a single SQL statement (a single query or command) that is executed on a database, including
defining the statement text and setting parameter values.

flash.data.SQLResult Provides a way to get information about or results from executing a statement, such as the result rows from
a SELECT statement, the number of rows affected by an UPDATE or DELETE statement, and so forth.

Class Description

flash.data.SQLSchemaResult Serves as a container for database schema results generated by calling the
SQLConnection.loadSchema() method.

flash.data.SQLTableSchema Provides information describing a single table in a database.

flash.data.SQLViewSchema Provides information describing a single view in a database.

flash.data.SQLIndexSchema Provides information describing a single column of a table or view in a database.

flash.data.SQLTriggerSchema Provides information describing a single trigger in a database.

Class Description

flash.data.SQLMode Defines a set of constants representing the possible values for the openMode parameter of the
SQLConnection.open() and SQLConnection.openAsync() methods.

flash.data.SQLColumnNameStyle Defines a set of constants representing the possible values for the
SQLConnection.columnNameStyle property.

flash.data.SQLTransactionLockType Defines a set of constants representing the possible values for the option parameter of the
SQLConnection.begin() method.

flash.data.SQLCollationType Defines a set of constants representing the possible values for the
SQLColumnSchema.defaultCollationType property and the defaultCollationType
parameter of the SQLColumnSchema() constructor.

Class Description

flash.data.SQLEvent Defines the events that a SQLConnection or SQLStatement instance dispatches when any of its operations
execute successfully. Each operation has an associated event type constant defined in the SQLEvent class.

flash.data.SQLErrorEvent Defines the event that a SQLConnection or SQLStatement instance dispatches when any of its operations
results in an error.

flash.data.SQLUpdateEvent Defines the event that a SQLConnection instances dispatches when table data in one of its connected data-
bases changes as a result of an INSERT, UPDATE, or DELETE SQL statement being executed.

ADOBE AIR 1
Developer Guide

166
Finally, the following classes in the flash.errors package provide information about database operation errors:

About synchronous and asynchronous execution modes
When you’re writing code to work with a local SQL database, you specify that database operations execution in one
of two execution modes: asynchronous or synchronous execution mode. In general, the code examples show how to
perform each operation in both ways, so that you can use the example that’s most appropriate for your needs.
In asynchronous execution mode, you give the runtime an instruction and the runtime dispatches an event when
your requested operation completes or fails. First you tell the database engine to perform an operation. The database
engine does its work in the background while the application continues running. Finally, when the operation is
completed (or when it fails) the database engine dispatches an event. Your code, triggered by the event, carries out
subsequent operations. This approach has a significant benefit: the runtime performs the database operations in the
background while the main application code continues executing. If the database operation takes a notable amount
of time, the application continues to run. Most importantly, the user can continue to interact with it without the
screen freezing. Nevertheless, asynchronous operation code can be more complex to write than other code. This
complexity is usually in cases where multiple dependent operations must be divided up among various event listener
methods.
Conceptually, it is simpler to code operations as a single sequence of steps—a set of synchronous operations—rather
than a set of operations split into several event listener methods. In addition to asynchronous database operations,
Adobe AIR also allows you to execute database operations synchronously. In synchronous execution mode, opera-
tions don’t run in the background. Instead they run in the same execution sequence as all other application code.
You tell the database engine to perform an operation. The code then pauses at that point while the database engine
does its work. When the operation completes, execution continues with the next line of your code.
Whether operations execute asynchronously or synchronously is set at the SQLConnection level. Using a single
database connection, you can’t execute some operations or statements synchronously and others asynchronously.
You specify whether a SQLConnection operates in synchronous or asynchronous execution mode by calling a
SQLConnection method to open the database. If you call SQLConnection.open() the connection operates in
synchronous execution mode, and if you call SQLConnection.openAsync() the connection operates in
asynchronous execution mode. Once a SQLConnection instance is connected to a database using open() or
openAsync(), it is fixed to synchronous or asynchronous execution mode unless you close and reopen the
connection to the database.
Each execution mode has benefits. While most aspects of each mode are similar, there are some differences you’ll
want to keep in mind when working in each mode. For more information on these topics, and suggestions for
working in each mode, see “Using synchronous and asynchronous database operations” on page 187.

Class Description

flash.data.SQLError Provides information about a database operation error, including the operation that was being attempted
and the cause of the failure.

flash.data.SQLErrorEvent Defines a set of constants representing the possible values for the SQLError class’s operation property,
which indicates the database operation that resulted in an error.

ADOBE AIR 1
Developer Guide

167
Creating and modifying a database
Before your application can add or retrieve data, there must be a database with tables defined in it that your appli-
cation can access. Described here are the tasks of creating a database and creating the data structure within a
database. While these tasks are less frequently used than data insertion and retrieval, they are necessary for most
applications.

Contents

• Creating a database
• Creating database tables

Creating a database
To create a database file, you first create a SQLConnection instance. You call its open() method to open it in
synchronous execution mode, or its openAsync() method to open it in asynchronous execution mode. The open()
and openAsync() methods are used to open a connection to a database. If you pass a File instance that refers to a
non-existent file location for the reference parameter (the first parameter), the open() or openAsync() method
creates a database file at that file location and open a connection to the newly created database.
Whether you call the open() method or the openAsync() method to create a database, the database file’s name can
be any valid file name, with any file extension. If you call the open() or openAsync() method with null for the
reference parameter, a new in-memory database is created rather than a database file on disk.
The following code listing shows the process of creating a database file (a new database) using asynchronous
execution mode. In this case, the database file is saved in the application’s storage directory, with the file name
“DBSample.db”:
import flash.data.SQLConnection;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;
import flash.filesystem.File;

var conn:SQLConnection = new SQLConnection();
conn.addEventListener(SQLEvent.OPEN, openHandler);
conn.addEventListener(SQLErrorEvent.ERROR, errorHandler);

var dbFile:File = File.applicationStorageDirectory.resolvePath("DBSample.db");

conn.openAsync(dbFile);

function openHandler(event:SQLEvent):void
{

trace("the database was created successfully");
}

function errorHandler(event:SQLErrorEvent):void
{

trace("Error message:", event.error.message);
trace("Details:", event.error.details);

}

To execute operations synchronously, when you open a database connection with the SQLConnection instance, call
the open() method. The following example shows how to create and open a SQLConnection instance that executes
its operations synchronously:
import flash.data.SQLConnection;
import flash.events.SQLErrorEvent;

ADOBE AIR 1
Developer Guide

168
import flash.events.SQLEvent;
import flash.filesystem.File;

var conn:SQLConnection = new SQLConnection();

var dbFile:File = File.applicationStorageDirectory.resolvePath("DBSample.db");

try
{

conn.open(dbFile);
trace("the database was created successfully");

}
catch (error:SQLError)
{

trace("Error message:", error.message);
trace("Details:", error.details);

}

Creating database tables
Creating a table in a database involves executing a SQL statement on that database, using the same process that you
use to execute a SQL statement such as SELECT, INSERT, and so forth. To create a table, you use a CREATE TABLE
statement, which includes definitions of columns and constraints for the new table. For more information about
executing SQL statements, see “Working with SQL statements” on page 171.
The following example demonstrates creating a table named “employees” in an existing database file, using
asynchronous execution mode. Note that this code assumes there is a SQLConnection instance named conn that is
already instantiated and is already connected to a database.
import flash.data.SQLConnection;
import flash.data.SQLStatement;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;

// ... create and open the SQLConnection instance named conn ...

var createStmt:SQLStatement = new SQLStatement();
createStmt.sqlConnection = conn;

var sql:String =
"CREATE TABLE IF NOT EXISTS employees (" +
" empId INTEGER PRIMARY KEY AUTOINCREMENT, " +
" firstName TEXT, " +
" lastName TEXT, " +
" salary NUMERIC CHECK (salary > 0)" +
")";

createStmt.text = sql;

createStmt.addEventListener(SQLEvent.RESULT, createResult);
createStmt.addEventListener(SQLErrorEvent.ERROR, createError);

createStmt.execute();

function createResult(event:SQLEvent):void
{

trace("Table created");
}

function createError(event:SQLErrorEvent):void
{

ADOBE AIR 1
Developer Guide

169
trace("Error message:", event.error.message);
trace("Details:", event.error.details);

}

The following example demonstrates how to create a table named “employees” in an existing database file, using
synchronous execution mode. Note that this code assumes there is a SQLConnection instance named conn that is
already instantiated and is already connected to a database.
import flash.data.SQLConnection;
import flash.data.SQLStatement;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;

// ... create and open the SQLConnection instance named conn ...

var createStmt:SQLStatement = new SQLStatement();
createStmt.sqlConnection = conn;

var sql:String =
"CREATE TABLE IF NOT EXISTS employees (" +
" empId INTEGER PRIMARY KEY AUTOINCREMENT, " +
" firstName TEXT, " +
" lastName TEXT, " +
" salary NUMERIC CHECK (salary > 0)" +
")";

createStmt.text = sql;

try
{

createStmt.execute();
trace("Table created");

}
catch (error:SQLError)
{

trace("Error message:", error.message);
trace("Details:", error.details);

}

Manipulating SQL database data
There are some common tasks that you perform when you’re working with local SQL databases. These tasks include
connecting to a database, adding data to and retrieving data from tables in a database. There are also several issues
you’ll want to keep in mind while performing these tasks, such as working with data types and handling errors.
Note that there are also several database tasks that are things you’ll deal with less frequently, but will often need to
do before you can perform these more common tasks. For example, before you can connect to a database and retrieve
data from a table, you’ll need to create the database and create the table structure in the database. Those less-frequent
initial setup tasks are discussed in “Creating and modifying a database” on page 167.
You can choose to perform database operations asynchronously, meaning the database engine runs in the
background and notifies you when the operation succeeds or fails by dispatching an event. You can also perform
these operations synchronously. In that case the database operations are performed one after another and the entire
application (including updates to the screen) waits for the operations to complete before executing other code. The
examples in this section demonstrate how to perform the operations both asynchronously and synchronously. For
more information on working in asynchronous or synchronous execution mode, see “Using synchronous and
asynchronous database operations” on page 187.

ADOBE AIR 1
Developer Guide

170
Contents

• “Connecting to a database” on page 170
• “Working with SQL statements” on page 171
• “Using parameters in statements” on page 172
• “Retrieving data from a database” on page 175
• “Inserting data” on page 180
• “Changing or deleting data” on page 183
• “Working with multiple databases” on page 183
• “Handling database errors” on page 183
• “Working with database data types” on page 186

Connecting to a database
Before you can perform any database operations, first open a connection to the database file. A SQLConnection
instance is used to represent a connection to one or more databases. The first database that is connected using a
SQLConnection instance is known as the “main” database. This database is connected using the open() method (for
synchronous execution mode) or the openAsync() method (for asynchronous execution mode).
If you open a database using the asynchronous openAsync() operation, register for the SQLConnection instance’s
open event in order to know when the openAsync() operation completes. Register for the SQLConnection
instance’s error event to determine if the operation fails.
The following example shows how to open an existing database file for asynchronous execution. The database file
is named “DBSample.db” and is located in the user’s application storage directory.
import flash.data.SQLConnection;
import flash.data.SQLMode;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;
import flash.filesystem.File;

var conn:SQLConnection = new SQLConnection();
conn.addEventListener(SQLEvent.OPEN, openHandler);
conn.addEventListener(SQLErrorEvent.ERROR, errorHandler);

var dbFile:File = File.applicationStorageDirectory.resolvePath("DBSample.db");

conn.openAsync(dbFile, SQLMode.UPDATE);

function openHandler(event:SQLEvent):void
{

trace("the database opened successfully");
}

function errorHandler(event:SQLErrorEvent):void
{

trace("Error message:", event.error.message);
trace("Details:", event.error.details);

}

The following example shows how to open an existing database file for synchronous execution. The database file is
named “DBSample.db” and is located in the user’s application storage directory.
import flash.data.SQLConnection;
import flash.data.SQLMode;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;

ADOBE AIR 1
Developer Guide

171
import flash.filesystem.File;

var conn:SQLConnection = new SQLConnection();

var dbFile:File = File.applicationStorageDirectory.resolvePath("DBSample.db");

try
{

conn.open(dbFile, SQLMode.UPDATE);
trace("the database opened successfully");

}
catch (error:SQLError)
{

trace("Error message:", error.message);
trace("Details:", error.details);

}

Notice that in the openAsync() method call in the asynchronous example, and the open() method call in the
synchronous example, the second argument is the constant SQLMode.UPDATE. Specifying SQLMode.UPDATE for the
second parameter (openMode) causes the runtime to dispatch an error if the specified file doesn’t exist. If you pass
SQLMode.CREATE for the openMode parameter (or if you leave the openMode parameter off), the runtime attempts
to create a database file if the specified file doesn’t exist. You can also specify SQLMode.READ for the openMode
parameter to open an existing database in a read-only mode. In that case data can be retrieved from the database but
no data can be added, deleted, or changed.

Working with SQL statements
An individual SQL statement (a query or command) is represented in the runtime as a SQLStatement object. Follow
these steps to create and execute a SQL statement:

1. Create a SQLStatement instance.

The SQLStatement object represents the SQL statement in your application.
var selectData:SQLStatement = new SQLStatement();

2. Specify which database the query runs against.

To do this, set the SQLStatement object’s sqlConnection property to the SQLConnection instance that’s connected
with the desired database.
// A SQLConnection named "conn" has been created previously
selectData.sqlConnection = conn;

3. Specify the actual SQL statement.

Create the statement text as a String and assign it to the SQLStatement instance’s text property.
selectData.text = "SELECT col1, col2 FROM my_table WHERE col1 = :param1";

4. Define functions to handle the result of the execute operation (asynchronous execution mode only).

Use the addEventListener() method to register functions as listeners for the SQLStatement instance’s result and
error events.
// using listener methods and addEventListener();
selectData.addEventListener(SQLEvent.RESULT, resultHandler);
selectData.addEventListener(SQLErrorEvent.ERROR, errorHandler);

function resultHandler(event:SQLEvent):void
{

ADOBE AIR 1
Developer Guide

172
// do something after the statement execution succeeds
}

function errorHandler(event:SQLErrorEvent):void
{

// do something after the statement execution fails
}

Alternatively, you can specify listener methods using a Responder object. In that case you create the Responder
instance and link the listener methods to it.
// using a Responder (flash.net.Responder)
var selectResponder = new Responder(onResult, onError);

function onResult(result:SQLResult):void
{

// do something after the statement execution succeeds
}

function onError(error:SQLError):void
{

// do something after the statement execution fails
}

5. If the statement text includes parameter definitions, assign values for those parameters.

To assign parameter values, use the SQLStatement instance’s parameters associative array property.
selectData.parameters[":param1"] = 25;

6. Execute the SQL statement.

Call the SQLStatement instance’s execute() method.
// using synchronous execution mode
// or listener methods in asynchronous execution mode
selectData.execute();

Additionally, if you’re using a Responder instead of event listeners in asynchronous execution mode, pass the
Responder instance to the execute() method.
// using a Responder in asynchronous execution mode
selectData.execute(-1, selectResponder);

For specific examples that demonstrate these steps, see the following topics:
• “Retrieving data from a database” on page 175
• “Inserting data” on page 180
• “Changing or deleting data” on page 183

Using parameters in statements
A SQL statement parameter allows you to create a reusable SQL statement. When you use statement parameters,
values within the statement can change (such as values being added in an INSERT statement) but the basic statement
text remains unchanged. This provides performance benefits as well as making it easier to code an application.

Contents

• “Understanding statement parameters” on page 173
• “Using named parameters” on page 173

ADOBE AIR 1
Developer Guide

173
• “Using unnamed parameters” on page 173
• “Benefits of using parameters” on page 174

Understanding statement parameters

Frequently an application uses a single SQL statement multiple times in an application, with slight variation. For
example, consider an inventory-tracking application where a user can add new inventory items to the database. The
application code that adds an inventory item to the database executes a SQL INSERT statement that actually adds
the data to the database. However, each time the statement is executed there is a slight variation. Specifically, the
actual values that are inserted in the table are different because they are specific to the inventory item being added.
In cases where you have a SQL statement that’s used multiple times with different values in the statement, the best
approach is to use a SQL statement that includes parameters rather than literal values in the SQL text. A parameter
is a placeholder in the statement text that is replaced with an actual value each time the statement is executed. To
use parameters in a SQL statement, you create the SQLStatement instance as usual. For the actual SQL statement
assigned to the text property, use parameter placeholders rather than literal values. You then define the value for
each parameter by setting the value of an element in the SQLStatement instance’s parameters property. The param-
eters property is an associative array, so you set a particular value using the following syntax:
statement.parameters[parameter_identifier] = value;

The parameter_identifier is a string if you’re using a named parameter, or an integer index if you’re using an
unnamed parameter.

Using named parameters

A parameter can be a named parameter. A named parameter has a specific name that the database uses to match the
parameter value to its placeholder location in the statement text. A parameter name consists of the “:” or “@”
character followed by a name, as in the following examples:
:itemName
@firstName

The following code listing demonstrates the use of named parameters:
var sql:String =

"INSERT INTO inventoryItems (name, productCode)" +
"VALUES (:name, :productCode)";

var addItemStmt:SQLStatement = new SQLStatement();
addItemStmt.sqlConnection = conn;
addItemStmt.text = sql;

// set parameter values
addItemStmt.parameters[":name"] = "Item name";
addItemStmt.parameters[":productCode"] = "12345";

addItemStmt.execute();

Using unnamed parameters

As an alternative to using named parameters, you can also use unnamed parameters. To use an unnamed parameter
you denote a parameter in a SQL statement using a “?” character. Each parameter is assigned a numeric index,
according to the order of the parameters in the statement, starting with index 0 for the first parameter. The following
example demonstrates a version of the previous example, using unnamed parameters:
var sql:String =

"INSERT INTO inventoryItems (name, productCode)" +
"VALUES (?, ?)";

var addItemStmt:SQLStatement = new SQLStatement();

ADOBE AIR 1
Developer Guide

174
addItemStmt.sqlConnection = conn;
addItemStmt.text = sql;

// set parameter values
addItemStmt.parameters[0] = "Item name";
addItemStmt.parameters[1] = "12345";

addItemStmt.execute();

Benefits of using parameters

Using parameters in a SQL statement provides several benefits:
Better performance A SQLStatement instance that uses parameters can execute more efficiently compared to one
that dynamically creates the SQL text each time it executes. The performance improvement is because the statement
is prepared a single time and can then be executed multiple times using different parameter values, without needing
to recompile the SQL statement.
Explicit data typing Parameters are used to allow for typed substitution of values that are unknown at the time the
SQL statement is constructed. The use of parameters is the only way to guarantee the storage class for a value passed
in to the database. When parameters are not used, the runtime attempts to convert all values from their text repre-
sentation to a storage class based on the associated column's type affinity. For more information on storage classes
and column affinity, see the section “Data type support” in the appendix “SQL support in local databases” in the
ActionScript 3.0 Language and Components Reference.
Greater security The use of parameters helps prevent a malicious technique known as a SQL injection attack. In a
SQL injection attack, a user enters SQL code in a user-accessible location (for example, a data entry field). If appli-
cation code constructs a SQL statement by directly concatenating user input into the SQL text, the user-entered SQL
code is executed against the database. The following listing shows an example of concatenating user input into SQL
text. Do not use this technique:
// assume the variables "username" and "password"
// contain user-entered data
var sql:String =

"SELECT userId " +
"FROM users " +
"WHERE username = '" + username + "' " +
" AND password = '" + password + "'";

var statement:SQLStatement = new SQLStatement();
statement.text = sql;

Using statement parameters instead of concatenating user-entered values into a statement's text prevents a SQL
injection attack. SQL injection can’t happen because the parameter values are treated explicitly as substituted values,
rather than becoming part of the literal statement text. The following is the recommended alternative to the previous
listing:
// assume the variables "username" and "password"
// contain user-entered data
var sql:String =

"SELECT userId " +
"FROM users " +
"WHERE username = :username " +
" AND password = :password";

var statement:SQLStatement = new SQLStatement();
statement.text = sql;

// set parameter values
statement.parameters[":username"] = username;
statement.parameters[":password"] = password;

ADOBE AIR 1
Developer Guide

175
Retrieving data from a database
Retrieving data from a database involves two steps. First, you execute a SQL SELECT statement, describing the set of
data you want from the database. Next, you access the retrieved data and display or manipulate it as needed by your
application.

Contents

• “Executing a SELECT statement” on page 175
• “Accessing SELECT statement result data” on page 176
• “Defining the data type of SELECT result data” on page 179
• “Retrieving SELECT results in parts” on page 179

Executing a SELECT statement

To retrieve existing data from a database, you use a SQLStatement instance. Assign the appropriate SQL SELECT
statement to the instance’s text property, then call its execute() method. For details on the syntax of the SELECT
statement, see the appendix “SQL support in local databases” in the ActionScript 3.0 Language and Components
Reference.
The following example demonstrates executing a SELECT statement to retrieve data from a table named "products,"
using asynchronous execution mode:
var selectStmt:SQLStatement = new SQLStatement();

// A SQLConnection named "conn" has been created previously
selectStmt.sqlConnection = conn;

selectStmt.text = "SELECT itemId, itemName, price FROM products";

// The resultHandler and errorHandler are listener methods are
// described in a subsequent code listing
selectStmt.addEventListener(SQLEvent.RESULT, resultHandler);
selectStmt.addEventListener(SQLErrorEvent.ERROR, errorHandler);

selectStmt.execute();

The following example demonstrates executing a SELECT statement to retrieve data from a table named "products,"
using asynchronous execution mode:
var selectStmt:SQLStatement = new SQLStatement();

// A SQLConnection named "conn" has been created previously
selectStmt.sqlConnection = conn;

selectStmt.text = "SELECT itemId, itemName, price FROM products";

// This try..catch block is fleshed out in
// a subsequent code listing
try
{

selectStmt.execute();
// accessing the data is shown in a subsequent code listing

}
catch (error:SQLError)
{

// error handling is shown in a subsequent code listing
}

ADOBE AIR 1
Developer Guide

176
In asynchronous execution mode, when the statement finishes executing, the SQLStatement instance dispatches a
result event (SQLEvent.RESULT) indicating that the statement was run successfully. Alternatively, if a Responder
object is passed as an argument in the execute() call, the Responder object’s result handler function is called. In
synchronous execution mode, execution pauses until the execute() operation completes, then continues on the
next line of code.

Accessing SELECT statement result data

Once the SELECT statement has finished executing, the next step is to access the data that was retrieved. Each row
of data in the SELECT result set becomes an Object instance. That object has properties whose names match the
result set’s column names. The properties contain the values from the result set’s columns. For example, suppose a
SELECT statement specifies a result set with three columns named “itemId,” “itemName,” and “price.” For each row
in the result set, an Object instance is created with properties named itemId, itemName, and price. Those
properties contain the values from their respective columns.
The following code listing continues the previous code listing for retrieving data in asynchronous execution mode.
It shows how to access the retrieved data within the result event listener method.
function resultHandler(event:SQLEvent):void
{

var result:SQLResult = selectStmt.getResult();
var numResults:int = result.data.length;
for (var i:int = 0; i < numResults; i++)
{

var row:Object = result.data[i];
var output:String = "itemId: " + row.itemId;
output += "; itemName: " + row.itemName;
output += "; price: " + row.price;
trace(output);

}
}

function errorHandler(event:SQLErrorEvent):void
{

// Information about the error is available in the
// event.error property, which is an instance of
// the SQLError class.

}

The following code listing expands on the previous code listing for retrieving data in synchronous execution mode.
It expands the try..catch block in the previous synchronous execution example, showing how to access the
retrieved data.
try
{

selectStmt.execute();

var result:SQLResult = selectStmt.getResult();
var numResults:int = result.data.length;
for (var i:int = 0; i < numResults; i++)
{

var row:Object = result.data[i];
var output:String = "itemId: " + row.itemId;
output += "; itemName: " + row.itemName;
output += "; price: " + row.price;
trace(output);

}
}
catch (error:SQLError)
{

ADOBE AIR 1
Developer Guide

177
// Information about the error is available in the
// error variable, which is an instance of
// the SQLError class.

}

As the preceding code listings show, the result objects are contained in an array that is available as the data property
of a SQLResult instance. If you’re using asynchronous execution with an event listener, to retrieve that SQLResult
instance you call the SQLStatement instance’s getResult() method. If you specify a Responder argument in the
execute() call, the SQLResult instance is passed to the result handler function as an argument. In synchronous
execution mode, you call the SQLStatement instance’s getResult() method any time after the execute() method
call. In any case, once you have the SQLResult object you can access the result rows using the data array property.
The following code listing defines a SQLStatement instance whose text is a SELECT statement. The statement
retrieves rows containing the firstName and lastName column values of all the rows of a table named employees.
This example uses asynchronous execution mode. When the execution completes, the selectResult() method is
called, and the resulting rows of data are accessed using SQLStatement.getResult() and displayed using the
trace() method. Note that this listing assumes there is a SQLConnection instance named conn that has already
been instantiated and is already connected to the database. It also assumes that the “employees” table has already
been created and populated with data.
import flash.data.SQLConnection;
import flash.data.SQLResult;
import flash.data.SQLStatement;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;

// ... create and open the SQLConnection instance named conn ...

// create the SQL statement
var selectStmt:SQLStatement = new SQLStatement();
selectStmt.sqlConnection = conn;

// define the SQL text
var sql:String =

"SELECT firstName, lastName " +
"FROM employees";

selectStmt.text = sql;

// register listeners for the result and error events
selectStmt.addEventListener(SQLEvent.RESULT, selectResult);
selectStmt.addEventListener(SQLErrorEvent.ERROR, selectError);

// execute the statement
selectStmt.execute();

function selectResult(event:SQLEvent):void
{

// access the result data
var result:SQLResult = selectStmt.getResult();
var numRows:int = result.data.length;
for (var i:int = 0; i < numRows; i++)
{

var output:String = "";
for (var columnName:String in result.data[i])
{

output += columnName + ": " + result.data[i][columnName] + "; ";
}
trace("row[" + i.toString() + "]\t", output);

}

ADOBE AIR 1
Developer Guide

178
}

function selectError(event:SQLErrorEvent):void
{

trace("Error message:", event.error.message);
trace("Details:", event.error.details);

}

The following code listing demonstrates the same techniques as the preceding one, but uses synchronous execution
mode. The example defines a SQLStatement instance whose text is a SELECT statement. The statement retrieves rows
containing the firstName and lastName column values of all the rows of a table named employees. The resulting
rows of data are accessed using SQLStatement.getResult() and displayed using the trace() method. Note that
this listing assumes there is a SQLConnection instance named conn that has already been instantiated and is already
connected to the database. It also assumes that the “employees” table has already been created and populated with
data.
import flash.data.SQLConnection;
import flash.data.SQLResult;
import flash.data.SQLStatement;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;

// ... create and open the SQLConnection instance named conn ...

// create the SQL statement
var selectStmt:SQLStatement = new SQLStatement();
selectStmt.sqlConnection = conn;

// define the SQL text
var sql:String =

"SELECT firstName, lastName " +
"FROM employees";

selectStmt.text = sql;

try
{

// execute the statement
selectStmt.execute();

// access the result data
var result:SQLResult = selectStmt.getResult();
var numRows:int = result.data.length;
for (var i:int = 0; i < numRows; i++)
{

var output:String = "";
for (var columnName:String in result.data[i])
{

output += columnName + ": " + result.data[i][columnName] + "; ";
}
trace("row[" + i.toString() + "]\t", output);

}
}
catch (error:SQLError)
{

trace("Error message:", error.message);
trace("Details:", error.details);

}

ADOBE AIR 1
Developer Guide

179
Defining the data type of SELECT result data

By default, each row returned by a SELECT statement is created as an Object instance with properties named for the
result set's column names and with the value of each column as the value of its associated property. However, before
executing a SQL SELECT statement, you can set the itemClass property of the SQLStatement instance to a class. By
setting the itemClass property, each row returned by the SELECT statement is created as an instance of the desig-
nated class. The runtime assigns result column values to property values by matching the column names in the
SELECT result set to the names of the properties in the itemClass class.
Any class assigned as an itemClass property value must have a constructor that does not require any parameters.
In addition, the class must have a single property for each column returned by the SELECT statement. It is considered
an error if a column in the SELECT list does not have a matching property name in the itemClass class.

Retrieving SELECT results in parts

By default, a SELECT statement execution retrieves all the rows of the result set at one time. Once the statement
completes, you usually process the retrieved data in some way, such as creating objects or displaying the data on the
screen. If the statement returns a large number of rows, processing all the data at once can be demanding for the
computer, which in turn will cause the user interface to not redraw itself.
You can improve the perceived performance of your application by instructing the runtime to return a specific
number of result rows at a time. Doing so causes the initial result data to return more quickly. It also allows you to
divide the result rows into sets, so that the user interface is updated after each set of rows is processed. Note that it’s
only practical to use this technique in asynchronous execution mode.
To retrieve SELECT results in parts, specify a value for the SQLStatement.execute() method’s first parameter (the
prefetch parameter). The prefetch parameter indicates the number of rows to retrieve the first time the
statement executes. When you call a SQLStatement instance’s execute() method, specify a prefetch parameter
value and only that many rows will be retrieved:
var stmt:SQLStatement = new SQLStatement();
stmt.sqlConnection = conn;
stmt.text = "SELECT ...";
stmt.addEventListener(SQLEvent.RESULT, selectResult);
stmt.execute(20); // only the first 20 rows (or fewer) are returned

The statement dispatches the result event, indicating that the first set of result rows is available. The resulting
SQLResult instance’s data property contains the rows of data, and its complete property indicates whether there are
additional result rows to retrieve. To retrieve additional result rows, call the SQLStatement instance’s next()
method. Like the execute() method, the next() method’s first parameter is used to indicate how many rows to
retrieve the next time the result event is dispatched.
function selectResult(event:SQLEvent):void
{

var result:SQLResult = stmt.getResult();
if (result.data != null)
{

// ... loop through the rows or perform other processing ...
if (!result.complete)
{

stmt.next(20); // retrieve the next 20 rows
}
else
{

stmt.removeEventListener(SQLEvent.RESULT, selectResult);
}

}
}

ADOBE AIR 1
Developer Guide

180
The SQLStatement dispatches a result event each time the next() method returns a subsequent set of result rows.
Consequently, the same listener function can be used to continue processing results (from next() calls) until all the
rows are retrieved.
For more information, see the language reference descriptions for the SQLStatement.execute() method (the
prefetch parameter description) and the SQLStatement.next() method.

Inserting data
Retrieving data from a database involves executing a SQL INSERT statement. Once the statement has finished
executing, you can access the primary key for the newly inserted row if the key was generated by the database.

Contents

• “Executing an INSERT statement” on page 180
• “Retrieving a database-generated primary key of an inserted row” on page 181

Executing an INSERT statement

To add data to a table in a database, you create and execute a SQLStatement instance whose text is a SQL INSERT
statement.
The following example uses a SQLStatement instance to add a row of data to the already-existing employees table.
This example demonstrates inserting data using asynchronous execution mode. Note that this listing assumes that
there is a SQLConnection instance named conn that has already been instantiated and is already connected to a
database. It also assumes that the “employees” table has already been created.
import flash.data.SQLConnection;
import flash.data.SQLResult;
import flash.data.SQLStatement;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;

// ... create and open the SQLConnection instance named conn ...

// create the SQL statement
var insertStmt:SQLStatement = new SQLStatement();
insertStmt.sqlConnection = conn;

// define the SQL text
var sql:String =

"INSERT INTO employees (firstName, lastName, salary) " +
"VALUES ('Bob', 'Smith', 8000)";

insertStmt.text = sql;

// register listeners for the result and failure (status) events
insertStmt.addEventListener(SQLEvent.RESULT, insertResult);
insertStmt.addEventListener(SQLErrorEvent.ERROR, insertError);

// execute the statement
insertStmt.execute();

function insertResult(event:SQLEvent):void
{

trace("INSERT statement succeeded");
}

function insertError(event:SQLErrorEvent):void
{

ADOBE AIR 1
Developer Guide

181
trace("Error message:", event.error.message);
trace("Details:", event.error.details);

}

The following example adds a row of data to the already-existing employees table, using synchronous execution
mode. Note that this listing assumes that there is a SQLConnection instance named conn that has already been
instantiated and is already connected to a database. It also assumes that the “employees” table has already been
created.
import flash.data.SQLConnection;
import flash.data.SQLResult;
import flash.data.SQLStatement;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;

// ... create and open the SQLConnection instance named conn ...

// create the SQL statement
var insertStmt:SQLStatement = new SQLStatement();
insertStmt.sqlConnection = conn;

// define the SQL text
var sql:String =

"INSERT INTO employees (firstName, lastName, salary) " +
"VALUES ('Bob', 'Smith', 8000)";

insertStmt.text = sql;

try
{

// execute the statement
insertStmt.execute();
trace("INSERT statement succeeded");

}
catch (error:SQLError)
{

trace("Error message:", error.message);
trace("Details:", error.details);

}

Retrieving a database-generated primary key of an inserted row

Often after inserting a row of data into a table, your code needs to know a database-generated primary key or row
identifier value for the newly inserted row. For example, once you insert a row in one table, you might want to add
rows in a related table. In that case you would want to insert the primary key value as a foreign key in the related
table. The primary key of a newly inserted row can be retrieved using the SQLResult object generated by the
statement execution. This is the same object that’s used to access result data after a SELECT statement is executed. As
with any SQL statement, when the execution of an INSERT statement completes the runtime creates a SQLResult
instance. You access the SQLResult instance by calling the SQLStatement object’s getResult() method if you’re
using an event listener or if you’re using synchronous execution mode. Alternatively, if you’re using asynchronous
execution mode and you pass a Responder instance to the execute() call, the SQLResult instance is passed as an
argument to the result handler function. In any case, the SQLResult instance has a property, lastInsertRowID, that
contains the row identifier of the most-recently inserted row if the executed SQL statement is an INSERT statement.
The following example demonstrates accessing the primary key of an inserted row in asynchronous execution mode:
insertStmt.text = "INSERT INTO ...";
insertStmt.addEventListener(SQLEvent.RESULT, resultHandler);
insertStmt.execute();

private function resultHandler(event:SQLEvent):void

ADOBE AIR 1
Developer Guide

182
{
// get the primary key
var result:SQLResult = insertStmt.getResult();
var primaryKey:Number = result.lastInsertRowID;
// do something with the primary key

}

The following example demonstrates accessing the primary key of an inserted row in synchronous execution mode:
insertStmt.text = "INSERT INTO ...";
insertStmt.addEventListener(SQLEvent.RESULT, resultHandler);
try
{

insertStmt.execute();

// get the primary key
var result:SQLResult = insertStmt.getResult();
var primaryKey:Number = result.lastInsertRowID;
// do something with the primary key

}
catch (error:SQLError)
{

// respond to the error
}

Note that the row identifier may or may not be the value of the column that is designated as the primary key column
in the table definition, according to the following rule:
• If the table is defined with a primary key column whose affinity (column data type) is INTEGER, the
lastInsertRowID property contains the value that was inserted into that row (or the value generated by the runtime
if it’s an AUTOINCREMENT column).
• If the table is defined with multiple primary key columns (a composite key) or with a single primary key column
whose affinity is not INTEGER, behind the scenes the database generates a row identifier value for the row. That
generated value is the value of the lastInsertRowID property.
• The value is always the row identifier of the most-recently inserted row. If an INSERT statement causes a trigger
to fire which in turn inserts a row, the lastInsertRowID property contains the row identifier of the last row
inserted by the trigger rather than the row created by the INSERT statement. Consequently, if you want to have an
explicitly defined primary key column whose value is available after an INSERT command through the
SQLResult.lastInsertRowID property, the column must be defined as an INTEGER PRIMARY KEY column. Note,
however, that even if your table does not include an explicit INTEGER PRIMARY KEY column, it is equally acceptable
to use the database-generated row identifier as a primary key for your table in the sense of defining relationships
with related tables. The row identifier column value is available in any SQL statement by using one of the special
column names ROWID, _ROWID_, or OID. You can create a foreign key column in a related table and use the row
identifier value as the foreign key column value just as you would with an explicitly declared INTEGER PRIMARY KEY
column. In that sense, if you are using an arbitrary primary key rather than a natural key, and as long as you don’t
mind the runtime generating the primary key value for you, it makes little difference whether you use an INTEGER
PRIMARY KEY column or the system-generated row identifier as a table’s primary key for defining a foreign key
relationship with between two tables.
For more information about primary keys and generated row identifiers, see the sections titled “CREATE TABLE”
and “Expressions” in the appendix “SQL support in local databases” in the ActionScript 3.0 Language and Compo-
nents Reference.

ADOBE AIR 1
Developer Guide

183
Changing or deleting data
The process for executing other data manipulation operations is identical to the process used to execute a SQL
SELECT or INSERT statement. Simply substitute a different SQL statement in the SQLStatement instance’s text
property:
• To change existing data in a table, use an UPDATE statement.
• To delete one or more rows of data from a table, use a DELETE statement.
For descriptions of these statements, see the appendix “SQL support in local databases” in the ActionScript 3.0
Language and Components Reference.

Working with multiple databases
Use the SQLConnection.attach() method to open a connection to an additional database on a SQLConnection
instance that already has an open database. You give the attached database a name using the name parameter in the
attach() method call. When writing statements to manipulate that database, you can then use that name in a prefix
(using the form database-name.table-name) to qualify any table names in your SQL statements, indicating to the
runtime that the table can be found in the named database.
You can execute a single SQL statement that includes tables from multiple databases that are connected to the same
SQLConnection instance. If a transaction is created on the SQLConnection instance, that transaction applies to all
SQL statements that are executed using the SQLConnection instance. This is true regardless of which attached
database the statement runs on.
Alternatively, you can also create multiple SQLConnection instances in an application, each of which is connected
to one or multiple databases. However, if you do use multiple connections to the same database keep in mind that
a database transaction isn’t shared across SQLConnection instances. Consequently, if you connect to the same
database file using multiple SQLConnection instances, you can’t rely on both connections’ data changes being
applied in the expected manner. For example, if two UPDATE or DELETE statements are run against the same database
through different SQLConnection instances, and an application error occurs after one operation takes place, the
database data could be left in an intermediate state that would not be reversible and might affect the integrity of the
database (and consequently the application).

Handling database errors
In general, database error handling is like other runtime error handling. You should write code that is prepared for
errors that may occur, and respond to the errors rather than leave it up to the runtime to do so. In a general sense,
the possible database errors can be divided into three categories: connection errors, SQL syntax errors, and
constraint errors.

Contents

• “Connection errors” on page 183
• “Syntax errors” on page 184
• “Constraint errors” on page 184

Connection errors

Most database errors are connection errors, and they can occur during any operation. Although there are strategies
for preventing connection errors, there is rarely a simple way to gracefully recover from a connection error if the
database is a critical part of your application.

ADOBE AIR 1
Developer Guide

184
Most connection errors have to do with how the runtime interacts with the operating system, the file system, and the
database file. For example, a connection error occurs if the user doesn’t have permission to create a database file in
a particular location on the file system. The following strategies help to prevent connection errors:
Use user-specific database files Rather than using a single database file for all users who use the application on a
single computer, give each user their own database file. The file should be located in a directory that’s associated with
the user’s account. For example, it could be in the application’s storage directory, the user’s documents folder, the
user’s desktop, and so forth.
Consider different user types Test your application with different types of user accounts, on different operating
systems. Don’t assume that the user has administrator permission on the computer. Also, don’t assume that the
individual who installed the application is the user who’s running the application.
Consider various file locations If you allow a user to specify where to save a database file or select a file to open,
consider the possible file locations that the users might use. In addition, consider defining limits on where users can
store (or from where they can open) database files. For example, you might only allow users to open files that are
within their user account’s storage location.
If a connection error occurs, it most likely happens on the first attempt to create or open the database. This means
that the user is unable to do any database-related operations in the application. For certain types of errors, such as
read-only or permission errors, one possible recovery technique is to copy the database file to a different location.
The application can copy the database file to a different location where the user does have permission to create and
write to files, and use that location instead.

Syntax errors

A syntax error occurs when a SQL statement is incorrectly formed, and the application attempts to execute the
statement. Because local database SQL statements are created as strings, compile-time SQL syntax checking is not
possible. All SQL statements must be executed to check their syntax. Use the following strategies to prevent SQL
syntax errors:
Test all SQL statements thoroughly If possible, while developing your application test your SQL statements
separately before encoding them as statement text in the application code. In addition, use a code-testing approach
such as unit testing to create a set of tests that exercise every possible option and variation in the code.
Use statement parameters and avoid concatenating (dynamically generating) SQL Using parameters, and avoiding
dynamically built SQL statements, means that the same SQL statement text is used each time a statement is executed.
Consequently, it’s much easier to test your statements and limit the possible variation. If you must dynamically
generate a SQL statement, keep the dynamic parts of the statement to a minimum. Also, carefully validate any user
input to make sure it won’t cause syntax errors.
To recover from a syntax error, an application would need complex logic to be able to examine a SQL statement and
correct its syntax. By following the previous guidelines for preventing syntax errors, your code can identify any
potential run-time sources of SQL syntax errors (such as user input used in a statement). To recover from a syntax
error, provide guidance to the user. Indicate what to correct to make the statement execute properly.

Constraint errors

Constraint errors occur when an INSERT or UPDATE statement attempts to add data to a column. The error happens
if the new data violates one of the defined constraints for the table or column. The set of possible constraints
includes:
Unique constraint Indicates that across all the rows in a table, there cannot be duplicate values in one column. Alter-
natively, when multiple columns are combined in a unique constraint, the combination of values in those columns
must not be duplicated. In other words, in terms of the specified unique column or columns, each row must be
distinct.

ADOBE AIR 1
Developer Guide

185
Primary key constraint In terms of the data that a constraint allows and doesn’t allow, a primary key constraint is
identical to a unique constraint.
Not null constraint Specifies that a single column cannot store a NULL value and consequently that in every row, that
column must have a value.
Check constraint Allows you to specify an arbitrary constraint on one or more tables. A common check constraint
is a rule that define that a column’s value must be within certain bounds (for example, that a numeric column’s value
must be larger than 0). Another common type of check constraint specifies relationships between column values (for
example, that a column’s value must be different from the value of another column in the same row).
Data type (column affinity) constraint The runtime enforces the data type of columns’ values, and an error occurs if
an attempt is made to store a value of the incorrect type in a column. However, in many conditions values are
converted to match the column’s declared data type. See “Working with database data types” on page 186 for more
information.
The runtime does not enforce constraints on foreign key values. In other words, foreign key values aren’t required
to match an existing primary key value.
In addition to the predefined constraint types, the runtime SQL engine supports the use of triggers. A trigger is
similar to an event handler. It is a predefined set of instructions that are carried out when a certain action happens.
For example, a trigger could be defined that runs when data is inserted into or deleted from a particular table. One
possible use of a trigger is to examine data changes and cause an error to occur if specified conditions aren’t met.
Consequently, a trigger can serve the same purpose as a constraint, and the strategies for preventing and recovering
from constraint errors also apply to trigger-generated errors. However, the error id for trigger-generated errors is
different from the error id for constraint errors.
The set of constraints that apply to a particular table is determined while you’re designing an application.
Consciously designing constraints makes it easier to design your application to prevent and recover from constraint
errors. However, constraint errors are difficult to systematically predict and prevent. Prediction is difficult because
constraint errors don’t appear until application data is added. Constraint errors occur with data that is added to a
database after it’s created. These errors are often a result of the relationship between new data and data that already
exists in the database. The following strategies can help you avoid many constraint errors:
Carefully plan database structure and constraints The purpose of constraints is to enforce application rules and
help protect the integrity of the database’s data. When you’re planning your application, consider how to structure
your database to support your application. As part of that process, identify rules for your data, such as whether
certain values are required, whether a value has a default, whether duplicate values are allowed, and so forth. Those
rules guide you in defining database constraints.
Explicitly specify column names An INSERT statement can be written without explicitly specifying the columns into
which values are to be inserted, but doing so is an unnecessary risk. By explicitly naming the columns into which
values are to be inserted, you can allow for automatically generated values, columns with default values, and columns
that allow NULL values. In addition, by doing so you can ensure that all NOT NULL columns have an explicit value
inserted.
Use default values Whenever you specify a NOT NULL constraint for a column, if at all possible specify a default
value in the column definition. Application code can also provide default values. For example, your code can check
if a String variable is null and assign it a value before using it to set a statement parameter value.
Validate user-entered data Check user-entered data ahead of time to make sure that it obeys limits specified by
constraints, especially in the case of NOT NULL and CHECK constraints. Naturally, a UNIQUE constraint is more difficult
to check for because doing so would require executing a SELECT query to determine whether the data is unique.
Use triggers You can write a trigger that validates (and possibly replaces) inserted data or takes other actions to
correct invalid data. This validation and correction can prevent a constraint error from occurring.

