

USING ADOBE FLEX BUILDER 3

© 2008 Adobe Systems Incorporated. All rights reserved.
Using Adobe® Flex® Builder™ 3
If this guide is distributed with software that includes an end-user agreement, this guide, as well as the software described in it, is furnished under license and may be used or
copied only in accordance with the terms of such license. Except as permitted by any such license, no part of this guide may be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note that the
content in this guide is protected under copyright law even if it is not distributed with software that includes an end-user license agreement.
The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Adobe Systems Incorpo-
rated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide.
Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The unauthorized incorporation of such
material into your new work could be a violation of the rights of the copyright owner. Please be sure to obtain any permission required from the copyright owner.
Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any actual organization.
Adobe, the Adobe logo, ActionScript, ColdFusion, Flash, and Flex are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or
other countries.
Mac and Macintosh are trademarks of Apple Inc., registered in the United States and other countries. Java is a trademark or registered trademark of Sun Microsystems, Inc. in
the United States and other countries. Microsoft is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries. All other
trademarks are the property of their respective owners.
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
This product contains either BISAFE and/or TIPEM software by RSA Data Security, Inc.
The Flex Builder 3 software contains code provided by the Eclipse Foundation (“Eclipse Code”). The source code for the Eclipse Code as contained in Flex Builder 3 software
(“Eclipse Source Code”) is made available under the terms of the Eclipse Public License v1.0 which is provided herein, and is also available at http://www.eclipse.org/legal/epl-
v10.html.
Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 95110-2704, USA.
Notice to U.S. government end users. The software and documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101, consisting of “Commercial Computer
Software” and “Commercial Computer Software Documentation,” as such terms are used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R.
§12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, the Commercial Computer Software and Commercial Computer Software Documentation are being
licensed to U.S. Government end users (a) only as Commercial items and (b) with only those rights as are granted to all other end users pursuant to the terms and conditions
herein. Unpublished-rights reserved under the copyright laws of the United States. For U.S. Government End Users, Adobe agrees to comply with all applicable equal opportunity
laws including, if appropriate, the provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of 1974 (38 USC 4212),
and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60, 60-250 ,and 60-741. The affirmative action clause and
regulations contained in the preceding sentence shall be incorporated by reference.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

iii

Contents

Chapter 1: Learning Flex Builder
Using Flex and Flex Builder documentation . 1

Getting the most from the Flex and Flex Builder learning resources . 2

Using the Flex Builder help system . 3

Chapter 2: About Flex Builder
What you can do with Flex Builder . 7

Flex Builder versions . 8

Flex Builder configurations . 8

Activating Flex Builder . 9

Chapter 3: Flex Builder Workbench Basics
About the workbench . 10

About Flex Builder editors . 11

About Flex Builder perspectives . 13

Workbench menus, toolbars, and shortcuts . 23

Extending the Flex Builder workbench . 25

Chapter 4: Working with Projects
About Flex Builder projects . 27

Creating Flex projects . 32

Managing projects . 35

Managing project resources . 40

About ActionScript projects . 44

About library projects . 47

Chapter 5: Navigating and Customizing the Flex Builder Workbench
Working with perspectives . 52

Working with editors and views . 54

Switching the workspace . 58

Customizing the workbench . 58

Searching in the workbench . 60

Working in the editor’s Source and Design modes . 61

Accessing keyboard shortcuts . 61

Setting workbench preferences . 61

Chapter 6: Building a Flex User Interface
About the structure of Flex user interfaces . 64

Adding and changing components . 66

Working with components visually . 69

Applying styles and skins . 78

Laying out your user interface . 84

Adding navigator containers . 87

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

iv

Adding data provider controls . 90

Adding charting components . 91

Chapter 7: Adding View States and Transitions
About view states and transitions . 93

Creating a view state . 94

Creating a state based on an existing state . 95

Setting a non-base state as the starting state . 95

Setting the initial state of a component . 95

Switching states at run time . 95

Modifying the appearance of existing states . 96

Deleting a view state . 97

Creating a transition . 97

Chapter 8: Adding Interactivity with Behaviors
About Flex behaviors . 99

Creating a behavior for a component . 99

Chapter 9: Code Editing in Flex Builder
About code editing in Flex Builder .102

About Flex Builder content assistance . 103

Navigating and organizing code . 107

Formatting and editing code . 111

Finding references and refactoring code . 113

About markers . 114

About syntax error checking .116

Code editing keyboard shortcuts . 118

Chapter 10: Building Projects
Understanding how projects are built and exported . 121

Build basics . 122

Customizing project builds .124

Export Release Build . 126

Advanced build options . 128

Publishing source code . 134

Chapter 11: Running and Debugging Applications
About running and debugging applications . 136

Running your applications .138

Managing launch configurations . 139

Debugging your applications .141

Chapter 12: Creating Modules
Creating modules in Flex Builder . 147

Adding modules to your project . 151

Optimizing modules in Flex Builder . 153

Debugging modules in Flex Builder . 153

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

v

Chapter 13: Profiling Flex applications
About profiling .155

How the Flex profiler works .156

Using the profiler . 158

About the profiler views . 165

About garbage collection .178

Identifying problem areas .178

About profiler filters .181

Chapter 14: Working with Data in Flex Builder
About working with data in Flex Builder . 183

Automatically generating database applications . 186

Automatically generating web service proxies . 190

Automatically generating Flex Ajax Bridge code .204

Managing Flash Player security .208

Chapter 15: Flex Builder User Interface Reference
Setting project properties .210

Using Flex Builder views . 213

Creating project resources .220

Chapter 16: Creating Custom MXML Components
About custom components . 227

Creating MXML components visually .227

Designing components visually . 229

Editing and distributing custom MXML components . 229

1

Chapter 1: Learning Flex Builder

Adobe® Flex® Builder™ includes a variety of resources to help you learn the program quickly and become proficient
in creating Flex applications. All the Flex and Flex Builder documentation is available in online help and Adobe PDF.