ADOBE AIR 1
Developer Guide

186
In many ways constraint errors are more difficult to prevent than other types of errors. Fortunately, there are several
strategies to recover from constraint errors in ways that don’t make the application unstable or unusable:
Use conflict algorithms When you define a constraint on a column, and when you create an INSERT or UPDATE
statement, you have the option of specifying a conflict algorithm. A conflict algorithm defines the action the
database takes when a constraint violation occurs. There are several possible actions the database engine can take.
The database engine can end a single statement or a whole transaction. It can ignore the error. It can even remove
old data and replace it with the data that the code is attempting to store. For more information see the section “ON
CONFLICT (conflict algorithms)” in the appendix “SQL support in local databases” in the ActionScript 3.0
Language and Components Reference.
Provide corrective feedback The set of constraints that can affect a particular SQL command can be identified
ahead of time. Consequently, you can anticipate constraint errors that a statement could cause. With that
knowledge, you can build application logic to respond to a constraint error. For example, suppose an application
includes a data entry form for entering new products. If the product name column in the database is defined with a
UNIQUE constraint, the action of inserting a new product row in the database could cause a constraint error. Conse-
quently, the application is designed to anticipate a constraint error. When the error happens, the application alerts
the user, indicating that the specified product name is already in use and asking the user to choose a different name.
Another possible response is to allow the user to view information about the other product with the same name.

Working with database data types
When a table is created in a database, the SQL statement for creating the table defines the affinity, or data type, for
each column in the table. Although affinity declarations can be omitted, it’s a good idea to explicitly declare column
affinity in your CREATE TABLE SQL statements.
As a general rule, any object that you store in a database using an INSERT statement is returned as an instance of the
same data type when you execute a SELECT statement. However, the data type of the retrieved value can be different
depending on the affinity of the database column in which the value is stored. When a value is stored in a column,
if its data type doesn’t match the column’s affinity, the database attempts to convert the value to match the column’s
affinity. For example, if a database column is declared with NUMERIC affinity, the database attempts to convert
inserted data into a numeric storage class (INTEGER or REAL) before storing the data. The database throws an error
if the data can’t be converted. According to this rule, if the String “12345” is inserted into a NUMERIC column, the
database automatically converts it to the integer value 12345 before storing it in the database. When it’s retrieved with
a SELECT statement, the value is returned as an instance of a numeric data type (such as Number) rather than as a
String instance.
The best way to avoid undesirable data type conversion is to follow two rules. First, define each column with the
affinity that matches the type of data that it is intended to store. Next, only insert values whose data type matches the
defined affinity. Following these rules provides two benefits. When you insert the data it isn’t converted
unexpectedly (possibly losing its intended meaning as a result). In addition, when you retrieve the data it is returned
with its original data type.
For more information about the available column affinity types and using data types in SQL statements, see the
section “Data type support” in the appendix “SQL support in local databases” in the ActionScript 3.0 Language and
Components Reference.

ADOBE AIR 1
Developer Guide

187
Using synchronous and asynchronous database
operations
Previous sections have described common database operations such as retrieving, inserting, updating, and deleting
data, as well as creating a database file and tables and other objects within a database. The examples have demon-
strated how to perform these operations both asynchronously and synchronously.
As a reminder, in asynchronous execution mode, you instruct the database engine to perform an operation. The
database engine then works in the background while the application keeps running. When the operation finishes
the database engine dispatches an event to alert you to that fact. The key benefit of asynchronous execution is that
the runtime performs the database operations in the background while the main application code continues
executing. This is especially valuable when the operation takes a notable amount of time to run.
On the other hand, in synchronous execution mode operations don’t run in the background. You tell the database
engine to perform an operation. The code pauses at that point while the database engine does its work. When the
operation completes, execution continues with the next line of your code.
A single database connection can’t execute some operations or statements synchronously and others asynchro-
nously. You specify whether a SQLConnection operates in synchronous or asynchronous when you open the
connection to the database. If you call SQLConnection.open() the connection operates in synchronous execution
mode, and if you call SQLConnection.openAsync() the connection operates in asynchronous execution mode.
Once a SQLConnection instance is connected to a database using open() or openAsync(), it is fixed to
synchronous or asynchronous execution.

Contents

• “Using synchronous database operations” on page 187
• “Understanding the asynchronous execution model” on page 190

Using synchronous database operations
There is little difference in the actual code that you use to execute and respond to operations when using
synchronous execution, compared to the code for asynchronous execution mode. The key differences between the
two approaches fall into two areas. The first is executing an operation that depends on another operation (such as
SELECT result rows or the primary key of the row added by an INSERT statement). The second area of difference is
in handling errors.

Contents

• “Writing code for synchronous operations” on page 187
• “Executing an operation that depends on another operation” on page 188
• “Handling errors with synchronous execution” on page 189

Writing code for synchronous operations

The key difference between synchronous and asynchronous execution is that in synchronous mode you write the
code as a single series of steps. In contrast, in asynchronous code you register event listeners and often divide opera-
tions among listener methods. When a database is connected in synchronous execution mode, you can execute a
series of database operations in succession within a single code block. The following example demonstrates this
technique:
var conn:SQLConnection = new SQLConnection();
var dbFile:File = File.applicationStorageDirectory.resolvePath("DBSample.db");

ADOBE AIR 1
Developer Guide

188
// open the database
conn.open(dbFile, OpenMode.UPDATE);

// start a transaction
conn.begin();

// add the customer record to the database
var insertCustomer:SQLStatement = new SQLStatement();
insertCustomer.sqlConnection = conn;
insertCustomer.text =

"INSERT INTO customers (firstName, lastName) " +
"VALUES ('Bob', 'Jones')";

insertCustomer.execute();
var customerId:Number = insertCustomer.getResult().lastInsertRowID;

// add a related phone number record for the customer
var insertPhoneNumber:SQLStatement = new SQLStatement();
insertPhoneNumber.sqlConnection = conn;
insertPhoneNumber.text =

"INSERT INTO customerPhoneNumbers (customerId, number) " +
"VALUES (:customerId, '800-555-1234')";

insertPhoneNumber.parameters[":customerId"] = customerId;

insertPhoneNumber.execute();

// commit the transaction
conn.commit();

As you can see, you call the same methods to perform database operations whether you’re using synchronous or
asynchronous execution. The key differences between the two approaches are executing an operation that depends
on another operation and handling errors.

Executing an operation that depends on another operation

When you’re using synchronous execution mode, you don’t need to write code that listens for an event to determine
when an operation completes. Instead, you can assume that if an operation in one line of code completes success-
fully, execution continues with the next line of code. Consequently, to perform an operation that depends on the
success of another operation, simply write the dependent code immediately following the operation on which it
depends. For instance, to code an application to begin a transaction, execute an INSERT statement, retrieve the
primary key of the inserted row, insert that primary key into another row of a different table, and finally commit the
transaction, the code can all be written as a series of statements. The following example demonstrates these opera-
tions:
var conn:SQLConnection = new SQLConnection();
var dbFile:File = File.applicationStorageDirectory.resolvePath("DBSample.db");

// open the database
conn.open(dbFile, SQLMode.UPDATE);

// start a transaction
conn.begin();

// add the customer record to the database
var insertCustomer:SQLStatement = new SQLStatement();
insertCustomer.sqlConnection = conn;

ADOBE AIR 1
Developer Guide

189
insertCustomer.text =
"INSERT INTO customers (firstName, lastName) " +
"VALUES ('Bob', 'Jones')";

insertCustomer.execute();
var customerId:Number = insertCustomer.getResult().lastInsertRowID;

// add a related phone number record for the customer
var insertPhoneNumber:SQLStatement = new SQLStatement();
insertPhoneNumber.sqlConnection = conn;
insertPhoneNumber.text =

"INSERT INTO customerPhoneNumbers (customerId, number) " +
"VALUES (:customerId, '800-555-1234')";

insertPhoneNumber.parameters[":customerId"] = customerId;

insertPhoneNumber.execute();

// commit the transaction
conn.commit();

Handling errors with synchronous execution

In synchronous execution mode, you don’t listen for an error event to determine that an operation has failed. Instead,
you surround any code that could trigger errors in a set of try..catch..finally code blocks. You wrap the error-
throwing code in the try block. Write the actions to perform in response to each type of error in separate catch
blocks. Place any code that you want to always execute regardless of success or failure (for example, closing a database
connection that’s no longer needed) in a finally block. The following example demonstrates using
try..catch..finally blocks for error handling. It builds on the previous example by adding error handling code:
var conn:SQLConnection = new SQLConnection();
var dbFile:File = File.applicationStorageDirectory.resolvePath("DBSample.db");

// open the database
conn.open(dbFile, SQLMode.UPDATE);

// start a transaction
conn.begin();

try
{

// add the customer record to the database
var insertCustomer:SQLStatement = new SQLStatement();
insertCustomer.sqlConnection = conn;
insertCustomer.text =

"INSERT INTO customers (firstName, lastName)" +
"VALUES ('Bob', 'Jones')";

insertCustomer.execute();
var customerId:Number = insertCustomer.getResult().lastInsertRowID;

// add a related phone number record for the customer
var insertPhoneNumber:SQLStatement = new SQLStatement();
insertPhoneNumber.sqlConnection = conn;
insertPhoneNumber.text =

"INSERT INTO customerPhoneNumbers (customerId, number)" +
"VALUES (:customerId, '800-555-1234')";

insertPhoneNumber.parameters[":customerId"] = customerId;

insertPhoneNumber.execute();

ADOBE AIR 1
Developer Guide

190
// if we've gotten to this point without errors, commit the transaction
conn.commit();

}
catch (error:SQLError)
{

// rollback the transaction
conn.rollback();

}

Understanding the asynchronous execution model
One common concern about using asynchronous execution mode is the assumption that you can’t start executing a
SQLStatement instance if another SQLStatement is currently executing against the same database connection. In
fact, this assumption isn’t correct. While a SQLStatement instance is executing you can’t change the text property
of the statement. However, if you use a separate SQLStatement instance for each different SQL statement that you
want to execute, you can call the execute() method of a SQLStatement while another SQLStatement instance is still
executing, without causing an error.
Internally, when you’re executing database operations using asynchronous execution mode, each database
connection (each SQLConnection instance) has its own queue or list of operations that it is instructed to perform.
The runtime executes each operation in sequence, in the order they are added to the queue. When you create a
SQLStatement instance and call its execute() method, that statement execution operation is added to the queue for
the connection. If no operation is currently executing on that SQLConnection instance, the statement begins
executing in the background. Suppose that within the same block of code you create another SQLStatement instance
and also call that method’s execute() method. That second statement execution operation is added to the queue
behind the first statement. As soon as the first statement finishes executing, the runtime moves to the next operation
in the queue. The processing of subsequent operations in the queue happens in the background, even while the
result event for the first operation is being dispatched in the main application code. The following code demon-
strates this technique:
// Using asynchronous execution mode

var stmt1:SQLStatement = new SQLStatement();
stmt1.sqlConnection = conn;
// ... Set statement text and parameters, and register event listeners ...
stmt1.execute();
// At this point stmt1's execute() operation is added to conn's execution queue.

var stmt2:SQLStatement = new SQLStatement();
stmt2.sqlConnection = conn;
// ... Set statement text and parameters, and register event listeners ...
stmt2.execute();
// At this point stmt2's execute() operation is added to conn's execution queue.
// When stmt1 finishes executing, stmt2 will immediately begin executing
// in the background.

There is an important side effect of the database automatically executing subsequent queued statements. If a
statement depends on the outcome of another operation, you can’t add the statement to the queue (in other words,
you can’t call its execute() method) until the first operation completes. This is because once you’ve called the
second statement’s execute() method, you can’t change the statement’s text or parameters properties. In that case
you must wait for the event indicating that the first operation completes before starting the next operation. For
instance, if you want to execute a statement in the context of a transaction, the statement execution depends on the

ADOBE AIR 1
Developer Guide

191
operation of opening the transaction. After calling the SQLConnection.begin() method to open the transaction,
you need to wait for the SQLConnection instance to dispatch its begin event. Only then can you call the
SQLStatement instance’s execute() method. In this example the simplest way to organize the application to ensure
that the operations are executed properly is to create a method that’s registered as a listener for the begin event. The
code to call the SQLStatement.execute() method is placed within that listener method.

Strategies for working with SQL databases
There are various ways that an application can access and work with a local SQL database. The application design
can vary in terms of how the application code is organized, the sequence and timing of how operations are
performed, and so on. The techniques you choose can have an impact on how easy it is to develop your application.
They can affect how easy it is to modify the application in future updates. They can also affect how well the appli-
cation performs from the users’ perspective.

Contents

• Distributing a pre-populated database
• Improving database performance
• Best practices for working with local SQL databases

Distributing a pre-populated database
When you use an AIR local SQL database in your application, the application expects a database with a certain
structure of tables, columns, and so forth. Some applications also expect certain data to be pre-populated in the
database file. One way to ensure that the database has the proper structure is to create the database within the appli-
cation code. When the application loads it checks for the existence of its database file in a particular location. If the
file doesn’t exist, the application executes a set of commands to create the database file, create the database structure,
and populate the tables with the initial data.
The code that creates the database and its tables is frequently complex. It is often only used once in the installed
lifetime of the application, but still adds to the size and complexity of the application. As an alternative to creating
the database, structure, and data programmatically, you can distribute a pre-populated database with your appli-
cation. To distribute a predefined database, include the database file in the application’s AIR package.
Like all files that are included in an AIR package, a bundled database file is installed in the application directory (the
directory represented by the File.applicationDirectory property). However, files in that directory are read
only. Use the file from the AIR package as a “template” database. The first time a user runs the application, copy the
original database file into the user’s application storage directory (or another location), and use that database within
the application.

Improving database performance
Several techniques that are built into Adobe AIR allow you to improve the performance of database operations in
your application.

Contents

• Use one SQLStatement instance for each SQL statement
• Group multiple operations in a transaction
• Minimize runtime processing

ADOBE AIR 1
Developer Guide

192
• Avoid schema changes
In addition to the techniques described here, the way a SQL statement is written can also affect database perfor-
mance. Frequently, there are multiple ways to write a SQL SELECT statement to retrieve a particular result set. In
some cases, the different approaches require more or less effort from the database engine. This aspect of improving
database performance—designing SQL statements for better performance—is not covered in the Adobe AIR
documentation.

Use one SQLStatement instance for each SQL statement

Before any SQL statement is executed, the runtime prepares (compiles) it to determine the steps that are performed
internally to carry out the statement. When you call SQLStatement.execute() on a SQLStatement instance that
hasn’t executed previously, the statement is automatically prepared before it is executed. On subsequent calls to the
execute() method, as long as the SQLStatement.text property hasn’t changed the statement is still prepared.
Consequently, it executes faster.
In order to gain the maximum benefit from reusing statements, if values need to change between statement execu-
tions, use statement parameters to customize your statement. (Statement parameters are specified using the
SQLStatement.parameters associative array property.) Unlike changing the SQLStatement instance’s text
property, if you change the values of statement parameters the runtime isn’t required to prepare the statement again.
For more information about using parameters in statements, see “Using parameters in statements” on page 172.
Because preparing and executing a statement is an operation that is potentially demanding, a good strategy is to
preload initial data and then execute other statements in the background. Load the data that the application needs
first. When the initial start-up operations of your application have completed, or at another “idle” time in the appli-
cation, execute other statements. For instance, if your application doesn’t access the database at all in order to display
its initial screen, wait until that screen displays, then open the database connection, and finally create the
SQLStatement instances and execute any that you can. Alternatively, suppose when your application starts up it
immediately displays some data, such as the result of a particular query. In that case, go ahead and execute the
SQLStatement instance for that query. After the initial data is loaded and displayed, create SQLStatement instances
for other database operations and if possible execute other statements that are needed later.
When you’re reusing a SQLStatement instance, your application needs to keep a reference to the SQLStatement
instance once it has been prepared. To keep a reference to the instance, declare the variable as a class-scope variable
rather than a function-scope variable. One good way to do this is to structure your application so that a SQL
statement is wrapped in a single class. A group of statements that are executed in combination can also be wrapped
in a single class. By defining the SQLStatement instance or instances as member variables of the class, they persist as
long as the instance of the wrapper class exists in the application. At a minimum, you can simply define a variable
containing the SQLStatement instance outside of a function so that the instance persists in memory. For example,
declare the SQLStatement instance as a member variable in an ActionScript class or as a non-function variable in a
JavaScript file. You can then set the statement’s parameter values and call its execute() method when you want to
actually run the query.

ADOBE AIR 1
Developer Guide

193
Group multiple operations in a transaction

Suppose you’re executing a large number of SQL statements that involve adding or changing data (INSERT or
UPDATE statements). You can get a significant increase in performance by executing all the statements within an
explicit transaction. If you don’t explicitly begin a transaction, each of the statements runs in its own automatically
created transaction. After each transaction (each statement) finishes executing, the runtime writes the resulting data
to the database file on the disk. On the other hand, consider what happens if you explicitly create a transaction and
execute the statements in the context of that transaction. The runtime makes all the changes in memory, then writes
all the changes to the database file at one time when the transaction is committed. Writing the data to disk is usually
the most time-intensive part of the operation. Consequently, writing to the disk one time rather than once per SQL
statement can improve performance significantly.

Minimize runtime processing

Using the following techniques can prevent unneeded work on the part of the database engine and make applications
perform better:
• Always explicitly specify database names along with table names in a statement. (Use “main” if it’s the main
database). For example, use SELECT employeeId FROM main.employees rather than SELECT employeId FROM
employees. Explicitly specifying the database name prevents the runtime from having to check each database to
find the matching table. It also prevents the possibility of having the runtime choose the wrong database. Follow this
rule even if a SQLConnection is only connected to a single database, because behind the scenes the SQLConnection
is also connected to a temporary database that is accessible through SQL statements.
• Always explicitly specify column names in a SELECT or INSERT statement.
• Break up the rows returned by a SELECT statement that retrieves a large number of rows: see “Retrieving SELECT
results in parts” on page 179.

Avoid schema changes

If possible, avoid changing the schema (table structure) of a database once you’ve added data into the database’s
tables. Normally a database file is structured with the table definitions at the start of the file. When you open a
connection to a database, the runtime loads those definitions. When you add data to database tables, that data is
added to the file after the table definition data. However, if you make schema changes such as adding a column to a
table or adding a new table, the new table definition data is mixed in with the table data in the database file. If the
table definition data is not all at the start of the database file, it takes longer to open a connection to the database as
the runtime reads the table definition data from different parts of the file.
If you do need to make schema changes, you can call the SQLConnection.compact() method after completing the
changes. This operation restructures the database file so that the table definition data is located together at the start
of the file. However, the compact() operation can be time-intensive, especially as a database file grows larger.

Best practices for working with local SQL databases
The following list is a set of suggested techniques you can use to improve the performance, security, and ease of
maintenance of your applications when working with local SQL databases. For additional techniques for improving
database applications, see “Improving database performance” on page 191.

Contents

• Pre-create database connections
• Reuse database connections
• Favor asynchronous execution mode
• Use separate SQL statements and don’t change the SQLStatement’s text property

ADOBE AIR 1
Developer Guide

194
• Use statement parameters
• Use constants for column and parameter names

Pre-create database connections

Even if your application doesn’t execute any statements when it first loads, instantiate a SQLConnection object and
call its open() or openAsync() method ahead of time (such as after the initial application startup) to avoid delays
when running statements. See “Connecting to a database” on page 170.

Reuse database connections

If you access a certain database throughout the execution time of your application, keep a reference to the SQLCon-
nection instance, and reuse it throughout the application, rather than closing and reopening the connection. See
“Connecting to a database” on page 170.

Favor asynchronous execution mode

When writing data-access code, it can be tempting to execute operations synchronously rather than asynchronously,
because using synchronous operations frequently requires shorter and less complex code. However, as described in
“Using synchronous and asynchronous database operations” on page 187, synchronous operations can have a
performance impact that is obvious to users and detrimental to their experience with an application. The amount of
time a single operation takes varies according to the operation and particularly the amount of data it involves. For
instance, a SQL INSERT statement that only adds a single row to the database takes less time than a SELECT statement
that retrieves thousands of rows of data. However, when you’re using synchronous execution to perform multiple
operations, the operations are usually strung together. Even if the time each single operation takes is very short, the
application is frozen until all the synchronous operations finish. As a result, the cumulative time of multiple opera-
tions strung together may be enough to stall your application.
Use asynchronous operations as a standard approach, especially with operations that involve large numbers of rows.
There is a technique for dividing up the processing of large sets of SELECT statement results, described in “Retrieving
SELECT results in parts” on page 179. However, this technique can only be used in asynchronous execution mode.
Only use synchronous operations when you can’t achieve certain functionality using asynchronous programming,
when you’ve considered the performance trade-offs that your application’s users will face, and when you’ve tested
your application so that you know how your application’s performance is affected. Using asynchronous execution
can involve more complex coding. However, remember that you only have to write the code once, but the appli-
cation’s users have to use it repeatedly, fast or slow.
In many cases, by using a separate SQLStatement instance for each SQL statement to be executed, multiple SQL
operations can be queued up at one time, which makes asynchronous code like synchronous code in terms of how
the code is written. For more information, see “Understanding the asynchronous execution model” on page 190.

Use separate SQL statements and don’t change the SQLStatement’s text property

For any SQL statement that is executed more than once in an application, create a separate SQLStatement instance
for each SQL statement. Use that SQLStatement instance each time that SQL command executes. For example,
suppose you are building an application that includes four different SQL operations that are performed multiple
times. In that case, create four separate SQLStatement instances and call each statement’s execute() method to run
it. Avoid the alternative of using a single SQLStatement instance for all SQL statements, redefining its text property
each time before executing the statement. See “Use one SQLStatement instance for each SQL statement” on page 192
for more information.

ADOBE AIR 1
Developer Guide

195
Use statement parameters

Use SQLStatement parameters—never concatenate user input into statement text. Using parameters makes your
application more secure because it prevents the possibility of SQL injection attacks. It makes it possible to use objects
in queries (rather than only SQL literal values). It also makes statements run more efficiently because they can be
reused without needing to be recompiled each time they’re executed. See “Using parameters in statements”
on page 172 for more information.

Use constants for column and parameter names

When you don’t specify an itemClass for a SQLStatement, to avoid spelling errors, define String constants
containing a table’s column names. Use those constants in the statement text and for the property names when
retrieving values from result objects. Also use constants for parameter names.

196
Chapter 19: Storing encrypted data

The Adobe® AIR™ runtime provides a persistent encrypted local store for each AIR application installed on a user's
computer. This lets you save and retrieve data that is stored on the user’s local hard drive in an encrypted format that
cannot easily be deciphered by other applications or users. A separate encrypted local store is used for each AIR
application, and each AIR application uses a separate encrypted local store for each user.

You may want to use the encrypted local store to store information that must be secured, such as login credentials
for web services.
AIR uses DPAPI on Windows and KeyChain on Mac OS to associate the encrypted local store to each application
and user. The encrypted local store uses AES-CBC 128-bit encryption.
Information in the encrypted local store is only available to AIR application content in the application security
sandbox.
Use the setItem() and removeItem() static methods of the EncryptedLocalStore class to store and retrieve data
from the local store. The data is stored in a hash table, using strings as keys, with the data stored as byte arrays.
For example, the following code stores a string in the encrypted local store:
var str:String = "Bob";
var bytes:ByteArray = new ByteArray();
bytes.writeUTFBytes(str);
EncryptedLocalStore.setItem("firstName", bytes);

var storedValue:ByteArray = EncryptedLocalStore.getItem("firstName");
trace(storedValue.readUTFBytes(storedValue.length)); // "Bob"

The third parameter of the setItem() method, the stronglyBound parameter, is optional. When this parameter is
set to true, the encrypted local store provides a higher level of security, by binding the stored item to the storing AIR
application’s digital signature and bits, as well as to the application’s publisher ID when:
var str:String = "Bob";
var bytes:ByteArray = new ByteArray();
bytes.writeUTFBytes(str);
EncryptedLocalStore.setItem("firstName", bytes, true);

For an item that is stored with stronglyBound set to true, subsequent calls to getItem() only succeed if the calling
AIR application is identical to the storing application (if no data in files in the application directory have changed).
If the calling AIR application is different from the storing application, the application throws an Error exception
when you call getItem() for a strongly bound item. If you update your application, it will not be able to read
strongly bound data previously written to the encrypted local store.
By default, an AIR application cannot read the encrypted local store of another application. The stronglyBound
setting provides extra binding (to the data in the application bits) that prevents an attacker application from
attempting to read from your application's encrypted local store by trying to hijack your application's publisher ID.
You can delete a value from the encrypted local store by using the EncryptedLocalStore.removeItem() method,
as in the following example:
EncryptedLocalStore.removeItem("firstName");

You can clear all data from the encrypted local store by calling the EncryptedLocalStore.reset() method, as in
the following example:
EncryptedLocalStore.reset();

ADOBE AIR 1
Developer Guide

197
When debugging an application in the AIR Debug Launcher (ADL), the application uses a different encrypted local
store than the one used in the installed version of the application.
The encrypted local store has a maximum supported total capacity of 10 MB.
When you uninstall an AIR application, the uninstaller does not delete data stored in the encrypted local store.
Encrypted local store data is put in a subdirectory of the user’s application data directory; the subdirectory path is
Adobe/AIR/ELS/ followed by the application ID.

198

Part 7: HTML content

About the HTML environment. .199
Programming in HTML and JavaScript. .214
Handling HTML-related events .230
Scripting the HTML Container. .235

199
Chapter 20: About the HTML
environment

Adobe®AIR™ uses WebKit (www.webkit.org), also used by the Safari web browser, to parse, layout, and render HTML
and JavaScript content. Using the AIR APIs in HTML content is optional. You can program in the content of an
HTMLLoader object or HTML window entirely with HTML and JavaScript. Most existing HTML pages and appli-
cations should run with few changes (assuming they use HTML, CSS, DOM, and JavaScript features compatible with
WebKit).
Because AIR applications run directly on the desktop, with full access to the file system, the security model for
HTML content is more stringent than the security model of a typical web browser. In AIR, only content loaded from
the application installation directory is placed in the application sandbox. The application sandbox has the highest
level of privilege and allows access to the AIR APIs. AIR places other content into isolated sandboxes based on where
that content came from. Files loaded from the file system go into a local sandbox. Files loaded from the network
using the http: or https: protocols go into a sandbox based on the domain of the remote server. Content in these non-
application sandboxes is prohibited from accessing any AIR API and runs much as it would in a typical web browser.

Contents

• “Overview of the HTML environment” on page 199
• “AIR and Webkit extensions” on page 202

See also
• “Programming in HTML and JavaScript” on page 214
• “Handling HTML-related events” on page 230
• “Scripting the HTML Container” on page 235

Overview of the HTML environment
Adobe AIR provides a complete browser-like JavaScript environment with an HTML renderer, document object
model, and JavaScript interpreter. The JavaScript environment is represented by the AIR HTMLLoader class. In
HTML windows, an HTMLLoader object contains all HTML content, and is, in turn, contained within a
NativeWindow object. In SWF content, the HTMLLoader class, which extends the Sprite class, can be added to the
display list of a stage like any other display object. The ActionScript™ properties of the class are described in
“Scripting the HTML Container” on page 235 and also in the Flex 3 ActionScript Language Reference.

Contents

• “About the JavaScript environment and its relationship to AIR” on page 200
• “About security” on page 201
• “About plug-ins and embedded objects” on page 201

http://www.webkit.org

ADOBE AIR 1
Developer Guide

200
About the JavaScript environment and its relationship to AIR
The following diagram illustrates the relationship between the JavaScript environment and the AIR run-time
environment. Although only a single native window is shown, an AIR application can contain multiple windows.
(And a single window can contain multiple HTMLLoader objects.)

The JavaScript environment has its own Document and Window objects. JavaScript code can interact with the AIR run-time environment
through the runtime, nativeWindow, and htmlLoader properties. ActionScript code can interact with the JavaScript environment
through the window property of an HTMLLoader object, which is a reference to the JavaScript Window object. In addition, both ActionScript
and JavaScript objects can listen for events dispatched by both AIR and JavaScript objects.

The runtime property provides access to AIR API classes, allowing you to create new AIR objects as well as access
class (also called static) members. To access an AIR API, you add the name of the class, with package, to the runtime
property. For example, to create a File object, you would use the statement:
var file = new window.runtime.filesystem.File();

Note: The AIR SDK provides a JavaScript file, AIRAliases.js, that defines more convenient aliases for the most
commonly used AIR classes. When you import this file, you can use the shorter form air.Class instead of
window.runtime.package.Class. For example, you could create the File object with new air.File().
The NativeWindow object provides properties for controlling the desktop window. From within an HTML page, you
can access the containing NativeWindow object with the window.nativeWindow property.
The HTMLLoader object provides properties, methods, and events for controlling how content is loaded and
rendered. From within an HTML page, you can access the parent HTMLLoader object with the
window.htmlLoader property.

ADOBE AIR 1
Developer Guide

201
Important: Only pages installed as part of an application have the htmlLoader, nativeWindow, or runtime properties
and only when loaded as the top-level document. These properties are not added when a document is loaded into a frame
or iframe. (A child document can access these properties on the parent document as long as it is in the same security
sandbox. For example, a document loaded in a frame could access the runtime property of its parent with
parent.runtime.)

About security
AIR executes all code within a security sandbox based on the domain of origin. Application content, which is limited
to content loaded from the application installation directory, is placed into the application sandbox. Access to the
run-time environment and the AIR APIs are only available to HTML and JavaScript running within this sandbox.
At the same time, most dynamic evaluation and execution of JavaScript is blocked in the application sandbox after
all handlers for the page load event have returned.
You can map an application page into a non-application sandbox by loading the page into a frame or iframe and
setting the AIR-specific sandboxRoot and documentRoot attributes of the frame. By setting the sandboxRoot value
to an actual remote domain, you can enable the sandboxed content to cross-script content in that domain. Mapping
pages in this way can be useful when loading and scripting remote content, such as in a mash-up application.
Another way to allow application and non-application content to cross-script each other, and the only way to give
non-application content access to AIR APIs, is to create a sandbox bridge. A parent-to-child bridge allows content in
a child frame, iframe, or window to access designated methods and properties defined in the application sandbox.
Conversely, a child-to-parent bridge allows application content to access designated methods and properties defined
in the sandbox of the child. Sandbox bridges are established by setting the parentSandboxBridge and
childSandboxBridge properties of the window object. For more information, see “HTML security” on page 32 and
“HTML frame and iframe elements” on page 209.

About plug-ins and embedded objects
AIR supports the Adobe® Acrobat® plug-in. Users must have Acrobat or Adobe® Reader® 8.1 (or better) to display
PDF content. The HTMLLoader object provides a property for checking whether a user’s system can display PDF.
SWF file content can also be displayed within the HTML environment, but this capability is built in to AIR and does
not use an external plug-in.
No other Webkit plug-ins are supported in AIR.

See also

• “HTML security” on page 32
• “HTML Sandboxes” on page 203
• “HTML frame and iframe elements” on page 209
• “JavaScript Window object” on page 207
• “The XMLHttpRequest object” on page 203
• “Adding PDF content” on page 249

ADOBE AIR 1
Developer Guide

202
AIR and Webkit extensions
Adobe AIR uses the open source Webkit engine, also used in the Safari web browser. AIR adds several extensions to
allow access to the runtime classes and objects as well as for security. In addition, Webkit itself adds features not
included in the W3C standards for HTML, CSS, and JavaScript.
Only the AIR additions and the most noteworthy Webkit extensions are covered here; for additional documentation
on non-standard HTML, CSS, and JavaScript, see www.webkit.org and developer.apple.com. For standards infor-
mation, see the W3C website. Mozilla also provides a valuable general reference on HTML, CSS, and DOM topics
(of course, the Webkit and Mozilla engines are not identical).
Note: AIR does not support the following standard and extended WebKit features: the JavaScript Window object
print() method; plug-ins, except Acrobat or Adobe Reader 8.1+; Scalable Vector Graphics (SVG), the CSS opacity
property.

Contents

• “JavaScript in AIR” on page 202
• “Extensions to HTML” on page 209
• “Extensions to CSS” on page 212

JavaScript in AIR
AIR makes several changes to the typical behavior of common JavaScript objects. Many of these changes are made
to make it easier to write secure applications in AIR. At the same time, these differences in behavior mean that some
common JavaScript coding patterns, and existing web applications using those patterns, might not always execute as
expected in AIR. For information on correcting these types of issues, see “Avoiding security-related JavaScript
errors” on page 216.

Contents

• “HTML Sandboxes” on page 203
• “JavaScript eval() function” on page 203
• “Function constructors” on page 203
• “Loading external scripts” on page 203
• “The XMLHttpRequest object” on page 203
• “The Canvas object” on page 205
• “Cookies” on page 205
• “The Clipboard object” on page 205
• “Drag and Drop” on page 206
• “innerHTML and outerHTML properties” on page 207
• “Document.write() and Document.writeln() methods” on page 207
• “Document.designMode property” on page 207
• “unload events (for body and frameset objects)” on page 207
• “JavaScript Window object” on page 207
• “air.NativeApplication object” on page 208
• “The JavaScript URL scheme” on page 209

http://www.webkit.org
http://developer.apple.com/internet/safari/
http://www.w3.org/
http://developer.mozilla.org/en/docs/Main_Page

ADOBE AIR 1
Developer Guide

203
HTML Sandboxes

AIR places content into isolated sandboxes according to the origin of the content. The sandbox rules are consistent
with the same-origin policy implemented by most web browsers, as well as the rules for sandboxes implemented by
the Adobe Flash Player. In addition, AIR provides a new application sandbox type to contain and protect application
content. See “Sandboxes” on page 30 for more information on the types of sandboxes you may encounter when
developing AIR applications.
Access to the run-time environment and AIR APIs are only available to HTML and JavaScript running within the
application sandbox. At the same time, however, dynamic evaluation and execution of JavaScript, in its various
forms, is largely restricted within the application sandbox for security reasons. These restrictions are in place
whether or not your application actually loads information directly from a server. (Even file content, pasted strings,
and direct user input may be untrustworthy.)
The origin of the content in a page determines the sandbox to which it is consigned. Only content loaded from the
application directory (the installation directory referenced by the app: URL scheme) is placed in the application
sandbox. Content loaded from the file system is placed in the local-with-filesystem or the local-trusted sandbox,
which allows access and interaction with content on the local file system, but not remote content. Content loaded
from the network is placed in a remote sandbox corresponding to its domain of origin.
To allow an application page to interact freely with content in a remote sandbox, the page can be mapped to the same
domain as the remote content. For example, if you write an application that displays map data from an Internet
service, the page of your application that loads and displays content from the service could be mapped to the service
domain. The attributes for mapping pages into a remote sandbox and domain are new attributes added to the frame
and iframe HTML elements.
To allow content in a non-application sandbox to safely use AIR features, you can set up a parent sandbox bridge. To
allow application content to safely call methods and access properties of content in other sandboxes, you can set up
a child sandbox bridge. Safety here means that remote content cannot accidentally get references to objects,
properties, or methods that are not explicitly exposed. Only simple data types, functions, and anonymous objects
can be passed across the bridge. However, you must still avoid explicitly exposing potentially dangerous functions.
If, for example, you exposed an interface that allowed remote content to read and write files anywhere on a user’s
system, then you might be giving remote content the means to do considerable harm to your users.

JavaScript eval() function

Use of the eval() function is restricted within the application sandbox once a page has finished loading. Some uses
are permitted so that JSON-formatted data can be safely parsed, but any evaluation that results in executable state-
ments results in an error. “Code restrictions for content in different sandboxes” on page 34 describes the allowed uses
of the eval() function.

Function constructors

In the application sandbox, function constructors can be used before a page has finished loading. After all page load
event handlers have finished, new functions cannot be created.

Loading external scripts

HTML pages in the application sandbox cannot use the script tag to load JavaScript files from outside of the appli-
cation directory. For a page in your application to load a script from outside the application directory, the page must
be mapped to a non-application sandbox.

The XMLHttpRequest object

AIR provides an XMLHttpRequest (XHR) object that applications can use to make data requests. The following
example illustrates a simple data request:

ADOBE AIR 1
Developer Guide

204
xmlhttp = new XMLHttpRequest();
xmlhttp.open("GET", "http:/www.example.com/file.data", true);
xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4) {
//do something with data...

}
}
xmlhttp.send(null);

In contrast to a browser, AIR allows content running in the application sandbox to request data from any domain.
The result of an XHR that contains a JSON string can be evaluated into data objects unless the result also contains
executable code. If executable statements are present in the XHR result, an error is thrown and the evaluation attempt
fails.
To prevent accidental injection of code from remote sources, synchronous XHRs return an empty result if made
before a page has finished loading. Asynchronous XHRs will always return after a page has loaded.
By default, AIR blocks cross-domain XMLHttpRequests in non-application sandboxes. A parent window in the
application sandbox can choose to allow cross-domain requests in a child frame containing content in a non-appli-
cation sandbox by setting allowCrossDomainXHR, an attribute added by AIR, to true in the containing frame or
iframe element:
<iframe id="mashup"

src="http://www.example.com/map.html"
allowCrossDomainXHR="true"

</iframe>

Note: When convenient, the AIR URLStream class can also be used to download data.
If you dispatch an XMLHttpRequest to a remote server from a frame or iframe containing application content that
has been mapped to a remote sandbox, make sure that the mapping URL does not mask the server address used in
the XHR. For example, consider the following iframe definition, which maps application content into a remote
sandbox for the example.com domain:
<iframe id="mashup"

src="http://www.example.com/map.html"
documentRoot="app:/sandbox/"
sandboxRoot="http://www.example.com/"
allowCrossDomainXHR="true"

</iframe>

Because the sandboxRoot attribute remaps the root URL of the www.example.com address, all requests are loaded
from the application directory and not the remote server. Requests are remapped whether they derive from page
navigation or from an XMLHttpRequest.
To avoid accidentally blocking data requests to your remote server, map the sandboxRoot to a subdirectory of the
remote URL rather than the root. The directory does not have to exist. For example, to allow requests to the
www.example.com to load from the remote server rather than the application directory, change the previous iframe
to the following:
<iframe id="mashup"

src="http://www.example.com/map.html"
documentRoot="app:/sandbox/"
sandboxRoot="http://www.example.com/air/"
allowCrossDomainXHR="true"

</iframe>

In this case, only content in the air subdirectory is loaded locally.
For more information on sandbox mapping see “HTML frame and iframe elements” on page 209 and “HTML
security” on page 32.

ADOBE AIR 1
Developer Guide

205
The Canvas object

The Canvas object defines an API for drawing geometric shapes such as lines, arcs, ellipses, and polygons. To use the
canvas API, you first add a canvas element to the document and then draw into it using the JavaScript Canvas API.
In most other respects, the Canvas object behaves like an image.
The following example draws a triangle using a Canvas object:
<html>
<body>
<canvas id="triangleCanvas" style="width:40px; height:40px;"></canvas>
<script>

var canvas = document.getElementById("triangleCanvas");
var context = canvas.getContext("2d");
context.lineWidth = 3;
context.strokeStyle = "#457232";
context.beginPath();

context.moveTo(5,5);
context.lineTo(35,5);
context.lineTo(20,35);
context.lineTo(5,5);
context.lineTo(6,5);

context.stroke();
</script>
</body>
</html>

For more documentation on the Canvas API, see the Safari JavaScript Reference from Apple. Note that the Webkit
project recently began changing the Canvas API to standardize on the HTML 5 Working Draft proposed by the Web
Hypertext Application Technology Working Group (WHATWG) and W3C. As a result, some of the documentation
in the Safari JavaScript Reference may be inconsistent with the version of the canvas present in AIR.

Cookies

In AIR applications, only content in remote sandboxes (content loaded from http: and https: sources) can use cookies
(the document.cookie property). In the application sandbox, AIR APIs provide other means for storing persistent
data (such as the EncryptedLocalStore and FileStream classes).

The Clipboard object

The WebKit Clipboard API is driven with the following events: copy, cut, and paste. The event object passed in
these events provides access to the clipboard through the clipboardData property. Use the following methods of
the clipboardData object to read or write clipboard data:

JavaScript code outside the application sandbox can only access the clipboard through theses events. However,
content in the application sandbox can access the system clipboard directly using the AIR Clipboard class. For
example, you could use the following statement to get text format data on the clipboard:
var clipping = air.Clipboard.generalClipboard.getData("text/plain",

air.ClipboardTransferMode.ORIGINAL_ONLY);

Method Description

clearData(mimeType) Clears the clipboard data. Set the mimeType parameter to the MIME type of the data to clear.

getData(mimeType) Get the clipboard data. This method can only be called in a handler for the paste event. Set the mimeType
parameter to the MIME type of the data to return.

setData(mimeType, data) Copy data to the clipboard. Set the mimeType parameter to the MIME type of the data.

http://developer.apple.com/documentation/AppleApplications/Reference/SafariJSRef/index.html
http://www.whatwg.org/specs/web-apps/current-work/#the-canvas

ADOBE AIR 1
Developer Guide

206
The valid data MIME types are:

Important: Only content in the application sandbox can access file data present on the clipboard. If non-application
content attempts to access a file object from the clipboard, a security error is thrown.

Drag and Drop

Drag-and-drop gestures into and out of HTML produce the following DOM events: dragstart, drag, dragend,
dragenter, dragover, dragleave, and drop. The event object passed in these events provides access to the dragged
data through the dataTransfer property. The dataTransfer property references an object that provides the same
methods as the clipboardData object associated with a clipboard event. For example, you could use the following
function to get text format data from a drop event:
function onDrop(dragEvent){

return dragEvent.dataTransfer.getData("text/plain",
air.ClipboardTransferMode.ORIGINAL_ONLY);

}

The dataTransfer object has the following important members:

MIME type Value

Text "text/plain"

HTML "text/html"

URL "text/uri-list"

Bitmap "image/x-vnd.adobe.air.bitmap"

File list "application/x-vnd.adobe.air.file-list"

Member Description

clearData(mimeType) Clears the data. Set the mimeType parameter to the MIME type of the data representation to clear.

getData(mimeType) Get the dragged data. This method can only be called in a handler for the drop event. Set the mimeType
parameter to the MIME type of the data to get.

setData(mimeType, data) Set the data to be dragged. Set the mimeType parameter to the MIME type of the data.

types An array of strings containing the MIME types of all data representations currently available in the
dataTransfer object.

effectsAllowed Specifies whether the data being dragged can be copied, moved, linked, or some combination thereof. Set the
effectsAllowed property in the handler for the dragstart event.

dropEffect Specifies which of the allowed drop effects are supported by a drag target. Set the dropEffect property in
the handler for the dragEnter event. During the drag, the cursor changes to indicate which effect would
occur if the user released the mouse. If no dropEffect is specified, an effectsAllowed property effect
is chosen. The copy effect has priority over the move effect, which itself has priority over the link effect. The
user can modify the default priority using the keyboard.

ADOBE AIR 1
Developer Guide

207
innerHTML and outerHTML properties

AIR places security restrictions on the use of the innerHTML and outerHTML properties for content running in the
application sandbox. Before the page load event, as well as during the execution of any load event handlers, use of
the innerHTML and outerHTML properties is unrestricted. However, once the page has loaded, you can only use
innerHTML or outerHTML properties to add static content to the document. Any statement in the string assigned to
innerHTML or outerHTML that evaluates to executable code is ignored. For example, if you include an event callback
attribute in an element definition, the event listener is not added. Likewise, embedded <script> tags are not
evaluated. For more information, see the “HTML security” on page 32.

Document.write() and Document.writeln() methods

Use of the write() and writeln() methods is not restricted in the application sandbox before the load event of
the page. However, once the page has loaded, calling either of these methods does not clear the page or create a new
one. In a non-application sandbox, as in most web browsers, calling document.write() or writeln() after a page
has finished loading clears the current page and opens a new, blank one.

Document.designMode property

Set the document.designMode property to a value of on to make all elements in the document editable. Built-in
editor support includes text editing, copy, paste, and drag-and-drop. Setting designMode to on is equivalent to
setting the contentEditable property of the body element to true. You can use the contentEditable property
on most HTML elements to define which sections of a document are editable. See “HTML contentEditable attribute”
on page 212 for additional information.

unload events (for body and frameset objects)

In the top-level frameset or body tag of a window (including the main window of the application), do not use the
unload event to respond to the window (or application) being closed. Instead, use exiting event of the NativeAp-
plication object (to detect when an application is closing). Or use the closing event of the NativeWindow object (to
detect when a window is closing). For example, the following JavaScript code displays a message ("Goodbye.") when
the user closes the application:
var app = air.NativeApplication.nativeApplication;
app.addEventListener(air.Event.EXITING, closeHandler);
function closeHandler(event)
{

alert("Goodbye.");
}

However, scripts can successfully respond to the unload event caused by navigation of a frame, iframe, or top-level
window content.
Note: These limitations may be removed in a future version of Adobe AIR.

JavaScript Window object

The Window object remains the global object in the JavaScript execution context. In the application sandbox, AIR
adds new properties to the JavaScript Window object to provide access to the built-in classes of AIR, as well as
important host objects. In addition, some methods and properties behave differently depending on whether they are
within the application sandbox or not.
Window.runtime property The runtime property allows you to instantiate and use the built-in runtime classes from
within the application sandbox. These classes include the AIR and Flash Player APIs (but not, for example, the Flex
framework). For example, the following statement creates an AIR file object:
var preferencesFile = new window.runtime.flash.filesystem.File();

ADOBE AIR 1
Developer Guide

208
The AIRAliases.js file, provided in the AIR SDK, contains alias definitions that allow you to shorten such refer-
ences. For example, when AIRAliases.js is imported into a page, a File object can be created with the following
statement:
var preferencesFile = new air.File();

The window.runtime property is only defined for content within the application sandbox and only for the parent
document of a page with frames or iframes.
See “Using the AIRAliases.js file” on page 220.
Window.nativeWindow property The nativeWindow property provides a reference to the underlying native
window object. With this property, you can script window functions and properties such as screen position, size, and
visibility, and handle window events such as closing, resizing, and moving. For example, the following statement
closes the window:
window.nativeWindow.close();

Note: The window control features provided by the NativeWindow object overlap the features provided by the JavaScript
Window object. In such cases, you can use whichever method you find most convenient.
The window.nativeWindow property is only defined for content within the application sandbox and only for the
parent document of a page with frames or iframes.
Window.htmlLoader property The htmlLoader property provides a reference to the AIR HTMLLoader object that
contains the HTML content. With this property, you can script the appearance and behavior of the HTML
environment. For example, you can use the htmlLoader.paintsDefaultBackground property to determine
whether the control paints a default, white background:
window.htmlLoader.paintsDefaultBackground = false;

Note: The HTMLLoader object itself has a window property, which references the JavaScript Window object of the
HTML content it contains. You can use this property to access the JavaScript environment through a reference to the
containing HTMLLoader.
The window.htmlLoader property is only defined for content within the application sandbox and only for the
parent document of a page with frames or iframes.
Window.parentSandboxBridge and Window.childSandboxBridge properties The parentSandboxBridge and
childSandboxBridge properties allow you to define an interface between a parent and a child frame. For more
information, see “Cross-scripting content in different security sandboxes” on page 226.
Window.setTimeout() and Window.setInterval() functions AIR places security restrictions on use of the
setTimeout() and setInterval() functions within the application sandbox. You cannot define the code to be
executed as a string when calling setTimeout() or setInterval(). You must use a function reference. For more
information, see “setTimeout() and setInterval()” on page 218.
Window.open() function When called by code running in a non-application sandbox, the open() method only
opens a window when called as a result of user interaction (such as a mouse click or keypress). In addition, the
window title is prefixed with the application title (to prevent windows opened by remote content from imperson-
ating windows opened by the application). For more information, see the “Restrictions on calling the JavaScript
window.open() method” on page 37.

air.NativeApplication object

The NativeApplication object provides information about the application state, dispatches several important appli-
cation-level events, and provides useful functions for controlling application behavior. A single instance of the
NativeApplication object is created automatically and can be accessed through the class-defined
NativeApplication.nativeApplication property.
To access the object from JavaScript code you could use:

ADOBE AIR 1
Developer Guide

209
var app = window.runtime.flash.desktop.NativeApplication.nativeApplication;

Or, if the AIRAliases.js script has been imported, you could use the shorter form:
var app = air.NativeApplication.nativeApplication;

The NativeApplication object can only be accessed from within the application sandbox. “Interacting with the
operating system” on page 262 describes the NativeApplication object in detail.

The JavaScript URL scheme

Execution of code defined in a JavaScript URL scheme (as in href="javascript:alert('Test')") is blocked
within the application sandbox. No error is thrown.

Extensions to HTML
AIR and WebKit define a few non-standard HTML elements and attributes, including:
• “HTML frame and iframe elements” on page 209
• “HTML Canvas element” on page 211
• “HTML element event handlers” on page 211

HTML frame and iframe elements

AIR adds new attributes to the frame and iframe elements of content in the application sandbox:
sandboxRoot attribute The sandboxRoot attribute specifies an alternate, non-application domain of origin for the
file specified by the frame src attribute. The file is loaded into the non-application sandbox corresponding to the
specified domain. Content in the file and content loaded from the specified domain can cross-script each other.
Important: If you set the value of sandboxRoot to the base URL of the domain, all requests for content from that
domain are loaded from the application directory instead of the remote server (whether that request results from page
navigation, from an XMLHttpRequest, or from any other means of loading content).
documentRoot attribute The documentRoot attribute specifies the local directory from which to load URLs that
resolve to files within the location specified by sandboxRoot.
When resolving URLs, either in the frame src attribute, or in content loaded into the frame, the part of the URL
matching the value specified in sandboxRoot is replaced with the value specified in documentRoot. Thus, in the
following frame tag:
<iframe src="http://www.example.com/air/child.html"

documentRoot="app:/sandbox/"
sandboxRoot="http://www.example.com/air/"/>

child.html is loaded from the sandbox subdirectory of the application installation folder. Relative URLs in
child.html are resolved based on sandbox directory. Note that any files on the remote server at
www.example.com/air are not accessible in the frame, since AIR would attempt to load them from the
app:/sandbox/ directory.
allowCrossDomainXHR attribute Include allowCrossDomainXHR="allowCrossDomainXHR" in the opening frame
tag to allow content in the frame to make XMLHttpRequests to any remote domain. By default, non-application
content can only make such requests to its own domain of origin. There are serious security implications involved
in allowing cross-domain XHRs. Code in the page is able to exchange data with any domain. If malicious content is
somehow injected into the page, any data accessible to code in the current sandbox can be compromised. Only
enable cross-domain XHRs for pages that you create and control and only when cross-domain data loading is truly
necessary. Also, carefully validate all external data loaded by the page to prevent code injection or other forms of
attack.

ADOBE AIR 1
Developer Guide

210
Important: If the allowCrossDomainXHR attribute is included in a frame or iframe element, cross-domain XHRs are
enabled (unless the value assigned is "0" or starts with the letters "f" or "n"). For example, setting
allowCrossDomainXHR to "deny" would still enable cross-domain XHRs. Leave the attribute out of the element decla-
ration altogether if you do not want to enable cross-domain requests.
ondominitialize attribute Specifies an event handler for the dominitialize event of a frame. This event is an AIR-
specific event that fires when the window and document objects of the frame have been created, but before any
scripts have been parsed or document elements created.
The frame dispatches the dominitialize event early enough in the loading sequence that any script in the child
page can reference objects, variables, and functions added to the child document by the dominitialize handler.
The parent page must be in the same sandbox as the child to directly add or access any objects in a child document.
However, a parent in the application sandbox can establish a sandbox bridge to communicate with content in a non-
application sandbox.
The following examples illustrate use of the iframe tag in AIR:
Place child.html in a remote sandbox, without mapping to an actual domain on a remote server:
<iframe src="http://localhost/air/child.html"

documentRoot="app:/sandbox/"
sandboxRoot="http://localhost/air/"/>

Place child.html in a remote sandbox, allowing XMLHttpRequests only to www.example.com:
<iframe src="http://www.example.com/air/child.html"

documentRoot="app:/sandbox/"
sandboxRoot="http://www.example.com/air/"/>

Place child.html in a remote sandbox, allowing XMLHttpRequests to any remote domain:
<iframe src="http://www.example.com/air/child.html"

documentRoot="app:/sandbox/"
sandboxRoot="http://www.example.com/air/"
allowCrossDomainXHR="allowCrossDomainXHR"/>

Place child.html in a local-with-file-system sandbox:
<iframe src="file:///templates/child.html"

documentRoot="app:/sandbox/"
sandboxRoot="app-storage:/templates/"/>

Place child.html in a remote sandbox, using the dominitialize event to establish a sandbox bridge:
<html>
<head>
<script>
var bridgeInterface = {};
bridgeInterface.testProperty = "Bridge engaged";
function engageBridge(){

document.getElementById("sandbox").parentSandboxBridge = bridgeInterface;
}
</script>
</head>
<body>
<iframe id="sandbox"

src="http://www.example.com/air/child.html"
documentRoot="app:/"
sandboxRoot="http://www.example.com/air/"
ondominitialize="engageBridge()"/>

</body>
</html>

The following child.html document illustrates how child content can access the parent sandbox bridge :
<html>

ADOBE AIR 1
Developer Guide

211
<head>
<script>

document.write(window.parentSandboxBridge.testProperty);
</script>

</head>
<body></body>

</html>

For more information, see “Cross-scripting content in different security sandboxes” on page 226 and “HTML
security” on page 32.

HTML Canvas element

Defines a drawing area for use with the Webkit Canvas API. Graphics commands cannot be specified in the tag itself.
To draw into the canvas, call the canvas drawing methods through JavaScript.
<canvas id="drawingAtrium" style="width:300px; height:300px;"></canvas>

See also
“The Canvas object” on page 205

HTML element event handlers

DOM objects in AIR and Webkit dispatch some events not found in the standard DOM event model. The following
table lists the related event attributes you can use to specify handlers for these events:

Callback attribute name Description

oncontextmenu Called when a context menu is invoked, such as through a right-click
or command-click on selected text.

oncopy Called when a selection in an element is copied.

oncut Called when a selection in an element is cut.

ondominitialize Called when the DOM of a document loaded in a frame or iframe is
created, but before any DOM elements are created or scripts parsed.

ondrag Called when an element is dragged.

ondragend Called when a drag is released.

ondragenter Called when a drag gesture enters the bounds of an element.

ondragleave Called when a drag gesture leaves the bounds of an element.

ondragover Called continuously while a drag gesture is within the bounds of an
element.

ondragstart Called when a drag gesture begins.

ondrop Called when a drag gesture is released while over an element.

onerror Called when an error occurs while loading an element.

oninput Called when text is entered into a form element.

onpaste Called when an item is pasted into an element.

onscroll Called when the content of a scrollable element is scrolled.

onselectstart Called when a selection begins.

ADOBE AIR 1
Developer Guide

212
HTML contentEditable attribute

You can add the contentEditable attribute to any HTML element to allow users to edit the content of the element.
For example, the following example HTML code sets the entire document as editable, except for first p element:
<html>
<head/>
<body contentEditable="true">

<h1>de Finibus Bonorum et Malorum</h1>
<p contentEditable="false">Sed ut perspiciatis unde omnis iste natus error.</p>
<p>At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis.</p>

</body>
</html>

Note: If you set the document.designMode property to on, then all elements in the document are editable, regardless
of the setting of contentEditable for an individual element. However, setting designMode to off, does not disable
editing of elements for which contentEditable is true. See “Document.designMode property” on page 207 for
additional information.

See also
• Apple Safari HTML Reference (http://developer.apple.com/documentation/AppleApplica-
tions/Reference/SafariHTMLRef/)

Extensions to CSS
WebKit supports several extended CSS properties. The following table lists the extended properties for which
support is established. Additional non-standard properties are available in WebKit, but are not fully supported in
AIR, either because they are still under development in WebKit, or because they are experimental features that may
be removed in the future.

CSS property name Values Description

-webkit-border-horizontal-spacing Non-negative unit of length Specifies the horizontal component of the
border spacing.

-webkit-border-vertical-spacing Non-negative unit of length Specifies the vertical component of the
border spacing.

-webkit-line-break after-white-space, normal Specifies the line break rule to use for
Chinese, Japanese, and Korean (CJK) text.

-webkit-margin-bottom-collapse collapse, discard, separate Defines how the bottom margin of a table
cell collapses.

-webkit-margin-collapse collapse, discard, separate Defines how the top and bottom margins
of a table cell collapses.

-webkit-margin-start Any unit of length. The width of the starting margin. For left-
to-right text, this property overrides the
left margin. For right-to-left text, this prop-
erty overrides the right margin.

-webkit-margin-top-collapse collapse, discard, separate Defines how the top margin of a table cell
collapses.

-webkit-nbsp-mode normal, space Defines the behavior of non-breaking
spaces within the enclosed content.

http://developer.apple.com/documentation/AppleApplications/Reference/SafariHTMLRef/index.html

ADOBE AIR 1
Developer Guide

213
For more information, see the Apple Safari CSS Reference (http://developer.apple.com/documentation/AppleAppli-
cations/Reference/SafariCSSRef/).

-webkit-padding-start Any unit of length Specifies the width of the starting
padding. For left-to-right text, this prop-
erty overrides the left padding value. For
right-to-left text, this property overrides
the right padding value.

-webkit-rtl-ordering logical, visual Overrides the default handling of mixed
left-to-right and right-to-left text.

-webkit-text-fill-color Any named color or numeric color value Specifies the text fill color.

-webkit-text-security circle, disc, none, square Specifies the replacement shape to use in
a password input field.

-webkit-user-drag • auto — Default behavior

• element — The entire element is
dragged

• none — The element cannot be
dragged

Overrides the automatic drag behavior.

-webkit-user-modify read-only, read-write, read-write-plain-
text-only

Specifies whether the content of an
element can be edited.

-webkit-user-select • auto — Default behavior

• none — The element cannot be
selected

• text — Only text in the element can
be selected

Specifies whether a user can select the
content of an element.

CSS property name Values Description

http://developer.apple.com/documentation/AppleApplications/Reference/SafariCSSRef/index.html
http://developer.apple.com/documentation/AppleApplications/Reference/SafariCSSRef/index.html

214
Chapter 21: Programming in HTML and
JavaScript

A number of programming topics are unique to developing Adobe® AIR™ applications with HTML and JavaScript.
The following information is important whether you are programming an HTML-based AIR application or
programming a SWF-based AIR application that runs HTML and JavaScript using the HTMLLoader class (or
mx:HTML Flex™ component).

Contents

• About the HTMLLoader class
• “Avoiding security-related JavaScript errors” on page 216
• “Accessing AIR API classes from JavaScript” on page 220
• “Using the AIRAliases.js file” on page 220
• “About URLs in AIR” on page 221
• “Making ActionScript objects available to JavaScript” on page 222
• “Accessing HTML DOM and JavaScript objects from ActionScript” on page 223
• “Using ActionScript libraries within an HTML page” on page 224
• “Converting Date and RegExp objects” on page 225
• “Manipulating an HTML stylesheet from ActionScript” on page 225
• “Cross-scripting content in different security sandboxes” on page 226
• “Loading application content into a non-application sandbox” on page 227
• “Setting up a sandbox bridge interface” on page 228

About the HTMLLoader class
The HTMLLoader class of Adobe AIR defines the display object that can display HTML content in an AIR appli-
cation. SWF-based applications can add an HTMLLoader control to an existing window or create an HTML window
that automatically contains a HTMLLoader object with HTMLLoader.createRootWindow(). The HTMLLoader
object can be accessed through the JavaScript window.htmlLoader property from within the loaded HTML page.

Contents

• “Loading HTML content from a URL” on page 214
• “Loading HTML content from a string” on page 215

Loading HTML content from a URL
The following code loads a URL into an HTMLLoader object and sets the object as a child of a Sprite object:
var container:Sprite;
var html:HTMLLoader = new HTMLLoader;
html.width = 400;
html.height = 600;
var urlReq:URLRequest = new URLRequest("http://www.adobe.com/");

ADOBE AIR 1
Developer Guide

215
html.load(urlReq);
container.addChild(html);

An HTMLLoader object's width and height properties are both set to 0 by default. You will want to set these dimen-
sions when adding an HTMLLoader object to the stage. The HTMLLoader dispatches several events as a page loads.
You can use these events to determine when it is safe to interact with the loaded page. These events are described in
“Handling HTML-related events” on page 230.
You can also render HTML text by using the TextField class, but its capabilities are limited. The Adobe® Flash®
Player’s TextField class supports a subset of HTML markup, but because of size limitations, its capabilities are limited.
(The HTMLLoader class included in Adobe AIR is not available in Flash Player.)

Loading HTML content from a string
The loadString() method of an HTMLLoader object loads a string of HTML content into the HTMLLoader
object:
var html:HTMLLoader = new HTMLLoader();
var htmlStr:String = "<html><body>Hello world.</body></html>";
html.loadString(htmlStr);

Content loaded via the loadString() method is put in the application security sandbox, giving it full access to AIR
APIs.

Important security rules when using HTML in AIR applications
The files you install with the AIR application have access to the AIR APIs. For security reasons, content from other
sources do not. For example, this restriction prevents content from a remote domain (such as http://example.com)
from reading the contents the user’s desktop directory (or worse).
Because there are security loopholes that can be exploited through calling the eval() function (and related APIs),
content installed with the application, by default, is restricted from using these methods. However, some Ajax frame-
works use the calling the eval() function and related APIs.
To properly structure content to work in an AIR application, you must take the rules for the security restrictions on
content from different sources into account. Content from different sources is placed in separate security classifica-
tions, called sandboxes (see “Sandboxes” on page 30). By default, content installed with the application is installed
in a sandbox known as the application sandbox, and this grants it access to the AIR APIs. The application sandbox
is generally the most secure sandbox, with restrictions designed to prevent the execution of untrusted code.
The runtime allows you to load content installed with your application into a sandbox other than the application
sandbox. Content in non-application sandboxes operates in a security environment similar to that of a typical web
browser. For example, code in non-application sandboxes can use eval() and related methods (but at the same time
is not allowed to access the AIR APIs). The runtime includes ways to have content in different sandboxes commu-
nicate securely (without exposing AIR APIs to non-application content, for example). For details, see “Cross-
scripting content in different security sandboxes” on page 226.
If you call code that is restricted from use in a sandbox for security reasons, the runtime dispatches a JavaScript error:
“Adobe AIR runtime security violation for JavaScript code in the application security sandbox.”
To avoid this error, follow the coding practices described in the next section, “Avoiding security-related JavaScript
errors” on page 216.
For more information, see “HTML security” on page 32.

ADOBE AIR 1
Developer Guide

216
Avoiding security-related JavaScript errors
If you call code that is restricted from use in a sandbox due to these security restrictions, the runtime dispatches a
JavaScript error: “Adobe AIR runtime security violation for JavaScript code in the application security sandbox.” To
avoid this error, follow these coding practices.

Contents

• “Causes of security-related JavaScript errors” on page 216
• “Mapping application content to a different sandbox” on page 217
• “eval() function” on page 217
• “Assigning properties to an object” on page 217
• “Creating a function with variables available in context” on page 217
• “Creating an object using the name of the class as a string parameter” on page 217
• “setTimeout() and setInterval()” on page 218
• “Function constructor” on page 218
• “javascript: URLs” on page 218
• “Event callbacks assigned through onevent attributes in innerHTML and outerHTML statements” on page 219
• “Loading JavaScript files from outside the application installation directory” on page 219
• “document.write() and document.writeln()” on page 219
• “Synchronous XMLHttpRequests before the load event or during a load event handler” on page 219
• “Dynamically created script elements” on page 219

Causes of security-related JavaScript errors
Code executing in the application sandbox is restricted from most operations that involve evaluating and executing
strings once the document load event has fired and any load event handlers have exited. Attempting to use the
following types of JavaScript statements that evaluate and execute potentially insecure strings generates JavaScript
errors:
• eval() function
• setTimeout() and setInterval()
• Function constructor
In addition, the following types of JavaScript statements fail without generating an unsafe JavaScript error:
• javascript: URLs
• Event callbacks assigned through onevent attributes in innerHTML and outerHTML statements
• Loading JavaScript files from outside the application installation directory
• document.write() and document.writeln()
• Synchronous XMLHttpRequests before the load event or during a load event handler
• Dynamically created script elements
Note: In some restricted cases, evaluation of strings is permitted. See “Code restrictions for content in different
sandboxes” on page 34 for more information.
Adobe maintains a list of Ajax frameworks known to support the application security sandbox, at
http://www.adobe.com/go/airappsandboxframeworks.
The following sections describe how to rewrite scripts to avoid these unsafe JavaScript errors and silent failures for
code running in the application sandbox.

http://www.adobe.com/go/airappsandboxframeworks

ADOBE AIR 1
Developer Guide

217
Mapping application content to a different sandbox
In most cases, you can rewrite or restructure an application to avoid security-related JavaScript errors. However,
when rewriting or restructuring is not possible, you can load the application content into a different sandbox using
the technique described in “Loading application content into a non-application sandbox” on page 227. If that
content also must access AIR APIs, you can create a sandbox bridge, as described in “Setting up a sandbox bridge
interface” on page 228.

eval() function
In the application sandbox, the eval() function can only be used before the page load event or during a load event
handler. After the page has loaded, calls to eval() will not execute code. However, in the following cases, you can
rewrite your code to avoid the use of eval().

Assigning properties to an object
Instead of parsing a string to build the property accessor:

eval("obj." + propName + " = " + val);

access properties with bracket notation:
obj[propName] = val;

Creating a function with variables available in context
Replace statements such as the following:
function compile(var1, var2){

eval("var fn = function(){ this."+var1+"(var2) }");
return fn;

}

with:
function compile(var1, var2){

var self = this;
return function(){ self[var1](var2) };

}

Creating an object using the name of the class as a string parameter
Consider a hypothetical JavaScript class defined with the following code:
var CustomClass =

{
Utils:
{

Parser: function(){ alert('constructor') }
},
Data:
{

}
};

var constructorClassName = "CustomClass.Utils.Parser";

The simplest way to create a instance would be to use eval():
var myObj;
eval('myObj=new ' + constructorClassName +'()')

ADOBE AIR 1
Developer Guide

218
However, you could avoid the call to eval() by parsing each component of the class name and building the new
object using bracket notation:
function getter(str)
{

var obj = window;
var names = str.split('.');
for(var i=0;i<names.length;i++){

if(typeof obj[names[i]]=='undefined'){
var undefstring = names[0];
for(var j=1;j<=i;j++)

undefstring+="."+names[j];
throw new Error(undefstring+" is undefined");

}
obj = obj[names[i]];

}
return obj;

}

To create the instance, use:
try{

var Parser = getter(constructorClassName);
var a = new Parser();
}catch(e){

alert(e);
}

setTimeout() and setInterval()
Replace the string passed as the handler function with a function reference or object. For example, replace a
statement such as:
setTimeout("alert('Timeout')", 10);

with:
setTimeout(alert('Timeout'), 10);

Or, when the function requires the this object to be set by the caller, replace a statement such as:
this.appTimer = setInterval("obj.customFunction();", 100);

with the following:
var _self = this;
this.appTimer = setInterval(function(){obj.customFunction.apply(_self);}, 100);

Function constructor
Calls to new Function(param, body) can be replaced with an inline function declaration or used only before the
page load event has been handled.

javascript: URLs
The code defined in a link using the javascript: URL scheme is ignored in the application sandbox. No unsafe JavaS-
cript error is generated. You can replace links using javascript: URLs, such as:
Click Me

with:
Click Me

ADOBE AIR 1
Developer Guide

219
Event callbacks assigned through onevent attributes in innerHTML and outerHTML
statements
When you use innerHTML or outerHTML to add elements to the DOM of a document, any event callbacks assigned
within the statement, such as onclick or onmouseover, are ignored. No security error is generated. Instead, you can
assign an id attribute to the new elements and set the event handler callback functions using the
addEventListener() method.
For example, given a target element in a document, such as:
<div id="container"></div>

Replace statements such as:
document.getElementById('container').innerHTML =

'Click Me.';

with:
document.getElementById('container').innerHTML = 'Click Me.';
document.getElementById('smith').addEventListener("click", function() { code(); });

Loading JavaScript files from outside the application installation directory
Loading script files from outside the application sandbox is not permitted. No security error is generated. All script
files that run in the application sandbox must be installed in the application directory. To use external scripts in a
page, you must map the page to a different sandbox. See “Loading application content into a non-application
sandbox” on page 227.

document.write() and document.writeln()
Calls to document.write() or document.writeln() are ignored after the page load event has been handled. No
security error is generated. As an alternative, you can load a new file, or replace the body of the document using
DOM manipulation techniques.

Synchronous XMLHttpRequests before the load event or during a load event handler
Synchronous XMLHttpRequests initiated before the page load event or during a load event handler do not return
any content. Asynchronous XMLHttpRequests can be initiated, but do not return until after the load event. After
the load event has been handled, synchronous XMLHttpRequests behave normally.

Dynamically created script elements
Dynamically created script elements, such as when created with innerHTML or document.createElement()
method are ignored.

See also
• “HTML security” on page 32

ADOBE AIR 1
Developer Guide

220
Accessing AIR API classes from JavaScript
In addition to the standard and extended elements of Webkit, HTML and JavaScript code can access the host classes
provided by the runtime. These classes let you access the advanced features that AIR provides, including:
• Access to the file system
• Use of local SQL databases
• Control of application and window menus
• Access to sockets for networking
• Use of user-defined classes and objects
• Sound capabilities
For example, the AIR file API includes a File class, contained in the flash.filesystem package. You can create a File
object in JavaScript as follows:
var myFile = new window.runtime.flash.filesystem.File();

The runtime object is a special JavaScript object, available to HTML content running in AIR in the application
sandbox. It lets you access runtime classes from JavaScript. The flash property of the runtime object provides
access to the flash package. In turn, the flash.filesystem property of the runtime object provides access to the
flash.filesystem package (and this package includes the File class). Packages are a way of organizing classes used in
ActionScript.
Note: The runtime property is not automatically added to windows loaded in a frame or iframe. However, as long as
the child document is in the application sandbox, the child can access the runtime property of the parent.
Because the package structure of the runtime classes would require developers to type long strings of JavaScript code
strings to access each class (as in window.runtime.flash.desktop.NativeApplication), the AIR SDK includes
an AIRAliases.js file that lets you access runtime classes much more easily (for instance, by simply typing
air.NativeApplication).
The AIR API classes are discussed throughout this guide. Other classes from the Flash Player API, which may be of
interest to HTML developers, are described in the Adobe AIR Language Reference for HTML Developers. Action-
Script is the language used in SWF (Flash Player) content. However, JavaScript and ActionScript syntax are similar.
(They are both based on versions of the ECMAScript language.) All built-in classes are available in both JavaScript
(in HTML content) and ActionScript (in SWF content).
Note: JavaScript code cannot use the Dictionary, XML, and XMLList classes, which are available in ActionScript.
For more information, see:
• “ActionScript 3.0 classes, packages, and namespaces ” on page 6
• “ActionScript basics for JavaScript developers” on page 4

Using the AIRAliases.js file
The runtime classes are organized in a package structure, as in the following:
• window.runtime.flash.desktop.NativeApplication

• window.runtime.flash.desktop.ClipboardManager

• window.runtime.flash.filesystem.FileStream

• window.runtime.flash.data.SQLDatabase

ADOBE AIR 1
Developer Guide

221
Included in the AIR SDK is an AIRAliases.js file that provide “alias” definitions that let you access the runtime classes
with less typing. For example, you can access the classes listed above by simply typing the following:
• air.NativeApplication

• air.Clipboard

• air.FileStream

• air.SQLDatabase

This list is just a short subset of the classes in the AIRAliases.js file. The complete list of classes and package-level
functions is provided in the Adobe AIR Language Reference for HTML Developers.
In addition to commonly used runtime classes, the AIRAliases.js file includes aliases for commonly used package-
level functions: window.runtime.trace(), window.runtime.flash.net.navigateToURL(), and
window.runtime.flash.net.sendToURL(), which are aliased as air.trace(), air.navigateToURL(), and
air.sendToURL().
To use the AIRAliases.js file, include the following script reference in your HTML page:
<script src="AIRAliases.js"></script>

Adjust the path in the src reference, as needed.
Important: Except where noted, the JavaScript example code in this documentation assumes that you have included the
AIRAliases.js file in your HTML page.

About URLs in AIR
In HTML content running in AIR, you can use any of the following URL schemes in defining src attributes for img,
frame, iframe, and script tags, in the href attribute of a link tag, or anywhere else you can provide a URL.

For more information about using URL schemes in AIR, see “Using AIR URL schemes in URLs” on page 281.
Many of AIR APIs, including the File, Loader, URLStream, and Sound classes, use a URLRequest object rather than
a string containing the URL. The URLRequest object itself is initialized with a string, which can use any of the same
url schemes. For example, the following statement creates a URLRequest object that can be used to request the Adobe
home page:
var urlReq = new air.URLRequest("http://www.adobe.com/");

For information about URLRequest objects see “URL requests and networking” on page 279.

URL scheme Description Example

file A path relative to the root of the file system. file:///c:/AIR Test/test.txt

app A path relative to the root directory of the installed applica-
tion.

app:/images

app-storage A path relative to the application store directory. For each
installed application, AIR defines a unique application store
directory, which is a useful place to store data specific to that
application.

app-storage:/settings/prefs.xml

http A standard HTTP request. http://www.adobe.com

https A standard HTTPS request. https://secure.example.com

ADOBE AIR 1
Developer Guide

222
Making ActionScript objects available to JavaScript
JavaScript in the HTML page loaded by an HTMLLoader object can call the classes, objects, and functions defined
in the ActionScript execution context using the window.runtime, window.htmlLoader, and
window.nativeWindow properties of the HTML page. You can also make ActionScript objects and functions
available to JavaScript code by creating references to them within the JavaScript execution context.

Contents

• “A basic example of accessing JavaScript objects from ActionScript” on page 222
• “Making class definitions available to JavaScript” on page 223
• “Removing event listeners” on page 223

A basic example of accessing JavaScript objects from ActionScript
The following example illustrates how to add properties referencing ActionScript objects to the global window object
of an HTML page:
var html:HTMLLoader = new HTMLLoader();
var foo:String = "Hello from container SWF."
function helloFromJS(message:String):void {

trace("JavaScript says:", message);
}
var urlReq:URLRequest = new URLRequest("test.html");
html.addEventListener(Event.COMPLETE, loaded);
html.load(urlReq);

function loaded(e:Event):void{
html.window.foo = foo;
html.window.helloFromJS = helloFromJS;

}

The HTML content (in a file named test.html) loaded into the HTMLLoader object in the previous example can
access the foo property and the helloFromJS() method defined in the parent SWF file:
<html>

<script>
function alertFoo() {

alert(foo);
}

</script>
<body>

<button onClick="alertFoo()">
What is foo?

</button>
<p><button onClick="helloFromJS('Hi.')">

Call helloFromJS() function.
</button></p>

</body>
</html>

When accessing the JavaScript context of a loading document, you can use the htmlDOMInitialize event to create
objects early enough in the page construction sequence that any scripts defined in the page can access them. If you
wait for the complete event, only scripts in the page that run after the page load event can access the added objects.

ADOBE AIR 1
Developer Guide

223
Making class definitions available to JavaScript
To make the ActionScript classes of your application available in JavaScript, you can assign the loaded HTML
content to the application domain containing the class definitions. The application domain of the JavaScript
execution context can be set with the runtimeApplicationDomain property of the HTMLLoader object. To set the
application domain to the primary application domain, for example, set runtimeApplicationDomain to Applica-
tionDomain.currentDomain, as shown in the following code:
html.runtimeApplicationDomain = ApplicationDomain.currentDomain;

Once the runtimeApplicationDomain property is set, the JavaScript context shares class definitions with the
assigned domain. To create an instance of a custom class in JavaScript, reference the class definition through the
window.runtime property and use the new operator:
var customClassObject = new window.runtime.CustomClass();

The HTML content must be from a compatible security domain. If the HTML content is from a different security
domain than that of the application domain you assign, the page uses a default application domain instead. For
example, if you load a remote page from the Internet, you could not assign ApplicationDomain.currentDomain
as the application domain of the page.

Removing event listeners
When you add JavaScript event listeners to objects outside the current page, including runtime objects, objects in
loaded SWF content, and even JavaScript objects running in other pages, you should always remove those event
listeners when the page unloads. Otherwise, the event listener dispatches the event to a handler function that no
longer exists. If this happens, you will see the following error message: “The application attempted to reference a
JavaScript object in an HTML page that is no longer loaded." Removing unneeded event listeners also lets AIR
reclaim the associated memory. For more information, see “Removing event listeners in HTML pages that navigate”
on page 234.

Accessing HTML DOM and JavaScript objects from
ActionScript
Once the HTMLLoader object dispatches the complete event, you can access all the objects in the HTML DOM
(document object model) for the page. Accessible objects include display elements (such as div and p objects in the
page) as well as JavaScript variables and functions. The complete event corresponds to the JavaScript page load
event. Before complete is dispatched, DOM elements, variables, and functions may not have been parsed or created.
If possible, wait for the complete event before accessing the HTML DOM.
For example, consider the following HTML page:
<html>

<script>
foo = 333;
function test() {

return "OK.";
}

</script>
<body>

<p id="p1">Hi.</p>
</body>

</html>

ADOBE AIR 1
Developer Guide

224
This simple HTML page defines a JavaScript variable named foo and a JavaScript function named test(). Both of these
are properties of the global window object of the page. Also, the window.document object includes a named P
element (with the ID p1), which you can access using the getElementById() method. Once the page is loaded
(when the HTMLLoader object dispatches the complete event), you can access each of these objects from Action-
Script, as shown in the following ActionScript code:
var html:HTMLLoader = new HTMLLoader();
html.width = 300;
html.height = 300;
html.addEventListener(Event.COMPLETE, completeHandler);
var xhtml:XML =

<html>
<script>

foo = 333;
function test() {

return "OK.";
}

</script>
<body>

<p id="p1">Hi.</p>
</body>

</html>;
html.loadString(xhtml.toString());

function completeHandler(e:Event):void {
trace(html.window.foo); // 333
trace(html.window.document.getElementById("p1").innerHTML); // Hi.
trace(html.window.test()); // OK.

}

To access the content of an HTML element, use the innerHTML property. For example, the previous code uses
html.window.document.getElementById("p1").innerHTML to get the contents of the HTML element named
p1.
You can also set properties of the HTML page from ActionScript. For example, the following example sets the
contents of the p1 element and the value of the foo JavaScript variable on the page using a reference to the containing
HTMLLoader object:
html.window.document.getElementById("p1").innerHTML = "Goodbye";
html.window.foo = 66;

Using ActionScript libraries within an HTML page
AIR extends the HTML script element so that a page can import ActionScript classes in a compiled SWF file. For
example, to import a library named, myClasses.swf, located in the lib subdirectory of the root application folder,
include the following script tag within an HTML file:
<script src="lib/myClasses.swf" type="application/x-shockwave-flash"></script>

Important: The type attribute must be type="application/x-shockwave-flash" for the library to be properly
loaded.
The lib directory and myClasses.swf file must also be included when the AIR file is packaged.
Access the imported classes through the runtime property of the JavaScript Window object:
var libraryObject = new window.runtime.LibraryClass();

ADOBE AIR 1
Developer Guide

225
If the classes in the SWF file are organized in packages, you must include the package name as well. For example, if
the LibraryClass definition was in a package named utilities, you would create an instance of the class with the
following statement:
var libraryObject = new window.runtime.utilities.LibraryClass();

Note: To compile an ActionScript SWF library for use as part of an HTML page in AIR, use the acompc compiler.

Converting Date and RegExp objects
The JavaScript and ActionScript languages both define Date and RegExp classes, but objects of these types are not
automatically converted between the two execution contexts. You must convert Date and RegExp objects to the
equivalent type before using them to set properties or function parameters in the alternate execution context.
For example, the following ActionScript code converts a JavaScript Date object named jsDate to an ActionScript
Date object:
var asDate:Date = new Date(jsDate.getMilliseconds());

The following ActionScript code converts a JavaScript RegExp object named jsRegExp to an ActionScript RegExp
object:
var flags:String = "";
if (jsRegExp.dotAll) flags += "s";
if (jsRegExp.extended) flags += "x";
if (jsRegExp.global) flags += "g";
if (jsRegExp.ignoreCase) flags += "i";
if (jsRegExp.multiline) flags += "m";
var asRegExp:RegExp = new RegExp(jsRegExp.source, flags);

Manipulating an HTML stylesheet from ActionScript
Once the HTMLLoader object has dispatched the complete event, you can examine and manipulate CSS styles in a
page.
For example, consider the following simple HTML document:
<html>
<style>

.style1A { font-family:Arial; font-size:12px }

.style1B { font-family:Arial; font-size:24px }
</style>
<style>

.style2 { font-family:Arial; font-size:12px }
</style>
<body>

<p class="style1A">
Style 1A

</p>
<p class="style1B">

Style 1B
</p>
<p class="style2">

Style 2
</p>

</body>

ADOBE AIR 1
Developer Guide

226
</html>

After an HTMLLoader object loads this content, you can manipulate the CSS styles in the page via the cssRules
array of the window.document.styleSheets array, as shown here:
var html:HTMLLoader = new HTMLLoader();
var urlReq:URLRequest = new URLRequest("test.html");
html.load(urlReq);
html.addEventListener(Event.COMPLETE, completeHandler);
function completeHandler(event:Event):void {

var styleSheet0:Object = html.window.document.styleSheets[0];
styleSheet0.cssRules[0].style.fontSize = "32px";
styleSheet0.cssRules[1].style.color = "#FF0000";
var styleSheet1:Object = html.window.document.styleSheets[1];
styleSheet1.cssRules[0].style.color = "blue";
styleSheet1.cssRules[0].style.font-family = "Monaco";

}

This code adjusts the CSS styles so that the resulting HTML document appears like the following:

Keep in mind that code can add styles to the page after the HTMLLoader object dispatches the complete event.

Cross-scripting content in different security sandboxes
The runtime security model isolates code from different origins. By cross-scripting content in different security
sandboxes, you can allow content in one security sandbox to access selected properties and methods in another
sandbox.

Contents

• “AIR security sandboxes and JavaScript code” on page 226
• “Loading application content into a non-application sandbox” on page 227
• “Setting up a sandbox bridge interface” on page 228
• “Establishing a child sandbox bridge” on page 228
• “Establishing a parent sandbox bridge” on page 228
• “Accessing a parent sandbox bridge during page loading” on page 229

AIR security sandboxes and JavaScript code
AIR enforces a same-origin policy that prevents code in one domain from interacting with content in another. All
files are placed in a sandbox based on their origin. Ordinarily, content in the application sandbox cannot violate the
same-origin principle and cross-script content loaded from outside the application install directory. However, AIR
provides two techniques that let you cross-script non-application content.

ADOBE AIR 1
Developer Guide

227
One technique uses frames or iframes to map application content into a different security sandbox. The code in the
application content loaded this way can then interact with content that is actually in that security sandbox. For
example, by mapping application content to the example.com domain, that content could cross-script pages loaded
from example.com.
Since this technique places the application content into a different sandbox, code within that content is also no longer
subject to the restrictions on the execution of code in evaluated strings. You can use this sandbox mapping technique
to ease these restrictions even when you don’t need to cross-script remote content. Mapping content in this way can
be especially useful when working with one of the many JavaScript frameworks or with existing code that relies on
evaluating strings. However, you should consider and guard against the additional risk that untrusted content could
be injected and executed when content is run outside the application sandbox.
At the same time, application content mapped to another sandbox loses its access to the AIR APIs, so the sandbox
mapping technique cannot be used to expose AIR functionality to code executed outside the application sandbox.
The second technique lets you create an interface called a sandbox bridge between content in a non-application
sandbox and its parent document in the application sandbox. The bridge allows the child content to access properties
and methods defined by the parent, the parent to access properties and methods defined by the child, or both.
For more information, see “HTML frame and iframe elements” on page 209 and “HTML security” on page 32.

Loading application content into a non-application sandbox
To allow application content to safely cross-script content loaded from outside the application install directory, you
can use frame or iframe elements to load application content into the same security sandbox as the external
content. If you do not need to cross-script remote content, but still wish to load a page of your application outside
the application sandbox, you can use the same technique, specifying http://localhost/ or some other innocuous
value, as the domain of origin.
AIR adds the new attributes, sandboxRoot and documentRoot, to the frame element that allow you to specify
whether an application file loaded into the frame should be mapped to a non-application sandbox. Files resolving to
a path underneath the sandboxRoot URL are loaded instead from the documentRoot directory. For security
purposes, the application content loaded in this way is treated as if it was actually loaded from the sandboxRoot
URL.
The sandboxRoot property specifies the URL to use for determining the sandbox and domain in which to place the
frame content. The file:, http:, or https: URL schemes must be used. If you specify a relative URL, the content
remains in the application sandbox.
The documentRoot property specifies the directory from which to load the frame content. The file:, app:, or
app-storage: URL schemes must be used.
The following example maps content installed in the sandbox subdirectory of the application to run in the remote
sandbox and the www.example.com domain:
<iframe

src="http://www.example.com/local/ui.html"
sandboxRoot="http://www.example.com/local/"
documentRoot="app:/sandbox/">

</iframe>

Note: If the sandboxRoot URL maps to a real URL on the remote server, you cannot access content from that URL (or
any of its subdirectories) because AIR remaps the request to the local application directory. Requests are remapped
whether they derive from page navigation, from an XMLHttpRequest, or from any other means of loading content.

ADOBE AIR 1
Developer Guide

228
Setting up a sandbox bridge interface
You can use a sandbox bridge when content in the application sandbox must access properties or methods defined
by content in a non-application sandbox, or when non-application content must access properties and methods
defined by content in the application sandbox. Create a bridge with the childSandboxBridge and
parentSandboxBridge properties of the window object of any child document.

Establishing a child sandbox bridge
The childSandboxBridge property allows the child document to expose an interface to content in the parent
document. To expose an interface, you set the childSandbox property to a function or object in the child document.
You can then access the object or function from content in the parent document. The following example shows how
a script running in a child document can expose an object containing a function and a property to its parent:
var interface = {};
interface.calculatePrice = function(){

return ".45 cents";
}
interface.storeID = "abc"
window.childSandboxBridge = interface;

If this child content was loaded into an iframe assigned an id of “child”, you could access the interface from parent
content by reading the childSandboxBridge property of the frame:
var childInterface = document.getElementById("child").contentWindow.childSandboxBridge;
air.trace(childInterface.calculatePrice()); //traces ".45 cents"
air.trace(childInterface.storeID)); //traces "abc"

Establishing a parent sandbox bridge
The parentSandboxBridge property allows the parent document to expose an interface to content in a child
document. To expose an interface, the parent document sets the parentSandbox property of the child document to
a function or object defined in the parent document. You can then access the object or function from content in the
child. The following example shows how a script running in a parent frame can expose an object containing a
function to a child document:
var interface = {};
interface.save = function(text){

var saveFile = air.File("app-storage:/save.txt");
//write text to file

}
document.getElementById("child").contentWindow.parentSandboxBridge = interface;

Using this interface, content in the child frame could save text to a file named save.txt, but would not have any
other access to the file system. The child content could call the save function as follows:
var textToSave = "A string.";
window.parentSandboxBridge.save(textToSave);

Application content should expose the narrowest interface possible to other sandboxes. Non-application content
should be considered inherently untrustworthy since it may be subject to accidental or malicious code injection. You
must put appropriate safeguards in place to prevent misuse of the interface you expose through the parent sandbox
bridge.