Topics

Using Flex and Flex Builder documentation. 1
Getting the most from the Flex and Flex Builder learning resources . 2
Using the Flex Builder help system. 3

Using Flex and Flex Builder documentation
The Flex and Flex Builder documentation includes information for users who have a variety of backgrounds. This
section helps you understand how to approach the documentation, depending on your background and what you
want to accomplish with Flex and Flex Builder.

New users
• Start by going to the Flex Getting Started Experience site, which gives you an overview of essential Flex concepts
and provides a series of tutorial lessons.
• Flex Builder is built on Eclipse (an open source IDE), so you need to know specific terms and concepts to be
successful using it. For more information, see “Flex Builder Workbench Basics” on page 10 and especially “About the
workbench” on page 10.

Web application designers
• Start by going to the Flex Getting Started Experience site, which gives you an overview of essential Flex concepts
and provides a series of tutorial lessons.
• You can define a user interface entirely in code using the MXML editor in Source mode; however, in Design
mode, Flex Builder contains design and layout tools that make designing Flex applications much easier. For more
information, see “Flex Development perspective in Design mode” on page 16 and “Building a Flex User Interface”
on page 64.

Experienced web application developers
• Start by going to the Flex Getting Started Experience site, which gives you an overview of essential Flex concepts
and provides a series of tutorial lessons.
• For all the details of the Flex framework, including code samples, see the Adobe Flex 3 Developer Guide.
• For in-depth information about the steps involved in building and deploying a Flex application, see Building and
Deploying Adobe Flex 3 Applications.
• If you are using Flex Builder as your IDE and want a quick overview of the capabilities and features of the Flex
Builder workbench, see the following topics:

• “What you can do with Flex Builder” on page 7
• “About Flex Builder projects” on page 27
• “About code editing in Flex Builder” on page 102

http://learn.adobe.com/wiki/display/Flex/Getting+Started
http://learn.adobe.com/wiki/display/Flex/Getting+Started
http://learn.adobe.com/wiki/display/Flex/Getting+Started

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

2

• “Understanding how projects are built and exported” on page 121
• “About running and debugging applications” on page 136

• For all the API details, see Adobe Flex Language Reference. This reference is also available from Flex Dynamic
Help in the Flex Builder IDE.

Flash and ActionScript developers
• For all the API details, see Adobe Flex Language Reference. This reference is also available from Flex Dynamic
Help in the Flex Builder IDE.
• For an overview of the ways you use ActionScript to develop Flex framework and Flash API applications in Flex
Builder, see “About ActionScript projects” on page 44.
• To understand how to design and lay out applications in Flex Builder, see “Building a Flex User Interface” on
page 64.

Eclipse users
• Experienced Eclipse users will find that Flex Builder uses familiar workbench conventions. For an overview of
the perspectives, editors, and views that are contained within the Flex Builder plug-ins, see “Flex Builder Workbench
Basics” on page 10.

Getting the most from the Flex and Flex Builder
learning resources
Flex Builder includes a variety of media to help you learn the program quickly and become proficient in creating Flex
applications. The Flex Builder help system includes several topics that help you learn about Flex Builder, Flex,
MXML, and ActionScript. (All documentation is available online in LiveDocs format and Adobe PDF.) You can also
consult other online resources as you learn how to build Flex applications.

The following table summarizes additional online resources for learning Flex Builder:

You can purchase printed versions of select titles. For more information, see www.adobe.com/go/buy_books.

Resource Description/Audience Where to Find It

Flex Support Center TechNotes, plus support and problem-solving information for Flex
users.

www.adobe.com/go/flex_support

Flex Developer Center Articles and tutorials to help you improve your skills and learn new
ones.

www.adobe.com/go/flex_devcenter

Documentation
Resource Center

Links to LiveDocs, product manuals in PDF format, and release notes. www.adobe.com/go/flex_documentation

Adobe Online Forums Discussion and problem-solving information by Flex users, technical
support representatives, and the Flex development team.

www.adobe.com/go/flex_newsgroup

Adobe Training Courses featuring hands-on tasks and real-world scenarios. www.adobe.com/go/flex_training

http://www.adobe.com/go/flex_support
http://www.adobe.com/go/flex_devcenter
http://www.adobe.com/go/flex_documentation
http://www.adobe.com/go/flex_newsgroup
http://www.adobe.com/go/flex_training
http://www.adobe.com/go/buy_books

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

3

Using the Flex Builder help system
The online help system available in the Help menu provides detailed information on all tasks you can perform with
Flex Builder.

Set Help preferences

You can control how Help is displayed in the workbench by setting Help preferences.
1 Open the Preferences dialog and select Help.
2 Set the following options as needed:

Use External Browser (This option is only available if your platform supports an embedded browser. See
“Changing the default web browser” on page 140.) Lets you display help in the web browser of your choice. By
default, the embedded browser of the IDE displays help. Select the Use External Browser option and then select
the Web Browser link to select your web browser. The Use External Browser option is only available
Open Window Context Help Determines how to display context-sensitive help links for an open window. By
default, context-sensitive help links are displayed in the Dynamic Help view which, when opened, is docked into
the current perspective like all other views. You can specify to display context-sensitive help links in an infopop
(similar to a tooltip).
Open Dialog Context Help Determines how to display context-sensitive help links for an open dialog box. By
default, help is displayed in the dialog box. You can specify to display context-sensitive Help links in an infopop
(similar to a tooltip).
Open Help View Documents Determines where to display documents opened from links in Dynamic Help.
By default, help documents open in the Flex Builder IDE editing area. Select in-place to open help documents in
the Dynamic Help view window.

Open Help

You can access in-product help while you work in Flex Builder.
❖ Select Help > Help Contents.

Use dynamic help

Dynamic Help is docked to the current perspective and displays topics related to the currently selected MXML tag
or ActionScript class.
❖ Select Help > Dynamic Help.

Use context-sensitive help

As you work in Flex Builder, you can display context-sensitive help for specific user interface elements of the
workbench (views, dialog boxes, and so on) and language-reference help for code elements.
1 Select an editor, view, dialog box, or other user interface element in the workbench.
2 Press the keyboard shortcut for Dynamic Help: F1 (Windows) or Command+Shift+/ (Mac OS).
For quick access to the Adobe Flex Language Reference while writing code, see “Getting help while writing code” on
page 107.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

4

Searching Help
There are a few ways you can do full text searches of Flex and Flex Builder Help.

Search in-product help
1 Select Help > Help Contents (a separate Help window will appear).
2 Enter a word or phrase in the text box, and click Go.
3 Click a topic in the list of results to display it.

To search for a specific phrase, enclose it in double quotes.
You can also search directly from the Help menu by selecting Help > Search. The Help panel is opened in the IDE

with the search box selected.

Select the scope of the search

You can select the documentation set that you want to search. For example, if you have other Eclipse plug-ins
installed, the list of available documentation in help can be quite long. To search only the Flex documentation, you
can define the scope of the search to eliminate unwanted search results.
1 In the Help viewer (Help > Help Contents), click the Search scope link.

The Select Search scope dialog box appears.
2 To create a search scope, click New.
3 Enter a name for the search scope list.
4 Select the Help packages to include in the search.
5 Click OK to save the search scope list.
6 Click OK again to close the Select Search Scope dialog box.

When you perform a new search, the search is limited to the selected help packages. You can create other search
scope lists or search all help topics.

Using Help bookmarks
As you browse documentation in the Help viewer, you can bookmark topics to reference later.

Add a Help bookmark
❖ In Flex Builder Help (Help > Help Contents), with a help topic selected and displayed, select the Bookmark
Document button in the Help viewer toolbar.

View your Help bookmarks
❖ In Flex Builder Help, select the Bookmarks tab.

All the bookmarks you set are listed. Click a bookmark to display the topic. You can also delete one or all of your
bookmarks.

Changing the Help viewer font size
The Help viewer in Flex Builder does not support changing the font size used to display Help documentation.
However, you can select to run Help in a web browser and control the font size using the browser’s font settings.

Display Help in an external browser
1 In Flex Builder, select Window > Preferences > Help.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

5

2 Select the Use External Browser option.
3 (Optional) Select the Web Browser link to select a specific web browser.

If you bypass this step, Help appears in the system default web browser.
4 Click OK.
5 Select Help > Help Contents.

Help appears in a web browser. You can control the size of the display font by using the browser’s font settings;
for example, in Firefox, select Edit > Text Size.

Using the Flex Start page
The Flex Start page appears the first time you run Flex Builder. You can view the Flex Start page at any time by
selecting Help > Flex Start Page.
The Flex Start page contains links to the Flex Getting Started Experience, which contains information about building
Flex and ActionScript 3.0 applications in Flex Builder, sample applications, and other useful information. Use the
Flex Start page much like a web page. Click any of the links to display information or work with sample applications.

http://learn.adobe.com/wiki/display/Flex/Getting+Started

6

Part 1: Getting Started with Flex Builder
Topics

About Flex Builder . 7
Flex Builder Workbench Basics. 10

7

Chapter 2: About Flex Builder

Adobe® Flex® Builder™ is an integrated development environment (IDE) for developing applications that use the
Adobe® Flex® framework, MXML, Adobe® Flash® Player 9, ActionScript 3.0, Adobe® LiveCycle™ Data Services ES, and
the Adobe® Flex® Charting components.
Flex Builder is built on top of Eclipse, an open-source IDE, and provides all the tools you need to develop Flex 2 and
ActionScript 3.0 applications. It runs on Microsoft Windows, Apple Macintosh OS X, and Linux, and is available in
several versions. Installation configuration options let you install Flex Builder as a set of plug-ins in an existing
Eclipse workbench installation or to create an installation that includes the Eclipse workbench.

Topics

What you can do with Flex Builder . 7
Flex Builder versions . 8
Flex Builder configurations . 8
Activating Flex Builder. 9

What you can do with Flex Builder
Using Flex Builder, you can develop Flex and ActionScript 3.0 applications in a full-featured IDE that lets you do the
following tasks:
• Create Flex projects with or without using the Flex server. For more information, see “Creating Flex projects” on
page 32.
• Create ActionScript projects that use the Flash API. For more information, see “About ActionScript projects” on
page 45.
• Write and edit your application source code using editors that provide features such as code refactoring, code
hinting, streamlined code navigation, and automatic syntax error checking. For more information, see “About code
editing in Flex Builder” on page 102.
• Use the MXML editor in Design mode to simplify using view states and transitions, to design using absolute
layout options, to drag components onto the design canvas and then reposition and resize them as needed, and so
on. For more information, see “Building a Flex User Interface” on page 64.
• Create ActionScript functions within your MXML code or as separate files of ActionScript functions, classes,
and interfaces.
• Create custom components and then easily access them using the Components view. For more information, see
“Creating Custom MXML Components” on page 227.
• Manage your application projects by using the many features provided by the underlying Eclipse IDE. For
example, you can add and delete projects and resources, link to resources outside your project, and so on. For more
information, see “Managing projects” on page 36 and “Creating folders and files in a project” on page 41.
• Build your applications using predefined builders or create custom builders using Apache Ant. For more infor-
mation, see “Building Projects” on page 121.
• Run your applications in a web browser or the stand-alone Flash Player. Create custom launch configurations to
control how your applications run. For more information, see “Running your applications” on page 138 and
“Managing launch configurations” on page 139.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