ADOBE AIR 1
Developer Guide

229
Accessing a parent sandbox bridge during page loading
In order for a script in a child document to access a parent sandbox bridge, the bridge must be set up before the script
is run. Window, frame and iframe objects dispatch a dominitialize event when a new page DOM has been created,
but before any scripts have been parsed, or DOM elements added. You can use the dominitialize event to establish
the bridge early enough in the page construction sequence that all scripts in the child document can access it.
The following example illustrates how to create a parent sandbox bridge in response to the dominitialize event
dispatched from the child frame:
<html>
<head>
<script>
var bridgeInterface = {};
bridgeInterface.testProperty = "Bridge engaged";
function engageBridge(){

document.getElementById("sandbox").contentWindow.parentSandboxBridge = bridgeInterface;
}
</script>
</head>
<body>
<iframe id="sandbox"

src="http://www.example.com/air/child.html"
documentRoot="app:/"
sandboxRoot="http://www.example.com/air/"
ondominitialize="engageBridge()"/>

</body>
</html>

The following child.html document illustrates how child content can access the parent sandbox bridge:
<html>

<head>
<script>

document.write(window.parentSandboxBridge.testProperty);
</script>

</head>
<body></body>

</html>

To listen for the dominitialize event on a child window, rather than a frame, you must add the listener to the new
child window object created by the window.open() function:
var childWindow = window.open();
childWindow.addEventListener("dominitialize", engageBridge());
childWindow.document.location = "http://www.example.com/air/child.html";

In this case, there is no way to map application content into a non-application sandbox. This technique is only useful
when child.html is loaded from outside the application directory. You can still map application content in the
window to a non-application sandbox, but you must first load an intermediate page that itself uses frames to load the
child document and map it to the desired sandbox.
If you use the HTMLLoader class createRootWindow() function to create a window, the new window is not a child
of the document from which createRootWindow() is called. Thus, you cannot create a sandbox bridge from the
calling window to non-application content loaded into the new window. Instead, you must use load an intermediate
page in the new window that itself uses frames to load the child document. You can then establish the bridge from
the parent document of the new window to the child document loaded into the frame.

230
Chapter 22: Handling HTML-related
events

An event-handling system allows programmers to respond to user input and system events in a convenient way. The
Adobe® AIR™ event model is not only convenient, but also standards-compliant. Based on the Document Object
Model (DOM) Level 3 Events Specification, an industry-standard event-handling architecture, the event model
provides a powerful, yet intuitive, event-handling tool for programmers.

Contents

• “HTMLLoader events” on page 230
• “Handling DOM events with ActionScript” on page 231
• “Responding to uncaught JavaScript exceptions” on page 231
• “Handling runtime events with JavaScript” on page 233

HTMLLoader events
An HTMLLoader object dispatches the following ActionScript™ events:

You can also register an ActionScript function for a JavaScript event (such as onClick). For details, see “Handling
DOM events with ActionScript” on page 231.

Event Description

htmlDOMInitialize Dispatched when the HTML document is created, but before any scripts are parsed or DOM nodes are added
to the page.

complete Dispatched when the HTML DOM has been created in response to a load operation, immediately after the
onload event in the HTML page.

htmlBoundsChanged Dispatched when one or both of the contentWidth and contentHeight properties have changed.

locationChange Dispatched when the location property of the HTMLLoader has changed.

scroll Dispatched anytime the HTML engine changes the scroll position. Scroll events can be because of navigation
to anchor links (# links) in the page or because of calls to the window.scrollTo() method. Entering text
in a text input or text area can also cause a scroll event.

uncaughtScriptException Dispatched when a JavaScript exception occurs in the HTMLLoader and the exception is not caught in Java-
Script code.

ADOBE AIR 1
Developer Guide

231
Handling DOM events with ActionScript
You can register ActionScript functions to respond to JavaScript events. For example, consider the following HTML
content:
<html>
<body>

Click me.
</html>

You can register an ActionScript function as a handler for any event in the page. For example, the following code
adds the clickHandler() function as the listener for the onclick event of the testLink element in the HTML
page:
var html:HTMLLoader = new HTMLLoader();
var urlReq:URLRequest = new URLRequest("test.html");
html.load(urlReq);
html.addEventListener(Event.COMPLETE, completeHandler);

function completeHandler(event:Event):void {
html.window.document.getElementById("testLink").onclick = clickHandler;

}

function clickHandler():void {
trace("You clicked it!");

}

You can also use the addEventListener() method to register for these events. For example, you could replace the
completeHandler() method in the previous example with the following code:
function completeHandler(event:Event):void {

var testLink:Object = html.window.document.getElementById("testLink");
testLink.addEventListener("click", clickHandler);

}

When a listener refers to a specific DOM element, it is good practice to wait for the parent HTMLLoader to dispatch
the complete event before adding the event listeners. HTML pages often load multiple files and the HTML DOM is
not fully built until all the files are loaded and parsed. The HTMLLoader dispatches the complete event when all
elements have been created.

Responding to uncaught JavaScript exceptions
Consider the following HTML:
<html>
<head>

<script>
function throwError() {

var x = 400 * melbaToast;
}

</script>
</head>
<body>

Click me.
</html>

ADOBE AIR 1
Developer Guide

232
It contains a JavaScript function, throwError(), that references an unknown variable, melbaToast:
var x = 400 * melbaToast;

When a JavaScript operation encounters an illegal operation that is not caught in the JavaScript code with a
try/catch structure, the HTMLLoader object containing the page dispatches an HTMLUncaughtScriptException-
Event event. You can register a handler for this event, as in the following code:
var html:HTMLLoader = new HTMLLoader();
var urlReq:URLRequest = new URLRequest("test.html");
html.load(urlReq);
html.width = container.width;
html.height = container.height;
container.addChild(html);
html.addEventListener(HTMLUncaughtScriptExceptionEvent.UNCAUGHT_SCRIPT_EXCEPTION,
 htmlErrorHandler);
function htmlErrorHandler(event:HTMLUncaughtJavaScriptExceptionEvent):void
{

event.preventDefault();
trace("exceptionValue:", event.exceptionValue)
for (var i:int = 0; i < event.stackTrace.length; i++)
{

trace("sourceURL:", event.stackTrace[i].sourceURL);
trace("line:", event.stackTrace[i].line);
trace("function:", event.stackTrace[i].functionName);

}
}

Within JavaScript, you can handle the same event using the window.htmlLoader property:
<html>
<head>
<script language="javascript" type="text/javascript" src="AIRAliases.js"></script>

<script>
function throwError() {

var x = 400 * melbaToast;
}

function htmlErrorHandler(event) {
event.preventDefault();
var message = "exceptionValue:" + event.exceptionValue + "\n";
for (var i = 0; i < event.stackTrace.length; i++){

message += "sourceURL:" + event.stackTrace[i].sourceURL +"\n";
message += "line:" + event.stackTrace[i].line +"\n";
message += "function:" + event.stackTrace[i].functionName + "\n";

}
alert(message);

}

window.htmlLoader.addEventListener("uncaughtScriptException", htmlErrorHandler);
</script>

</head>
<body>

Click me.
</html>

The htmlErrorHandler() event handler cancels the default behavior of the event (which is to send the JavaScript
error message to the AIR trace output), and generates its own output message. It outputs the value of the exception-
Value of the HTMLUncaughtScriptExceptionEvent object. It outputs the properties of each object in the stack-
Trace array:

ADOBE AIR 1
Developer Guide

233
exceptionValue: ReferenceError: Can't find variable: melbaToast
sourceURL: app:/test.html
line: 5
function: throwError
sourceURL: app:/test.html
line: 10
function: onclick

Handling runtime events with JavaScript
The runtime classes support adding event handlers with the addEventListener() method. To add a handler
function for an event, call the addEventListener() method of the object that dispatches the event, providing the
event type and the handling function. For example, to listen for the closing event dispatched when a user clicks the
window close button on the title bar, use the following statement:
window.nativeWindow.addEventListener(air.NativeWindow.CLOSING, handleWindowClosing);

Creating an event handler function
The following code creates a simple HTML file that displays information about the position of the main window. A
handler function named moveHandler(), listens for a move event (defined by the NativeWindowBoundsEvent
class) of the main window.
<html>

<script src="AIRAliases.js" />
<script>

function init() {
writeValues();
window.nativeWindow.addEventListener(air.NativeWindowBoundsEvent.MOVE,

 moveHandler);
}
function writeValues() {

document.getElementById("xText").value = window.nativeWindow.x;
document.getElementById("yText").value = window.nativeWindow.y;

}
function moveHandler(event) {

air.trace(event.type); // move
writeValues();

}
</script>
<body onload="init()" />

<table>
<tr>

<td>Window X:</td>
<td><textarea id="xText"></textarea></td>

</tr>
<tr>

<td>Window Y:</td>
<td><textarea id="yText"></textarea></td>

</tr>
</table>

</body>
</html>

When a user moves the window, the textarea elements display the updated X and Y positions of the window:

ADOBE AIR 1
Developer Guide

234
Notice that the event object is passed as an argument to the moveHandler() method. The event parameter allows
your handler function to examine the event object. In this example, you use the event object's type property to
report that the event is a move event.

Removing event listeners in HTML pages that navigate

When HTML content navigates, or when HTML content is discarded because a window that contains it is closed,
the event listeners that reference objects on the unloaded page are not automatically removed. When an object
dispatches an event to a handler that has already been unloaded, you see the following error message: "The appli-
cation attempted to reference a JavaScript object in an HTML page that is no longer loaded."
To avoid this error, remove JavaScript event listeners in an HTML page before it goes away. In the case of page
navigation (within an HTMLLoader object), remove the event listener during the unload event of the window object.
For example, the following JavaScript code removes an event listener for an uncaughtScriptException event:
window.onunload = cleanup;
window.htmlLoader.addEventListener('uncaughtScriptException', uncaughtScriptException);
function cleanup()
{

window.htmlLoader.removeEventListener('uncaughtScriptException',
uncaughtScriptExceptionHandler);

}

To prevent the error from occurring when closing windows that contain HTML content, call a cleanup function in
response to the closing event of the NativeWindow object (window.nativeWindow). For example, the following
JavaScript code removes an event listener for an uncaughtScriptException event:
window.nativeWindow.addEventListener(air.Event.CLOSING, cleanup);
function cleanup()
{

window.htmlLoader.removeEventListener('uncaughtScriptException',
uncaughtScriptExceptionHandler);

}

You can also prevent this error from occurring by removing an event listener as soon as it runs. For example, the
following JavaScript code creates an html window by calling the createRootWindow() method of the HTMLLoader
class and adds an event listener for the complete event. When the complete event handler is called, it removes its
own event listener using the removeEventListener() function:
var html = runtime.flash.html.HTMLLoader.createRootWindow(true);
html.addEventListener('complete', htmlCompleteListener);
function htmlCompleteListener()
{

html.removeEventListener(complete, arguments.callee)
// handler code..

}
html.load(new runtime.flash.net.URLRequest("second.html"));

Removing unneeded event listeners also allows the system garbage collector to reclaim any memory associated with
those listeners.

235
Chapter 23: Scripting the HTML
Container

The HTMLLoader class serves as the container for HTML content in Adobe® AIR™. The class provides many
properties and methods, inherited from the Sprite class, for controlling the behavior and appearance of the object on
the ActionScript™ 3.0 display list. In addition, the class defines properties and methods for such tasks as loading and
interacting with HTML content and managing history.
The HTMLHost class defines a set of default behaviors for an HTMLLoader. When you create an HTMLLoader
object, no HTMLHost implementation is provided. Thus when HTML content triggers one of the default behaviors,
such as changing the window location, or the window title, nothing happens. You can extend the HTMLHost class
to define the behaviors desired for your application.
A default implementation of the HTMLHost is provided for HTML windows created by AIR. You can assign the
default HTMLHost implementation to another HTMLLoader object by setting the htmlHost property of the object
using a new HTMLHost object created with the defaultBehavior parameter set to true.

Contents

• “Display properties of HTMLLoader objects” on page 235
• “Scrolling HTML content” on page 238
• “Accessing the HTML history list” on page 238
• “Setting the user agent used when loading HTML content” on page 239
• “Setting the character encoding to use for HTML content” on page 239
• “Defining browser-like user interfaces for HTML content” on page 240
• “Creating subclasses of the HTMLLoader class” on page 247

Display properties of HTMLLoader objects
An HTMLLoader object inherits the display properties of the Adobe® Flash® Player Sprite class. You can resize, move,
hide, and change the background color, for example. Or you can apply advanced effects like filters, masks, scaling,
and rotation. When applying effects, consider the impact on legibility. SWF and PDF content loaded into an HTML
page cannot be displayed when some effects are applied.
HTML windows contain an HTMLLoader object that renders the HTML content. This object is constrained within
the area of the window, so changing the dimensions, position, rotation, or scale factor does not always produce
desirable results.

Contents

• “Basic display properties” on page 236
• “Advanced display properties” on page 237
• “Transparency of HTMLLoader content” on page 236
• “Scaling HTMLLoader content” on page 236
• “Considerations when loading SWF or PDF content in an HTML page” on page 237
• “Advanced display properties” on page 237

ADOBE AIR 1
Developer Guide

236
Basic display properties
The basic display properties of the HTMLLoader allow you to position the control within its parent display object,
to set the size, and to show or hide the control. You should not change these properties for the HTMLLoader object
of an HTML window.
The basic properties include:

Outside of an HTML window, the width and height properties of an HTMLLoader object default to 0. You must
set the width and height before the loaded HTML content can be seen. HTML content is drawn to the HTMLLoader
size, laid out according to the HTML and CSS properties in the content. Changing the HTMLLoader size reflows the
content.
When loading content into a new HTMLLoader object (with width still set to 0), it can be tempting to set the display
width and height of the HTMLLoader using the contentWidth and contentHeight properties. This technique
works for pages that have a reasonable minimum width when laid out according the HTML and CSS flow rules.
However, some pages flow into a long and narrow layout in the absence of a reasonable width provided by the
HTMLLoader.
Note: When you change the width and height of an HTMLLoader object, the scaleX and scaleY values do not change,
as would happen with most other types of display objects.

Transparency of HTMLLoader content
The paintsDefaultBackground property of an HTMLLoader object, which is true by default, determines
whether the HTMLLoader object draws an opaque background. When paintsDefaultBackground is false, the
background is clear. The display object container or other display objects below the HTMLLoader object are visible
behind the foreground elements of the HTML content.
If the body element or any other element of the HTML document specifies a background color (using
style="background-color:gray", for instance), then the background of that portion of the HTML is opaque and
rendered with the specified background color. If you set the opaqueBackground property of the HTMLLoader
object, and paintsDefaultBackground is false, then the color set for the opaqueBackground is visible.
Note: You can use a transparent, PNG-format graphic to provide an alpha-blended background for an element in an
HTML document. Setting the opacity style of an HTML element is not supported.

Scaling HTMLLoader content
Avoid scaling an HTMLLoader object beyond a scale factor of 1.0. Text in HTMLLoader content is rendered at a
specific resolution and appears pixelated if the HTMLLoader object is scaled up. To prevent the HTMLLoader, as
well as its contents, from scaling when a window is resized, set the scaleMode property of the Stage to StageS-
caleMode.NO_SCALE.

Property Notes

x, y Positions the object within its parent container.

width, height Changes the dimensions of the display area.

visible Controls the visibility of the object and any content it contains.

ADOBE AIR 1
Developer Guide

237
Considerations when loading SWF or PDF content in an HTML page
SWF and PDF content loaded into in an HTMLLoader object disappears in the following conditions:
• If you scale the HTMLLoader object to a factor other that 1.0.
• If you set the alpha property of the HTMLLoader object to a value other than 1.0.
• If you rotate the HTMLLoader content.
The content reappears if you remove the offending property setting and remove the active filters.
Note: The runtime cannot display SWF or PDF content in transparent windows.
For more information on loading these types of media in an HTMLLoader, see “Loading SWF content within an
HTML page” on page 67 and “Adding PDF content” on page 249.

Advanced display properties
The HTMLLoader class inherits several methods that can be used for special effects. In general, these effects have
limitations when used with the HTMLLoader display, but they can be useful for transitions or other temporary
effects. For example, if you display a dialog window to gather user input, you could blur the display of the main
window until the user closes the dialog. Likewise, you could fade the display out when closing a window.
The advanced display properties include:

The following example illustrates how to set the filters array to blur the entire HTML display:
var html:HTMLLoader = new HTMLLoader();
var urlReq:URLRequest = new URLRequest("http://www.adobe.com/");
html.load(urlReq);
html.width = 800;
html.height = 600;

var blur:BlurFilter = new BlurFilter(8);
var filters:Array = [blur];
html.filters = filters;

Property Limitations

alpha Can reduce the legibility of HTML content

filters In an HTML Window, exterior effects are clipped by the window edge

graphics Shapes drawn with graphics commands appear below HTML content,
including the default background. The paintsDefaultBackground property
must be false for the drawn shapes to be visible.

opaqueBackground Does not change the color of the default background. The paintsDefaultBack-
ground property must be false for this color layer to be visible.

rotation The corners of the rectangular HTMLLoader area can be clipped by the
window edge. SWF and PDF content loaded in the HTML content is not
displayed.

scaleX, scaleY The rendered display can appear pixelated at scale factors greater than 1. SWF
and PDF content loaded in the HTML content is not displayed.

transform Can reduce legibility of HTML content. The HTML display can be clipped by the
window edge. SWF and PDF content loaded in the HTML content is not
displayed if the transform involves rotation, scaling, or skewing.

ADOBE AIR 1
Developer Guide

238
Scrolling HTML content
The HTMLLoader class includes the following properties that let you control the scrolling of HTML content:

The following code sets the scrollV property so that HTML content is scrolled to the bottom of the page:

var html:HTMLLoader = new HTMLLoader();
html.addEventListener(Event.HTML_BOUNDS_CHANGE, scrollHTML);

const SIZE:Number = 600;
html.width = SIZE;
html.height = SIZE;

var urlReq:URLRequest = new URLRequest("http://www.adobe.com");
html.load(urlReq);
this.addChild(html);

function scrollHTML(event:Event):void
{

html.scrollV = html.contentHeight - SIZE;
}

The HTMLLoader does not include horizontal and vertical scroll bars. You can implement scroll bars in Action-
Script You can also use the HTMLLoader.createRootWindow() method to create a window that contains an
HTMLLoader object with scroll bars (see “Creating windows with scrolling HTML content” on page 246).

Accessing the HTML history list
As new pages are loaded in an HTMLLoader object, the runtime maintains a history list for the object. The history
list corresponds to the window.history object in the HTML page. The HTMLLoader class includes the following
properties and methods that let you work with the HTML history list:

Property Description

contentHeight The height, in pixels, of the HTML content.

contentWidth The width, in pixels, of the HTML content.

scrollH The horizontal scroll position of the HTML content within the HTMLLoader object.

scrollV The vertical scroll position of the HTML content within the HTMLLoader object.

Class member Description

historyLength The overall length of the history list, including back and forward entries.

historyPosition The current position in the history list. History items before this position represent “back” navigation, and
items after this position represent “forward” navigation.

historyAt() Returns the URLRequest object corresponding to the history entry at the specified position in the history list.

ADOBE AIR 1
Developer Guide

239
Items in the history list are stored as objects of type HistoryListItem. The HistoryListItem class has the following
properties:

Setting the user agent used when loading HTML
content
The HTMLLoader class has a userAgent property, which lets you set the user agent string used by the
HTMLLoader. Set the userAgent property of the HTMLLoader object before calling the load() method. If you set
this property on the HTMLLoader instance, then the userAgent property of the URLRequest passed to the load()
method is not used.
You can set the default user agent string used by all HTMLLoader objects in an application domain by setting the
URLRequestDefaults.userAgent property. The static URLRequestDefaults properties apply as defaults for all
URLRequest objects, not only URLRequests used with the load() method of HTMLLoader objects. Setting the
userAgent property of an HTMLLoader overrides the default URLRequestDefaults.userAgent setting.
If you do not set a user agent value for either the userAgent property of the HTMLLoader object or for URLRe-
questDefaults.userAgent, then the default AIR user agent value is used. This default value varies depending on
the runtime operating system (such as Mac OS or Windows), the runtime language, and the runtime version, as in
the following two examples:
• "Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/420+ (KHTML, like Gecko)
AdobeAIR/1.0"

• "Mozilla/5.0 (Windows; U; en) AppleWebKit/420+ (KHTML, like Gecko) AdobeAIR/1.0"

Setting the character encoding to use for HTML content
An HTML page can specify the character encoding it uses by including meta tag, such as the following:
meta http-equiv="content-type" content="text/html" charset="ISO-8859-1";

Override the page setting to ensure that a specific character encoding is used by setting the textEncodingOverride
property of the HTMLLoader object:

historyBack() Navigates back in the history list, if possible.

historyForward() Navigates back in the history list, if possible.

historyGo() Navigates the indicated number of steps in the browser history. Navigates forward if positive, backward if
negative. Navigating to zero reloads the page. Specifying a position beyond the end navigates to the end of
the list.

Property Description

isPost Set to true if the HTML page includes POST data.

originalUrl The original URL of the HTML page, before any redirects.

title The title of the HTML page.

url The URL of the HTML page.

Class member Description

ADOBE AIR 1
Developer Guide

240
var html:HTMLLoader = new HTMLLoader();
html.textEncodingOverride = "ISO-8859-1";

Specify the character encoding for the HTMLLoader content to use when an HTML page does not specify a setting
with the textEncodingFallback property of the HTMLLoader object:
var html:HTMLLoader = new HTMLLoader();
html.textEncodingFallback = "ISO-8859-1";

The textEncodingOverride property overrides the setting in the HTML page. And the textEncodingOverride
property and the setting in the HTML page override the textEncodingFallback property.
Set the textEncodingOverride property or the textEncodingFallback property before loading the HTML
content.

Defining browser-like user interfaces for HTML content
JavaScript provides several APIs for controlling the window displaying the HTML content. In AIR, these APIs can
be overridden by implementing a custom HTMLHost class.

Contents

• “About extending the HTMLHost class” on page 240
• “Example: Extending the HTMLHost class” on page 241
• “Handling changes to the window.location property” on page 243
• “Handling JavaScript calls to window.moveBy(), window.moveTo(), window.resizeTo(), window.resizeBy()”
on page 244
• “Handling JavaScript calls to window.open()” on page 244
• “Handling JavaScript calls to window.close()” on page 245
• “Handling changes of the window.status property” on page 245
• “Handling changes of the window.document.title property” on page 245
• “Handling JavaScript calls to window.blur() and window.focus()” on page 246

About extending the HTMLHost class
If, for example, your application presents multiple HTMLLoader objects in a tabbed interface, you may want title
changes made by the loaded HTML pages to change the label of the tab, not the title of the main window. Similarly,
your code could respond to a window.moveTo() call by repositioning the HTMLLoader object in its parent display
object container, by moving the window that contains the HTMLLoader object, by doing nothing at all, or by doing
something else entirely.
The AIR HTMLHost class controls the following JavaScript properties and methods:
• window.status

• window.document.title

• window.location

• window.blur()

• window.close()

• window.focus()

• window.moveBy()

• window.moveTo()

ADOBE AIR 1
Developer Guide

241
• window.open()

• window.resizeBy()

• window.resizeTo()

When you create an HTMLLoader object using new HTMLLoader(), the listed JavaScript properties or methods are
not enabled. The HTMLHost class provides a default, browser-like implementation of these JavaScript APIs. You can
also extend the HTMLHost class to customize the behavior. To create an HTMLHost object supporting the default
behavior, set the defaultBehaviors parameter to true in the HTMLHost constructor:
var defaultHost:HTMLHost = new HTMLHost(true);

When you create an HTML window in AIR with the HTMLLoader class createRootWindow() method, an
HTMLHost instance supporting the default behaviors is assigned automatically. You can change the host object
behavior by assigning a different HTMLHost implementation to the htmlHost property of the HTMLLoader, or you
can assign null to disable the features entirely.
Note: AIR assigns a default HTMLHost object to the initial window created for an HTML-based AIR application and
any windows created by the default implementation of the JavaScript window.open() method.

Example: Extending the HTMLHost class
The following example shows how to customize the way that an HTMLLoader object affects the user interface, by
extending the HTMLHost class:
1 Create a Flash file for AIR. Set its document class to CustomHostExample and then save the file as
CustomHostExample.fla.
2 Create an ActionScript file called CustomHost.as containing a class that extends the HTMLHost class (a
subclass). This class overrides certain methods of the new class to handle changes in the user interface-related
settings. For example, the following class, CustomHost, defines behaviors for calls to window.open() and changes
to window.document.title. Calls to the window.open() method open the HTML page in a new window, and
changes to the window.document.title property (including the setting of the <title> element of an HTML page)
set the title of that window.

package
{

import flash.display.StageScaleMode;
import flash.display.NativeWindow;
import flash.display.NativeWindowInitOptions;
import flash.events.Event;
import flash.events.NativeWindowBoundsEvent;
import flash.geom.Rectangle;
import flash.html.HTMLLoader;
import flash.html.HTMLHost;
import flash.html.HTMLWindowCreateOptions;
import flash.text.TextField;

public class CustomHost extends HTMLHost
{

public var statusField:TextField;

public function CustomHost(defaultBehaviors:Boolean=true)
{

super(defaultBehaviors);
}
override public function windowClose():void
{

htmlLoader.stage.nativeWindow.close();
}
override public function createWindow(

ADOBE AIR 1
Developer Guide

242
windowCreateOptions:HTMLWindowCreateOptions
):HTMLLoader

{
var initOptions:NativeWindowInitOptions = new NativeWindowInitOptions();
var bounds:Rectangle = new Rectangle(windowCreateOptions.x,

windowCreateOptions.y,
windowCreateOptions.width,
windowCreateOptions.height);

var htmlControl:HTMLLoader = HTMLLoader.createRootWindow(true, initOptions,
windowCreateOptions.scrollBarsVisible, bounds);

htmlControl.htmlHost = new HTMLHostImplementation();
if(windowCreateOptions.fullscreen){

htmlControl.stage.displayState =
StageDisplayState.FULL_SCREEN_INTERACTIVE;

}
return htmlControl;

}
override public function updateLocation(locationURL:String):void
{

trace(locationURL);
}
override public function set windowRect(value:Rectangle):void
{

htmlLoader.stage.nativeWindow.bounds = value;
}
override public function updateStatus(status:String):void
{

statusField.text = status;
trace(status);

}
override public function updateTitle(title:String):void
{

htmlLoader.stage.nativeWindow.title = title + "- Example Application";
}
override public function windowBlur():void
{

htmlLoader.alpha = 0.5;
}
override public function windowFocus():void
{

htmlLoader.alpha = 1;
}

}
}

3 Create another ActionScript file named CustomHostExample.as to contain the document class for the appli-
cation. This class creates an HTMLLoader object and sets its host property to an instance of the CustomHost class
defined in the previous step:

package
{

import flash.display.Sprite;
import flash.html.HTMLLoader;
import flash.net.URLRequest;
import flash.text.TextField;

public class CustomHostExample extends Sprite
{

function CustomHostExample():void
{

var html:HTMLLoader = new HTMLLoader();

ADOBE AIR 1
Developer Guide

243
html.width = 550;
html.height = 380;
var host:CustomHost = new CustomHost();
html.htmlHost = host;

var urlReq:URLRequest = new URLRequest("Test.html");
html.load(urlReq);

addChild(html);

var statusTxt:TextField = new TextField();
statusTxt.y = 380;
statusTxt.height = 20;
statusTxt.width = 550;
statusTxt.background = true;
statusTxt.backgroundColor = 0xEEEEEEEE;
addChild(statusTxt);

host.statusField = statusTxt;
}

}
}

To test the code described here, include an HTML file with the following content in the application directory:
<html>
 <head>
 <title>Test</title>
 <script>
 function openWindow()
 {
 document.title = "Test"
 window.open('Test.html');
 }
 </script>
 </head>
 <body bgColor="#EEEEEE">
 window.open('Test.html')

 window.document.location = 'http://www.adobe.com'

moveBy(6, 12)

window.close()

window.blur()

window.focus()

window.status=new
Date().toString()
 </body>
</html>

Handling changes to the window.location property
Override the locationChange() method to handle changes of the URL of the HTML page. The
locationChange() method is called when JavaScript in a page changes the value of window.location. The
following example simply loads the requested URL:
override public function updateLocation(locationURL:String):void
{

htmlLoader.load(new URLRequest(locationURL));
}

Note: You can use the htmlLoader property of the HTMLHost object to reference the current HTMLLoader object.

ADOBE AIR 1
Developer Guide

244
Handling JavaScript calls to window.moveBy(), window.moveTo(), window.resizeTo(),
window.resizeBy()
Override the set windowRect() method to handle changes in the bounds of the HTML content. The set
windowRect() method is called when JavaScript in a page calls window.moveBy(), window.moveTo(),
window.resizeTo(), or window.resizeBy(). The following example simply updates the bounds of the desktop
window:
override public function set windowRect(value:Rectangle):void
{

htmlLoader.stage.nativeWindow.bounds = value;
}

Handling JavaScript calls to window.open()
Override the createWindow() method to handle JavaScript calls to window.open(). Implementations of the
createWindow() method are responsible for creating and returning a new HTMLLoader object. Typically, you
would display the HTMLLoader in a new window, but creating a window is not required.
The following example illustrates how to implement the createWindow() function using the
HTMLLoader.createRootWindow() to create both the window and the HTMLLoader object. You can also create a
NativeWindow object separately and add the HTMLLoader to the window stage.
override public function
createWindow(windowCreateOptions:HTMLWindowCreateOptions):HTMLLoader{

var initOptions:NativeWindowInitOptions = new NativeWindowInitOptions();
var bounds:Rectangle = new Rectangle(windowCreateOptions.x, windowCreateOptions.y,

windowCreateOptions.width, windowCreateOptions.height);
var htmlControl:HTMLLoader = HTMLLoader.createRootWindow(true, initOptions,

windowCreateOptions.scrollBarsVisible, bounds);
htmlControl.htmlHost = new HTMLHostImplementation();
if(windowCreateOptions.fullscreen){

htmlControl.stage.displayState = StageDisplayState.FULL_SCREEN_INTERACTIVE;
}
return htmlControl;

}

Note: This example assigns the custom HTMLHost implementation to any new windows created with window.open().
You can also use a different implementation or set the htmlHost property to null for new windows, if desired.
The object passed as a parameter to the createWindow() method is an HTMLWindowCreateOptions object. The
HTMLWindowCreateOptions class includes properties that report the values set in the features parameter string
in the call to window.open():

HTMLWindowCreateOptions
property

Corresponding setting in the
features string in the JavaScript call
to window.open()

fullscreen fullscreen

height height

locationBarVisible location

menuBarVisible menubar

resizeable resizable

scrollBarsVisible scrollbars

statusBarVisible status

ADOBE AIR 1
Developer Guide

245
The HTMLLoader class does not implement all the features that can be specified in the feature string. Your appli-
cation must provide scroll bars, location bars, menu bars, status bars, and tool bars when appropriate.
The other arguments to the JavaScript window.open() method are handled by the system. A createWindow()
implementation should not load content in the HTMLLoader object, or set the window title.

Handling JavaScript calls to window.close()
Override the windowClose() to handle JavaScript calls to window.close() method. The following example closes
the desktop window when the window.close() method is called:
override public function windowClose():void
{

htmlLoader.stage.nativeWindow.close();
}

JavaScript calls to window.close() do not have to close the containing window. You could, for example, remove the
HTMLLoader from the display list, leaving the window (which may have other content) open, as in the following
code:
override public function windowClose():void
{

htmlLoader.parent.removeChild(htmlLoader);
}

Handling changes of the window.status property
Override the updateStatus() method to handle JavaScript changes to the value of window.status. The following
example traces the status value:
override public function updateStatus(status:String):void
{

trace(status);
}

The requested status is passed as a string to the updateStatus() method.
The HTMLLoader object does not provide a status bar.

Handling changes of the window.document.title property
override the updateTitle() method to handle JavaScript changes to the value of window.document.title. The
following example changes the window title and appends the string, "Sample," to the title:
override public function updateTitle(title:String):void
{

htmlLoader.stage.nativeWindow.title = title + " - Sample";
}

toolBarVisible toolbar

width width

x left or screenX

y top or screenY

HTMLWindowCreateOptions
property

Corresponding setting in the
features string in the JavaScript call
to window.open()

ADOBE AIR 1
Developer Guide

246
When document.title is set on an HTML page, the requested title is passed as a string to the updateTitle()
method.
Changes to document.title do not have to change the title of the window containing the HTMLLoader object. You
could, for example, change another interface element, such as a text field.

Handling JavaScript calls to window.blur() and window.focus()
Override the windowBlur() and windowFocus() methods to handle JavaScript calls to window.blur() and
window.focus(), as shown in the following example:
override public function windowBlur():void
{

htmlLoader.alpha = 0.5;
}
override public function windowFocus():void
{

htmlLoader.alpha = 1.0;
NativeApplication.nativeApplication.activate(htmlLoader.stage.nativeWindow);

}

Note: AIR does not provide an API for deactivating a window or application.

Creating windows with scrolling HTML content
The HTMLLoader class includes a static method, HTMLLoader.createRootWindow(), which lets you open a new
window (represented by a NativeWindow object) that contains an HTMLLoader object and define some user
interface settings for that window. The method takes four parameters, which let you define the user interface:

For example, the following code uses the HTMLLoader.createRootWindow() method to create a window with
HTMLLoader content that uses scrollbars:

var initOptions:NativeWindowInitOptions = new NativeWindowInitOptions();
var bounds:Rectangle = new Rectangle(10, 10, 600, 400);
var html2:HTMLLoader = HTMLLoader.createRootWindow(true, initOptions, true, bounds);
var urlReq2:URLRequest = new URLRequest("http://www.example.com");
html2.load(urlReq2);
html2.stage.nativeWindow.activate();

Note: Windows created by calling createRootWindow() directly in JavaScript remain independent from the opening
HTML window. The JavaScript Window opener and parent properties, for example, are null. However, if you call
createRootWindow() indirectly by overriding the HTMLHost createWindow() method to call
createRootWindow(), then opener and parent do reference the opening HTML window.

Parameter Description

visible A Boolean value that specifies whether the window is initially visible (true) or not (false).

windowInitOptions A NativeWindowInitOptions object. The NativeWindowInitOptions class defines initialization options for a
NativeWindow object, including the following: whether the window is minimizable, maximizable, or resizable,
whether the window has system chrome or custom chrome, whether the window is transparent or not (for
windows that do not use system chrome), and the type of window.

scrollBarsVisible Whether there are scroll bars (true) or not (false).

bounds A Rectangle object defining the position and size of the new window.

ADOBE AIR 1
Developer Guide

247
Creating subclasses of the HTMLLoader class
You can create a subclass of the HTMLLoader class, to create new behaviors. For example, you can create a subclass
that defines default event listeners for HTMLLoader events (such as those events dispatched when HTML is
rendered or when the user clicks a link).
The following example extends the HTMLHost class to provide normal behavior when the JavaScript
window.open() method is called. The example then defines a subclass of HTMLLoader that uses the custom
HTMLHost implementation class:
package
{
 import flash.html.HTMLLoader;

public class MyHTMLHost extends HTMLHost
 {
 public function MyHTMLHost()
 {
 super(false);

}
override public function createWindow(opts:HTMLWindowCreateOptions):void
{

var initOptions:NativeWindowInitOptions = new NativeWindowInitOptions();
var bounds:Rectangle = new Rectangle(opts.x, opts.y, opts.width, opts.height);
var html:HTMLLoader = HTMLLoader.createRootWindow(true,

initOptions,
opts.scrollBarsVisible,
bounds);

html.stage.nativeWindow.orderToFront();
return html

 }
}

The following defines a subclass of the HTMLLoader class that assigns a MyHTMLHost object to its htmlHost
property:
package
{
 import flash.html.HTMLLoader;

import MyHTMLHost;
import HTMLLoader;

 public class MyHTML extends HTMLLoader
 {
 public function MyHTML()
 {
 super();
 htmlHost = new MyHTMLHost();
 }
 }
}

For details on the HTMLHost class and the HTMLLoader.createRootWindow() method used in this example, see
“Defining browser-like user interfaces for HTML content” on page 240.

248

Part 8: Rich media content

Adding PDF content. .249
Using digital rights management .253

249
Chapter 24: Adding PDF content

Applications running in Adobe® AIR™ can render not only SWF and HTML content, but also PDF content. AIR
applications render PDF content using the HTMLLoader class, the WebKit engine, and the Adobe® Reader® browser
plug-in. In an AIR application, PDF content can either stretch across the full height and width of your application or
alternatively as a portion of the interface. The Adobe Reader browser plug-in controls display of PDF files in an AIR
application, so modifications to the Reader toolbar interface (such as those for position, anchoring, and visibility)
persist in subsequent viewing of PDF files in both AIR applications and the browser.
Important: In order to render PDF content in AIR, the user must have Adobe Reader or Adobe® Acrobat® version 8.1 or
higher installed.

Contents

• “Detecting PDF Capability” on page 249
• “Loading PDF content” on page 250
• “Scripting PDF content” on page 250
• “Known limitations for PDF content in AIR” on page 252

Detecting PDF Capability
If the user does not have an installed version of Adobe Reader or Adobe Acrobat 8.1 or higher, PDF content is not
displayed in an AIR application. To detect if a user can render PDF content, first check the HTMLLoader.pdfCapa-
bility property. This property is set to one of the following constants of the HTMLPDFCapability class:

Note: On Windows, if Adobe Acrobat or Adobe Reader version 7.x or above is currently running on the user's system,
that version is used even if a later version that supports loading PDF loaded is installed. In this case, if the value of the
pdfCampability property is HTMLPDFCapability.STATUS_OK, when an AIR application attempts to load PDF
content, the older version of Acrobat or Reader displays an alert (and no exception is thrown in the AIR application). If
this is a possible situation for your end users, consider providing them with instructions to close Acrobat while running
your application. You may want to display these instructions if the PDF content does not load within an acceptable time
frame.

Constant Description

HTMLPDFCapability.STATUS_OK A sufficient version (8.1 or greater) of Adobe Reader is detected and
PDF content can be loaded into an HTMLLoader object.

HTMLPDFCapability.ERROR_INSTALLED_READER_NOT_FOUND No version of Adobe Reader is detected. An HTMLLoader object
cannot display PDF content.

HTMLPDFCapability.ERROR_INSTALLED_READER_TOO_OLD Adobe Reader has been detected, but the version is too old. An
HTMLConrol object cannot display PDF content.

HTMLPDFCapability.ERROR_PREFERRED_READER_TOO_OLD A sufficient version (8.1 or later) of Adobe Reader is detected, but the
version of Adobe Reader that is set up to handle PDF content is older
than Reader 8.1. An HTMLConrol object cannot display PDF content.

ADOBE AIR 1
Developer Guide

250
The following code detects whether a user can display PDF content in an AIR application, and if not traces the error
code that corresponds to the HTMLPDFCapability error object:
if(HTMLLoader.pdfCapability == HTMLPDFCapability.STATUS_OK)
{

trace("PDF content can be displayed");
}
else
{

trace("PDF cannot be displayed. Error code:", HTMLLoader.pdfCapability);
}

Loading PDF content
You can add a PDF to an AIR application by creating an HTMLLoader instance, setting its dimensions, and loading
the path of a PDF.
The following example loads a PDF from an external site. Replace the URLRequest with the path to an available
external PDF.
var request:URLRequest = new URLRequest("http://www.example.com/test.pdf");
pdf = new HTMLLoader();
pdf.height = 800;
pdf.width = 600;
pdf.load(request);
container.addChild(pdf);

You can also load content from file URLs and AIR-specific URL schemes, such as app and app-storage. For example,
the following code loads the test.pdf file in the PDFs subdirectory of the application directory:
app:/js_api_reference.pdf
For more information on AIR URL schemes, see “Using AIR URL schemes in URLs” on page 281.

Scripting PDF content
You can use JavaScript to control PDF content just as you can in a web page in the browser.
JavaScript extensions to Acrobat provide the following features, among others:
• Controlling page navigation and magnification
• Processing forms within the document
• Controlling multimedia events
Full details on JavaScript extensions for Adobe Acrobat are provided at the Adobe Acrobat Developer Center at
http://www.adobe.com/devnet/acrobat/javascript.html.

HTML-PDF communication basics
JavaScript in an HTML page can send a message to JavaScript in PDF content by calling the postMessage() method
of the DOM object representing the PDF content. For example, consider the following embedded PDF content:
<object id="PDFObj" data="test.pdf" type="application/pdf" width="100%" height="100%"/>

The following JavaScript code in the containing HTML content sends a message to the JavaScript in the PDF file:
pdfObject = document.getElementById("PDFObj");

http://www.adobe.com/devnet/acrobat/javascript.html

ADOBE AIR 1
Developer Guide

251
pdfObject.postMessage(["testMsg", "hello"]);

The PDF file can include JavaScript for receiving this message. You can add JavaScript code to PDF files in some
contexts, including the document-, folder-, page-, field-, and batch-level contexts. Only the document-level context,
which defines scripts that are evaluated when the PDF document opens, is discussed here.
A PDF file can add a messageHandler property to the hostContainer object. The messageHandler property is an
object that defines handler functions to respond to messages. For example, the following code defines the function
to handle messages received by the PDF file from the host container (which is the HTML content embedding the
PDF file):
this.hostContainer.messageHandler = {onMessage: myOnMessage};

function myOnMessage(aMessage)
{

if(aMessage[0] == "testMsg")
{

app.alert("Test message: " + aMessage[1]);
}
else
{

app.alert("Error");
}

}

JavaScript code in the HTML page can call the postMessage() method of the PDF object contained in the page.
Calling this method sends a message ("Hello from HTML") to the document-level JavaScript in the PDF file:

<html>
<head>
<title>PDF Test</title>
<script>

function init()
{

pdfObject = document.getElementById("PDFObj");
try {

 pdfObject.postMessage(["alert", "Hello from HTML"]);
}
catch (e)
{

alert("Error: \n name = " + e.name + "\n message = " + e.message);
}

}
</script>
</head>
<body onload='init()'>

<object
id="PDFObj"
data="test.pdf"
type="application/pdf"
width="100%" height="100%"/>

</body>
</html>

For a more advanced example, and for information on using Acrobat 8 to add JavaScript a PDF file, see Cross-
scripting PDF content in Adobe AIR.

http://www.adobe.com/go/learn_air_qs_pdf_script_flash_en
http://www.adobe.com/go/learn_air_qs_pdf_script_flash_en

ADOBE AIR 1
Developer Guide

252
Scripting PDF content from ActionScript
ActionScript code (in SWF content) cannot directly communicate with JavaScript in PDF content. However, Action-
Script can communicate with the JavaScript in the HTML page loaded in an HTMLLoader object that loads PDF
content, and that JavaScript code can communicate with the JavaScript in the loaded PDF file. For more information,
see “Programming in HTML and JavaScript” on page 214.