8

• Test and debug your applications using the integrated debugging tools in Flex Builder. For more information,
see “Running and Debugging Applications” on page 136.
• Publish your application source code so it can be viewed by users and other developers. For more information,
see “Publishing source code” on page 134.
• Create library projects that generate shared component library (SWC) and run-time shared library (RSL) files
for code reuse and distribution. For more information, see “About library projects” on page 47.
• Customize the IDE. For example, you can arrange the interface to include your favorite tools in the specific
layout. For more information, see “Navigating and Customizing the Flex Builder Workbench” on page 52.

Flex Builder versions
Flex Builder is available in two versions: Standard and Professional.

Flex Builder Standard This version provides a full-featured IDE which allows you to create Flex and Action-
Script applications using the Flex framework and Flash API. Flex Builder Standard also includes MXML, Action-
Script, and CSS editors, as well as debugging tools. Under a trial license, Flex Builder Standard can also provide
the advanced charting and advanced data tools included in the Professional version described below.
Flex Builder Professional In addition to the Standard version features, this version includes a library of inter-
active charts and graphs which enable you to create rich data dashboards, interactive data analysis, and data
visualization components. It also includes memory and performance profiling and automated testing tools.

Flex Builder configurations
The Flex Builder installer provides the following two configuration options:

Plug-in configuration This configuration is for users who already use the Eclipse workbench, who want to
add the Flex Builder plug-ins to their toolkit of Eclipse plug-ins (for example, someone who also uses Eclipse to
develop Java applications). Because Eclipse is an open, extensible platform, hundreds of plug-ins are available for
many different development purposes.
Stand-alone configuration This configuration is a customized packaging of Eclipse and the Flex Builder plug-
ins created specifically for developing Flex and ActionScript applications. The user interface of the stand-alone
configuration is more tightly integrated than in the plug-in configuration, which eliminates much of the
potential confusion that the open, multipurpose plug-in configuration might create. The stand-alone configu-
ration is ideal for new users and users who intend to develop only Flex and ActionScript applications.

If you aren’t sure which configuration to use, follow these guidelines:
• If you already use and have Eclipse 3.11 (or later) installed, select the plug-in configuration. On Macintosh,
Eclipse 3.2 is the minimum version.
• If you don’t have Eclipse installed and your primary focus is on developing Flex and ActionScript applications,
select the stand-alone configuration. This configuration also allows you to install other Eclipse plug-ins, so you can
expand the scope of your development work in the future.
Both configurations provide the same functionality and you select the configuration you want when installing Flex
Builder.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

9

Activating Flex Builder
If you’re a single-license user, you must activate your license within thirty days of installation. When you start Flex
Builder, you will be prompted to enter the serial number. Likewise, if you installed the trial version of Flex Builder,
you have 30 days to use it before the trial expires. Once expired, you need to purchase a license to continue using
Flex Builder. Product activation does not require you to submit personal information, only your product serial
number.

Managing Flex licenses
Each of the products within the Flex product family have separate licenses. For example, you need separate licenses
for Flex Builder, Flex Charting, and Adobe LiveCycle Data Services ES. As noted above, when you purchase a Flex
product, you have 30 days to activate it by entering the serial number. You can also install trial versions of these
products and evaluate them for 30 days. When you acquire a license for a Flex product, you can activate the product
from within Flex Builder.

Activate a Flex product in Flex Builder
1 Select Help > Manage Flex Licenses.
2 Select the Flex product you want to activate and enter the serial number.
3 Click Restart. Flex Builder restarts, properly activated with the serial number that you entered.
If you’re using the plug-in configuration of Flex Builder (see “Flex Builder configurations” on page 8) and the 30-day
activation or trial has expired, the Eclipse workbench and all other plug-ins will continue to work properly. You will
not, however, have access to the Flex Builder features (for example, opening an MXML file). When you acquire a
serial number you can unlock Flex Builder (or other Flex products) by entering the serial number using the
procedure described above.
For more information, visit the Adobe Product Activation Center at www.adobe.com/go/activation.

http://www.adobe.com/go/activation

10

Chapter 3: Flex Builder Workbench Basics

Adobe® Flex® Builder™ is built on Eclipse, an open-source, integrated development environment (IDE). You use it to
develop Flex and ActionScript 3.0 applications using powerful coding, visual layout and design, build, and
debugging tools.

Topics

About the workbench . 10
About Flex Builder editors . 11
About Flex Builder perspectives . 13
Workbench menus, toolbars, and shortcuts . 23
Extending the Flex Builder workbench . 25

About the workbench
The Flex Builder workbench is a full-featured development environment that is tailored to assist you in developing
Adobe Flex, AIR™, and ActionScript applications. Flex Builder is built on Eclipse, an open-source IDE. Flex Builder
is a collection of Eclipse plug-ins that let you create Flex and ActionScript 3.0 applications. Much of the basic
functionality of the Flex Builder IDE comes from Eclipse. For example, managing, searching, and navigating
resources are core features. The Flex Builder plug-ins add the features and functionality needed to create Flex and
ActionScript 3.0 applications, and they modify the IDE user interface and some core functionality to support those
tasks.
The information you need to use Flex Builder is contained in the Flex Builder documentation. Unless you are using
other Eclipse plug-ins (such as CVS or Java) with Flex Builder, or you want to extend the Flex Builder plug-ins (see
“Extending the Flex Builder workbench” on page 25), you do not need to be concerned with the underlying Eclipse
framework.

Workbench The term workbench refers to the Flex Builder development environment. The workbench
contains three primary elements: perspectives, editors, and views. You use all three in various combinations at
various points in the application development process. The workbench is the container for all of the development
tools you use to develop applications. You might equate it to Microsoft Visual Studio, which provides a
framework and core functionality for a variety of development tools.
Perspective A perspective is a group of views and editors in the workbench. Essentially it is a special work
environment that helps you accomplish a specific type of task. For example, Flex Builder contains two perspec-
tives. The Flex Development perspective is used for developing applications, and the Flex Debugging perspective
is used when debugging your applications. Flex Builder Professional also contains the Flex Profiling perspective.
If you use the Flex Builder plug-in configuration (see “Flex Builder configurations” on page 8), your workbench
might contain additional perspectives such as a Java perspective that contains editors and views used to develop
Java applications.
For more information about perspectives, see “About Flex Builder perspectives” on page 13.
Editor An editor allows you to edit various file types. The editors available to you depend on the number and
type of Eclipse plug-ins installed. Flex Builder contains editors for writing MXML, ActionScript 3.0, and
Cascading Style Sheets (CSS) code. For more information about Flex Builder code editing, see “About code
editing in Flex Builder” on page 102.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

11

Views A view typically supports an editor. For example, when editing MXML, the Components and Flex
Properties views are also displayed in the Flex Development perspective. These views support the development
of Flex applications and are therefore displayed when a MXML file is opened for editing.
Some views support the core functionality of the workbench itself. For example, the Flex Navigator view allows
you to manage files and folders within the workbench and the Tasks view displays all of the tasks that are either
automatically generated by the workbench or added manually.
The term view is synonymous with the term panel as it is used in earlier versions of Flex Builder, Dreamweaver®,
and other Adobe development tools.
Workspace Not to be confused with workbench, a workspace is a defined area of the file system that contains
the resources (files and folders) that make up your application projects. You can work with only one workspace
at a time; however, you can select a different workspace each time you start Flex Builder. For more information,
see “Managing projects” on page 36.
Resource The term resource is used generically to refer to the files and folders within the projects in a
workspace. For more information, see “Creating folders and files in a project” on page 41.
Project All of the resources that make up your applications are contained within projects. You cannot build an
application in Flex Builder without first creating a project. You can create three types of projects in Flex Builder:
Flex, ActionScript 3.0, and Library projects. For more information, see “Working with Projects” on page 27.
Launch configuration A launch configuration is created for each of your projects, and it defines project
settings that are used when running and debugging your applications. For example, the names and locations of
the compiled application SWF files are contained in the launch configuration, and you can modify these settings.
For more information, see “Running your applications” on page 138.

About Flex Builder editors
Flex Builder contains editors that allow you to edit MXML, ActionScript 3.0, and CSS code. Editors are the essence
of the workbench and views, and the perspectives in which they are contained support their functionality.
Editors are associated with resource types, and as you open resources in the workbench, the appropriate editor is
opened. The workbench is a document-centric (and project-centric) environment for developing applications.
When you develop Flex applications in Flex Builder, you use the MXML, ActionScript 3.0, and CSS editors. Each
editor provides the functionality needed to author the given resource type. Flex Builder contains the following
editors:

MXML editor You use the MXML editor to edit MXML and to embed ActionScript and CSS code in
<mx:Script> and <mx:Style> tags. The MXML editor has two modes: Source and Design. Source mode is used
for editing code. Design mode is used for visually laying out and designing your applications. The two modes
are synchronized and changes in one mode are immediately reflected in the other. For more information, see
“About code editing in Flex Builder” on page 102.
ActionScript editor You use the ActionScript editor to edit ActionScript class and interface files. Although
you can embed ActionScript functions into an MXML file by using the <mx:Script> tag, it is a common practice
to define classes in separate ActionScript files and then import the classes into MXML files. Using this method,
you can define most of your Flex applications in ActionScript.
CSS editor You use the CSS editor to display and edit Cascading Style Sheets. You can then apply styles to the
visual elements of your applications. For more information, see “Working with components visually” on page 69
and “Using Styles and Themes” on page 470 in the Adobe Flex 3 Developer Guide.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

12

Code hinting
Editors contain many features that simplify and streamline code development. Foremost among these features is
Content Assist, which displays code completion hints as you enter MXML, ActionScript, and CSS code.
Code hints appear automatically as you enter your code. (You can also display code hints by pressing
Control+Space.) The following example shows code hints in the MXML editor:

Code hints appear whenever you begin typing a code expression that Flex or the language (MXML, ActionScript,
and CSS) recognizes. For example, if you type the name of a Flex component, you are prompted with a list of all
properties of that component.
ActionScript code hinting is also supported. ActionScript code hints are displayed within embedded <mx:Script>
tags in an MXML document and within stand-alone ActionScript files. Content Assist displays code hints for all
ActionScript language elements: interfaces, classes, variables, functions, return types, and so on.
Content Assist also provides code hints for custom MXML components or ActionScript classes that you create
yourself. For example, if you define a custom MXML component and add it to your project, code hints are displayed
when you refer to the component in your MXML application file.
For more information, see “About Content Assist” on page 104.