Known limitations for PDF content in AIR
PDF content in Adobe AIR has the following limitations:
• PDF content does not display in a window (a NativeWindow object) that is transparent (where the transparent
property is set to true).
• The display order of a PDF file operates differently than other display objects in an AIR application. Although
PDF content clips correctly according to HTML display order, it will always sit on top of content in the AIR appli-
cation's display order.
• PDF content does not display in a window that is in full-screen mode (when the displayState property of the
Stage is set to StageDisplayState.FULL_SCREEN or StageDisplayState.FULL_SCREEN_INTERACTIVE).
• The visual properties of an HTMLLoader object that contains a PDF file cannot be changed. Changing an
HTMLLoader object's filters, alpha, rotation, or scaling properties render the PDF file invisible until the
properties are reset.
• The scaleMode property of the Stage object of the NativeWindow object containing the PDF content must be
set to StageScaleMode.NO_SCALE.
• Clicking links to content within the PDF file update the scroll position of the PDF content. Clicking links to
content outside the PDF file redirect the HTMLLoader object that contains the PDF (even if the target of a link is a
new window).
• PDF commenting workflows do not function in AIR 1.0.

See also
• Cross-scripting PDF content in Adobe AIR

http://www.adobe.com/go/learn_air_qs_pdf_script_flash_en

253
Chapter 25: Using digital rights
management

Adobe® Flash® Media Rights Management Server (FMRMS) provides media publishers the ability to distribute
content, specifically FLV and MP4 files, and to recuperate production costs through direct (user-paid) or indirect
(advertising-paid) compensation by their consumers. The publishers distribute media as encrypted FLVs that can be
downloaded and played in Adobe® Media Player™, or any AIR application that makes use of the digital rights
management (DRM) API.
With FMRMS, the content providers can use identity-based licensing to protect their content with user credentials.
For example, a consumer wants to view a television program, but does not want to watch the accompanying adver-
tisements. To avoid watching the advertisements, the consumer registers and pays the content publisher a premium.
The user can then use their authentication credential to gain access and play the program without the commercials.
Another consumer may want to view the content offline while traveling with no internet access. After registering and
paying the content publisher for the premium service, the user’s authentication credential allows them to access and
download the program from the publisher’s website. The user can then view the content offline during the permitted
period. The content is also protected by the user credentials and cannot be shared with other users.

When a user tries to play a DRM-encrypted file, the application contacts the FMRMS which in turn contacts the
content publisher’s system through their service provider interface (SPI) to authenticate the user and retrieve the
license, a voucher that determines whether the user is allowed access to the content and, if so, for how long. The
voucher also determines whether the user can access the content offline and, if so, for how long. As such, user
credentials are needed to determine access to the encrypted content.
Identity-based licensing also supports anonymous access. For example, anonymous access can be used by the
provider to distribute ad-supported content or to allow free access to the current content for a specified number of
days. The archive material might be considered premium content that must be paid for and requires user credentials.
The content provider can also specify and restrict the type and version of the player needed for their content.

How to enable your AIR application to play content protected with digital rights management encryption is
described here. It is not necessary to understand how to encrypt content using DRM, but it is assumed that you have
access to DRM-encrypted content and are communicating with FMRMS to authenticate the user and retrieve the
voucher.
For an overview of FMRMS, including creating policies, see the documentation included with FMRMS.
For information on Adobe Media Player, see Adobe Media Player Help available within Adobe Media Player.

Contents

• “Understanding the encrypted FLV workflow” on page 254
• “Changes to the NetStream class” on page 255
• “Using the DRMStatusEvent class” on page 257
• “Using the DRMAuthenticateEvent class” on page 257
• “Using the DRMErrorEvent class” on page 259

Language Reference

• DRMAuthenticateEvent
• DRMErrorEvent

http://www.adobe.com/go/learn_air_aslr_en?flash/events/DRMAuthenticateEvent.html
http://www.adobe.com/go/learn_air_aslr_en?flash/events/DRMErrorEvent.html

ADOBE AIR 1
Developer Guide

254
• DRMStatusEvent
• NetStream

More Information

• Adobe AIR Developer Center for Flash (search for ’digital rights management’)

Understanding the encrypted FLV workflow
There are four types of events, StatusEvent. DRMAuthenticateEvent, DRMErrorEvent, and DRMStatusEvent, that
may be dispatched when an AIR application attempts to play a DRM-encrypted file. To support these files, the appli-
cation should add event listeners for handling the DRM events.

The following is the workflow of how the AIR application can retrieve and play the content protected with DRM-
encryption:

1 The Application, using a NetStream object, attempts to play an FLV or MP4 file. If the content is encrypted, an
events.StatusEvent event is dispatched with the code, DRM.encryptedFLV, indicating the FLV is encrypted.

Note: If an application does not want to play the DRM-encrypted file, it can listen to the status event dispatched
when it encounters an encrypted content, then let the user know that the file is not supported and close the
connection.

2 If the file is anonymously encrypted, meaning that all users are allowed to view the content without inputting
authentication credentials, the AIR application proceeds to the last step of this workflow. However, if the file requires
an identity-based license, meaning that the user credential is required, then the NetStream object generates a
DRMAuthenticateEvent event object. The user must provide their authentication credentials before playback can
begin.
3 The AIR application must provide some mechanism for gathering the necessary authentication credentials. The
usernamePrompt, passwordPrompt, and urlPrompt properties of DRMAuthenticationEvent class, provided by the
content server, can be used to instruct the end user with information about the data that is required. You can use
these properties in constructing a user interface for retrieving the needed user credentials. For example, the
usernamePrompt value string may state that the user name must be in the form of an e-mail address.

Note: AIR does not supply a default user interface for gathering authentication credentials. The application
developer must write the user interface and handle the DRMAuthenticateEvent events. If the application does not
provide an event listener for DRMAuthenticateEvent objects, the DRM-encrypted object remains in a “waiting for
credentials” state and the content is therefore not available.

4 Once the application obtains the user credentials, it passes the credentials with the
setDRMAuthenticationCredentials() method to the NetStream object. This signals to the NetStream object that
it should try authenticating the user at the next available opportunity. AIR then passes the credential to the FMRMS
for authentication. If the user was authenticated, then the application proceeds to the next step.

If authentication failed, a new DRMAuthenticateEvent event is dispatch and the application returns to step 3.
This process repeats indefinitely. The application should provide a mechanism to handle and limit the repeated
authentication attempts. For example, the application could allow the user to cancel the attempt which can close
the NetStream connection.

http://www.adobe.com/devnet/air/flash/
http://www.adobe.com/go/learn_air_aslr_en?flash/events/DRMStatusEvent.html
http://www.adobe.com/go/learn_air_aslr_en?flash/net/NetStream.html

ADOBE AIR 1
Developer Guide

255
5 Once the user was authenticated, or if anonymous encryption was used, then the DRM subsystem retrieves the
voucher. The voucher is used to check if the user is authorized to view the content. The information in the voucher
can apply to both the authenticated and the anonymous users. For example, both the authenticated and anonymous
users may have access to the content for a specified period of time before the content expires or they may not have
access to the content because the content provider may not support the version of the viewing application.

If an error has not occurred and the user was authorized to view the content, DRMStatusEvent event object is
dispatched and the AIR application begins playback. The DRMStatusEvent object holds the related voucher infor-
mation, which identifies the user’s policy and permissions. For example, it holds information regarding whether the
content can be made available offline or when the voucher expires and the content can no longer be viewed. The
application can use this data to inform the user of the status of their policy. For example, the application can display
the number of remaining days the user has for viewing the content in a status bar.

If the user is allowed offline access, the voucher is cached and the encrypted content is downloaded to the user’s
machine and made accessible for the duration defined in the offline lease period. The “detail” property in the event
contains “DRM.voucherObtained”. The application decides where to store the content locally in order for it to be
available offline.

All DRM-related errors result in the application dispatching a DRMErrorEvent event object. AIR handles the DRM
authentication failure by re-firing the DRMAuthenticationEvent event object. All other error events must be
explicitly handled by the application. This includes cases where user inputs valid credentials, but the voucher
protecting the encrypted content restricts the access to the content. For example, an authenticated user may still not
have access to the content because the rights have not been paid for. This could also occur where two users, both
registered members with the same media publisher, are attempting to share content that only one of the members
has paid for. The application should inform the user of the error, such as the restrictions to the content, as well as
provide an alternative, such as instructions in how to register and pay for the rights to view the content.

Changes to the NetStream class
The NetStream class provides a one-way streaming connection between Flash Player or an AIR application, and
either Flash Media Server or the local file system. (The NetStream class also supports progressive download.) A
NetStream object is a channel within a NetConnection object. As part of AIR, the NetStream class includes four new
DRM-related events:

Event Description

drmAuthenticate Defined in the DRMAuthenticateEvent class, this event is dispatched when a NetStream object tries to play a
digital rights management (DRM) encrypted content that requires a user credential for authentication before
play back.

The properties of this event include header, usernamePrompt, passwordPrompt, and urlPrompt properties
that can be used in obtaining and setting the user’s credentials. This event occurs repeatedly until the
NetStream object receives valid user credentials.

ADOBE AIR 1
Developer Guide

256
The NetStream class includes the following DRM-specific methods:

In the following code, username (“administrator”), password (“password”) and the “drm” authentication type are set
for authenticating the user. The setDRMAuthenticationCredentials() method must provide credentials that match
credentials known and accepted by the content provider (the same user credentials that provided permission to view
the content). The code for playing the video and making sure that a successful connection to the video stream has
been made is not included here.
var connection:NetConnection = new NetConnection();
connection.connect(null);

var videoStream:NetStream = new NetStream(connection);

videoStream.addEventListener(DRMAuthenticateEvent.DRM_AUTHENTICATE,
drmAuthenticateEventHandler)

private function drmAuthenticateEventHandler(event:DRMAuthenticateEvent):void
{

videoStream.setDRMAuthenticationCredentials("administrator", "password", "drm");
}

drmError Defined in the DRMErrorEvent class and dispatched when a NetStream object, trying to play a digital rights
management (DRM) encrypted file, encounters a DRM-related error. For example, DRM error event object is
dispatched when the user authorization fails. This may be because the user has not purchased the rights to
view the content or because the content provider does not support the viewing application.

drmStatus Defined in DRMStatusEvent class, is dispatched when the digital rights management (DRM) encrypted content
begins playing (when the user is authenticated and authorized to play the content). The DRMStatusEvent
object contains information related to the voucher, such as whether the content can be made available offline
or when the voucher expires and the content can no longer be viewed.

status Defined in events.StatusEvent and only dispatched when the application attempts to play content encrypted
with digital rights management (DRM), by invoking the NetStream.play() method. The value of the status code
property is "DRM.encryptedFLV".

Method Description

resetDRMVouchers() Deletes all the locally cached digital rights management (DRM) voucher data for the current
content. The application must download the voucher again for the user to be able to access the
encrypted content.

For example, the following code removes vouchers for a NetStream object:

NetStream.resetDRMVouchers();

setDRMAuthenticationCredentials() Passes a set of authentication credentials, namely username, password and authentication type,
to the NetStream object for authentication. Valid authentication types are “drm” and “proxy”.
With “drm” authentication type, the credentials provided is authenticated against the FMRMS.
With “proxy” authentication type, the credentials authenticates against the proxy server and
must match those required by the proxy server. For example, the proxy option allows the applica-
tion to authenticate against a proxy server if an enterprise requires such a step before the user can
access the Internet. Unless anonymous authentication is used, after the proxy authentication, the
user must still authenticate against the FMRMS in order to obtain the voucher and play the
content. You can use setDRMAuthenticationcredentials()a second time, with
"drm" option, to authenticate against the FMRMS.

Event Description

ADOBE AIR 1
Developer Guide

257
Using the DRMStatusEvent class
A NetStream object dispatches a DRMStatusEvent object when the content protected using digital rights
management (DRM) begins playing successfully (when the voucher is verified, and when the user is authenticated
and authorized to view the content). The DRMStatusEvent is also dispatched for anonymous users if they are
permitted access. The voucher is checked to verify whether anonymous user, who do not require authentication, are
allowed access to play the content. Anonymous users maybe denied access for a variety of reasons. For example, an
anonymous user may not have access to the content because it has expired.

The DRMStatusEvent object contains information related to the voucher, such as whether the content can be made
available offline or when the voucher expires and the content can no longer be viewed. The application can use this
data to convey the user’s policy status and its permissions.

Contents

• “DRMStatusEvent properties” on page 257
• “Creating a DRMStatusEvent handler” on page 257

DRMStatusEvent properties
The DRMStatusEvent class includes the following properties:

Creating a DRMStatusEvent handler
The following example creates an event handler that outputs the DRM content status information for the NetStream
object that originated the event. Add this event handler to a NetStream object that points to DRM-encrypted content.
private function drmStatusEventHandler(event:DRMStatusEvent):void
{

trace(event.toString());
}

Using the DRMAuthenticateEvent class
The DRMAuthenticateEvent object is dispatched when a NetStream object tries to play a digital rights management
(DRM) encrypted content that requires a user credential for authentication before play back.

Property Description

detail A string explaining the context of the status event. In DRM 1.0, the only valid value is DRM.voucherObtained.

isAnonymous Indicates whether the content, protected with DRM encryption, is available without requiring a user to provide
authentication credentials (true) or not (false). A false value means user must provide a username and pass-
word that matches the one known and expected by the content provider.

isAvailableOffline Indicates whether the content, protected with DRM encryption, can be made available offline (true) or not
(false). In order for digitally protected content to be available offline, its voucher must be cached to the user's
local machine.

offlineLeasePeriod The remaining number of days that content can be viewed offline.

policies A custom object that may contain custom DRM properties.

voucherEndDate The absolute date on which the voucher expires and the content is no longer viewable.

ADOBE AIR 1
Developer Guide

258
The DRMAuthenticateEvent handler is responsible for gathering the required credentials (user name, password, and
type) and passing the values to the NetStream.setDRMAuthenticationCredentials() method for validation.
Each AIR application must provide some mechanism for obtaining user credentials. For example, the application
could provide a user with a simple user interface to enter the username and password values, and optionally the type
value as well. The AIR application should also provide a mechanism for handling and limiting the repeated authen-
tication attempts.

Contents

• “DRMAuthenticateEvent properties” on page 258
• “Creating a DRMAuthenticateEvent handler” on page 258
• “Creating an interface for retrieving user credentials” on page 259

DRMAuthenticateEvent properties
The DRMAuthenticateEvent class includes the following properties:

Creating a DRMAuthenticateEvent handler
The following example creates an event handler that passes a set of hard-coded authentication credentials to the
NetStream object that originated the event. (The code for playing the video and making sure that a successful
connection to the video stream has been made is not included here.)
var connection:NetConnection = new NetConnection();
connection.connect(null);

var videoStream:NetStream = new NetStream(connection);

videoStream.addEventListener(DRMAuthenticateEvent.DRM_AUTHENTICATE,
drmAuthenticateEventHandler)

private function drmAuthenticateEventHandler(event:DRMAuthenticateEvent):void
{

videoStream.setDRMAuthenticationCredentials("administrator", "password", "drm");
}

Property Description

authenticationType Indicates whether the supplied credentials are for authenticating against the FMRMS (“drm”) or a proxy server
(“proxy”). For example, the "proxy" option allows the application to authenticate against a proxy server if an
enterprise requires such a step before the user can access the Internet. Unless anonymous authentication is
used, after the proxy authentication, the user still must authenticate against the FMRMS in order to obtain the
voucher and play the content. You can use setDRMAuthenticationcredentials() a second time, with "drm"
option, to authenticate against the FMRMS.

header The encrypted content file header provided by the server. It contains information about the context of the
encrypted content.

netstream The NetStream object that initiated this event.

passwordPrompt A prompt for a password credential, provided by the server. The string can include instruction for the type of
password required.

urlPrompt A prompt for a URL string, provided by the server. The string can provide the location where the username and
password is sent.

usernamePrompt A prompt for a user name credential, provided by the server. The string can include instruction for the type of
user name required. For example, a content provider may require an e-mail address as the user name.

ADOBE AIR 1
Developer Guide

259
Creating an interface for retrieving user credentials
In the case where DRM content requires user authentication, the AIR application usually needs to retrieve the user’s
authentication credentials via a user interface.

Using the DRMErrorEvent class
AIR dispatches a DRMErrorEvent object when a NetStream object, trying to play a digital rights management
(DRM) encrypted file, encounters a DRM related error. In the case of invalid user credentials, the DRMAuthentica-
teEvent object handles the error by repeatedly dispatching until the user enters valid credentials, or the AIR appli-
cation denies further attempts. The application should listen to any other DRM error events to detect, identify, and
handle the DRM-related errors.
If a user enters valid credentials, they still may not be allowed to view the encrypted content, depending on the terms
of the DRM voucher. For example, if the user is attempting to view the content in an unauthorized application, that
is, an application that is not validated by the publisher of the encrypted content. In this case, a DRMErrorEvent
object is dispatched. The error events can also be fired if the content is corrupted or if the application’s version does
not match what is specified by the voucher. The application must provide appropriate mechanism for handling
errors.

Contents

• “DRMErrorEvent properties” on page 259
• “Creating a DRMErrorEvent handler” on page 261

DRMErrorEvent properties
The DRMErrorEvent class includes the following property:

subErrorID Indicates the minor error ID with more information about the underlying problem.

ADOBE AIR 1
Developer Guide

260
The following table lists the errors that the DRMErrorEvent object reports:

Major Error Code Minor Error Code Error Details Description

1001 0 User authentication failed.

1002 0 Flash Media Rights Management Server (FMRMS)
is not supporting Secure Sockets Layer (SSL).

1003 0 The content has expired and is no longer avail-
able for viewing.

1004 0 User authorization failure. This can occur, for
example, if the user has not purchased the
content and therefore does not have the rights to
view it.

1005 0 Server URL Cannot connect to the server.

1006 0 A client update is required, that is, Flash Media
Rights Management Server (FMRMS) requires a
new digital rights management (DRM) engine.

1007 0 Generic internal failure.

1008 Detailed decrypting
error code

An incorrect license key.

1009 0 FLV content is corrupted.

1010 0 publisherID:applicationID The ID of the viewing application does not match
a valid ID supported by the content publisher.

1011 0 Application version does not match what is spec-
ified in the policy.

1012 0 Verification of the voucher associated with the
encrypted content failed, indicating that the
content may be corrupted.

1013 0 The voucher associated with the encrypted
content could not be saved.

1014 0 Verification of the FLV header integrity failed,
indicating that the content may be corrupted.

Major Error Code Minor Error ID Error Details Description

3300 Adobe Policy Server
error code

The application detected an invalid voucher asso-
ciated with the content.

3301 0 User authentication failed.

3302 0 Secure Sockets Layer (SSL) is not supported by
the Flash Media Rights Management Server
(FMRMS).

3303 0 The content has expired and is no longer avail-
able for viewing.

3304 0 User authorization failure. This can occur even if
the user is authenticated, for example, if the user
has not purchased the rights to view the content.

3305 0 Server URL Cannot connect to the server.

ADOBE AIR 1
Developer Guide

261
Creating a DRMErrorEvent handler
The following example creates an event handler for the NetStream object that originated the event. It is called when
the NetStream encounters an error while attempting to play the DRM-encrypted content. Normally, when an appli-
cation encounters an error, it performs any number of clean-up tasks, informs the user of the error, and provides
options for solving the problem.

private function drmErrorEventHandler(event:DRMErrorEvent):void
{

trace(event.toString());
}

3306 0 A client update is required, that is, Flash Media
Rights Management Server (FMRMS) requires a
new digital rights management client engine.

3307 0 Generic internal digital rights management
failure.

3308 Detailed decrypting
error code

An incorrect license key.

3309 0 Flash video content is corrupted.

3310 0 publisherID:applicationID The ID of the viewing application does not match
a valid ID supported by the content publisher. In
other words, the viewing application is not
supported by the content provider.

3311 0 min=x:max=y Application version does not match what is spec-
ified in the voucher.

3312 0 Verification of the voucher associated with the
encrypted content failed, indicating that the
content may be corrupted.

3313 0 The voucher associated with the encrypted
content could not be saved to Microsafe.

3314 0 Verification of the FLV header integrity failed,
indicating that the content may be corrupted.

3315 Remote playback of the DRM protected content
is not allowed.

Major Error Code Minor Error ID Error Details Description

262

Part 9: Interacting with the operating
system

Application launching and exit options .263
Reading application settings .270
Working with runtime and operating system information. .272

263
Chapter 26: Application launching and
exit options

This section discusses options and considerations for launching an installed Adobe® AIR™ application, as well as
options and considerations for closing a running application.

Contents

• “Application invocation” on page 263
• “Capturing command line arguments” on page 264
• “Launching on login” on page 266
• “Browser invocation” on page 266
• “Application termination” on page 267

Application invocation
An AIR application is invoked when the user (or the operating system):
• Launches the application from the desktop shell.
• Uses the application as a command on a command line shell.
• Opens a type of file for which the application is the default opening application.
• (Mac OS X) clicks the application icon in the dock taskbar (whether or not the application is currently running).
• Chooses to launch the application from the installer (either at the end of a new installation process, or after
double-clicking the AIR file for an already installed application).
• Begins an update of an AIR application when the installed version has signaled that it is handling application
updates itself (by including a <customUpdateUI>true</customUpdateUI> declaration in the application
descriptor file).
• Visits a web page hosting a Flash badge or application that calls com.adobe.air.AIR launchApplication()
method specifying the identifying information for the AIR application. (The application descriptor must also
include a <allowBrowserInvocation>true</allowBrowserInvocation> declaration for browser invocation to
succeed.) See “Launching an installed AIR application from the browser” on page 293.
Whenever an AIR application is invoked, AIR dispatches an InvokeEvent object of type invoke through the
singleton NativeApplication object. To allow an application time to initialize itself and register an event listener,
invoke events are queued instead of discarded. As soon as a listener is registered, all the queued events are delivered.
Note: When an application is invoked using the browser invocation feature, the NativeApplication object only dispatches
an invoke event if the application is not already running. See “Launching an installed AIR application from the
browser” on page 293.

ADOBE AIR 1
Developer Guide

264
To receive invoke events,call the addEventListener() method of the NativeApplication object
(NativeApplication.nativeApplication). When an event listener registers for an invoke event, it also receives
all invoke events that occurred before the registration. Queued invoke events are dispatched one at a time on a
short interval after the call to addEventListener() returns. If a new invoke event occurs during this process, it
may be dispatched before one or more of the queued events. This event queuing allows you to handle any invoke
events that have occurred before your initialization code executes. Keep in mind that if you add an event listener later
in execution (after application initialization), it will still receive all invoke events that have occurred since the appli-
cation started.
Only one instance of an AIR application is started. When an already running application is invoked again, AIR
dispatches a new invoke event to the running instance. It is the responsibility of an AIR application to respond to
an invoke event and take the appropriate action (such as opening a new document window).
An InvokeEvent object contains any arguments passed to the application, as well as the directory from which the
application has been invoked. If the application was invoked because of a file-type association, then the full path to
the file is included in the command line arguments. Likewise, if the application was invoked because of an appli-
cation update, the full path to the update AIR file is provided.
Your application can handle invoke events by registering a listener with its NativeApplication object:
NativeApplication.nativeApplication.addEventListener(InvokeEvent.INVOKE, onInvokeEvent);

And defining an event listener:
var arguments:Array;
var currentDir:File;
public function onInvokeEvent(invocation:InvokeEvent):void {

arguments = invocation.arguments;
currentDir = invocation.currentDirectory;

}

Capturing command line arguments
The command line arguments associated with the invocation of an AIR application are delivered in the invoke event
dispatched by the NativeApplication object. The InvokeEvent.arguments property contains an array of the
arguments passed by the operating system when an AIR application is invoked. If the arguments contain relative file
paths, you can typically resolve the paths using the currentDirectory property.
The arguments passed to an AIR program are treated as white-space delimited strings, unless enclosed in double
quotes:

The InvokeEvent.currentDirectory property contains a File object representing the directory from which the
application was launched.
When an application is invoked because a file of a type registered by the application is opened, the native path to the
file is included in the command line arguments as a string. (Your application is responsible for opening or
performing the intended operation on the file.) Likewise, when an application is programmed to update itself (rather
than relying on the standard AIR update user interface), the native path to the AIR file is included when a user
double-clicks an AIR file containing an application with a matching application ID.

Arguments Array
tick tock {tick,tock}
tick "tick tock" {tick,tick tock}
"tick" “tock” {tick,tock}
\"tick\" \"tock\" {"tick","tock"}

ADOBE AIR 1
Developer Guide

265
You can access the file using the resolve() method of the currentDirectory File object:
if((invokeEvent.currentDirectory != null)&&(invokeEvent.arguments.length > 0)){

dir = invokeEvent.currentDirectory;
fileToOpen = dir.resolvePath(invokeEvent.arguments[0]);

}

You should also validate that an argument is indeed a path to a file.

Example: Invocation event log
The following example demonstrates how to register listeners for and handle the invoke event. The example logs all
the invocation events received and displays the current directory and command line arguments.
Note: To create the following example using Adobe® Flash® CS3, first create a Flash File (Adobe AIR). In the ActionScript
3.0 Settings panel (File > Publish Settings... > Settings button) enter the name InvokeEventLogExample in the Document
class field. Save the FLA file with the name InvokeEventLogExample.fla. Next create an ActionScript File in the same
folder. Enter the following code into the ActionScript file and then save the file with the name InvokeEventLogEx-
ample.as.
package
{

import flash.display.Sprite;
import flash.events.InvokeEvent;
import flash.desktop.NativeApplication;
import flash.text.TextField;

public class InvokeEventLogExample extends Sprite
{

public var log:TextField;

public function InvokeEventLogExample()
{

log = new TextField();
log.x = 15;
log.y = 15;
log.width = 520;
log.height = 370;
log.background = true;

addChild(log);

NativeApplication.nativeApplication.addEventListener(InvokeEvent.INVOKE,
onInvoke);

}

public function onInvoke(invokeEvent:InvokeEvent):void
{

var now:String = new Date().toTimeString();
logEvent("Invoke event received: " + now);

if (invokeEvent.currentDirectory != null)
{

logEvent("Current directory=" + invokeEvent.currentDirectory.nativePath);
}
else
{

logEvent("--no directory information available--");
}

if (invokeEvent.arguments.length > 0)

ADOBE AIR 1
Developer Guide

266
{
logEvent("Arguments: " + invokeEvent.arguments.toString());

}
else
{

logEvent("--no arguments--");
}

}

public function logEvent(entry:String):void
{

log.appendText(entry + "\n");
trace(entry);

}
}

}

Launching on login
An AIR application can be set to launch automatically when the current user logs in by setting
NativeApplication.nativeApplication.startAtLogin=true. Once set, the application automatically starts
whenever the user logs in. It continues to launch at start until the setting is changed to false, the user manually
changes the setting through the operating system, or the application is uninstalled. Launching on login is a run-time
setting.
Note: The application does not launch when the computer system starts. It launches when the user logs in. The setting
only applies to the current user. Also, the application must be installed to successfully set the startAtLogin property to
true. An error is thrown if the property is set when an application is not installed (such as when it is launched with
ADL).

Browser invocation
Using the browser invocation feature, a website can launch an installed AIR application to be launched from the
browser. Browser invocation is only permitted if the application descriptor file sets allowBrowserInvocation to
true:
<allowBrowserInvocation>true</allowBrowserInvocation>

For more information on the application descriptor file, see “Setting AIR application properties” on page 45.
When the application is invoked via the browser, the application’s NativeApplication object dispatches a BrowserIn-
vokeEvent object.
To receive BrowserInvokeEvent events, call the addEventListener() method of the NativeApplication object
(NativeApplication.nativeApplication) in the AIR application. When an event listener registers for a
BrowserInvokeEvent event, it also receives all BrowserInvokeEvent events that occurred before the registration.
These events are dispatched after the call to addEventListener() returns, but not necessarily before other
BrowserInvokeEvent events that might be received after registration. This allows you to handle BrowserInvokeEvent
events that have occurred before your initialization code executes (such as when the application was initially invoked
from the browser). Keep in mind that if you add an event listener later in execution (after application initialization)
it still receives all BrowserInvokeEvent events that have occurred since the application started.

ADOBE AIR 1
Developer Guide

267
The BrowserInvokeEvent object includes the following properties:

If you use the browser invocation feature, be sure to consider security implications. When a website launches an AIR
application, it can send data via the arguments property of the BrowserInvokeEvent object. Be careful using this data
in any sensitive operations, such as file or code loading APIs. The level of risk depends on what the application is
doing with the data. If you expect only a specific website to invoke the application, the application should check the
securityDomain property of the BrowserInvokeEvent object. You can also require the website invoking the appli-
cation to use HTTPs, which you can verify by checking the isHTTPS property of the BrowserInvokeEvent object.
The application should validate the data passed in. For example, if an application expects to be passed URLs to a
specific domain, it should validate that the URLs really do point to that domain. This can prevent an attacker from
tricking the application into sending it sensitive data.
No application should use BrowserInvokeEvent arguments that might point to local resources. For example, an
application should not create File objects based on a path passed from the browser. If remote paths are expected to
be passed from the browser, the application should ensure that the paths do not use the file:// protocol instead of
a remote protocol.
For details on invoking an application from the browser, see “Launching an installed AIR application from the
browser” on page 293.

Application termination
The quickest way to terminate an application is to call NativeApplication.nativeApplication.exit() and this
works fine when your application has no data to save or resources to clean up. Calling exit() closes all windows
and then terminates the application. However, to allow windows or other components of your application to
interrupt the termination process, perhaps to save vital data, dispatch the proper warning events before calling
exit().

Property Description

arguments An array of arguments (strings) to pass to the application.

isHTTPS Whether the content in the browser uses the https URL scheme (true) or not (false).

isUserEvent Whether the browser invocation resulted in a user event (such as a mouse click). In AIR 1.0, this is always set to
true; AIR requires a user event to the browser invocation feature.

sandboxType The sandbox type for the content in the browser. Valid values are defined the same as those that can be used
in the Security.sandboxType property, and can be one of the following:

• Security.APPLICATION — The content is in the application security sandbox.

• Security.LOCAL_TRUSTED — The content is in the local-with-filesystem security sandbox.

• Security.LOCAL_WITH_FILE — The content is in the local-with-filesystem security sandbox.

• Security.LOCAL_WITH_NETWORK — The content is in the local-with-networking security
sandbox.

• Security.REMOTE — The content is in a remote (network) domain.

securityDomain The security domain for the content in the browser, such as "www.adobe.com" or
"www.example.org". This property is only set for content in the remote security sandbox (for content
from a network domain). It is not set for content in a local or application security sandbox.

ADOBE AIR 1
Developer Guide

268
Another consideration in gracefully shutting down an application is providing a single execution path, no matter
how the shut-down process starts. The user (or operating system) can trigger application termination in the
following ways:
• By closing the last application window when NativeApplication.nativeApplication.autoExit is true.
• By selecting the application exit command from the operating system; for example, when the user chooses the
exit application command from the default menu. This only happens on Mac OS; Windows does not provide an
application exit command through system chrome.
• By shutting down the computer.
When an exit command is mediated through the operating system by one of these routes, the NativeApplication
dispatches an exiting event. If no listeners cancel the exiting event, any open windows are closed. Each window
dispatches a closing and then a close event. If any of the windows cancel the closing event, the shut-down
process stops.
If the order of window closure is an issue for your application, listen for the exiting event from the NativeAppli-
cation and close the windows in the proper order yourself. This might be the case, for example, if you have a
document window with tool palettes. It might be inconvenient, or worse, if the system closed the palettes, but the
user decided to cancel the exit command to save some data. On Windows, the only time you will get the exiting
event is after closing the last window (when the autoExit property of the NativeApplication object is set to true).
To provide consistent behavior on all platforms, whether the exit sequence is initiated via operating system chrome,
menu commands, or application logic, observe the following good practices for exiting the application:
1 Always dispatch an exiting event through the NativeApplication object before calling exit() in application
code and check that another component of your application doesn’t cancel the event.

public function applicationExit():void {
var exitingEvent:Event = new Event(Event.EXITING, false, true);
NativeApplication.nativeApplication.dispatchEvent(exitingEvent);
if (!exitingEvent.isDefaultPrevented()) {

NativeApplication.nativeApplication.exit();
}

}

2 Listen for the application exiting event from the NativeApplication.nativeApplication object and, in
the handler, close any windows (dispatching a closing event first). Perform any needed clean-up tasks, such as
saving application data or deleting temporary files, after all windows have been closed. Only use synchronous
methods during cleanup to ensure that they finish before the application quits.

If the order in which your windows are closed doesn’t matter, then you can loop through the
NativeApplication.nativeApplication.openedWindows array and close each window in turn. If order
does matter, provide a means of closing the windows in the correct sequence.
private function onExiting(exitingEvent:Event):void {

var winClosingEvent:Event;
for each (var win:NativeWindow in NativeApplication.nativeApplication.openedWindows)

{
winClosingEvent = new Event(Event.CLOSING,false,true);
win.dispatchEvent(winClosingEvent);
if (!winClosingEvent.isDefaultPrevented()) {

win.close();
} else {

exitingEvent.preventDefault();
}

}

if (!exitingEvent.isDefaultPrevented()) {
//perform cleanup

ADOBE AIR 1
Developer Guide

269
}
}

3 Windows should always handle their own clean up by listening for their own closing events.
4 Only use one exiting listener in your application since handlers called earlier cannot know whether subsequent
handlers will cancel the exiting event (and it would be unwise to rely on the order of execution).

See also
• “Setting AIR application properties” on page 45
• “Presenting a custom application update user interface” on page 300

270
Chapter 27: Reading application settings

At runtime, you can get properties of the application descriptor file as well as the publisher ID for an application.
These are set in the applicationDescriptor and publisherID properties of the NativeApplication object.

Contents

• “Reading the application descriptor file” on page 270
• “Getting the application and publisher identifiers” on page 270

Reading the application descriptor file
You can read the application descriptor file of the currently running application, as an XML object, by getting the
applicationDescriptor property of the NativeApplication object, as in the following:
var appXml:XML = NativeApplication.nativeApplication.applicationDescriptor;

You can then access the application descriptor data as an XML (E4X) object, as in the following:
var appXml:XML = NativeApplication.nativeApplication.applicationDescriptor;
var ns:Namespace = appXml.namespace();
var appId = appXml.ns::id[0];
var appVersion = appXml.ns::version[0];
var appName = appXml.ns::filename[0];
air.trace("appId:", appId);
air.trace("version:", appVersion);
air.trace("filename:", appName);

For more information, see “The application descriptor file structure” on page 45.

Getting the application and publisher identifiers
The application and publisher ids together uniquely identify an AIR application. You specify the application ID in
the <id> element of the application descriptor. The publisher ID is derived from the certificate used to sign the AIR
installation package.
The application ID can be read from the NativeApplication object’s id property, as illustrated in the following code:
trace(NativeApplication.nativeApplication.applicationID);

The publisher ID can be read from the NativeApplication publisherID property:
trace(NativeApplication.nativeApplication.publisherID);

Note: When an AIR application is run with ADL, it does not have a publisher ID unless one is temporarily assigned
using the -pubID flag on the ADL command line.
The publisher ID for an installed application can also be found in the META-INF/AIR/publisherid file within the
application install directory.

ADOBE AIR 1
Developer Guide

271
See also
• “The application descriptor file structure” on page 45
• “About AIR publisher identifiers” on page 295

272
Chapter 28: Working with runtime and
operating system information

This section discusses ways that an AIR application can manage operating system file associations, detect user
activity, and get information about the Adobe® AIR™ runtime.

Contents

• “Managing file associations” on page 272
• “Getting the runtime version and patch level” on page 273
• “Detecting AIR capabilities” on page 273
• “Tracking user presence” on page 273

Managing file associations
Associations between your application and a file type must be declared in the application descriptor. During the
installation process, the AIR application installer associates the AIR application as the default opening application
for each of the declared file types, unless another application is already the default. The AIR application install
process does not override an existing file type association. To take over the association from another application, call
the NativeApplication.setAsDefaultApplication() method at run time.
It is a good practice to verify that the expected file associations are in place when your application starts up. This is
because the AIR application installer does not override existing file associations, and because file associations on a
user’s system can change at any time. When another application has the current file association, it is also a polite
practice to ask the user before taking over an existing association.
The following methods of the NativeApplication class let an application manage file associations. Each of the
methods takes the file type extension as a parameter:

AIR can only manage associations for the file types originally declared in the application descriptor. You cannot get
information about the associations of a non-declared file type, even if a user has manually created the association
between that file type and your application. Calling any of the file association management methods with the
extension for a file type not declared in the application descriptor causes the application to throw a runtime
exception.
For information about declaring file types in the application descriptor, see “Declaring file type associations”
on page 50.

Method Description

isSetAsDefaultApplication() Returns true if the AIR application is currently associated with the specified file type.

setAsDefaultApplication() Creates the association between the AIR application and the open action of the file type.

removeAsDefaultApplication() Removes the association between the AIR application and the file type.

getDefaultApplication() Reports the path of the application that is currently associated with the file type.

ADOBE AIR 1
Developer Guide

273
Getting the runtime version and patch level
The NativeApplication object has a runtimeVersion property, which is the version of the runtime in which the
application is running (a string, such as "1.0.5"). The NativeApplication object also has a runtimePatchLevel
property, which is the patch level of the runtime (a number, such as 2960). The following code uses these properties:

trace(NativeApplication.nativeApplication.runtimeVersion);
trace(NativeApplication.nativeApplication.runtimePatchLevel);

Detecting AIR capabilities
For a file that is bundled with the Adobe AIR application, the Security.sandboxType property is set to the value
defined by the Security.APPLICATION constant. You can load content (which may or may not contain APIs
specific to AIR) based on whether a file is in the Adobe AIR security sandbox, as illustrated in the following code:
if (Security.sandboxType == Security.APPLICATION)
{

// Load SWF that contains AIR APIs
}
else
{

// Load SWF that does not contain AIR APIs
}

All resources that are not installed with the AIR application are assigned to the same security sandboxes as would be
assigned by Adobe® Flash® Player in a web browser. Remote resources are put in sandboxes according to their source
domains, and local resources are put in the local-with-networking, local-with-filesystem, or local-trusted sandbox.
You can check if the Capabilities.playerType static property is set to "Desktop" to see if content is executing
in the runtime (and not running in Flash Player running in a browser).
For more information, see “AIR security” on page 26.

Tracking user presence
The NativeApplication object dispatches two events that help you detect when a user is actively using a computer. If
no mouse or keyboard activity is detected in the interval determined by the NativeApplication.idleThreshold
property, the NativeApplication dispatches a userIdle event. When the next keyboard or mouse input occurs, the
NativeApplication object dispatches a userPresent event. The idleThreshold interval is measured in seconds and
has a default value of 300 (5 minutes). You can also get the number of seconds since the last user input from the
NativeApplication.nativeApplication.lastUserInput property.
The following lines of code set the idle threshold to 2 minutes and listen for both the userIdle and userPresent
events:
NativeApplication.nativeApplication.idleThreshold = 120;
NativeApplication.nativeApplication.addEventListener(Event.USER_IDLE,
function(event:Event) {

trace("Idle");
});

ADOBE AIR 1
Developer Guide

274
NativeApplication.nativeApplication.addEventListener(Event.USER_PRESENT,
function(event:Event) {

trace("Present");
});

Note: Only a single userIdle event is dispatched between any two userPresent events.

275

Part 10: Networking and
communications

Monitoring network connectivity. .276
URL requests and networking. .279
Inter-application communication. .284

276
Chapter 29: Monitoring network
connectivity

Adobe® AIR™ provides the means to check for changes to the network connectivity of the computer on which an AIR
application is installed. This information is useful if an application uses data obtained from the network. Also, an
application can check the availability of a network service.

Contents

• “Detecting network connectivity changes” on page 276
• “Service monitoring basics” on page 277
• “Detecting HTTP connectivity” on page 277
• “Detecting socket connectivity” on page 277

Detecting network connectivity changes
Your AIR application can run in environments with uncertain and changing network connectivity. To help an
application manage connections to online resources, Adobe AIR sends a network change event whenever a network
connection becomes available or unavailable. The application’s NativeApplication object dispatches the network
change event. To react to this event, add a listener:
NativeApplication.nativeApplication.addEventListener(Event.NETWORK_CHANGE,
onNetworkChange);

And define an event handler function:
function onNetworkChange(event:Event)
{

//Check resource availability
}

The Event.NETWORK_CHANGE event does not indicate a change in all network activity, but only that a network
connection has changed. AIR does not attempt to interpret the meaning of the network change. A networked
computer may have many real and virtual connections, so losing a connection does not necessarily mean losing a
resource. On the other hand, new connections do not guarantee improved resource availability, either. Sometimes a
new connection can even block access to resources previously available (for example, when connecting to a VPN).
In general, the only way for an application to determine whether it can connect to a remote resource is to try it. To
this end, the service monitoring frameworks in the air.net package provide AIR applications with an event-based
means of responding to changes in network connectivity to a specified host.
Note: The service monitoring framework detects whether a server responds acceptably to a request. This does not
guarantee full connectivity. Scalable web services often use caching and load-balancing appliances to redirect traffic to
a cluster of web servers. In this situation, service providers only provide a partial diagnosis of network connectivity.

ADOBE AIR 1
Developer Guide

277
Service monitoring basics
The service monitor framework, separate from the AIR framework, resides in the file servicemonitor.swc. In order
to use the framework, the servicemonitor.swc file must be included in your build process.
Important: To use these classes in ActionScript, drag the ServiceMonitorShim component from the Components panel
to the Library and then add the following import statement to your ActionScript 3.0 code:
import air.net.*;

The ServiceMonitor class implements the framework for monitoring network services and provides a base function-
ality for service monitors. By default, an instance of the ServiceMonitor class dispatches events regarding network
connectivity. The ServiceMonitor object dispatches these events when the instance is created and whenever a
network change is detected by Adobe AIR. Additionally, you can set the pollInterval property of a Service-
Monitor instance to check connectivity at a specified interval in milliseconds, regardless of general network connec-
tivity events. A ServiceMonitor object does not check network connectivity until the start() method is called.
The URLMonitor class, a subclass of the ServiceMonitor class, detects changes in HTTP connectivity for a specified
URLRequest.
The SocketMonitor class, also a subclass of the ServiceMonitor class, detects changes in connectivity to a specified
host at a specified port.

Detecting HTTP connectivity
The URLMonitor class determines if HTTP requests can be made to a specified address at port 80 (the typical port
for HTTP communication). The following code uses an instance of the URLMonitor class to detect connectivity
changes to the Adobe website:
import air.net.URLMonitor;
import flash.net.URLRequest;
import flash.events.StatusEvent;

var monitor:URLMonitor;
monitor = new URLMonitor(new URLRequest('http://www.adobe.com'));
monitor.addEventListener(StatusEvent.STATUS, announceStatus);
monitor.start();

function announceStatus(e:StatusEvent):void {
trace("Status change. Current status: " + monitor.available);

}

Detecting socket connectivity
AIR applications can also use socket connections for push-model connectivity. Firewalls and network routers
typically restrict network communication on unauthorized ports for security reasons. For this reason, developers
must consider that users may not have the capability of making socket connections.
Similar to the URLMonitor example, the following code uses an instance of the SocketMonitor class to detect
connectivity changes to a socket connection at 6667, a common port for IRC:
import air.net.ServiceMonitor;
import flash.events.StatusEvent;

ADOBE AIR 1
Developer Guide

278
socketMonitor = new SocketMonitor('www.adobe.com',6667);
socketMonitor.addEventListener(StatusEvent.STATUS, socketStatusChange);
socketMonitor.start();

function announceStatus(e:StatusEvent):void {
trace("Status change. Current status: " + socketMonitor.available);

}

279
Chapter 30: URL requests and networking

The new Adobe AIR functionality related to specifying URL requests is not available to SWF content running in the
browser. This functionality is only available to content in the application security sandbox. This section describes the
URLRequest features in the runtime, and it discusses networking API changes AIR content.
 For other information on using ActionScript™ 3.0 networking and communications capabilities, see Programming
ActionScript 3.0, delivered with both Adobe® Flash® CS3 and Adobe® Flex™ Builder™ 3.