Code navigation
Code navigation simplifies the burden of working with code, especially in large projects with many resources. Code
navigation includes the ability to select a code element (a reference to a custom Flex component in an MXML appli-
cation file, for example) and go to the source of the code definition, wherever it is located in the project, workspace,
or path.
Other code navigation features include code folding, which allows you to collapse and expand multiline code state-
ments. Another feature is the Outline view, which hierarchically presents, and allows you to navigate to, all user
interface and code elements in a file. For more information, see “Navigating and organizing code” on page 107.

Code formatting
As you write code, Flex Builder automatically indents lines of code to improve readability, adds distinguishing color
to code elements, and provides many commands for quickly formatting your code as you enter it (adding a block
comment, for example). For more information, see “Formatting and editing code” on page 111.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

13

Find references and code refactoring
Flex Builder lets you find all references and declarations to identifiers in a given file, project, or workspace, including
references found in elements linked from SWC files and other entries on a library path (for example, classes, inter-
faces, functions, variables, and some metadata). You use refactoring to rename identifiers in your code while
updating all references to them in your entire code base. For more information, see “Finding references and refac-
toring code” on page 113.

About Flex Builder perspectives
To support a particular task or group of tasks, editors and supporting views are combined into a perspective. Flex
Builder contains two perspectives: Flex Debugging and Flex Development. Flex Builder Professional contains an
additional perspective, Flex Profiling.
Perspectives change automatically to support the task at hand. For example, when you create a Flex project, the
workbench switches to the Development perspective; when you start a debugging session, the Debugging
perspective is displayed when the first breakpoint is encountered. You can also manually switch perspectives yourself
by selecting Window > Perspective from the main menu (Window > Open Perspective in plugin version). Or, you
can use the perspective bar, which is located in the main workbench tool bar.

If you use the plug-in configuration of Flex Builder and have other Eclipse plug-ins installed, you might have many
additional perspectives. While predefined perspectives are delivered with each Eclipse plug-in, you can customize
them to your liking or create your own. Customizing or creating a perspective is a matter of selecting, placing, and
sizing the editors and views you need to accomplish your development tasks. For more information about working
with and customizing perspectives, see “Working with perspectives” on page 52.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

14

The Flex Development perspective
The Flex Development perspective includes the editors and views you need to create Flex and ActionScript 3.0 appli-
cations. When you create a project, Flex Builder switches into the Development perspective so you can begin devel-
oping your application. The following example shows the Flex Navigator, Outline, and Problems views:

The focal point of the perspective (and the workbench generally) is the editor area. The editor area contains all of the
currently open documents in a multitab interface. The supporting views are placed around the editor area. Perspec-
tives predefine the layout of all the elements within it, but you may rearrange them to your liking. For more infor-
mation, see “Navigating and Customizing the Flex Builder Workbench” on page 52.
In Source (code editing) mode, the Development perspective contains the following elements:

Flex Builder editors

The editor area contains all of the open documents. When you create a Flex project, the main MXML application file
is opened in the editor area. You can then open and switch between any of the MXML, ActionScript, and CSS
documents you are working in.
The MXML and CSS editors operate in two modes (Source and Design) and the Development perspective is
modified to accommodate each set of tasks as you toggle between the two modes. The ActionScript editor is a single-
purpose editor that is used to create ActionScript files.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

15

For more information about using the MXML editor, see “About code editing in Flex Builder” on page 102 and
“Working with components visually” on page 69.

Flex Navigator view

The Flex Navigator view contains all of the projects and resources in the workspace and is therefore an essential
element of the Flex Builder workbench. It is always displayed in the Development and Debugging perspectives.

For more information about the Flex Navigator view and working with projects, see “Working with Projects” on
page 27.

Outline view

In Source mode, the Outline view presents a hierarchical view of the code structure of the selected MXML or Action-
Script document so that you can inspect and navigate the sections or lines of code in the document. The Outline
view also displays syntax error alerts that the compiler generates. This view is also available when you use the Action-
Script editor.

For more information about using the Outline view in Source mode, see “Using the Outline view to navigate and
inspect code” on page 108.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

16

Problems view

As you enter code, the Flex Builder compiler detects syntax and other compilation errors, and these are displayed in
the Problems view. When you debug your applications, errors, warnings, and other information are displayed in the
Problems view.

For more information, see “Running and Debugging Applications” on page 136.
Note: You can also optionally add the Tasks and Bookmarks views. These views provide additional shortcuts for
managing and navigating your code. For more information about these views, see “About markers” on page 114. For an
introduction to the optional views that are available in Flex Builder, see “Other useful workbench views” on page 22.

Flex Development perspective in Design mode
You visually lay out and design your Flex applications in the MXML editor in MXML Design mode. Design mode is
the visual representation of the code that you edit in Source mode. In Design mode, however, additional views are
added to support design tasks. These are the Components, Flex Properties, and States views. In addition, when you
are in Design mode, the Outline view displays the MXML structure of your Flex applications. You can also display
and edit CSS in CSS Design mode. For more information about designing Flex applications in Flex Builder, see
“Building a Flex User Interface” on page 64.
Note: Design mode is not available when working with ActionScript projects. To preview the user interface of your
ActionScript applications, you need to build and run them. For more information about working with ActionScript, see
“About ActionScript projects” on page 44 and “Running and Debugging Applications” on page 136.
In Design mode, the development perspective contains the MXML editor and the Components, States, and Flex
Properties, and Outline views.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

17

The MXML editor

In MXML Design mode, you interact with your Flex applications visually; dragging and dropping components on
to the design area, selecting and resizing components, and so on. You can also expand the MXML editor in Design
mode to clearly see and select individual components, and use pan and zoom to get a closer look at items; this is
especially useful when you have embedded container components. For more information about working in Design
mode, see “Building a Flex User Interface” on page 64.