Contents

• Using the URLRequest class
• Changes to the URLStream class
• Opening a URL in the default system web browser

Using the URLRequest class
The URLRequest class lets you define more than simply the URL string. AIR adds some new properties to the
URLRequest class, which are only available to AIR content running in the application security sandbox. Content in
the runtime can define URLs using new URL schemes (in addition to standard schemes like file and http).

Contents

• “URLRequest properties” on page 279
• “Setting URLRequest defaults” on page 280
• “Using AIR URL schemes in URLs” on page 281
• “Prohibited URL schemes” on page 282

URLRequest properties
The URLRequest class includes the following properties which are available to content only in the AIR application
security sandbox:

Property Description

followRedirects Specifies whether redirects are to be followed (true, the default value) or not (false). This is only supported
in the runtime.

manageCookies Specifies whether the HTTP protocol stack should manage cookies (true, the default value) or not (false)
for this request. This is only supported in the runtime.

authenticate Specifies whether authentication requests should be handled (true) for this request. This is only supported
in the runtime. The default is to authenticate requests—this may cause an authentication dialog box to be
displayed if the server requires credentials to be shown. You can also set the user name and password—see
“Setting URLRequest defaults” on page 280.

ADOBE AIR 1
Developer Guide

280
The following properties of a URLRequest object can be set by content in any sandbox (not just the AIR application
security sandbox):

Note: The HTMLLoader class has related properties for settings pertaining to content loaded by an HTMLLoader object.
For details, see “About the HTMLLoader class” on page 214.

Setting URLRequest defaults
The URLRequestDefaults class lets you define default settings for URLRequest objects. For example, the following
code sets the default values for the manageCookies and useCache properties:
URLRequestDefaults.manageCookies = false;
URLRequestDefaults.useCache = false;

The URLRequestDefaults class includes a setLoginCredentialsForHost() method that lets you specify a default
user name and password to use for a specific host. The host, which is defined in the hostname parameter of the
method, can be a domain, such as "www.example.com", or a domain and a port number, such as
"www.example.com:80". Note that "example.com", "www.example.com", and "sales.example.com" are each
considered unique hosts.
These credentials are only used if the server requires them. If the user has already authenticated (for example, by
using the authentication dialog box), then you cannot change the authenticated user by calling the
setLoginCredentialsForHost() method.
For example, the following code sets the default user name and password to use at www.example.com:
URLRequestDefaults.setLoginCredentialsForHost("www.example.com", "Ada", "love1816$X");

Each property of URLRequestDefaults settings applies to only the application domain of the content setting the
property. However, the setLoginCredentialsForHost() method applies to content in all application domains
within an AIR application. This way, an application can log in to a host and have all content within the application
be logged in with the specified credentials.

cacheResponse Specifies whether successful response data should be cached for this request. This is only supported in the
runtime. The default is to cache the response (true).

useCache Specifies whether the local cache should be consulted before this URLRequest fetches data. This is only
supported in the runtime. The default (true) is to use the local cached version, if available.

userAgent Specifies the user-agent string to be used in the HTTP request.

Property Description

contentType The MIME content type of any data sent with the URL request.

data An object containing data to be transmitted with the URL request.

digest A secure "digest" to a cached file to track Adobe® Flash® Player cache.

method Controls the HTTP request method, such as a GET or POST operation. (Content running in the AIR application
security domain can specify strings other than "GET" or "POST" as the method property. Any HTTP verb
is allowed and "GET" is the default method. See “AIR security” on page 26.)

requestHeaders The array of HTTP request headers to be appended to the HTTP request.

url Specifies the URL to be requested.

Property Description

ADOBE AIR 1
Developer Guide

281
For more information, see the URLRequestDefaults class in the ActionScript 3.0 Language Reference for Adobe
AIR (http://www.adobe.com/go/learn_air_aslr).

Using AIR URL schemes in URLs
The standard URL schemes, such as the following, are available when defining URLs in any security sandbox in AIR:

http: and https:

Use these as you would use them in a web browser.

file:

Use this to specify a path relative to the root of the file system. For example:
file:///c:/AIR Test/test.txt

You can also use the following schemes when defining a URL for content running in the application security
sandbox:

app:

Use this to specify a path relative to the root directory of the installed application (the directory that contains the
application descriptor file for the installed application). For example, the following path points to a resources subdi-
rectory of the directory of the installed application:

app:/resources

When running in the ADL application, the application resource directory is set to the directory that contains the
application descriptor file.

app-storage:

Use this to specify a path relative to the application store directory. For each installed application, AIR defines a
unique application store directory for each user, which is a useful place to store data specific to that application. For
example, the following path points to a prefs.xml file in a settings subdirectory of the application store directory:

app-storage:/settings/prefs.xml

The application storage directory location is based on the user name, the application ID, and the publisher ID:
• On Mac OS—In:

/Users/user name/Library/Preferences/applicationID.publisherID/Local Store/

For example:
/Users/babbage/Library/Preferences/com.example.TestApp.02D88EEED35F84C264A183921344EEA3
53A629FD.1/Local Store

• On Windows—In the documents and Settings directory, in:
user name/Application Data/applicationID.publisherID/Local Store/

For example:
C:\Documents and Settings\babbage\Application
Data\com.example.TestApp.02D88EEED35F84C264A183921344EEA353A629FD.1\Local Store

http://www.adobe.com/go/learn_flex3_aslr
http://www.adobe.com/go/learn_flex3_aslr

ADOBE AIR 1
Developer Guide

282
The URL (and url property) for a File object created with File.applicationStorageDirectory uses the app-
storage URL scheme, as in the following:
var dir:File = File.applicationStorageDirectory;
dir = dir.resolvePath("preferences");
trace(dir.url); // app-storage:/preferences

Using URL schemes in AIR

You can use a URLRequest object that uses any of these URL schemes to define the URL request for a number of
different objects, such as a FileStream or a Sound object. You can also use these schemes in HTML content running
in AIR; for example, you can use them in the src attribute of an img tag.
However, you can only use these AIR-specific URL schemes (app: and app-storage:) in content in the application
security sandbox. For more information, see “AIR security” on page 26.

Prohibited URL schemes
Some APIs allow you to launch content in a web browser. For security reasons, some URL schemes are prohibited
when using these APIs in AIR. The list of prohibited schemes depends on the security sandbox of the code using the
API. For details, see “Opening a URL in the default system web browser” on page 282.

Changes to the URLStream class
The URLStream class provides low-level access to downloading data from URLs. In the runtime, the URLStream
class includes a new event: httpResponseStatus. Unlike the httpStatus event, the httpResponseStatus event
is delivered before any response data. The httpResponseStatus event (defined in the HTTPStatusEvent class)
includes a responseURL property, which is the URL that the response was returned from, and a responseHeaders
property, which is an array of URLRequestHeader objects representing the response headers that the response
returned.

Opening a URL in the default system web browser
You can use the navigateToURL() function to open a URL in the default system web browser. For the URLRequest
object you pass as the request parameter of this function, only the url property is used.
When using the navigateToURL() function, URL schemes are permitted based on the security sandbox of the code
calling the navigateToURL() function.
Some APIs allow you to launch content in a web browser. For security reasons, some URL schemes are prohibited
when using these APIs in AIR. The list of prohibited schemes depends on the security sandbox of the code using the
API. (For details on security sandboxes, see “AIR security” on page 26.)

Application sandbox

The following schemes are allowed. Use these as you would use them in a web browser.
• http:

• https:

• file:

ADOBE AIR 1
Developer Guide

283
• mailto: — AIR directs these requests to the registered system mail application
• app:

• app-storage:

All other URL schemes are prohibited.

Remote sandbox

The following schemes are allowed. Use these as you would use them in a web browser.
• http:

• https:

• mailto: — AIR directs these requests to the registered system mail application
All other URL schemes are prohibited.

Local-with-file sandbox

The following schemes are allowed. Use these as you would use them in a web browser.
• file:

• mailto: — AIR directs these requests to the registered system mail application
All other URL schemes are prohibited.

Local-with-networking sandbox

The following schemes are allowed. Use these as you would use them in a web browser.
• http:

• https:

• mailto: — AIR directs these requests to the registered system mail application
All other URL schemes are prohibited.

Local-trusted sandbox

The following schemes are allowed. Use these as you would use them in a web browser.
• file:

• http:

• https:

• mailto: — AIR directs these requests to the registered system mail application
All other URL schemes are prohibited.

284

Chapter 31: Inter-application
communication

The LocalConnection class enables communications between Adobe® AIR™ applications, as well as among AIR
applications and SWF content running in the browser.
The connect() method of the LocalConnection class uses a connectionName parameter to identify applications.
In content running in the AIR application security sandbox (content installed with the AIR application), AIR uses
the string app# followed by the application ID followed by a dot (.) character, followed by the publisher ID for the
AIR application (defined in the application descriptor file) in place of the domain used by SWF content running in
the browser. For example, a connectionName for an application with the application ID com.example.air.MyApp,
the connectionName and the publisher ID B146A943FBD637B68C334022D304CEA226D129B4 resolves to
"app#com.example.air.MyApp:connectionName.B146A943FBD637B68C334022D304CEA226D129B4". (For
more information, see “Defining the basic application information” on page 46 and “Getting the application and
publisher identifiers” on page 270.)

285

Part 11: Distributing and updating
applications

Distributing, Installing, and Running AIR applications .286
Updating AIR applications .299

286
Chapter 32: Distributing, Installing, and
Running AIR applications

AIR applications are distributed as a single AIR installation file, which contains the application code and all assets.
You can distribute this file through any of the typical means, such as by download, by e-mail, or by physical media
such as a CD-ROM. Users can install the application by double-clicking the AIR file. You can use the seamless install
feature, which lets users install your AIR application (and Adobe® AIR™, if needed) by clicking a single link on a web
page.
Before it can be distributed, an AIR installation file must be packaged and signed with a code-signing certificate and
private key. Digitally signing the installation file provides assurance that your application has not been altered since
it was signed. In addition, a trusted certificate authority, such as Verisign or Thawte, issued the digital certificate,
your users can confirm your identity as the publisher and signer. The AIR file is signed when the application is
packaged with the AIR Developer Tool (ADT).
For information about how to package an application into an AIR file using the AIR update for Flash, see “Creating
AIR application and installer files” on page 17.
For information about how to package an application into an AIR file using the Adobe® AIR™ SDK, see “Packaging
an AIR installation file using the AIR Developer Tool (ADT)” on page 9.

Contents

• “Installing and running an AIR application from the desktop” on page 286
• “Installing and running AIR applications from a web page” on page 287
• “Digitally signing an AIR file” on page 294

Installing and running an AIR application from the
desktop
You can simply send the AIR file to the recipient. For example, you can send the AIR file as an e-mail attachment or
as a link in a web page.
Once the user downloads the AIR application, the user follows these instructions to install it:
1 Double-click the AIR file.

The Adobe AIR must already be installed on the computer.
2 In the Installation window, leave the default settings selected, and then click Continue.

In Windows, AIR automatically does the following:
• Installs the application into the Program Files directory
• Creates a desktop shortcut for application
• Creates a Start Menu shortcut
• Adds an entry for application in the Add / Remove Programs Control Panel
In the Mac OS, by default the application is added to the Applications directory.

ADOBE AIR 1
Developer Guide

287
If the application is already installed, the installer gives the user the choice of opening the existing version of the
application or updating to the version in the downloaded AIR file. The installer identifies the application using
the application ID and publisher ID in the AIR file.

3 When the installation is complete, click Finish.
On Mac OS, to install an updated version of an application, the user needs adequate system privileges to install to
the application directory. On Windows, a user needs administrative privileges.
An application can also install a new version via ActionScript or JavaScript. For more information, see “Updating
AIR applications” on page 299.
Once the AIR application is installed, a user simply double-clicks the application icon to run it, just like any other
desktop application.
• On Windows, double-click the application’s icon (which is either installed on the desktop or in a folder) or select
the application from the Start menu.
• On Mac OS, double-click the application in the folder in which it was installed. The default installation directory
is the /Applications directory.
The AIR seamless install feature lets a user install an AIR application by clicking a link in a web page. The AIR browser
invocation features lets a user run an installed AIR application by clicking a link in a web page. These features are
described in the following section.

Installing and running AIR applications from a web
page
The seamless install feature lets you embed a SWF file in a web page that lets the user install an AIR application from
the browser. If the runtime is not installed, the seamless install feature installs the runtime. The seamless install
feature lets users install the AIR application without saving the AIR file to their computer. Included in the is a
badge.swf file, which lets you easily use the seamless install feature. For details, see “Using the badge.swf file to install
an AIR application” on page 288.

Contents

• “About customizing the seamless install badge.swf ” on page 287
• “Using the badge.swf file to install an AIR application” on page 288
• “Loading the air.swf file” on page 290
• “Checking if the runtime is installed” on page 291
• “Checking from a web page if an AIR application is installed” on page 291
• “Installing an AIR application from the browser” on page 292
• “Launching an installed AIR application from the browser” on page 293

About customizing the seamless install badge.swf
In addition to using the badge.swf file provided with the SDK, you can create your own SWF file for use in a browser
page. Your custom SWF file can interact with the runtime in the following ways:
• It can install an AIR application. See “Installing an AIR application from the browser” on page 292.
• It can check to see if a specific AIR application is installed. See “Checking from a web page if an AIR application
is installed” on page 291.
• It can check to see if the runtime is installed. See “Checking if the runtime is installed” on page 291.

ADOBE AIR 1
Developer Guide

288
• It can launch an installed AIR application on the user’s system. See “Launching an installed AIR application from
the browser” on page 293.
These capabilities are all provided by calling APIs in a SWF file hosted at adobe.com: air.swf. This section describes
how to use and customize the badge.swf file and how to call the air.swf APIs from your own SWF file.
Additionally, a SWF file running in the browser can communicate with a running AIR application by using the
LocalConnection class. For more information, see “Inter-application communication” on page 284.
Important: The features described in this section (and the APIs in the air.swf file) require the end user to have Adobe®
Flash® Player 9 update 3 installed in the web browser. You can write code to check the installed version of Flash Player
and provide an alternate interface to the user if the required version of Flash Player is not installed. For instance, if an
older version of Flash Player is installed, you could provide a link to the download version of the AIR file (instead of
using the badge.swf file or the air.swf API to install an application).

Using the badge.swf file to install an AIR application
Included in the is a badge.swf file which lets you easily use the seamless install feature. The badge.swf can install the
runtime and an AIR application from a link in a web page. The badge.swf file and its source code are provided to you
for distribution on your website.
The instructions in this section provide information on setting parameters of the badge.swf file provided by Adobe.
We also provide the source code for the badge.swf file, which you can customize.

Embedding the badge.swf file in a web page
1 Locate the following files, provided in the samples/badge directory of the, and add them to your web server.

• badge.swf
• default_badge.html
• AC_RunActiveContent.js

2 Open the default_badge.html page in a text editor.
3 In the default_badge.html page, in the AC_FL_RunContent() JavaScript function, adjust the FlashVars
parameter definitions for the following:

4 The minimum size of the badge.swf file is 217 pixels wide by 180 pixels high. Adjust the values of the width and
height parameters of the AC_FL_RunContent() function to suit your needs.
5 Rename the default_badge.html file and adjust its code (or include it in another HTML page) to suit your needs.
You can also edit and recompile the badge.swf file. For details, see “Modifying the badge.swf file” on page 289.

Parameter Description

appname The name of the application, displayed by the SWF file when the runtime is not installed.

appurl (Required). The URL of the AIR file to be downloaded. You must use an absolute, not relative, URL.

airversion (Required). For the 1.0 version of the runtime, set this to 1.0.

imageurl The URL of the image (optional) to display in the badge.

buttoncolor The color of the download button (specified as a hex value, such as FFCC00).

messagecolor The color of the text message displayed below the button when the runtime is not installed (specified as a hex
value, such as FFCC00).

ADOBE AIR 1
Developer Guide

289
Installing the AIR application from a seamless install link in a web page

Once you have added the seamless install link to a page, the user can install the AIR application by clicking the link
in the SWF file.
1 Navigate to the HTML page in a web browser that has Flash Player (version 9 update 3 or later) installed.
2 In the web page, click the link in the badge.swf file.

• If you have installed the runtime, skip to the next step.
• If you have not installed the runtime, a dialog box is displayed asking whether you would like to install it.
Install the runtime (see “Adobe AIR installation” on page 2), and then proceed with the next step.

3 In the Installation window, leave the default settings selected, and then click Continue.
On a Windows computer, AIR automatically does the following:
• Installs the application into c:\Program Files\
• Creates a desktop shortcut for application
• Creates a Start Menu shortcut
• Adds an entry for application in the Add/Remove Programs Control Panel
On Mac OS, the installer adds the application to the Applications directory (for example, in the /Applications
directory in Mac OS).

4 Select the options you want, and then click the Install button.
5 When the installation is complete, click Finish.

Modifying the badge.swf file

The provides the source files for the badge.swf file. These files are included in the src folder of the SDK:

You can use Flash CS3 to redesign the visual interface of the badge.fla file.
The AIRBadge() constructor function, defined in the AIRBadge class, loads the air.swf file hosted at
http://airdownload.adobe.com/air/browserapi/air.swf. The air.swf file includes code for using the seamless install
feature.
The onInit() method (in the AIRBadge class) is invoked when the air.swf file is loaded successfully:
private function onInit(e:Event):void {

_air = e.target.content;
switch (_air.getStatus()) {

case "installed" :
root.statusMessage.text = "";
break;

case "available" :
if (_appName && _appName.length > 0) {

root.statusMessage.htmlText = "<p align='center'><font color='#"
+ _messageColor + "'>In order to run " + _appName +
", this installer will also set up Adobe® AIR™.</p>";

} else {
root.statusMessage.htmlText = "<p align='center'><font color='#"

+ _messageColor + "'>In order to run this application, "
+ "this installer will also set up Adobe® AIR™.</p>";

}

Source files Description

badge.fla The source Flash CS3 file used to compile the badge.swf file. The badge.fla file compiles into a SWF 9 file (which
can be loaded in Flash Player).

AIRBadge.as An ActionScript 3.0 class that defines the base class used in the basdge.fla file.

ADOBE AIR 1
Developer Guide

290
break;
case "unavailable" :

root.statusMessage.htmlText = "<p align='center'><font color='#"
+ _messageColor
+ "'>Adobe® AIR™ is not available for your system.</p>";

root.buttonBg_mc.enabled = false;
break;

}
}

The code sets the global _air variable to the main class of the loaded air.swf file. This class includes the following
public methods, which the badge.swf file accesses to call seamless install functionality:

The settings for url and runtimeVersion are passed into the SWF file via the FlashVars settings in the container
HTML page.
If the application starts automatically upon installation, you can use LocalConnection communication to have the
installed application contact the badge.swf file upon invocation. For details, see “Inter-application communication”
on page 284
You may also call the getApplicationVersion() method of the air.swf file to check if an application is installed.
You can call this method either before the application installation process or after the installation is started. For
details, see “Checking from a web page if an AIR application is installed” on page 291.

Loading the air.swf file
You can create your own SWF file that uses the APIs in the air.swf file to interact with the runtime and AIR applica-
tions from a web page in a browser. The air.swf file is hosted at
http://airdownload.adobe.com/air/browserapi/air.swf. To reference the air.swf APIs from your SWF file, load the
air.swf file into the same application domain as your SWF file. The following code shows an example of loading the
air.swf file into the application domain of the loading SWF file:
var airSWF:Object; // This is the reference to the main class of air.swf
var airSWFLoader:Loader = new Loader(); // Used to load the SWF
var loaderContext:LoaderContext = new LoaderContext();

// Used to set the application domain

loaderContext.applicationDomain = ApplicationDomain.currentDomain;

Method Description

getStatus() Determines whether the runtime is installed (or can be installed) on the computer. For details, see “Checking
if the runtime is installed” on page 291.

installApplication() Installs the specified application on the user’s machine. For details, see “Installing an AIR application from the
browser” on page 292.

• url—A string defining the URL. You must use an absolute, not relative, URL path.

• runtimeVersion—A string indicating the version of the runtime (such as "1.0.M6") required by
the application to be installed.

• arguments— Arguments to be passed to the application if it is launched upon installation. The appli-
cation is launched upon installation if the allowBrowserInvocation element is set to true in the
application descriptor file. (For more information on the application descriptor file, see “Setting AIR applica-
tion properties” on page 45.) If the application is launched as the result of a seamless install from the
browser (with the user choosing to launch upon installation), the application’s NativeApplication object
dispatches a BrowserInvokeEvent object only if arguments are passed. Consider the security implications of
data that you pass to the application. For details, see “Launching an installed AIR application from the
browser” on page 293.

ADOBE AIR 1
Developer Guide

291
airSWFLoader.contentLoaderInfo.addEventListener(Event.INIT, onInit);
airSWFLoader.load(new URLRequest("http://airdownload.adobe.com/browserapi/air.swf"),

loaderContext);

function onInit(e:Event):void
{

airSWF = e.target.content;
}

Once the air.swf file is loaded (when the Loader object’s contentLoaderInfo object dispatches the init event), you
can call any of the air.swf APIs. These APIs are described in these sections:
• “Checking if the runtime is installed” on page 291
• “Checking from a web page if an AIR application is installed” on page 291
• “Installing an AIR application from the browser” on page 292
• “Launching an installed AIR application from the browser” on page 293
Note: The badge.swf file, provided with the, automatically loads the air.swf file. See “Using the badge.swf file to install
an AIR application” on page 288. The instructions in this section apply to creating your own SWF file that loads the
air.swf file.

Checking if the runtime is installed
A SWF file can check if the runtime is installed by calling the getStatus() method in the air.swf file loaded from
http://airdownload.adobe.com/air/browserapi/air.swf. For details, see “Loading the air.swf file” on page 290.
Once the air.swf file is loaded, the SWF file can call the air.swf file’s getStatus() method as in the following:
var status:String = airSWF.getStatus();

The getStatus() method returns one of the following string values, based on the status of the runtime on the
computer:

The getStatus() method throws an error if the required version of Flash Player (version 9 upgrade 3) is not
installed in the browser.

Checking from a web page if an AIR application is installed
A SWF file can check if an AIR application (with a matching application ID and publisher ID) is installed by calling
the getApplicationVersion() method in the air.swf file loaded from
http://airdownload.adobe.com/air/browserapi/air.swf. For details, see “Loading the air.swf file” on page 290.
Once the air.swf file is loaded, the SWF file can call the air.swf file’s getApplicationVersion() method as in the
following:
var appID:String = "com.example.air.myTestApplication";
var pubID:String = "02D88EEED35F84C264A183921344EEA353A629FD.1";
airSWF.getApplicationVersion(appID, pubID, versionDetectCallback);

function versionDetectCallback(version:String):void
{

if (version == null)

String value Description

"available" The runtime can be installed on this computer but currently it is not installed.

"unavailable" The runtime cannot be installed on this computer.

"installed" The runtime is installed on this computer.

ADOBE AIR 1
Developer Guide

292
{
trace("Not installed.");
// Take appropriate actions. For instance, present the user with
// an option to install the application.

}
else
{

trace("Version", version, "installed.");
// Take appropriate actions. For instance, enable the
// user interface to launch the application.

}
}

The getApplicationVersion() method has the following parameters:

The getApplicationVersion() method throws an error if the required version of Flash Player (version 9 upgrade
3) is not installed in the browser.

Installing an AIR application from the browser
A SWF file can install an AIR application by calling the installApplication() method in the air.swf file loaded
from http://airdownload.adobe.com/air/browserapi/air.swf. For details, see “Loading the air.swf file” on page 290.
Once the air.swf file is loaded, the SWF file can call the air.swf file’s installApplication() method, as in the
following code:
var url:String = "http://www.example.com/myApplication.air";
var runtimeVersion:String = "1.0.M6";
var arguments:Array = ["launchFromBrowser"]; // Optional
airSWF.installApplication(url, runtimeVersion, arguments);

The installApplication() method installs the specified application on the user’s machine. This method has the
following parameters:

Parameters Description

appID The application ID for the application. For details, see “Defining the basic application information” on page 46.

pubID The publisher ID for the application. For details, see “About AIR publisher identifiers” on page 295.

callback A callback function to serve as the handler function. The getApplicationVersion() method operates asynchro-
nously, and upon detecting the installed version (or lack of an installed version), this callback method is
invoked. The callback method definition must include one parameter, a string, which is set to the version string
of the installed application. If the application is not installed, a null value is passed to the function, as illustrated
in the previous code sample.

Parameter Description

url A string defining the URL of the AIR file to install. You must use an absolute, not relative, URL path.

runtimeVersion A string indicating the version of the runtime (such as "1.0") required by the application to be installed.

arguments An array of arguments to be passed to the application if it is launched upon installation. The application is
launched upon installation if the allowBrowserInvocation element is set to true in the application
descriptor file. (For more information on the application descriptor file, see “Setting AIR application properties”
on page 45.) If the application is launched as the result of a seamless install from the browser (with the user
choosing to launch upon installation), the application’s NativeApplication object dispatches a BrowserInvo-
keEvent object only if arguments have been passed. For details, see “Launching an installed AIR application
from the browser” on page 293.

ADOBE AIR 1
Developer Guide

293
The installApplication() method can only operate when called in the event handler for a user event, such as a
mouse click.
The installApplication() method throws an error if the required version of Flash Player (version 9 upgrade 3)
is not installed in the browser.
On Mac OS, to install an updated version of an application, the user must have adequate system privileges to install
to the application directory (and administrative privileges if the application updates the runtime). On Windows, a
user must have administrative privileges.
You may also call the getApplicationVersion() method of the air.swf file to check if an application is already
installed. You can call this method either before the application installation process begins or after the installation is
started. For details, see “Checking from a web page if an AIR application is installed” on page 291. Once the appli-
cation is running, it can communicate with the SWF content in the browser by using the LocalConnection class. For
details, see “Inter-application communication” on page 284.

Launching an installed AIR application from the browser
To use the browser invocation feature (allowing it to be launched from the browser), the application descriptor file
of the target application must include the following setting:
<allowBrowserInvocation>true</allowBrowserInvocation>

For more information on the application descriptor file, see “Setting AIR application properties” on page 45.
A SWF file in the browser can launch an AIR application by calling the launchApplication() method in the air.swf
file loaded from http://airdownload.adobe.com/air/browserapi/air.swf. For details, see “Loading the air.swf file”
on page 290.
Once the air.swf file is loaded, the SWF file can call the air.swf file’s launchApplication() method, as in the
following code:
var appID:String = "com.example.air.myTestApplication";
var pubID:String = "02D88EEED35F84C264A183921344EEA353A629FD.1";
var arguments:Array = ["launchFromBrowser"]; // Optional
airSWF.launchApplication(appID, pubID, arguments);

The launchApplication() method is defined at the top level of the air.swf file (which is loaded in the application
domain of the user interface SWF file). Calling this method causes AIR to launch the specified application (if it is
installed and browser invocation is allowed, via the allowBrowserInvocation setting in the application descriptor
file). The method has the following parameters:

The launchApplication() method can only operate when called in the event handler for a user event, such as a
mouse click.
The launchApplication() method throws an error if the required version of Flash Player (version 9 upgrade 3) is
not installed in the browser.
If the allowBrowserInvocation element is set to false in the application descriptor file, calling the
launchApplication() method has no effect.

Parameter Description

appID The application ID for the application to launch. For details, see “Defining the basic application information”
on page 46.

pubID The publisher ID for the application to launch. For details, see “About AIR publisher identifiers” on page 295.

arguments An array of arguments to pass to the application. The NativeApplication object of the application dispatches a
BrowserInvokeEvent event that has an arguments property set to this array.

ADOBE AIR 1
Developer Guide

294
Before presenting the user interface to launch the application, you may want to call the getApplicationVersion()
method in the air.swf file. For details, see “Checking from a web page if an AIR application is installed” on page 291.
When the application is invoked via the browser invocation feature, the application’s NativeApplication object
dispatches a BrowserInvokeEvent object. For details, see “Browser invocation” on page 266.
If you use the browser invocation feature, be sure to consider security implications, described in “Browser
invocation” on page 266.
Once the application is running, it can communicate with the SWF content in the browser by using the LocalCon-
nection class. For details, see “Inter-application communication” on page 284.

Digitally signing an AIR file
Digitally signing your AIR installation files with a certificate issued by a recognized certificate authority (CA)
provides significant assurance to your users that the application they are installing has not been accidentally or
maliciously altered and identifies you as the signer (publisher). AIR displays the publisher name during installation
when the AIR application has been signed with a certificate that is trusted, or which chains to a certificate that is
trusted on the installation computer. Otherwise the publisher name is displayed as “Unknown.”
Important: A malicious entity could forge an AIR file with your identity if it somehow obtains your signing keystore file
or discovers your private key.

Contents

• “Information about code-signing certificates” on page 294
• “About AIR code signing” on page 294
• “About AIR publisher identifiers” on page 295
• “About Certificate formats” on page 295
• “Timestamps” on page 296
• “Obtaining a certificate” on page 296
• “Terminology” on page 297

Information about code-signing certificates
The security assurances, limitations, and legal obligations involving the use of code-signing certificates are outlined
in the Certificate Practice Statements (CPS) and subscriber agreements published by the issuing certificate authority.
For more information about the agreements for two of the largest certificate authorities, refer to:
Verisign CPS (http://www.verisign.com/repository/CPS/)
Verisign Subscriber’s Agreement (https://www.verisign.com/repository/subscriber/SUBAGR.html)
Thawte CPS (http://www.thawte.com/cps/index.html)
Thawte Code Signing Developer’s Agreement (http://www.thawte.com/ssl-digital-certificates/free-guides-white-
papers/pdf/develcertsign.pdf)

About AIR code signing
When an AIR file is signed, a digital signature is included in the installation file. The signature includes a digest of
the package, which is used to verify that the AIR file has not been altered since it was signed, and it includes infor-
mation about the signing certificate, which is used to verify the publisher identity.

http://www.verisign.com/repository/CPS/
https://www.verisign.com/repository/subscriber/SUBAGR.html
http://www.thawte.com/cps/index.html
http://www.thawte.com/ssl-digital-certificates/free-guides-whitepapers/pdf/develcertsign.pdf

ADOBE AIR 1
Developer Guide

295
AIR uses the public key infrastructure (PKI) supported through the operating system’s certificate store to establish
whether a certificate can be trusted. The computer on which an AIR application is installed must either directly trust
the certificate used to sign the AIR application, or it must trust a chain of certificates linking the certificate to a
trusted certificate authority in order for the publisher information to be verified.
If an AIR file is signed with a certificate that does not chain to one of the trusted root certificates (and normally this
includes all self-signed certificates), then the publisher information cannot be verified. While AIR can determine
that the AIR package has not been altered since it was signed, there is no way to know who actually created and
signed the file.
Note: A user can choose to trust a self-signed certificate and then any AIR applications signed with the certificate
displays the value of the common name field in the certificate as the publisher name. AIR does not provide any means
for a user to designate a certificate as trusted. The certificate (not including the private key) must be provided to the user
separately and the user must use one of the mechanisms provided by the operating system or an appropriate tool to
import the certificate into the proper location in system certificate store.

About AIR publisher identifiers
As part of the process of building an AIR file, the AIR Developer Tool (ADT) generates a publisher ID. This is an
identifier that is unique to the certificate used to build the AIR file. If you reuse the same certificate for multiple AIR
applications, they will have the same publisher ID. The publisher ID is used to identify the AIR application in Local-
Connection communication (see “Inter-application communication” on page 284). You can identify the publisher
ID of an installed application by reading the NativeApplication.nativeApplication.publisherID property.
The following fields are used to compute the publisher ID: Name, CommonName, Surname, GivenName, Initials,
GenerationQualifier, DNQualifier, CountryName, localityName, StateOrProvinceName, OrganizationName,
OrganizationalUnitName, Title, Email, SerialNumber, DomainComponent, Pseudonym, BusinessCategory,
StreetAddress, PostalCode, PostalAddress, DateOfBirth, PlaceOfBirth, Gender, CountryOfCitizenship, CountryOf-
Residence, and NameAtBirth. If you renew a certificate issued by a certificate authority, or regenerate a self-signed
certificate, these fields must be the same for the publisher ID to remain the same. In addition, the root certificate of
a CA issued certificate and the public key of a self-signed certificate must be the same.

About Certificate formats
The AIR signing tools accept any keystores accessible through the Java Cryptography Architecture (JCA). This
includes file-based keystores such as PKCS12-format files (which typically use a .pfx or .p12 file extension), Java
.keystore files, PKCS11 hardware keystores, and the system keystores. The keystore formats that ADT can access
depend on the version and configuration of the Java runtime used to run ADT. Accessing some types of keystore,
such as PKCS11 hardware tokens, may require the installation and configuration of additional software drivers and
JCA plug-ins.
To sign AIR files, you can use an existing class-3, high assurance code signing certificate or you can obtain a new
one. For example, any of the following types of certificate from Verisign or Thawte can be used:
• Verisign:

• Microsoft Authenticode Digital ID
• Sun Java Signing Digital ID

• Thawte:
• AIR Developer Certificate
• Apple Developer Certificate
• JavaSoft Developer Certificate
• Microsoft Authenticode Certificate

ADOBE AIR 1
Developer Guide

296
Note: The certificate must be marked for code signing. You typically cannot use an SSL certificate to sign AIR files.

Timestamps
When you sign an AIR file, the packaging tool queries the server of a timestamp authority to obtain an independently
verifiable date and time of signing. The timestamp obtained is embedded in the AIR file. As long as the signing certif-
icate is valid at the time of signing, the AIR file can be installed, even after the certificate has expired. On the other
hand, if no timestamp is obtained, the AIR file ceases to be installable when the certificate expires or is revoked.
By default, the AIR packaging tools obtain a timestamp. However, to allow applications to be packaged when the
timestamp service is unavailable, you can turn timestamping off. Adobe recommends that all publically distributed
AIR files include a timestamp.
The default timestamp authority used by the AIR packaging tools is Geotrust.

Obtaining a certificate
To obtain a certificate, you would normally visit the certificate authority web site and complete the company’s
procurement process. The tools used to produce the keystore file needed by the AIR tools depend on the type of
certificate purchased, how the certificate is stored on the receiving computer, and, in some cases, the browser used
to obtain the certificate. For example, to obtain and export a Microsoft Authenticode certificate, Verisign or Thawte
require you to use Microsoft Internet Explorer. The certificate can then be exported as a .pfx file directly from the
Internet Explorer user interface.
You can generate a self-signed certificate using the Air Development Tool (ADT) used to package AIR installation
files. Some third-party tools can also be used.
For instructions on how to generate a self-signed certificate, as well as instructions on signing an AIR file, see
“Packaging an AIR installation file using the AIR Developer Tool (ADT)” on page 9. You can also export and sign
AIR files using Flex Builder, Dreamweaver, and the AIR update for Flash.
The following example describes how to obtain an AIR Developer Certificate from the Thawte Certificate Authority
and prepare it for use with ADT. This example illustrates only one of the many ways to obtain and prepare a code
signing certificate for use.

Example: Getting an AIR Developer Certificate from Thawte

To purchase an AIR Developer Certificate, the Thawte web site requires you to use the Mozilla Firefox browser. The
private key for the certificate is stored within the browser’s keystore. Ensure that the Firefox keystore is secured with
a master password and that the computer itself is physically secure. (You can export and remove the certificate and
private key from the browser keystore once the procurement process is complete.)
As part of the certificate enrollment process a private/public key pair is generated. The private key is automatically
stored within the Firefox keystore. You must use the same computer and browser to both request and retrieve the
certificate from Thawte’s web site.
1 Visit the Thawte web site and navigate to the Product page for Code Signing Certificates.
2 From the list of Code Signing Certificates, select the Adobe AIR Developer Certificate.
3 Complete the three step enrollment process. You need to provide organizational and contact information.
Thawte then performs its identity verification process and may request additional information. After verification is
complete, Thawte will send you e-mail with instructions on how to retrieve the certificate.

Note: Note: Additional information about the type of documentation required can be found here:
https://www.thawte.com/ssl-digital-certificates/free-guides-whitepapers/pdf/enroll_codesign_eng.pdf.

4 Retrieve the issued certificate from the Thawte site. The certificate is automatically saved to the Firefox keystore.

https://www.thawte.com/process/retail/new_devel?language=en&productInfo.productType=devel2
https://www.thawte.com/ssl-digital-certificates/free-guides-whitepapers/pdf/enroll_codesign_eng.pdf

ADOBE AIR 1
Developer Guide

297
5 Export a keystore file containing the private key and certificate from the Firefox keystore using the following
steps:

Note: When exporting the private key/cert from Firefox, it is exported in a .p12 (pfx) format which ADT, Flex, Flash,
and Dreamweaver can use.
a Open the Firefox Certificate Manager dialog:
On Windows: open Tools -> Options -> Advanced -> Certificates -> Manage Certificates
On Mac OS: open Firefox -> Preferences -> Advanced -> Your Certificates -> View Certificates
b Select the Adobe AIR Code Signing Certificate from the list of certificates and click the Backup button.
c Enter a file name and the location to which to export the keystore file and click Save.
d If you are using the Firefox master password, you are prompted to enter your password for the software
security device in order to export the file. (This password is used only by Firefox.)
e On the Choose a Certificate Backup Password dialog box, create a password for the keystore file.

Important: This password protects the keystore file and is required when the file is used for signing AIR appli-
cations.A secure password should be chosen.

f Click OK. You should receive a successful backup password message. The keystore file containing the private
key and certificate is saved with a .p12 file extension (in PKCS12 format)

6 Use the exported keystore file with ADT, Flex Builder, Flash, or Dreamweaver. The password created for the file
is required whenever an AIR application is signed.
Important: The private key and certificate are still stored within the Firefox keystore. While this permits you to export
an additional copy of the certificate file, it also provides another point of access that must be protected to maintain the
security of your certificate and private key.

Terminology
This section provides a glossary of some of the key terminology you should understand when making decisions
about how to sign your application for public distribution.

Term Description

Certificate Authority (CA) An entity in a public-key infrastructure network that serves as a trusted third party and ultimately
certifies the identity of the owner of a public key. A CA normally issues digital certificates, signed
by its own private key, to attest that it has verified the identity of the certificate holder.

Certificate Practice Statement (CPS) Sets forth the practices and policies of the certificate authority in issuing and verifying certificates.
The CPS is part of the contract between the CA and its subscribers and relying parties. It also
outlines the policies for identity verification and the level of assurances offered by the certificates
they provide.

Certificate Revocation List (CRL) A list of issued certificates that have been revoked and should no longer be relied upon. AIR checks
the CRL at the time an AIR application is signed, and, if no timestamp is present, again when the
application is installed.

Certificate chain A certificate chain is a sequence of certificates in which each certificate in the chain has been
signed by the next certificate.

Digital Certificate A digital document that contains information about the identity of the owner, the owner’s public
key, and the identity of the certificate itself. A certificate issued by a certificate authority is itself
signed by a certificate belonging to the issuing CA.

ADOBE AIR 1
Developer Guide

298
Digital Signature An encrypted message or digest that can only be decrypted with the public key half of a public-
private key pair. In a PKI, a digital signature contains one or more digital certificates that are ulti-
mately traceable to the certificate authority. A digital signature can be used to validate that a
message (or computer file) has not been altered since it was signed (within the limits of assurance
provided by the cryptographic algorithm used), and, assuming one trusts the issuing certificate
authority, the identity of the signer.

Keystore A database containing digital certificates and, in some cases, the related private keys.

Java Cryptography Architecture (JCA) An extensible architecture for managing and accessing keystores. See the Java Cryptography
Architecture Reference Guide for more information.

PKCS #11 The Cryptographic Token Interface Standard by RSA Laboratories. A hardware token based
keystore.

PKCS #12 The Personal Information Exchange Syntax Standard by RSA Laboratories. A file-based keystore
typically containing a private key and its associated digital certificate.

Private Key The private half of a two-part, public-private key asymmetric cryptography system. The private key
must be kept secret and should never be transmitted over a network. Digitally signed messages
are encrypted with the private key by the signer.

Public Key The public half of a two-part, public-private key asymmetric cryptography system. The public key
is openly available and is used to decrypt messages encrypted with the private key.

Public Key Infrastructure (PKI) A system of trust in which certificate authorities attest to the identity of the owners of public keys.
Clients of the network rely on the digital certificates issued by a trusted CA to verify the identity of
the signer of a digital message (or file).

Time stamp A digitally signed datum containing the date and time an event occurred. ADT can include a time
stamp from an RFC 3161 compliant time server in an AIR package. When present, AIR uses the time
stamp to establish the validity of a certificate at the time of signing. This allows an AIR application
to be installed after its signing certificate has expired.

Time stamp authority An authority that issues time stamps. To be recognized by AIR, the time stamp must conform to
RFC 3161 and the time stamp signature must chain to a trusted root certificate on the installation
machine.

Term Description

http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html
http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html
http://tools.ietf.org/html/rfc3161

299
Chapter 33: Updating AIR applications

Users can install or update an AIR application by double-clicking an AIR file on their computer or from the browser
(using the seamless install feature), and the Adobe® AIR™ installer application manages the installation, alerting the
user if they are updating an already existing application. (See “Distributing, Installing, and Running AIR applica-
tions” on page 286.)

However, you can also have an installed application update itself to a new version, using the Updater class. (An
installed application may detect that a new version is available to be downloaded and installed.) The Updater class
includes an update() method that lets you point to an AIR file on the user’s computer and update to that version.

Contents
• “About updating applications” on page 299

• “Presenting a custom application update user interface” on page 300

• “Downloading an AIR file to the user’s computer” on page 301

• “Checking to see if an application is running for the first time” on page 301

About updating applications
The Updater class (in the flash.desktop package) includes one method, update(), which you can use to update the
currently running application with a different version. For example, if the user has a version of the AIR file
("Sample_App_v2.air") located on the desktop, the following code updates the application:

var updater:Updater = new Updater();
var airFile:File = File.desktopDirectory.resolvePath("Sample_App_v2.air");
var version:String = "2.01";
updater.update(airFile, version);

Prior to using the Updater class, the user or the application must download the updated version of the AIR file to the
computer. For more information, see “Downloading an AIR file to the user’s computer” on page 301.

Results of the method call
When an application in the runtime calls the update() method, the runtime closes the application, and it then
attempts to install the new version from the AIR file. The runtime checks that the application ID and publisher ID
specified in the AIR file matches the application ID and publisher ID for the application calling the update()
method. (For information on the application ID and publisher ID, see “Setting AIR application properties”
on page 45.) It also checks that the version string matches the version string passed to the update() method. If
installation completes successfully, the runtime opens the new version of the application. Otherwise (if the instal-
lation cannot complete), it reopens the existing (pre-install) version of the application.

On Mac OS, to install an updated version of an application, the user must have adequate system privileges to install
to the application directory. On Windows, a user must have administrative privileges.
If the updated version of the application requires an updated version of the runtime, the new runtime version is
installed. To update the runtime, a user must have administrative privileges for the computer.
When testing an application using ADL, calling the update() method results in a runtime exception.

ADOBE AIR 1
Developer Guide

300
About the version string
The string that is specified as the version parameter of the update() method must match the string in the version
attribute of the main application element of the application descriptor file for the AIR file to be installed. Speci-
fying the version parameter is required for security reasons. By requiring the application to verify the version
number in the AIR file, the application will not inadvertently install an older version, which might contain a security
vulnerability that has been fixed in the currently installed application. The application should also check the version
string in the AIR file with version string in the installed application to prevent downgrade attacks.

The version string can be of any format. For instance, it can be "2.01" or "version 2". The format of this string is
left for you, the application developer, to decide. The runtime does not validate the version string; the application
code should do this before updating the application.

If an Adobe AIR application downloads an AIR file via the web, it is a good practice to have a mechanism by which
the web service can notify the Adobe AIR application of the version being downloaded. The application can then use
this string as the version parameter of the update() method. If the AIR file is obtained by some other means, in
which the version of the AIR file is unknown, the AIR application can examine the AIR file to determine the version
information. (An AIR file is a ZIP-compressed archive, and the application descriptor file is the second record in the
archive.)

For details on the application descriptor file, see “Setting AIR application properties” on page 45.

Presenting a custom application update user interface
AIR includes a default update interface:

This interface is always used the first time a user installs a version of an application on a machine. However, you can
define your own interface to use for subsequent instances. To do this, specify a customUpdateUI element in the
application descriptor file for the currently installed application:

<customUpdateUI>true</customUpdateUI>

ADOBE AIR 1
Developer Guide

301
When the application is installed and the user opens an AIR file with an application ID and a publisher ID that match
the installed application, the runtime opens the application, rather than the default AIR application installer. For
more information, see “Providing a custom user interface for application updates” on page 49.

The application can decide, when it is invoked (when the NativeApplication.nativeApplication object
dispatches an invoke event), whether to update the application (using the Updater class). If it decides to update, it
can present its own installation interface (which differs from its standard running interface) to the user.

Downloading an AIR file to the user’s computer
To use the Updater class, the user or the application must first save an AIR file locally to the user's computer. For
example, the following code reads an AIR file from a URL (http://example.com/air/updates/Sample_App_v2.air)
and saves the AIR file to the application storage directory:

var urlString:String = "http://example.com/air/updates/Sample_App_v2.air";
var urlReq:URLRequest = new URLRequest(urlString);
var urlStream:URLStream = new URLStream();
var fileData:ByteArray = new ByteArray();
urlStream.addEventListener(Event.COMPLETE, loaded);
urlStream.load(urlReq);

function loaded(event:Event):void {
urlStream.readBytes(fileData, 0, urlStream.bytesAvailable);
writeAirFile();

}

function writeAirFile():void {
var file:File = File.applicationStorageDirectory.resolvePath("My App v2.air");
var fileStream:FileStream = new FileStream();
fileStream.open(file, FileMode.WRITE);
fileStream.writeBytes(fileData, 0, fileData.length);
fileStream.close();
trace("The AIR file is written.");

}

For more information, see “Workflow for reading and writing files” on page 117.

Checking to see if an application is running for the first
time
Once you have updated an application you may want to provide the user with a "getting started" or "welcome"
message. Upon launching, the application checks to see if it is running for the first time, so that it can determine
whether to display the message.

One way to do this is to save a file to the application store directory upon initializing the application. Every time the
application starts up, it should check for the existence of that file. If the file does not exist, then the application is
running for the first time for the current user. If the file exists, the application has already run at least once. If the file
exists and contains a version number older than the current version number, then you know the user is running the
new version for the first time.

ADOBE AIR 1
Developer Guide

302
Here is a Flex example:

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"

layout="vertical"
title="Sample Version Checker Application"
applicationComplete="init()">
<mx:Script>

<![CDATA[
import flash.filesystem.*;
public var file:File;
public var currentVersion:String = "1.2";
public function init():void {

file = File.applicationStorageDirectory;
file = file.resolvePath("Preferences/version.txt");
trace(file.nativePath);
if(file.exists) {

checkVersion();
} else {

firstRun();
}

}
private function checkVersion():void {

var stream:FileStream = new FileStream();
stream.open(file, FileMode.READ);
var prevVersion:String = stream.readUTFBytes(stream.bytesAvailable);
stream.close();
if (prevVersion != currentVersion) {

log.text = "You have updated to version " + currentVersion + ".\n";
} else {

saveFile();
}
log.text += "Welcome to the application.";

}
private function firstRun():void {

log.text = "Thank you for installing the application. \n"
+ "This is the first time you have run it.";

saveFile();
}
private function saveFile():void {

var stream:FileStream = new FileStream();
stream.open(file, FileMode.WRITE);
stream.writeUTFBytes(currentVersion);
stream.close();

}
]]>

</mx:Script>
<mx:TextArea id="log" width="100%" height="100%" />

</mx:WindowedApplication>
If your application saves data locally (such as, in the application storage directory), you may want to check for any
previously saved data (from previous versions) upon first run.

303
Index

Symbols
: (colon) character, in SQL statement

parameter names 173
? (question mark) character, in

unnamed SQL parameters 173
@ (at) character, in SQL statement

parameter names 173

A
AC_FL_RunContent() function (in

default_badge.html) 288
AC_RuntimeActiveContent.js 288
accelerator keys for menu

commands 86
acceptDragDrop() method

(NativeDragManager class) 128,
132

acompc compiler 225
Acrobat 201, 249
Action Message Format (AMF) 129,

153, 156
ActionScript

JavaScript cross-scripting 222
ActionScript documentation 10
activate() method (NativeWindow

class) 64, 70, 71
activating windows 64, 71
active event 75
active window 70
activeWindow property

(NativeApplication class) 70
activity (user), detecting 273
addChild() method (Stage class) 67
addChildAt() method (Stage class) 67
Adobe Acrobat Developer

Center 250
Adobe AIR

installing 2, 26
introduction 9
new functionality 52
uninstalling 3
updating 26

Adobe documentation 10
Adobe Media Player 253
Adobe Press books 10
Adobe Reader 201, 249
Adobe support website 10

AES-CBC 128-bit encryption 196
AIR applications

browser invocation 50
copyright information 47
detecting installation of 291
distributing 286
exiting 263
file type associations 50, 264, 272
icons 49
installation path 47
installing 26, 286, 287
invoking 263
launching 263
quitting 263
running 286, 293
settings 45, 46, 270
uninstalling 29
updating 26, 49, 299
versions 47, 273, 299

AIR developer certificates 295
AIR files

signing 294
air property (AIRAliases.js file) 200,

220
AIR runtime

detecting 273, 291
installing 2, 26
new functionality 52
patch levels 46, 273
uninstalling 3
updating 26

air.swf file 287
AIRAliases.js file 200, 220
Ajax

security 36
support in the application

sandbox 36
allowBrowserInvocation element

(application descriptor file) 50,
263, 266

allowCrossDomainXHR attribute
(frame and iframe
elements) 204, 209

allowLoadBytesCodeExecution
property (LoaderContext
class) 42

alpha property (HTMLLoader
class) 237

alwaysInFront property
(NativeWindow class) 70, 71

app URL scheme 40, 43, 66, 109, 203,
221, 227, 250

appearance of windows 61
AppInstallDisabled (Windows

registry setting) 29
Apple developer certificates 295
application descriptor file 45

reading 270
application directory 105
application IDs 46
application menus 83, 94

creating 87
application sandbox 30, 201, 203,

215, 217, 219, 227, 273
application storage directory 28, 105,

109, 221
applicationDescriptor property

(NativeApplication class) 270
ApplicationDomain class 223
applications

See AIR applications
applicationStorageDirectory

property (File class) 105
app-storage URL scheme 28, 40, 43,

109, 250
app-support URL scheme 227
arguments property

BrowserInvokeEvent class 267
InvokeEvent class 264

asfunction protocol 31
asynchronous programming

databases 166, 169, 187
file-system 103
XMLHttpRequests 219

at (@) characater, in SQL statement
parameter names 173

attach() method (SQLConnection
class) 183

autoExit property
NativeApplication class 268

AUTOINCREMENT columns
(SQL) 182

auto-launch (launching an AIR
application at log-in) 266

304
B
background of windows 62
background-color CSS style 236
badge.swf file 287
big-endian byte order 155
binary data

See byte arrays
bitmap images, setting for icons 97
bitmaps

copy-and-paste support 142
drag-and-drop support 127, 136

bitmaps property (Icon class) 97
blur() method (Window object) 240
bounce method() (Icon class) 98
browseForDirectory() method (File

class) 107
browseForOpen() method (File

class) 108
browseForSave() method (File

class) 108
browser invocation feature 50, 266
browserInvoke event 266, 294
BrowserInvokeEvent class 266
browsers

See web browsers
browsing

to select a directory 107
to select a file 108

byte arrays
byte order 155
position in 154
size of 155

byte order 155
ByteArray class

bytesAvailable property 155
compress() method 156
constructor 153
length property 155
position property 154
readBytes() method 153
readFloat() method 153
readInt() method 153
readObject() method 153
readUTFBytes() method 153
uncompress() method 156
writeBytes() method 153
writeFloat() method 153
writeInt() method 153
writeObject() method 153
writeUTFBytes() method 153

See also byte arrays
bytesAvailable property (ByteArray

class) 155

C
Canvas object 205, 211
Capabilities class

playerType property 273
certificate authorities (CAs) 294
certificate practice statement

(CPS) 297
certificate revocation list (CRL) 297
certificates

authorities (CAs) 44
chains 297
code signing 44
expiration of 296
formats of 295
signing AIR files 294

character encoding, HTML 239
character set, HTML 239
charset attribute (in an HTML meta

element) 239
checked menu items 87
childSandboxBridge property

LoaderInfo class 38
Window object 33

clearData() method
ClipboardData object 205
DataTransfer object 135, 206

clearing directories 113
clientX property (HTML drag

events) 135
clientY property (HTML drag

events) 135
Clipboard 205

copy and paste 142
data formats 148, 149
security 143
System 142

Clipboard class
generalClipboard property 142
getData() method 128, 132
setData() method 150
setDataHandler() method 150

clipboard event 206
clipboard property

(NativeDragEvent class) 132
clipboardData property (clipboard

events) 206

clipboardData property (HTML
copy-and-paste events) 143, 144

ClipboardFormats class 148
ClipboardTransferModes class 149
close event 75
close() method

NativeWindow class 71
Window object 240

close() method (window object) 59
closing applications 267
closing event 71, 75, 233, 268
closing windows 60, 71, 267
code signing 44, 294
colon (:) character, in SQL statement

parameter names 173
columns (database) 164
Command key 86
command-line arguments,

capturing 264
commands, menu

See menu items
complete event 223, 225, 230
compress() method (ByteArray

class) 156
compressing data 156
CompressionAlgorithm class 156
connecting to a database 170
content element (application

descriptor file) 48
contenteditable attribute

(HTML) 137
contentHeight property

(HTMLLoader class) 236, 238
contentWidth property

HTMLLoader class 236
contentWidth property

(HTMLLoader class) 238
context menus 83, 89

HTML 90
ContextMenu class 86, 89
contextmenu event 90
ContextMenuEvent class

contextMenuOwner property 89
mouseTarget property 89

ContextMenuItem class 86
contextMenuOwner property

(ContextMenuEvent class) 89
Control key 86
cookies 205
copy and paste

basics 142

305
classes used 142
default menu items (Mac OS) 147
deferred rendering 150
HTML 143, 205
key equivalents 147
keyboard shortcuts 145
menu commands 145
transfer modes 149

copy event 144
copy() method (NativeApplication

class) 146
copying directories 113
copying files 115
copyright information for AIR

applications 47
copyTo() method (File class) 115
copyToAsync() method (File

class) 115
CREATE TABLE statement

(SQL) 168
createDirectory() method (File

class) 112
createDocumentRoot() method

(HTMLLoader class) 241
createElement() method (Document

object) 219
createRootWindow() method

(HTMLLoader class) 65, 66, 214
createTempDirectory() method (File

class) 112, 116
createTempFile() method (File

class) 116
creating directories 112
creationDate property (File class) 114
creator property (File class) 114
credentials

for DRM-encrypted content 259
cross-domain cache security 31
cross-scripting 37, 222, 226
CSS

accessing HTML styles from
ActionScript 225

AIR extensions to 212
currentDirectory property

(InvokeEvent class) 264
currentDomain property

(ApplicationDomain class) 223
cursor, drag-and-drop effects 132,

136
custom chrome 61
custom update user interface 300

customItems property
(ContextMenu class) 89

customUpdateUI element
(application descriptor file) 49,
263, 300

cut event 144

D
data encryption 196
data formats, Clipboard 148
data property

NativeMenuItem class 87
data types, database 186
data validation, application

invocation 267
databases

about 163
asynchronous mode 166
changing data 183
classes used with 165
columns 164
connecting 170
creating 167
data typing 174, 186
deleting data 183
errors 183
fields 164
files 163
in-memory 167
muliple, working with 183
performance 174
primary keys 181, 182
retrieving data 175
row identifiers 182
rows 164
security 174
structure 164
synchronous mode 166
tables 164, 168
uses for 163

DataTransfer object
types property 138

DataTransfer object (HTML drag
and drop) 135, 136, 137, 138,
206

Date objects, converting between
ActionScript and JavaScript 225

deactivate event 75
default_badge.html 288
deferred rendering (copy and

paste) 150

deflate compression 156
DELETE statement (SQL) 183
deleteDirectory() method (File

class) 113
deleteDirectoryAsync() method (File

class) 113
deleteFile() method (File class) 115
deleteFileAsync() method (File

class) 115
deleting directories 113, 116
deleting files 115, 116
description element (application

descriptor file) 47
designMode property (Document

object) 137, 207
desktop directory 105
desktop windows

See windows
desktopDirectory property (File

class) 105
Dictionary class 220
digital rights management 253
dimensions, windows 49
directories 105, 112

application invocation 264
copying 113
creating 112
deleting 113, 116
enumerating 112
moving 113
referencing 105

directory chooser dialog boxes 107
dispatchEvent() method

(NativeWindow class) 60
display order, windows 70, 71
display properties, HTMLLoader

class 235
display() method (NativeMenu

class) 92
displaying event 86, 94
displays

See screens
displayState property (Stage class) 76
displayStateChange event 60, 76
displayStateChanging event 60, 76
distributing AIR applications 286
dock icons 98

bouncing 98
menus 87
support 97
window minimizing and 70

306
dock menus 84
Document object

createElement() method 219
designMode property 137, 207
stylesheets property 225
title property 240
wirtelin() method 207
write() method 36, 207, 219
writeln() method 36, 219

documentation, related 10
documentRoot attribute (frame and

iframe elements) 33, 201, 209,
227

documentRoot attributes (frame and
iframe elements) 33

documents directory 105
documentsDirectory property (File

class) 105
doDrag() method

(NativeDragManager class) 128,
130, 132

dominitialize event 210
downgrade attacks and security 43
DPAPI (association of encrypted data

with users) 196
drag and drop

classes related to 128
cursor effects 132, 136
default behavior in HTML 134
events in HTML 134
gestures 127
HTML 133, 206
modifier keys 132
to non-application sandbox

content (in HTML) 140
transfer formats 127

drag event 134, 206
dragend event 134, 206
dragenter event 134, 206
drag-in gesture 127, 131
dragleave event 134, 206
drag-out gesture 127, 129
dragover event 134, 206
dragstart event 134, 206
DRM 253

credentials 259
DRMAuthenticateEvent class 254,

257
DRMErrorEvent class 254

error codes 260
subErrorID property 260

DRMStatusEvent class 254
drop event 134, 206
dropAction property

(NativeDragEvent class) 131,
132

dropEffect property (DataTransfer
object) 135, 136, 206

dynamic code generation 35

E
effectAllowed property

(DataTransfer object) 135, 136,
137, 206

embedded objects (in HTML) 201
enabled menu items 87
encoding property (File class) 111
encrypted data, storing and

retrieving 196
EncryptedLocalStore class 196
encryption 253
Endian.BIG_ENDIAN 155
Endian.LITTLE_ENDIAN 155
enterFrame event 67
enumerating directories 112
enumerating screens 79
error codes

DRM 260
error event 171
eval() function 31, 34, 203, 215, 217
events

handlers 233
HTML 230
listeners 233
menu 86, 92
native windows 60
NativeWindow class 75

execute() method (SQLStatement
class) 172, 175, 181

exists property (File class) 114
exit() method

NativeApplication class 267
exiting AIR applications 263
exiting event 268
extensions (file), associating with an

AIR application 50, 264, 272

F
fields (database) 164
file API 103
file chooser dialog boxes 108
File class 103, 104

applicationStorageDirectory
property 104

browseForDirectory() method 107
browseForOpen() method 108
browseForSave() method 108
copyTo() method 115
copyToAsync() method 115
createDirectory() method 112
createTempDirectory()

method 112, 116
createTempFile() method 116
creationDate property 114
creator property 114
deleteDirectory() method 113
deleteDirectoryAsync()

method 113
deleteFile() method 115
deleteFileAsync() method 115
desktopDirectory property 104
documentsDirectory property 104
encoding property 111
exists property 114
getDirectoryListingAsync()

method 112
getRootDirectories() 104
getRootDirectories() method 104
isDirectory property 114
lineEnding property 111
modificationDate property 114
moveTo() method 115
moveToAsync() method 115
moveToTrash() method 116
moveToTrashAsync() method 116
name property 114
nativePath property 104, 114
parent property 114
referencing a local database 167
relativize() method 109
resolvePath() method 104
separator property 111
size property 114
type property 114
url property 104, 114
userDirectory property 104

file lists
drag-and-drop support 136

file system
security 40

file system API 103
file type associations 50, 264, 272

307
file URL scheme 40, 109, 221
FileMode class 103
filename element (application

descriptor file) 47
files

copy-and-paste support 142
copying 115
database 163
deleting 115, 116
drag-and-drop support 127
moving 115
reading 117
referencing 107
writing 117

FileStream class 103
fileTypes element (application

descriptor file) 50, 272
filters property (HTMLLoader

class) 237
Flash documentation 10
Flash Media Rights Management

Server 253
Flash Player 52, 203, 220
FlashVars settings (for using

badge.swf) 288
FLV videos, encryption of 253
FMRMS (Flash Media Rights

Management Server) 253
focus() method (Window object) 240
frame elements 201, 204, 209
frames 33
full-screen windows 76
Function constructors (in

JavaScript) 203
functions (JavaScript)

contructor 218
definitions 35
literals 35

G
generalClipboard property

(Clipboard class) 142
getApplicationVersion() method

(air.swf file) 291
getData() method

Clipboard class 132
ClipboardData object 205
DataTransfer object 138, 206
HTML copy-and-paste event 144

getData() method (Clipboard
class) 128

getData() method (of a dataTransfer
property of an HTML drag
event) 135

getDefaultApplication() method
(NativeApplication class) 272

getDirectoryListing() method (File
class) 112

getDirectoryListingAsync() method
(File class) 112

getResult() method (SQLStatement
class) 181

getScreensForRectangle()
method(Screen class) 79

getStatus() method (air.swf file) 291
graphics property property

(HTMLLoader class) 237
GZIP format 156

H
height element (application

descriptor file) 49
height property (HTMLLoader

class) 214, 235
hiding windows 70
history list, HTML 238
history property (Window

object) 238
historyAt() method (HTMLLoader

class) 238
historyBack() method (HTMLLoader

class) 238
historyForward() method

(HTMLLoader class) 238
historyGo() method (HTMLLoader

class) 238
historyLength property

(HTMLLoader class) 238
HistoryListItem class 238

isPost property 239
originalUrl property 239
title property 239
url property 239

historyPosition property
(HTMLLoader class) 238

home directory 105
horizontal scroll bars, HTML 238
hostContainer property (PDF) 251
HTML

AIR extensions to 209
background color 236
character encoding 239
copy and paste 143

DOM, accessing from
ActionScript 223

drag-and-drop support 127, 136
embedded objects 201
events 230
history 238
loading content 214
loading SWF content 67
overlaying SWF content 67
plug-ins 201
printing 202
sandboxes 203
scaling 236
scrolling 230, 238
security 32, 201, 226
status bar 240
transparency 236
user agent, setting 239
windows 65

HTML DOM and native windows 59
htmlBoundsChanged event 230
htmlDOMInitialize event 230
HTMLHost class 235

extending 240
HTMLLoader

scaling 236
HTMLLoader class 199, 214

alpha property 237
contentHeight property 236, 238
contentWidth property 236, 238
copy and paste 143
createDocumentRoot()

method 241
createRootWindow() method 65,

66, 214
display properties 235
events 230
filters property 237
graphics property 237
height property 214, 235
historyAt() method 238
historyBack() method 238
historyForward() method 238
historyGo() method 238
historyLength property 238
historyPosition property 238
JavaScript access to 200
loadString() method 215
opaqueBackground property 236,

237

308
paintsDefaultBackground
property 62, 67, 236

pdfCapability property 249
rotation property 237
runtimeApplicationDomain

property 223
scaleX property 237
scaleY property 237
scrollH property 238
scrollV property 238
subclasses of, creating 247
textEncodingFallback

property 239
textEncodingOverride

property 239
transform property 237
userAgent property 239
visible property 236
width property 214, 236
x property 236
y property 236

htmlLoader property (Window
object) 200, 208, 214

htmlLoader property (window
object) 65

HTMLPDFCapability class 249
HTMLUncaughtScriptException

class 231

I
Icon class

bitmaps property 97
bounce() method 98

icon element (application descriptor
file) 49

icon property (NativeApplication
class) 97

icons
animating 97
application 49
dock 97, 98
images 97
removing 97
system tray 97
task bar 70
taskbar 97

id element (application descriptor
file) 46

id element (NativeApplication
class) 270

idle time (user) 273

idleThreshold property
(NativeApplication class) 273

iframe elements 33, 201, 204, 209
img tags (in TextField object

contents) 31
Info.plist files (Mac OS) 47
initialWindow element (application

descriptor file) 48, 59
in-memory databases 167
innerHTML property 35, 207, 219
INSERT statement (SQL) 186
installApplication() method (air.swf

file) 292
installFolder element (application

descriptor file) 47
installing

AIR runtime 2
installing AIR applications 286, 287
INTEGER PRIMARY KEY columns

(SQL) 182
invoke event 263
InvokeEvent class 51, 264

arguments property 264
currentDirectory property 264

invoking AIR applications 263
isDirectory property (File class) 114
isHTTPS property

(BrowserInvokeEvent class) 267
isPost property (HistoryListItem

class) 239
isSetAsDefaultApplication() method

(NativeApplication class) 272

J
JavaScript

accessing AIR APIs 220
ActionScript cross-scripting 222
AIR runtime and 200
AIR support for 202
AIRAliases.js file 200, 220
avoiding security errors 216
error events 230
errors 216, 223, 231, 234
events, handling 233
PDF 250
programming 214
security 226

JavaScript security 34
javascript URL scheme 35, 209, 218
JavaSoft developer certificates 295
JSON 204

K
key equivalents

copy and paste 147
key equivalents for menu

commands 86
Keyboard class 86
keyboard shortcuts

copy and paste 145
KeyChain (association of encrypted

data with users) 196
keyEquivalent property

(NativeMenuItem class) 86
keyEquivalentModifiers property

(NativeMenuItem class) 86

L
label property (NativeMenuItem

class) 147
lastInsertRowID property

(SQLResult class) 181
lastUserInput property

(NativeApplication class) 273
launching AIR applications 263
length property (ByteArray class) 155
lightweight windows 61
lineEnding property (File class) 111
listRootDirectories() method (File

class) 105
little-endian byte order 155
load event 201, 203, 216, 223
load events 219
loadBytes() method (Loader class) 42
Loader class 66
Loader.loadBytes() method 42
LoaderContext class

allowLoadBytesCodeExecution
property 42

applicationDomain property 38
securityDomain property 38

LoaderInfo class
childSandboxBridge property 38
parentSandboxBridge property 38

loadString() method (HTMLLoader
class) 215

local databases
See databases

LocalConnection class 288, 294
local-trusted sandbox 30, 203
local-with-filesystem sandbox 30,

203
local-with-networking sandbox 30
location property

309
Window object 240
locationChange event 230
login, launching an AIR application

upon 266

M
Mac OS

proxy icons 63
toolbar 63

main screen 79
mainScreen property (Screen

class) 79
maximizable element (application

descriptor file) 49
maximize() method (NativeWindow

class) 72
maximizing windows 49, 60, 72
maxSize element (application

descriptor file) 49
menu

application 94
events 94
structure 85

menu bars 85
menu items 85

accelerator keys 86
checked 87
copy and paste 147
creating 89
data, assigning to 87
enabled 87
key equivalents 86
mnemonic characters 87
selecting 93
states 87

menuItemSelect events 86
menus 83

application 87
classes for working with 84
context menus 89
copy-and-paste commands 145
creating 87
custom 84
default system 84
dock 84
dock item 87
event flow 86, 92
items 85
key equivalents 86
pop-up 87, 92

separator lines 89
structure 85
submenus 85, 88
system tray icon 87
system tray icons 84
types of 84
window 87, 94
XML, defining with 91
See also menu items

menuSelect events 86
messageHandler property (PDF) 251
Microsoft authenticode

certificates 295
Microsoft authenticode digital

IDs 295
Microsoft Windows

title bar icons 63
MIME types

HTML copy and paste 149, 206
HTML drag and drop 136

minimizable element (application
descriptor file) 49

minimize() method (NativeWindow
class) 72

minimizing windows 49, 60, 70, 72
minimumPatchLevel attribute

(application descriptor file) 46
minSize element (application

descriptor file) 49
mnemonic characters

menu items 87
mnemonicIndex property

NativeMenuItem class 87
modificationDate property (File

class) 114
modifier keys, menu items 86
monitors

See screens
mouse position while dragging 133
mouseDown event 74, 128
mouseMove event 128
mouseTarget property

(ContextMenuEvent class) 89
move event 60, 75
moveBy() method

Window object 240
moveTo() method

File class 115
Window object 59

moveTo() method (Window
object) 240

moveToAsync() method (File
class) 115

moveToTrash() method (File
class) 116

moveToTrashAsync() method (File
class) 116

moving directories 113
moving event 75
moving files 115
moving windows 60, 73, 74
multi-screen virtual desktops 79
My Documents directory

(Windows) 105

N
name element (application descriptor

file) 47
name property (File class) 114
named parameters (in SQL

statements) 173
native menus

See menus
native windows

See windows
NativeApplication class 208

activeWindow property 70
addEventListener() method 264
applicationDescriptor

property 270
autoExit property 268
copy() method() 146
exit() method 267
getDefaultApplication()

method 272
icon property 97
id property 270
idleThreshold property 273
isSetAsDefaultApplication()

method 272
lastUserInput property 273
publisherID property 270, 295
removeAsDefaultApplication()

method 272
runtimePatchLevel property 273
runtimeVersion property 273
setAsDefaultApplication()

method 50
startAtLogin property 266
supportsDockIcon property 97
supportsMenu property 94
supportsSystemTrayIcon

property 97

310
NativeApplication.setAsDefaultAppl
ication() method 272

NativeBoundsEvent class 75
nativeDragComplete event 128, 131,

133
nativeDragDrop event 128
nativeDragEnter event 128, 131, 132,

133
NativeDragEvent class

clipboard property 132
dropAction property 131, 132

nativeDragExit event 128, 133
NativeDragManager class

acceptDragDrop() method 128,
132

doDrag() method 128, 130, 132
nativeDragOver event 128, 131, 132,

133
nativeDragStart event 128, 133
nativeDragUpdate event 128, 133
NativeMenu class 85, 92
NativeMenuItem class 85

data property 87
keyEquivalent property 86
keyEquivalentModifiers

property 86
label property 147
mnemonicIndex property 87
submenu property 85

nativePath property (File class) 105,
114

NativeWindow class 59
activate method 70
activate method() 64
activate() method 71
addEventListener() method 75
alwaysInFront property 70, 71
close() method. 71
constructor 64
dispatchEvent() method 60
events 75
HTMLLoader objects and 199
instantiating 69
JavaScript access to 200
maximize() method 72
minimize() method 72
orderBehind() method 71
orderInBackOf() method 71
orderInFrontOf() method 71
orderToBack() method 71
orderToFront() method 71

restore() method 72
stage property 67
startMove() method 74
startResize() method 74
systemChrome property 61
systemMaxSize property 65
systemMinSize property 65
transparent property 61
type property 61
visible property 64, 70

nativeWindow property
Stage class 64, 70
Window object 200, 208

nativeWindow property (window
object) 59, 65

NativeWindowDisplayStateEvent
class 76

NativeWindowInitOptions class 64,
65

NetStream class
resetDRMVouchers() method 256
setDRMAuthenticationCredential

s() method 254, 256
Netstream class

encrypted content, playing
with 254

non-application sandboxes 32, 140,
201, 203, 215, 217, 227

normal windows 61
NSHumanReadableCopyright field

(Mac OS) 47

O
object literals (in JavaScript) 35
object references

copy-and-paste support 142
drag-and-drop support for 127

object tag (in HTML) 67
OID column name (SQL) 182
onclick handler 219
ondominitialize attribute 210
onload handler 34
onmouseover handler 219
opacity CSS style 236
opaqueBackground property

(HTMLLoader class) 236, 237
open() method

SQLConnection class 166
Window object 37, 65, 208, 240

open() method (SQLConnection
class) 167

open() method (Window object) 241
openAsync() method

(SQLConnection class) 166,
167, 170

opener property (window object) 65
order of windows 70
orderBehind() method

(NativeWindow class) 71
orderInBackOf() method

(NativeWindow class) 71
orderInFrontOf() method

(NativeWindow class) 71
ordering windows 71
orderToBack() method

(NativeWindow class) 71
orderToFront() method

(NativeWindow class) 71
originalUrl property

(HistoryListItem class) 239
outerHTML properties 207

P
P12 files 295
paintsDefaultBackground property

(HTMLLoader class) 62, 67, 236
parameters property (SQLStatement

class) 172, 173
parameters, in SQL statements 172
parent property (File class) 114
parent property (window object) 65
parentSandboxBridge property

LoaderInfo class 38
Window object 33
Window object) 208

parentSandboxBridge property
(Window object) 228

passwords
setting for encrypted media

content 253
pasting data

See copy and paste
patch levels

AIR runtime 273
patch levels, AIR runtime 46
path delimiter (file system) 107
paths (file and directory) 109
paths, relative 109
PDF

support for 201, 249
PDF content

adding to AIR applications 249
JavaScript communication 250

311
known limitations 252
loading 250

pdfCapability property
(HTMLLoader class) 249

PFX files 295
playerType property

Capabilities class 273
plug-ins (in HTML) 201
pop-up menus 83, 92

creating 87
position of windows 49
position property (ByteArray

class) 154
postMessage() method (PDF

object) 251
primary keys

databases 181
menu items 86

print() method (Window object) 202
printing 202
privileges required to update the AIR

runtime or an AIR
application 27, 287, 293

Program Files directory
(Windows) 286

programMenuFolder element
(application descriptor file) 48

proxy icons
Mac OS 63

publisher identifiers 270, 295
publisher name 294
publisherid file 270
publisherID property

(NativeApplication class) 270,
295

Q
question mark (?) character, in

unnamed SQL parameters 173
quitting AIR applications 263

R
readBytes() method (ByteArray

class) 153
readFloat() method (ByteArray

class) 153
reading files 117
readInt() method (ByteArray

class) 153
readObject() method (ByteArray

class) 153

readUTFBytes() method (ByteArray
class) 153

RegExp objects, converting between
ActionScript and JavaScript 225

registering file types 272
relational databases

See databases
relative paths (between files) 109
relativize() method (File class) 109
remote sandboxes 30, 203
removeAsDefaultApplication()

method (NativeApplication
class) 272

requirements
PDF rendering 249

resetDRMVouchers() method
(NetStream class) 256

resizable element (application
descriptor file) 49

resize event 60, 75
resizeBy() method (Window

object) 240
resizeTo() method (Window

object) 240
resizing event 75
resizing windows 49, 60, 73
resolvePath() method (File class) 105
Responder class 172, 181
restore() method (NativeWindow

class) 72
restoring windows 60, 72
result event 171
rich internet applications (RIAs) 9
root volumes 105
rotation property (HTMLLoader

class) 237
ROWID column name (SQL) 182
ROWID column name (SQL) 182
rows (database) 164, 181
running AIR applications 286, 293
runtime property (Window

object) 65, 200, 207, 220
runtimeApplicationDomain

property (HTMLLoader
class) 223

runtimePatchLevel property
(NativeApplication class) 273

runtimeVersion property
(NativeApplication class) 273

S
sample applications 3

sandbox bridges 33, 37, 201, 203, 217,
226, 227

sandboxes 30, 203, 226, 273
sandboxRoot attribute (frame and

iframe elements) 201, 204, 209,
227

sandboxRoot property
frame 33
iframe 33

sandboxType property
BrowserInvokeEvent class 267
Security class 273

scalable vector graphics (SVG) 202
scaleMode property

Stage class 74
scaleX property (HTMLLoader

class) 237
scaleY property (HTMLLoader

class) 237
Screen class 78

getScreenForRectangle()
method 79

mainScreen property 79
screens property 79

screens 78
enumerating 79
main 79
windows,moving between 80

screens property (Screen class) 79
screenX property (HTML drag

events) 135
screenY property (HTML drag

events) 135
script tags 203, 207, 219, 221, 224

src property of 35
scroll event 230
scrollH property (HTMLLoader

class) 238
scrolling HTML content 238
scrollV property (HTMLLoader

class) 238
seamless install feature 287
security

Ajax frameworks 36
application sandbox 30
application storage directory 28
asfunction protocol 31
best practices 42
browser invocation feature 267
Clipboard 143
cross-domain cache 31

312
cross-scripting 37
CSS 32
database 174
downgrade attacks 43
dynamic code generation 35
encrypting data 196
eval() function 34
file system 40
frames 32, 33
HTML 32, 34, 199, 201, 215
iframes 32, 33
img tags 31
installation (application and

runtime) 26
JavaScript 226
JavaScript errors 216
Loader.loadBytes() method 42
loading content 66
non-application sandboxes 32
sandbox bridges 33, 37, 227
sandboxes 30, 201, 203, 226, 273
text fields 31
user credentials 43
user privileges for installation 27
window.open() 37
XMLHTTPRequest 209
XMLHttpRequest objects 36

Security class
allowDomain() method 37, 41
sandboxType property 273

securityDomain property
(BrowserInvokeEvent class) 267

select event 86, 93, 94
SELECT statement (SQL) 175, 186
self-signed certificates 44, 294
separator lines, menu 89
separator property (File class) 111
serialized objects

copy-and-paste support 142
drag-and-drop support 127

serializing objects 129
setAsDefaultApplication() method

(NativeApplication class) 50,
272

setData() method
ClipboadData object 205
Clipboard method 150
DataTransfer object 135, 137, 206

setDataHandler() method (Clipboard
class) 150

setDragImage() method (of a
dataTransfer property of an
HTML drag event) 135

setDRMAuthenticationCredentials()
method (NetStream class) 254,
256

setInterval() function 36, 208, 218
setTimeout() function 36, 208, 218
Shift key 86
showing windows 70
size of windows 49
size property (File class) 114
size, windows 65
SQL

about 164
AUTOINCREMENT columns 182
classes used with 165
CREATE TABLE statement 168
data typing 174, 186
DELETE statement 183
INSERT statement 186
INTEGER PRIMARY KEY

columns 182
named parameters (in

statements) 173
OID column name 182
parameters in statements 172
ROWID column name 182
ROWID column name 182
SELECT statement 175, 186
statements 171
unnamed parameters (in

statements) 173
UPDATE statement 183
See also databases

SQLCollationType class 165
SQLColumnNameStyle class 165
SQLConnection class 165

attach() method 183
open method 167
open() method 166
openAsync() method 166, 167, 170

sqlConnection property
(SQLStatement class) 171

SQLError class 165, 171
SQLErrorEvent class 165, 171
SQLEvent class 165
SQLIndexSchema class 165
SQLLite database support 162

See also databases
SQLMode class 165, 171

SQLResult class 165
181

SQLSchemaResult class 165
SQLStatement class 165, 171

execute method 172
execute() method 175, 181
getResult() method 181
parameters object 172
parameters property 173
sqlConnection property 171
text property 171, 173, 175, 183

SQLTableSchema class 165
SQLTransactionLockType class 165
SQLTriggerSchema class 165
SQLUpdateEvent class 165
SQLViewSchema class 165
Stage class

addChild() method 67
addChildAt() method 67
displayState property 76
nativeWindow property 64, 70
scaleMode property 64, 74
stageScaleMode property 236

stage property
NativeWindow class 67

StageDisplayState class 76
StageScaleMode class 64, 74, 236
stageScaleMode property (Stage

class) 236
Start menu (Windows) 48
startAtLogin property

(NativeApplication class) 266
startMove() method (NativeWindow

class) 74
startResize() method

(NativeWindow class) 74
start-up (system), launching an AIR

application upon 266
statements, SQL 171
status property (Window object) 240
StatusEvent class 254
strong binding of encrypted data 196
styleSheets property (Document

object) 225
stylesheets, HTML

manipulating in ActionScript 225
subErrorID property

(DRMErrorEvent class) 260
submenu property

NativeMenuItem class 85
submenus 85, 88

313
Sun Java signing digital IDs 295
supportsDockIcon property

(NativeApplication class) 97
supportsMenu property

(NativeApplication class) 94
supportsSystemTrayIcon property

(NativeApplication class) 97
SWF content

in HTML 201
loading in HTML 67, 237
overlaying above HTML 67

SWF files
loading via a script tag 224

synchronous programming
databases 166, 169, 187
file-system 103
XMLHttpRequests 219

system chrome 61
HTML windows 65

system log-in, launching an AIR
application upon 266

system tray icons 84, 87
support 97

systemChrome property
(NativeWindow class) 61

systemMaxSize property
(NativeWindow class) 65

systemMinSize property
(NativeWindow class) 65

T
tables (database) 164

creating 168
taskbar icons 70, 97
technical support 10
temporary directories 112
temporary files 116
text

copy-and-paste support 142
drag-and-drop support 127, 136

text property (SQLStatement
class) 171, 173, 175, 183

textEncodingFallback property
(HTMLLoader class) 239

textEncodingOverride property
(HTMLLoader class) 239

TextField class
copy and paste 143
HTML loaded in 215
img tags 31

Thawte certificates 294, 295

timestamps 296
title bar icons (Windows) 63
title element (application descriptor

file) 48
title property

Document object 240
HistoryListItem class 239

toast-style windows 71
toolbar (Mac OS) 63
transform property (HTMLLoader

class) 237
transparent element (application

descriptor file) 49
transparent property

(NativeWindow class) 61
transparent windows 49, 61
trash (deleting a file) 116
type property (File class) 114
type property (NativeWindow

class) 61
types property

DataTransfer object 206
HTML copy-and-paste event 144
HTML drag event 135

types property (DataTransfer
object) 138

U
uncaughtScriptExcpetion event 230
uncompress() method (ByteArray

class) 156
uninstalling

AIR applications 29
AIR runtime 3

unknown publisher name (in AIR
application installer) 294

unload events 207
unnamed parameters (in SQL

statements) 173
UntrustedAppInstallDisabled

(Windows registry settings) 29
UPDATE statement (SQL) 183
update() method (Updater class) 299
UpdateDisabled (Windows registry

settings) 29
Updater class 299
updating AIR applications 49, 299
url property

File class 105, 114
HistoryListItem class 239

url property (File class) 105

URL schemes 109
URLRequest class

userAgent property 239
URLRequestDefaults class

userAgent property 239
URLs 221

copy-and-paste support 142
drag-and-drop support 127, 136
loading HTML content from 214

URLStream class 204
user activity, detecting 273
user agent, setting 239
user credentials and security 43
user names

setting for encrypted media
content 253

userAgent property
HTMLLoader class 239
URLRequest class 239
URLRequestDefaults class 239

userDirectory property (File
class) 105

userIdle event 273
userPresent event 273
utility windows 61

V
Verisign certificates 294, 295
version element (application

descriptor file) 47
versions, AIR application 273
vertical scroll bars, HTML 238
video content encryption 253
visibility of windows 49
visible element (application

descriptor file) 49
visible property

HTMLLoader class 236
NativeWindow class 64, 70

vouchers, using with DRM-
encrypted content 253

W
web browsers

detecting AIR runtime from 291
detecting if an AIR application is

installed from 291
emulating 240
installing AIR applications

from 287, 292

314
launching AIR applications
from 293

launching an AIR application
from 266

running AIR applications
from 287

WebKit 199, 202, 212
-webkit-border-horizontal-spacing

CSS property 212
-webkit-border-vertical-spacing CSS

property 212
-webkit-line-break CSS property 212
-webkit-margin-bottom-collapse

CSS property 212
-webkit-margin-collapse CSS

property 212
-webkit-margin-start CSS

property 212
-webkit-margin-top-collapse CSS

property 212
-webkit-nbsp-mode CSS

property 212
-webkit-padding-start CSS

property 213
-webkit-rtl-ordering CSS

property 213
-webkit-text-fill-color CSS

property 213
-webkit-text-security CSS

property 213
-webkit-user-drag CSS property 134,

213, 137
-webkit-user-modify CSS

property 213
-webkit-user-select CSS

property 134, 137, 213
width element (application

descriptor file) 49
width property (HTMLLoader

class) 214, 236
Window class 59
window menus 83, 94

creating 87
Window object

blur() method 240
childSandboxBridge property 33
close() method 59, 240
focus() method 240
history property 238
htmlLoader object 200
htmlLoader property 65, 208, 214
location property 240
moveBy() method 240

moveTo() method 59, 240
nativeWindow object 200
nativeWindow property 59, 65,

208
open method 208
open() method 37, 65, 240, 241
opener property 65
parent property 65
parentSandboxBridge property 33,

208, 228
print() method 202
resizeBy() method 240
resizeTo() 240
runtime property 31, 36, 65, 200,

207, 220
status property 240

WindowedApplication class 59
windows 58

activating 64
active 70, 71
apearance 61
background of 62
behavior 61
chrome 61
classes for working with 60
closing 60, 71, 240, 267
creating 63, 69, 214
custom chrome 61
display order 70
event flow 60
events 75
hiding 70
initial 59
initializing 63
lightweight 61
managing 69
maximizing 49, 60, 72
maximum size 65
minimizing 49, 60, 70, 72
minimum size 65
moving 60, 73, 74, 80
non-rectangular 61
normal windows 61
order 71
position 49
properties 48
resizing 49, 60, 73, 240
restoring 60, 72
showing 70
size 65

size of 49
stage scale modes 64
style 61
system chrome 61
transparency 49, 61
types 61
utility windows 61
visibility 49

Windows registry settings 29
write() method (Document

object) 207, 219
writeBytes() method (ByteArray

class) 153
writeFloat() method (ByteArray

class) 153
writeInt() method (ByteArray

class) 153
writeln() method (Document

object) 207, 219
writeObject() method (ByteArray

class) 153
writeUTFBytes() method (ByteArray

class) 153
writing files 117

X
x element (application descriptor

file) 49
x property

HTMLLoader class 236
XML

class 220
defining menus using 91

XML namespace (application
descriptor file) 46

XMLHttpRequest object 36, 203, 209,
219

XMLList class 220
xmlns (application descriptor file) 46

Y
y element (application descriptor

file) 49
y property

HTMLLoader class 236

Z
ZIP file format 158
ZLIB compression 156

	Part 1: Installation instructions
	Chapter 1: Adobe AIR installation
	Chapter 2: Setting up Flash CS3 for Adobe AIR

	Part 2: Getting started
	Chapter 3: Introducing Adobe AIR
	Chapter 4: Finding AIR Resources
	Chapter 5: Creating your first AIR application using Flash CS3

	Part 3: AIR development tools
	Chapter 6: Adobe AIR Update for Flash CS3 Professional
	Create an Adobe AIR file
	Setting Adobe AIR publish settings
	Preview an Adobe AIR application
	Debug an Adobe AIR application
	Creating AIR application and installer files
	Creating a custom application descriptor file
	Signing your application

	Part 4: Application development essentials
	Chapter 7: AIR security
	Installation and updates
	Sandboxes
	HTML security
	Scripting between content in different domains
	Writing to disk
	Working securely with untrusted content
	Best security practices for developers
	Code signing

	Chapter 8: Setting AIR application properties
	Chapter 9: New functionality in Adobe AIR

	Part 5: Windows, menus, and taskbars
	Chapter 10: Working with native windows
	AIR window basics
	Creating windows
	Managing windows
	Listening for window events
	Displaying full-screen windows

	Chapter 11: Screens
	Screen basics
	Enumerating the screens

	Chapter 12: Working with native menus
	AIR menu basics
	Creating native menus
	About context menus
	About context menus in HTML
	Defining native menus declaratively
	Displaying pop-up menus
	Handling menu events
	Example: Window and application menu

	Chapter 13: Taskbar icons

	Part 6: Files and data
	Chapter 14: Working with the file system
	AIR file basics
	Working with File objects
	Getting file system information
	Working with directories
	Working with files
	Reading and writing files