Components view

The Components view contains all of the standard Flex components, which you can select and add to the design area.
As you create your own custom components, they are also displayed in the Components view.

For more information, see “Adding and changing components” on page 66.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

18

States view

Flex allows you to create applications that change their appearance based on events that are triggered directly by the
user or events that are generated programmatically. These user interface transformations are referred to as view
states. You create and manage view states in the States view.

For more information about view states, see “Adding View States and Transitions” on page 93.

Flex Properties view

When a Flex component is selected, its properties are displayed in the Flex Properties view. You can set and edit
properties as appropriate. You can view a component’s properties graphically (as shown in the following example)
and as a categorized or alphabetical list.

For more information, see “Setting component properties” on page 74.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

19

Outline view

In Design mode, the Outline view presents a hierarchical view of the MXML structure of your Flex applications. You
can easily navigate the structure of your application by selecting individual MXML tag statements and components.
When you select an item in the Outline view, it is highlighted in Design mode.

For more information about working with the Outline view in Design mode, see “Inspecting the structure of your
MXML” on page 77.

The Flex Debugging perspective
The Flex Debugging perspective contains the tools you need to debug your Flex and ActionScript applications. Like
the Development perspective, the primary tool within the debugging perspective is the editor. In the context of
debugging your applications, the editor works with the debugging tools to locate and highlight lines of code that need
attention so that you can fix them and continue testing your application.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

20

For example, you can set breakpoints in your script to stop the execution of the script so that you can inspect the
values of variables and other information up to that point. You can also move to the next breakpoint or step in to a
function call to see the variable values change.

The Debugging perspective appears automatically when the first breakpoint is reached. You can also switch to the
Debugging perspective manually by selecting it from the Perspective bar, which is located at the right edge of the
main workbench toolbar.
The Debugging perspective contains Debug, Breakpoints, Console, Variables, and Expressions views.

Debug view

The Debug view (in other debuggers this is sometimes referred to as the callstack) displays the stack frame of the
suspended thread of the Flex application you are debugging. You use the Debug view to manage the debugging
process. For example, the Debug view allows you to resume or suspend the thread, step into and over code state-
ments, and so on.

For more information about working with the Debug view, see “Managing the debugging session in the Debug view”
on page 143.
Flex applications are single-threaded (not multithreaded like Java, for example) and you can debug only one Flex
application at a time. Therefore, when you debug a Flex application, you see only the processes and Debug view for
a single thread of execution.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

21

The Debug view shows a list of all the functions called to that point, in the order called. For example, the first
function called is at the bottom of the list. You can double-click a function to move to it in the script; Flex Builder
updates the information in the Variables view to reflect the new location in the script.

Breakpoints view

The Breakpoints view lists all of the breakpoints you set in your project. You can double-click a breakpoint and
display its location in the editor. You can also disable, skip, and remove breakpoints.

For more information, see “Managing breakpoints in the Breakpoints view” on page 143.

Console view

The Console view displays the output from trace statements placed in your ActionScript code and also feedback from
the debugger itself (status, warnings, and errors).

For more information, see “Using the Console view” on page 144.

Variables view

The Variables view displays information about the variables in a selected stack frame. You can select variables to
monitor (in the Expressions view) and also change variable values during the debugging session. During the debug
session you can see the changes in the currently running SWF file and experiment with fixes for the problem you
need to resolve.

For more information, see “Managing variables in the Variables view” on page 144.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

22

Expressions view

The Expressions view is used to monitor a set of critical variables. You can choose the variables you consider critical
in the Variables view and add them to the Expressions view for monitoring.

When you debug your application, you can then monitor and, if needed, modify the values. You can also add and
remove variables in the Expressions view. For more information, see “Using the Expressions view” on page 145.
For more information about debugging Flex and ActionScript applications, see “Running and Debugging Applica-
tions” on page 136.

The Flex Profiling perspective
Flex Builder Professional contains an additional perspective. The Adobe Flex profiler helps you identify performance
bottlenecks and memory leaks in your applications. The Profiling perspective displays several panels (or views) that
present profiling data in different ways. As you interact with your application, the profiler records data about the
state of the application, including the number of objects, the size of those objects, the number of method calls, and
the time spent in those method calls. For more information about the profiler, see “About profiling” on page 155.

Other useful workbench views
In addition to the editors and views associated with Flex Builder’s default development, debugging, and profiling
perspectives, the workbench contains other views that help you streamline the application development process.
You can access views that are not already displayed with a perspective and add them to the workbench by selecting
Window > Other Views > General (Window > Show View Other in plugin version). These optional views are catego-
rized by type and are associated with distinct workbench functionality or with specific Eclipse plug-ins. For more
information about working with views, see “Working with editors and views” on page 54.
You will find that several workbench views in particular are valuable aids as you develop your applications in Flex
Builder. These include the Tasks, Bookmarks, and Search views.

Bookmarks view

The Bookmarks view is used to manage the bookmarks that you add to specific lines of code or to resources. As in
a web browser, bookmarks are used as a convenience for keeping track of noteworthy items. Selecting a bookmark
locates and displays it in the workbench.

For more information about the Bookmarks view, see “About markers” on page 114.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

23

Search view

The Search view is displayed automatically when you search the resources in the workspace. You can use it to define
and recall previous searches and to filter the list of search results.

For more information about the Search view, see “Searching in the workbench” on page 60.