	Chapter 15: Drag and drop
	Drag and drop basics
	Supporting the drag-out gesture
	Supporting the drag-in gesture
	HTML Drag and drop

	Chapter 16: Copy and paste
	Copy-and-paste basics
	Reading from and writing to the system clipboard
	HTML copy and paste
	Menu commands and keystrokes for copy and paste
	Clipboard data formats

	Chapter 17: Working with byte arrays
	Reading and writing a ByteArray
	ByteArray example: Reading a .zip file

	Chapter 18: Working with local SQL databases
	About local SQL databases
	Creating and modifying a database
	Manipulating SQL database data
	Using synchronous and asynchronous database operations
	Strategies for working with SQL databases

	Chapter 19: Storing encrypted data

	Part 7: HTML content
	Chapter 20: About the HTML environment
	Overview of the HTML environment
	AIR and Webkit extensions

	Chapter 21: Programming in HTML and JavaScript
	About the HTMLLoader class
	Avoiding security-related JavaScript errors
	Accessing AIR API classes from JavaScript
	About URLs in AIR
	Making ActionScript objects available to JavaScript
	Accessing HTML DOM and JavaScript objects from ActionScript
	Using ActionScript libraries within an HTML page
	Converting Date and RegExp objects
	Manipulating an HTML stylesheet from ActionScript
	Cross-scripting content in different security sandboxes

	Chapter 22: Handling HTML-related events
	Chapter 23: Scripting the HTML Container
	Display properties of HTMLLoader objects
	Scrolling HTML content
	Accessing the HTML history list
	Setting the user agent used when loading HTML content
	Setting the character encoding to use for HTML content
	Defining browser-like user interfaces for HTML content
	Creating subclasses of the HTMLLoader class

	Part 8: Rich media content
	Chapter 24: Adding PDF content
	Chapter 25: Using digital rights management
	Understanding the encrypted FLV workflow
	Changes to the NetStream class
	Using the DRMStatusEvent class
	Using the DRMAuthenticateEvent class
	Using the DRMErrorEvent class

	Part 9: Interacting with the operating system
	Chapter 26: Application launching and exit options
	Chapter 27: Reading application settings
	Chapter 28: Working with runtime and operating system information

	Part 10: Networking and communications
	Chapter 29: Monitoring network connectivity
	Chapter 30: URL requests and networking
	Using the URLRequest class
	Changes to the URLStream class
	Opening a URL in the default system web browser

	Chapter 31: Inter-application communication

	Part 11: Distributing and updating applications
	Chapter 32: Distributing, Installing, and Running AIR applications
	Installing and running an AIR application from the desktop
	Installing and running AIR applications from a web page
	Digitally signing an AIR file

	Chapter 33: Updating AIR applications

	Index
	Symbols
	: (colon) character, in SQL statement parameter names 173
	? (question mark) character, in unnamed SQL parameters 173
	@ (at) character, in SQL statement parameter names 173

	A
	AC_FL_RunContent() function (in default_badge.html) 288
	AC_RuntimeActiveContent.js 288
	accelerator keys for menu commands 86
	acceptDragDrop() method (NativeDragManager class) 128, 132
	acompc compiler 225
	Acrobat 201, 249
	Action Message Format (AMF) 129, 153, 156
	ActionScript
	JavaScript cross-scripting 222

	ActionScript documentation 10
	activate() method (NativeWindow class) 64, 70, 71
	activating windows 64, 71
	active event 75
	active window 70
	activeWindow property (NativeApplication class) 70
	activity (user), detecting 273
	addChild() method (Stage class) 67
	addChildAt() method (Stage class) 67
	Adobe Acrobat Developer Center 250
	Adobe AIR
	installing 2, 26
	introduction 9
	new functionality 52
	uninstalling 3
	updating 26

	Adobe documentation 10
	Adobe Media Player 253
	Adobe Press books 10
	Adobe Reader 201, 249
	Adobe support website 10
	AES-CBC 128-bit encryption 196
	AIR applications
	browser invocation 50
	copyright information 47
	detecting installation of 291
	distributing 286
	exiting 263
	file type associations 50, 264, 272
	icons 49
	installation path 47
	installing 26, 286, 287
	invoking 263
	launching 263
	quitting 263
	running 286, 293
	settings 45, 46, 270
	uninstalling 29
	updating 26, 49, 299
	versions 47, 273, 299

	AIR developer certificates 295
	AIR files
	signing 294

	air property (AIRAliases.js file) 200, 220
	AIR runtime
	detecting 273, 291
	installing 2, 26
	new functionality 52
	patch levels 46, 273
	uninstalling 3
	updating 26

	air.swf file 287
	AIRAliases.js file 200, 220
	Ajax
	security 36
	support in the application sandbox 36

	allowBrowserInvocation element (application descriptor file) 50, 263, 266
	allowCrossDomainXHR attribute (frame and iframe elements) 204, 209
	allowLoadBytesCodeExecution property (LoaderContext class) 42
	alpha property (HTMLLoader class) 237
	alwaysInFront property (NativeWindow class) 70, 71
	app URL scheme 40, 43, 66, 109, 203, 221, 227, 250
	appearance of windows 61
	AppInstallDisabled (Windows registry setting) 29
	Apple developer certificates 295
	application descriptor file 45
	reading 270

	application directory 105
	application IDs 46
	application menus 83, 94
	creating 87

	application sandbox 30, 201, 203, 215, 217, 219, 227, 273
	application storage directory 28, 105, 109, 221
	applicationDescriptor property (NativeApplication class) 270
	ApplicationDomain class 223
	applications
	See AIR applications

	applicationStorageDirectory property (File class) 105
	app-storage URL scheme 28, 40, 43, 109, 250
	app-support URL scheme 227
	arguments property
	BrowserInvokeEvent class 267
	InvokeEvent class 264

	asfunction protocol 31
	asynchronous programming
	databases 166, 169, 187
	file-system 103
	XMLHttpRequests 219

	at (@) characater, in SQL statement parameter names 173
	attach() method (SQLConnection class) 183
	autoExit property
	NativeApplication class 268

	AUTOINCREMENT columns (SQL) 182
	auto-launch (launching an AIR application at log-in) 266

	B
	background of windows 62
	background-color CSS style 236
	badge.swf file 287
	big-endian byte order 155
	binary data
	See byte arrays

	bitmap images, setting for icons 97
	bitmaps
	copy-and-paste support 142
	drag-and-drop support 127, 136

	bitmaps property (Icon class) 97
	blur() method (Window object) 240
	bounce method() (Icon class) 98
	browseForDirectory() method (File class) 107
	browseForOpen() method (File class) 108
	browseForSave() method (File class) 108
	browser invocation feature 50, 266
	browserInvoke event 266, 294
	BrowserInvokeEvent class 266
	browsers
	See web browsers

	browsing
	to select a directory 107
	to select a file 108

	byte arrays
	byte order 155
	position in 154
	size of 155

	byte order 155
	ByteArray class
	bytesAvailable property 155
	compress() method 156
	constructor 153
	length property 155
	position property 154
	readBytes() method 153
	readFloat() method 153
	readInt() method 153
	readObject() method 153
	readUTFBytes() method 153
	uncompress() method 156
	writeBytes() method 153
	writeFloat() method 153
	writeInt() method 153
	writeObject() method 153
	writeUTFBytes() method 153
	See also byte arrays

	bytesAvailable property (ByteArray class) 155

	C
	Canvas object 205, 211
	Capabilities class
	playerType property 273

	certificate authorities (CAs) 294
	certificate practice statement (CPS) 297
	certificate revocation list (CRL) 297
	certificates
	authorities (CAs) 44
	chains 297
	code signing 44
	expiration of 296
	formats of 295
	signing AIR files 294

	character encoding, HTML 239
	character set, HTML 239
	charset attribute (in an HTML meta element) 239
	checked menu items 87
	childSandboxBridge property
	LoaderInfo class 38
	Window object 33

	clearData() method
	ClipboardData object 205
	DataTransfer object 135, 206

	clearing directories 113
	clientX property (HTML drag events) 135
	clientY property (HTML drag events) 135
	Clipboard 205
	copy and paste 142
	data formats 148, 149
	security 143
	System 142

	Clipboard class
	generalClipboard property 142
	getData() method 128, 132
	setData() method 150
	setDataHandler() method 150

	clipboard event 206
	clipboard property (NativeDragEvent class) 132
	clipboardData property (clipboard events) 206
	clipboardData property (HTML copy-and-paste events) 143, 144
	ClipboardFormats class 148
	ClipboardTransferModes class 149
	close event 75
	close() method
	NativeWindow class 71
	Window object 240

	close() method (window object) 59
	closing applications 267
	closing event 71, 75, 233, 268
	closing windows 60, 71, 267
	code signing 44, 294
	colon (:) character, in SQL statement parameter names 173
	columns (database) 164
	Command key 86
	command-line arguments, capturing 264
	commands, menu
	See menu items

	complete event 223, 225, 230
	compress() method (ByteArray class) 156
	compressing data 156
	CompressionAlgorithm class 156
	connecting to a database 170
	content element (application descriptor file) 48
	contenteditable attribute (HTML) 137
	contentHeight property (HTMLLoader class) 236, 238
	contentWidth property
	HTMLLoader class 236

	contentWidth property (HTMLLoader class) 238
	context menus 83, 89
	HTML 90

	ContextMenu class 86, 89
	contextmenu event 90
	ContextMenuEvent class
	contextMenuOwner property 89
	mouseTarget property 89

	ContextMenuItem class 86
	contextMenuOwner property (ContextMenuEvent class) 89
	Control key 86
	cookies 205
	copy and paste
	basics 142
	classes used 142
	default menu items (Mac OS) 147
	deferred rendering 150
	HTML 143, 205
	key equivalents 147
	keyboard shortcuts 145
	menu commands 145
	transfer modes 149

	copy event 144
	copy() method (NativeApplication class) 146
	copying directories 113
	copying files 115
	copyright information for AIR applications 47
	copyTo() method (File class) 115
	copyToAsync() method (File class) 115
	CREATE TABLE statement (SQL) 168
	createDirectory() method (File class) 112
	createDocumentRoot() method (HTMLLoader class) 241
	createElement() method (Document object) 219
	createRootWindow() method (HTMLLoader class) 65, 66, 214
	createTempDirectory() method (File class) 112, 116
	createTempFile() method (File class) 116
	creating directories 112
	creationDate property (File class) 114
	creator property (File class) 114
	credentials
	for DRM-encrypted content 259

	cross-domain cache security 31
	cross-scripting 37, 222, 226
	CSS
	accessing HTML styles from ActionScript 225
	AIR extensions to 212

	currentDirectory property (InvokeEvent class) 264
	currentDomain property (ApplicationDomain class) 223
	cursor, drag-and-drop effects 132, 136
	custom chrome 61
	custom update user interface 300
	customItems property (ContextMenu class) 89
	customUpdateUI element (application descriptor file) 49, 263, 300
	cut event 144

	D
	data encryption 196
	data formats, Clipboard 148
	data property
	NativeMenuItem class 87

	data types, database 186
	data validation, application invocation 267
	databases
	about 163
	asynchronous mode 166
	changing data 183
	classes used with 165
	columns 164
	connecting 170
	creating 167
	data typing 174, 186
	deleting data 183
	errors 183
	fields 164
	files 163
	in-memory 167
	muliple, working with 183
	performance 174
	primary keys 181, 182
	retrieving data 175
	row identifiers 182
	rows 164
	security 174
	structure 164
	synchronous mode 166
	tables 164, 168
	uses for 163

	DataTransfer object
	types property 138

	DataTransfer object (HTML drag and drop) 135, 136, 137, 138, 206
	Date objects, converting between ActionScript and JavaScript 225
	deactivate event 75
	default_badge.html 288
	deferred rendering (copy and paste) 150
	deflate compression 156
	DELETE statement (SQL) 183
	deleteDirectory() method (File class) 113
	deleteDirectoryAsync() method (File class) 113
	deleteFile() method (File class) 115
	deleteFileAsync() method (File class) 115
	deleting directories 113, 116
	deleting files 115, 116
	description element (application descriptor file) 47
	designMode property (Document object) 137, 207
	desktop directory 105
	desktop windows
	See windows

	desktopDirectory property (File class) 105
	Dictionary class 220
	digital rights management 253
	dimensions, windows 49
	directories 105, 112
	application invocation 264
	copying 113
	creating 112
	deleting 113, 116
	enumerating 112
	moving 113
	referencing 105

	directory chooser dialog boxes 107
	dispatchEvent() method (NativeWindow class) 60
	display order, windows 70, 71
	display properties, HTMLLoader class 235
	display() method (NativeMenu class) 92
	displaying event 86, 94
	displays
	See screens

	displayState property (Stage class) 76
	displayStateChange event 60, 76
	displayStateChanging event 60, 76
	distributing AIR applications 286
	dock icons 98
	bouncing 98
	menus 87
	support 97
	window minimizing and 70

	dock menus 84
	Document object
	createElement() method 219
	designMode property 137, 207
	stylesheets property 225
	title property 240
	wirtelin() method 207
	write() method 36, 207, 219
	writeln() method 36, 219

	documentation, related 10
	documentRoot attribute (frame and iframe elements) 33, 201, 209, 227
	documentRoot attributes (frame and iframe elements) 33
	documents directory 105
	documentsDirectory property (File class) 105
	doDrag() method (NativeDragManager class) 128, 130, 132
	dominitialize event 210
	downgrade attacks and security 43
	DPAPI (association of encrypted data with users) 196
	drag and drop
	classes related to 128
	cursor effects 132, 136
	default behavior in HTML 134
	events in HTML 134
	gestures 127
	HTML 133, 206
	modifier keys 132
	to non-application sandbox content (in HTML) 140
	transfer formats 127

	drag event 134, 206
	dragend event 134, 206
	dragenter event 134, 206
	drag-in gesture 127, 131
	dragleave event 134, 206
	drag-out gesture 127, 129
	dragover event 134, 206
	dragstart event 134, 206
	DRM 253
	credentials 259

	DRMAuthenticateEvent class 254, 257
	DRMErrorEvent class 254
	error codes 260
	subErrorID property 260

	DRMStatusEvent class 254
	drop event 134, 206
	dropAction property (NativeDragEvent class) 131, 132
	dropEffect property (DataTransfer object) 135, 136, 206
	dynamic code generation 35

	E
	effectAllowed property (DataTransfer object) 135, 136, 137, 206
	embedded objects (in HTML) 201
	enabled menu items 87
	encoding property (File class) 111
	encrypted data, storing and retrieving 196
	EncryptedLocalStore class 196
	encryption 253
	Endian.BIG_ENDIAN 155
	Endian.LITTLE_ENDIAN 155
	enterFrame event 67
	enumerating directories 112
	enumerating screens 79
	error codes
	DRM 260

	error event 171
	eval() function 31, 34, 203, 215, 217
	events
	handlers 233
	HTML 230
	listeners 233
	menu 86, 92
	native windows 60
	NativeWindow class 75

	execute() method (SQLStatement class) 172, 175, 181
	exists property (File class) 114
	exit() method
	NativeApplication class 267

	exiting AIR applications 263
	exiting event 268
	extensions (file), associating with an AIR application 50, 264, 272

	F
	fields (database) 164
	file API 103
	file chooser dialog boxes 108
	File class 103, 104
	applicationStorageDirectory property 104
	browseForDirectory() method 107
	browseForOpen() method 108
	browseForSave() method 108
	copyTo() method 115
	copyToAsync() method 115
	createDirectory() method 112
	createTempDirectory() method 112, 116
	createTempFile() method 116
	creationDate property 114
	creator property 114
	deleteDirectory() method 113
	deleteDirectoryAsync() method 113
	deleteFile() method 115
	deleteFileAsync() method 115
	desktopDirectory property 104
	documentsDirectory property 104
	encoding property 111
	exists property 114
	getDirectoryListingAsync() method 112
	getRootDirectories() 104
	getRootDirectories() method 104
	isDirectory property 114
	lineEnding property 111
	modificationDate property 114
	moveTo() method 115
	moveToAsync() method 115
	moveToTrash() method 116
	moveToTrashAsync() method 116
	name property 114
	nativePath property 104, 114
	parent property 114
	referencing a local database 167
	relativize() method 109
	resolvePath() method 104
	separator property 111
	size property 114
	type property 114
	url property 104, 114
	userDirectory property 104

	file lists
	drag-and-drop support 136

	file system
	security 40

	file system API 103
	file type associations 50, 264, 272
	file URL scheme 40, 109, 221
	FileMode class 103
	filename element (application descriptor file) 47
	files
	copy-and-paste support 142
	copying 115
	database 163
	deleting 115, 116
	drag-and-drop support 127
	moving 115
	reading 117
	referencing 107
	writing 117

	FileStream class 103
	fileTypes element (application descriptor file) 50, 272
	filters property (HTMLLoader class) 237
	Flash documentation 10
	Flash Media Rights Management Server 253
	Flash Player 52, 203, 220
	FlashVars settings (for using badge.swf) 288
	FLV videos, encryption of 253
	FMRMS (Flash Media Rights Management Server) 253
	focus() method (Window object) 240
	frame elements 201, 204, 209
	frames 33
	full-screen windows 76
	Function constructors (in JavaScript) 203
	functions (JavaScript)
	contructor 218
	definitions 35
	literals 35

	G
	generalClipboard property (Clipboard class) 142
	getApplicationVersion() method (air.swf file) 291
	getData() method
	Clipboard class 132
	ClipboardData object 205
	DataTransfer object 138, 206
	HTML copy-and-paste event 144

	getData() method (Clipboard class) 128
	getData() method (of a dataTransfer property of an HTML drag event) 135
	getDefaultApplication() method (NativeApplication class) 272
	getDirectoryListing() method (File class) 112
	getDirectoryListingAsync() method (File class) 112
	getResult() method (SQLStatement class) 181
	getScreensForRectangle() method(Screen class) 79
	getStatus() method (air.swf file) 291
	graphics property property (HTMLLoader class) 237
	GZIP format 156

	H
	height element (application descriptor file) 49
	height property (HTMLLoader class) 214, 235
	hiding windows 70
	history list, HTML 238
	history property (Window object) 238
	historyAt() method (HTMLLoader class) 238
	historyBack() method (HTMLLoader class) 238
	historyForward() method (HTMLLoader class) 238
	historyGo() method (HTMLLoader class) 238
	historyLength property (HTMLLoader class) 238
	HistoryListItem class 238
	isPost property 239
	originalUrl property 239
	title property 239
	url property 239

	historyPosition property (HTMLLoader class) 238
	home directory 105
	horizontal scroll bars, HTML 238
	hostContainer property (PDF) 251
	HTML
	AIR extensions to 209
	background color 236
	character encoding 239
	copy and paste 143
	DOM, accessing from ActionScript 223
	drag-and-drop support 127, 136
	embedded objects 201
	events 230
	history 238
	loading content 214
	loading SWF content 67
	overlaying SWF content 67
	plug-ins 201
	printing 202
	sandboxes 203
	scaling 236
	scrolling 230, 238
	security 32, 201, 226
	status bar 240
	transparency 236
	user agent, setting 239
	windows 65

	HTML DOM and native windows 59
	htmlBoundsChanged event 230
	htmlDOMInitialize event 230
	HTMLHost class 235
	extending 240

	HTMLLoader
	scaling 236

	HTMLLoader class 199, 214
	alpha property 237
	contentHeight property 236, 238
	contentWidth property 236, 238
	copy and paste 143
	createDocumentRoot() method 241
	createRootWindow() method 65, 66, 214
	display properties 235
	events 230
	filters property 237
	graphics property 237
	height property 214, 235
	historyAt() method 238
	historyBack() method 238
	historyForward() method 238
	historyGo() method 238
	historyLength property 238
	historyPosition property 238
	JavaScript access to 200
	loadString() method 215
	opaqueBackground property 236, 237
	paintsDefaultBackground property 62, 67, 236
	pdfCapability property 249
	rotation property 237
	runtimeApplicationDomain property 223
	scaleX property 237
	scaleY property 237
	scrollH property 238
	scrollV property 238
	subclasses of, creating 247
	textEncodingFallback property 239
	textEncodingOverride property 239
	transform property 237
	userAgent property 239
	visible property 236
	width property 214, 236
	x property 236
	y property 236

	htmlLoader property (Window object) 200, 208, 214
	htmlLoader property (window object) 65
	HTMLPDFCapability class 249
	HTMLUncaughtScriptException class 231

	I
	Icon class
	bitmaps property 97
	bounce() method 98

	icon element (application descriptor file) 49
	icon property (NativeApplication class) 97
	icons
	animating 97
	application 49
	dock 97, 98
	images 97
	removing 97
	system tray 97
	task bar 70
	taskbar 97

	id element (application descriptor file) 46
	id element (NativeApplication class) 270
	idle time (user) 273
	idleThreshold property (NativeApplication class) 273
	iframe elements 33, 201, 204, 209
	img tags (in TextField object contents) 31
	Info.plist files (Mac OS) 47
	initialWindow element (application descriptor file) 48, 59
	in-memory databases 167
	innerHTML property 35, 207, 219
	INSERT statement (SQL) 186
	installApplication() method (air.swf file) 292
	installFolder element (application descriptor file) 47
	installing
	AIR runtime 2

	installing AIR applications 286, 287
	INTEGER PRIMARY KEY columns (SQL) 182
	invoke event 263
	InvokeEvent class 51, 264
	arguments property 264
	currentDirectory property 264

	invoking AIR applications 263
	isDirectory property (File class) 114
	isHTTPS property (BrowserInvokeEvent class) 267
	isPost property (HistoryListItem class) 239
	isSetAsDefaultApplication() method (NativeApplication class) 272

	J
	JavaScript
	accessing AIR APIs 220
	ActionScript cross-scripting 222
	AIR runtime and 200
	AIR support for 202
	AIRAliases.js file 200, 220
	avoiding security errors 216
	error events 230
	errors 216, 223, 231, 234
	events, handling 233
	PDF 250
	programming 214
	security 226

	JavaScript security 34
	javascript URL scheme 35, 209, 218
	JavaSoft developer certificates 295
	JSON 204

	K
	key equivalents
	copy and paste 147

	key equivalents for menu commands 86
	Keyboard class 86
	keyboard shortcuts
	copy and paste 145

	KeyChain (association of encrypted data with users) 196
	keyEquivalent property (NativeMenuItem class) 86
	keyEquivalentModifiers property (NativeMenuItem class) 86

	L
	label property (NativeMenuItem class) 147
	lastInsertRowID property (SQLResult class) 181
	lastUserInput property (NativeApplication class) 273
	launching AIR applications 263
	length property (ByteArray class) 155
	lightweight windows 61
	lineEnding property (File class) 111
	listRootDirectories() method (File class) 105
	little-endian byte order 155
	load event 201, 203, 216, 223
	load events 219
	loadBytes() method (Loader class) 42
	Loader class 66
	Loader.loadBytes() method 42
	LoaderContext class
	allowLoadBytesCodeExecution property 42
	applicationDomain property 38
	securityDomain property 38

	LoaderInfo class
	childSandboxBridge property 38
	parentSandboxBridge property 38

	loadString() method (HTMLLoader class) 215
	local databases
	See databases

	LocalConnection class 288, 294
	local-trusted sandbox 30, 203
	local-with-filesystem sandbox 30, 203
	local-with-networking sandbox 30
	location property
	Window object 240

	locationChange event 230
	login, launching an AIR application upon 266

	M
	Mac OS
	proxy icons 63
	toolbar 63

	main screen 79
	mainScreen property (Screen class) 79
	maximizable element (application descriptor file) 49
	maximize() method (NativeWindow class) 72
	maximizing windows 49, 60, 72
	maxSize element (application descriptor file) 49
	menu
	application 94
	events 94
	structure 85

	menu bars 85
	menu items 85
	accelerator keys 86
	checked 87
	copy and paste 147
	creating 89
	data, assigning to 87
	enabled 87
	key equivalents 86
	mnemonic characters 87
	selecting 93
	states 87

	menuItemSelect events 86
	menus 83
	application 87
	classes for working with 84
	context menus 89
	copy-and-paste commands 145
	creating 87
	custom 84
	default system 84
	dock 84
	dock item 87
	event flow 86, 92
	items 85
	key equivalents 86
	pop-up 87, 92
	separator lines 89
	structure 85
	submenus 85, 88
	system tray icon 87
	system tray icons 84
	types of 84
	window 87, 94
	XML, defining with 91
	See also menu items

	menuSelect events 86
	messageHandler property (PDF) 251
	Microsoft authenticode certificates 295
	Microsoft authenticode digital IDs 295
	Microsoft Windows
	title bar icons 63

	MIME types
	HTML copy and paste 149, 206
	HTML drag and drop 136

	minimizable element (application descriptor file) 49
	minimize() method (NativeWindow class) 72
	minimizing windows 49, 60, 70, 72
	minimumPatchLevel attribute (application descriptor file) 46
	minSize element (application descriptor file) 49
	mnemonic characters
	menu items 87

	mnemonicIndex property
	NativeMenuItem class 87

	modificationDate property (File class) 114
	modifier keys, menu items 86
	monitors
	See screens

	mouse position while dragging 133
	mouseDown event 74, 128
	mouseMove event 128
	mouseTarget property (ContextMenuEvent class) 89
	move event 60, 75
	moveBy() method
	Window object 240

	moveTo() method
	File class 115
	Window object 59

	moveTo() method (Window object) 240
	moveToAsync() method (File class) 115
	moveToTrash() method (File class) 116
	moveToTrashAsync() method (File class) 116
	moving directories 113
	moving event 75
	moving files 115
	moving windows 60, 73, 74
	multi-screen virtual desktops 79
	My Documents directory (Windows) 105

	N
	name element (application descriptor file) 47
	name property (File class) 114
	named parameters (in SQL statements) 173
	native menus
	See menus

	native windows
	See windows

	NativeApplication class 208
	activeWindow property 70
	addEventListener() method 264
	applicationDescriptor property 270
	autoExit property 268
	copy() method() 146
	exit() method 267
	getDefaultApplication() method 272
	icon property 97
	id property 270
	idleThreshold property 273
	isSetAsDefaultApplication() method 272
	lastUserInput property 273
	publisherID property 270, 295
	removeAsDefaultApplication() method 272
	runtimePatchLevel property 273
	runtimeVersion property 273
	setAsDefaultApplication() method 50
	startAtLogin property 266
	supportsDockIcon property 97
	supportsMenu property 94
	supportsSystemTrayIcon property 97

	NativeApplication.setAsDefaultAppl ication() method 272
	NativeBoundsEvent class 75
	nativeDragComplete event 128, 131, 133
	nativeDragDrop event 128
	nativeDragEnter event 128, 131, 132, 133
	NativeDragEvent class
	clipboard property 132
	dropAction property 131, 132

	nativeDragExit event 128, 133
	NativeDragManager class
	acceptDragDrop() method 128, 132
	doDrag() method 128, 130, 132

	nativeDragOver event 128, 131, 132, 133
	nativeDragStart event 128, 133
	nativeDragUpdate event 128, 133
	NativeMenu class 85, 92
	NativeMenuItem class 85
	data property 87
	keyEquivalent property 86
	keyEquivalentModifiers property 86
	label property 147
	mnemonicIndex property 87
	submenu property 85

	nativePath property (File class) 105, 114
	NativeWindow class 59
	activate method 70
	activate method() 64
	activate() method 71
	addEventListener() method 75
	alwaysInFront property 70, 71
	close() method. 71
	constructor 64
	dispatchEvent() method 60
	events 75
	HTMLLoader objects and 199
	instantiating 69
	JavaScript access to 200
	maximize() method 72
	minimize() method 72
	orderBehind() method 71
	orderInBackOf() method 71
	orderInFrontOf() method 71
	orderToBack() method 71
	orderToFront() method 71
	restore() method 72
	stage property 67
	startMove() method 74
	startResize() method 74
	systemChrome property 61
	systemMaxSize property 65
	systemMinSize property 65
	transparent property 61
	type property 61
	visible property 64, 70

	nativeWindow property
	Stage class 64, 70
	Window object 200, 208

	nativeWindow property (window object) 59, 65
	NativeWindowDisplayStateEvent class 76
	NativeWindowInitOptions class 64, 65
	NetStream class
	resetDRMVouchers() method 256
	setDRMAuthenticationCredential s() method 254, 256

	Netstream class
	encrypted content, playing with 254

	non-application sandboxes 32, 140, 201, 203, 215, 217, 227
	normal windows 61
	NSHumanReadableCopyright field (Mac OS) 47

	O
	object literals (in JavaScript) 35
	object references
	copy-and-paste support 142
	drag-and-drop support for 127

	object tag (in HTML) 67
	OID column name (SQL) 182
	onclick handler 219
	ondominitialize attribute 210
	onload handler 34
	onmouseover handler 219
	opacity CSS style 236
	opaqueBackground property (HTMLLoader class) 236, 237
	open() method
	SQLConnection class 166
	Window object 37, 65, 208, 240

	open() method (SQLConnection class) 167
	open() method (Window object) 241
	openAsync() method (SQLConnection class) 166, 167, 170
	opener property (window object) 65
	order of windows 70
	orderBehind() method (NativeWindow class) 71
	orderInBackOf() method (NativeWindow class) 71
	orderInFrontOf() method (NativeWindow class) 71
	ordering windows 71
	orderToBack() method (NativeWindow class) 71
	orderToFront() method (NativeWindow class) 71
	originalUrl property (HistoryListItem class) 239
	outerHTML properties 207

	P
	P12 files 295
	paintsDefaultBackground property (HTMLLoader class) 62, 67, 236
	parameters property (SQLStatement class) 172, 173
	parameters, in SQL statements 172
	parent property (File class) 114
	parent property (window object) 65
	parentSandboxBridge property
	LoaderInfo class 38
	Window object 33
	Window object) 208

	parentSandboxBridge property (Window object) 228
	passwords
	setting for encrypted media content 253

	pasting data
	See copy and paste

	patch levels
	AIR runtime 273

	patch levels, AIR runtime 46
	path delimiter (file system) 107
	paths (file and directory) 109
	paths, relative 109
	PDF
	support for 201, 249

	PDF content
	adding to AIR applications 249
	JavaScript communication 250
	known limitations 252
	loading 250

	pdfCapability property (HTMLLoader class) 249
	PFX files 295
	playerType property
	Capabilities class 273

	plug-ins (in HTML) 201
	pop-up menus 83, 92
	creating 87

	position of windows 49
	position property (ByteArray class) 154
	postMessage() method (PDF object) 251
	primary keys
	databases 181
	menu items 86

	print() method (Window object) 202
	printing 202
	privileges required to update the AIR runtime or an AIR application 27, 287, 293
	Program Files directory (Windows) 286
	programMenuFolder element (application descriptor file) 48
	proxy icons
	Mac OS 63

	publisher identifiers 270, 295
	publisher name 294
	publisherid file 270
	publisherID property (NativeApplication class) 270, 295

	Q
	question mark (?) character, in unnamed SQL parameters 173
	quitting AIR applications 263

	R
	readBytes() method (ByteArray class) 153
	readFloat() method (ByteArray class) 153
	reading files 117
	readInt() method (ByteArray class) 153
	readObject() method (ByteArray class) 153
	readUTFBytes() method (ByteArray class) 153
	RegExp objects, converting between ActionScript and JavaScript 225
	registering file types 272
	relational databases
	See databases

	relative paths (between files) 109
	relativize() method (File class) 109
	remote sandboxes 30, 203
	removeAsDefaultApplication() method (NativeApplication class) 272
	requirements
	PDF rendering 249

	resetDRMVouchers() method (NetStream class) 256
	resizable element (application descriptor file) 49
	resize event 60, 75
	resizeBy() method (Window object) 240
	resizeTo() method (Window object) 240
	resizing event 75
	resizing windows 49, 60, 73
	resolvePath() method (File class) 105
	Responder class 172, 181
	restore() method (NativeWindow class) 72
	restoring windows 60, 72
	result event 171
	rich internet applications (RIAs) 9
	root volumes 105
	rotation property (HTMLLoader class) 237
	ROWID column name (SQL) 182
	ROWID column name (SQL) 182
	rows (database) 164, 181
	running AIR applications 286, 293
	runtime property (Window object) 65, 200, 207, 220
	runtimeApplicationDomain property (HTMLLoader class) 223
	runtimePatchLevel property (NativeApplication class) 273
	runtimeVersion property (NativeApplication class) 273

	S
	sample applications 3
	sandbox bridges 33, 37, 201, 203, 217, 226, 227
	sandboxes 30, 203, 226, 273
	sandboxRoot attribute (frame and iframe elements) 201, 204, 209, 227
	sandboxRoot property
	frame 33
	iframe 33

	sandboxType property
	BrowserInvokeEvent class 267
	Security class 273

	scalable vector graphics (SVG) 202
	scaleMode property
	Stage class 74

	scaleX property (HTMLLoader class) 237
	scaleY property (HTMLLoader class) 237
	Screen class 78
	getScreenForRectangle() method 79
	mainScreen property 79
	screens property 79

	screens 78
	enumerating 79
	main 79
	windows,moving between 80

	screens property (Screen class) 79
	screenX property (HTML drag events) 135
	screenY property (HTML drag events) 135
	script tags 203, 207, 219, 221, 224
	src property of 35

	scroll event 230
	scrollH property (HTMLLoader class) 238
	scrolling HTML content 238
	scrollV property (HTMLLoader class) 238
	seamless install feature 287
	security
	Ajax frameworks 36
	application sandbox 30
	application storage directory 28
	asfunction protocol 31
	best practices 42
	browser invocation feature 267
	Clipboard 143
	cross-domain cache 31
	cross-scripting 37
	CSS 32
	database 174
	downgrade attacks 43
	dynamic code generation 35
	encrypting data 196
	eval() function 34
	file system 40
	frames 32, 33
	HTML 32, 34, 199, 201, 215
	iframes 32, 33
	img tags 31
	installation (application and runtime) 26
	JavaScript 226
	JavaScript errors 216
	Loader.loadBytes() method 42
	loading content 66
	non-application sandboxes 32
	sandbox bridges 33, 37, 227
	sandboxes 30, 201, 203, 226, 273
	text fields 31
	user credentials 43
	user privileges for installation 27
	window.open() 37
	XMLHTTPRequest 209
	XMLHttpRequest objects 36

	Security class
	allowDomain() method 37, 41
	sandboxType property 273

	securityDomain property (BrowserInvokeEvent class) 267
	select event 86, 93, 94
	SELECT statement (SQL) 175, 186
	self-signed certificates 44, 294
	separator lines, menu 89
	separator property (File class) 111
	serialized objects
	copy-and-paste support 142
	drag-and-drop support 127

	serializing objects 129
	setAsDefaultApplication() method (NativeApplication class) 50, 272
	setData() method
	ClipboadData object 205
	Clipboard method 150
	DataTransfer object 135, 137, 206

	setDataHandler() method (Clipboard class) 150
	setDragImage() method (of a dataTransfer property of an HTML drag event) 135
	setDRMAuthenticationCredentials() method (NetStream class) 254, 256
	setInterval() function 36, 208, 218
	setTimeout() function 36, 208, 218
	Shift key 86
	showing windows 70
	size of windows 49
	size property (File class) 114
	size, windows 65
	SQL
	about 164
	AUTOINCREMENT columns 182
	classes used with 165
	CREATE TABLE statement 168
	data typing 174, 186
	DELETE statement 183
	INSERT statement 186
	INTEGER PRIMARY KEY columns 182
	named parameters (in statements) 173
	OID column name 182
	parameters in statements 172
	ROWID column name 182
	ROWID column name 182
	SELECT statement 175, 186
	statements 171
	unnamed parameters (in statements) 173
	UPDATE statement 183
	See also databases

	SQLCollationType class 165
	SQLColumnNameStyle class 165
	SQLConnection class 165
	attach() method 183
	open method 167
	open() method 166
	openAsync() method 166, 167, 170

	sqlConnection property (SQLStatement class) 171
	SQLError class 165, 171
	SQLErrorEvent class 165, 171
	SQLEvent class 165
	SQLIndexSchema class 165
	SQLLite database support 162
	See also databases

	SQLMode class 165, 171
	SQLResult class 165
	181

	SQLSchemaResult class 165
	SQLStatement class 165, 171
	execute method 172
	execute() method 175, 181
	getResult() method 181
	parameters object 172
	parameters property 173
	sqlConnection property 171
	text property 171, 173, 175, 183

	SQLTableSchema class 165
	SQLTransactionLockType class 165
	SQLTriggerSchema class 165
	SQLUpdateEvent class 165
	SQLViewSchema class 165
	Stage class
	addChild() method 67
	addChildAt() method 67
	displayState property 76
	nativeWindow property 64, 70
	scaleMode property 64, 74
	stageScaleMode property 236

	stage property
	NativeWindow class 67

	StageDisplayState class 76
	StageScaleMode class 64, 74, 236
	stageScaleMode property (Stage class) 236
	Start menu (Windows) 48
	startAtLogin property (NativeApplication class) 266
	startMove() method (NativeWindow class) 74
	startResize() method (NativeWindow class) 74
	start-up (system), launching an AIR application upon 266
	statements, SQL 171
	status property (Window object) 240
	StatusEvent class 254
	strong binding of encrypted data 196
	styleSheets property (Document object) 225
	stylesheets, HTML
	manipulating in ActionScript 225

	subErrorID property (DRMErrorEvent class) 260
	submenu property
	NativeMenuItem class 85

	submenus 85, 88
	Sun Java signing digital IDs 295
	supportsDockIcon property (NativeApplication class) 97
	supportsMenu property (NativeApplication class) 94
	supportsSystemTrayIcon property (NativeApplication class) 97
	SWF content
	in HTML 201
	loading in HTML 67, 237
	overlaying above HTML 67

	SWF files
	loading via a script tag 224

	synchronous programming
	databases 166, 169, 187
	file-system 103
	XMLHttpRequests 219

	system chrome 61
	HTML windows 65

	system log-in, launching an AIR application upon 266
	system tray icons 84, 87
	support 97

	systemChrome property (NativeWindow class) 61
	systemMaxSize property (NativeWindow class) 65
	systemMinSize property (NativeWindow class) 65

	T
	tables (database) 164
	creating 168

	taskbar icons 70, 97
	technical support 10
	temporary directories 112
	temporary files 116
	text
	copy-and-paste support 142
	drag-and-drop support 127, 136

	text property (SQLStatement class) 171, 173, 175, 183
	textEncodingFallback property (HTMLLoader class) 239
	textEncodingOverride property (HTMLLoader class) 239
	TextField class
	copy and paste 143
	HTML loaded in 215
	img tags 31

	Thawte certificates 294, 295
	timestamps 296
	title bar icons (Windows) 63
	title element (application descriptor file) 48
	title property
	Document object 240
	HistoryListItem class 239

	toast-style windows 71
	toolbar (Mac OS) 63
	transform property (HTMLLoader class) 237
	transparent element (application descriptor file) 49
	transparent property (NativeWindow class) 61
	transparent windows 49, 61
	trash (deleting a file) 116
	type property (File class) 114
	type property (NativeWindow class) 61
	types property
	DataTransfer object 206
	HTML copy-and-paste event 144
	HTML drag event 135

	types property (DataTransfer object) 138

	U
	uncaughtScriptExcpetion event 230
	uncompress() method (ByteArray class) 156
	uninstalling
	AIR applications 29
	AIR runtime 3

	unknown publisher name (in AIR application installer) 294
	unload events 207
	unnamed parameters (in SQL statements) 173
	UntrustedAppInstallDisabled (Windows registry settings) 29
	UPDATE statement (SQL) 183
	update() method (Updater class) 299
	UpdateDisabled (Windows registry settings) 29
	Updater class 299
	updating AIR applications 49, 299
	url property
	File class 105, 114
	HistoryListItem class 239

	url property (File class) 105
	URL schemes 109
	URLRequest class
	userAgent property 239

	URLRequestDefaults class
	userAgent property 239

	URLs 221
	copy-and-paste support 142
	drag-and-drop support 127, 136
	loading HTML content from 214

	URLStream class 204
	user activity, detecting 273
	user agent, setting 239
	user credentials and security 43
	user names
	setting for encrypted media content 253

	userAgent property
	HTMLLoader class 239
	URLRequest class 239
	URLRequestDefaults class 239

	userDirectory property (File class) 105
	userIdle event 273
	userPresent event 273
	utility windows 61

	V
	Verisign certificates 294, 295
	version element (application descriptor file) 47
	versions, AIR application 273
	vertical scroll bars, HTML 238
	video content encryption 253
	visibility of windows 49
	visible element (application descriptor file) 49
	visible property
	HTMLLoader class 236
	NativeWindow class 64, 70

	vouchers, using with DRM- encrypted content 253

	W
	web browsers
	detecting AIR runtime from 291
	detecting if an AIR application is installed from 291
	emulating 240
	installing AIR applications from 287, 292
	launching AIR applications from 293
	launching an AIR application from 266
	running AIR applications from 287

	WebKit 199, 202, 212
	-webkit-border-horizontal-spacing CSS property 212
	-webkit-border-vertical-spacing CSS property 212
	-webkit-line-break CSS property 212
	-webkit-margin-bottom-collapse CSS property 212
	-webkit-margin-collapse CSS property 212
	-webkit-margin-start CSS property 212
	-webkit-margin-top-collapse CSS property 212
	-webkit-nbsp-mode CSS property 212
	-webkit-padding-start CSS property 213
	-webkit-rtl-ordering CSS property 213
	-webkit-text-fill-color CSS property 213
	-webkit-text-security CSS property 213
	-webkit-user-drag CSS property 134, 213, 137
	-webkit-user-modify CSS property 213
	-webkit-user-select CSS property 134, 137, 213
	width element (application descriptor file) 49
	width property (HTMLLoader class) 214, 236
	Window class 59
	window menus 83, 94
	creating 87

	Window object
	blur() method 240
	childSandboxBridge property 33
	close() method 59, 240
	focus() method 240
	history property 238
	htmlLoader object 200
	htmlLoader property 65, 208, 214
	location property 240
	moveBy() method 240
	moveTo() method 59, 240
	nativeWindow object 200
	nativeWindow property 59, 65, 208
	open method 208
	open() method 37, 65, 240, 241
	opener property 65
	parent property 65
	parentSandboxBridge property 33, 208, 228
	print() method 202
	resizeBy() method 240
	resizeTo() 240
	runtime property 31, 36, 65, 200, 207, 220
	status property 240

	WindowedApplication class 59
	windows 58
	activating 64
	active 70, 71
	apearance 61
	background of 62
	behavior 61
	chrome 61
	classes for working with 60
	closing 60, 71, 240, 267
	creating 63, 69, 214
	custom chrome 61
	display order 70
	event flow 60
	events 75
	hiding 70
	initial 59
	initializing 63
	lightweight 61
	managing 69
	maximizing 49, 60, 72
	maximum size 65
	minimizing 49, 60, 70, 72
	minimum size 65
	moving 60, 73, 74, 80
	non-rectangular 61
	normal windows 61
	order 71
	position 49
	properties 48
	resizing 49, 60, 73, 240
	restoring 60, 72
	showing 70
	size 65
	size of 49
	stage scale modes 64
	style 61
	system chrome 61
	transparency 49, 61
	types 61
	utility windows 61
	visibility 49

	Windows registry settings 29
	write() method (Document object) 207, 219
	writeBytes() method (ByteArray class) 153
	writeFloat() method (ByteArray class) 153
	writeInt() method (ByteArray class) 153
	writeln() method (Document object) 207, 219
	writeObject() method (ByteArray class) 153
	writeUTFBytes() method (ByteArray class) 153
	writing files 117

	X
	x element (application descriptor file) 49
	x property
	HTMLLoader class 236

	XML
	class 220
	defining menus using 91

	XML namespace (application descriptor file) 46
	XMLHttpRequest object 36, 203, 209, 219
	XMLList class 220
	xmlns (application descriptor file) 46

	Y
	y element (application descriptor file) 49
	y property
	HTMLLoader class 236

	Z
	ZIP file format 158
	ZLIB compression 156