Workbench menus, toolbars, and shortcuts
All of the workbench commands are contained in the menu system, in right-click context menus, from toolbars, and
through keyboard shortcuts.

The workbench toolbar
The workbench toolbar contains buttons for important and frequently used commands. These commands are also
available from various Flex Builder menus.

The following buttons appear in the workbench toolbar (shown left to right):
New Displays a pop-up menu that displays all the types of projects and documents you can create.
Save Saves the document that is open in the editor and currently selected.
Print Source Prints the document that is open in the editor and currently selected.
Build All Appears when “Build automatically” is deselected from the Project menu.
Run Opens the main application SWF file in your default web browser or directly in stand-alone Flash Player.
You can also select other application files in the project from the attached pop-up menu. For more information,
see “Running your applications” on page 138.
Debug Uses the current project’s main application file to begin a debugging session. You can also select other
application files in the project from the attached pop-up menu. For more information, see “Starting a debugging
session” on page 141.
Profile Creates, manages, and runs configurations. For more information, see “About profiling” on page 155.
Export Release Build Launches a wizard that helps you choose the application for which you want to export
an optimized release-quality version.
External Tools Selects a custom launch configuration.
Mark Occurrences Allows you to select and mark code occurrences in Source mode.
Next Annotation Allows you to select and move forward to code annotations in Source mode.
Previous Annotation Allows you to select and move backward to code annotations in Source mode.
Last Edit Location Returns you to the location of the last edit you made to a resource (for example, the exact
line of code or, in Design mode, the user interface element in which you added a control or set a property).

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

24

Back and Next Go backward or forward to previously selected documents. You can also select from the list of
currently open documents from the attached pop-up menu.

The MXML editor toolbar
The MXML editor toolbar contains several buttons that allow you to control the editor in Source and Design modes.
To see the toolbar, open an MXML file in Design mode.

The following buttons appear in the MXML editor toolbar (shown left to right):
Source Displays the editor in Source mode, which is where you edit code.
Design Displays the editor in Design mode, which is where you visually lay out and design your Flex appli-
cations.
Refresh Reloads the visual elements (images, SWF files, or class files containing drawing API methods)
that define the visual design of your application. Collectively, these elements are referred to as a skin. For
more information, see “Creating Skins” on page 550 in the Adobe Flex 3 Developer Guide.
Show Surrounding Containers Expands the Design mode view so that you can see and select individual
components. For more information, see “Laying out your user interface” on page 85.
State Pop-up menu displays all the defined views states. Selecting view states updates the display of the
visual design. For more information, see “Adding View States and Transitions” on page 93.
Design Area Displays and allows you to select predefined design area sizes (1024 x 768 pixels and 800 x
600 pixels, for example). You can also set a custom size. For more information, see “Using the MXML editor
in Design mode” on page 69.
Select Mode Engaged by default when a file is opened; it allows you to select, move, and resize items.
Pan Mode Allows you to pan and scroll around in design area; items cannot be selected or moved in Pan
mode.
Zoom Mode Defaults to zoom-in preset magnification values. To zoom out press Alt+Click (Opt+Click
on Macintosh). You can double click the Zoom Mode button to return the design view to 100%.
Magnification Pop-up menu displays specific zoom percentages, which can also be selected from the
Design > Magnification menu. The default setting is 100%.

The CSS editor toolbar
The CSS editor contains several buttons that allow you to control the editor in Source and Design modes. To see the
CSS editor toolbar, open a CSS file in Design mode.

The following buttons appear in the CSS toolbar (shown left to right):
Source Displays the editor in Source mode, which is where you edit code.
Design Displays the editor in Design mode, which is where you visually lay out and design your Flex appli-
cations.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

25

Refresh Reloads the visual elements (images, SWF files, or class files containing drawing API methods)
that define the visual design of your application. Collectively, these elements are referred to as a skin. For
more information, see “Creating Skins” on page 550 in the Adobe Flex 3 Developer Guide.
Style Pop-up menu lists the styles contained in your CSS file.
New Style Launches the New Style dialog box which allows you to choose the selector types and compo-
nents to apply the new style.
Delete Style Deletes the selected style for your CSS file.
Select Mode Engaged by default when a file is opened. It allows you to select, move, and resize items.
Pan Mode Allows you to pan and scroll around in design area. Items cannot be selected or moved in Pan
mode.
Zoom Mode Defaults to zoom-in preset magnification values. To zoom out press Alt+Click (Opt+Click
on Macintosh). Double click the Zoom Mode button to return the design view to 100%.
Magnification Pop-up menu displays specific zoom percentages which can also be selected from the
Design > Magnification menu. The default setting is 100%.
Background Launches a color picker where you can select a background color for the preview area.
Changing this color does not change the CSS file nor does it affect your Flex application when you run it.
Preview as (If applicable) Shown when the style rule is not tied to one specific MXML component.
Edit scale grids (not shown) (If applicable) Shown when the style rule uses image file skins.

Using keyboard shortcuts
Many operations that are available from the menu system in Flex Builder are also available as keyboard shortcuts.

Display the list of all keyboard shortcuts in Flex Builder
❖ Select Help > Key Assist, or enter Control+Shift+L (Command+Shift+L on Macintosh).
You can use Key Assist as a reference to all the Flex Builder keyboard shortcuts, or you can run these commands
directly from the Key Assist panel by double-clicking the commands. You can also modify keyboard shortcuts or
create your own. For more information, see “Changing keyboard shortcuts” on page 58.

Extending the Flex Builder workbench
Flex Builder is a collection of Eclipse plug-ins that provide the tools you need to create Flex and ActionScript 3.0
applications. The Eclipse plug-in framework allows plug-ins to expose extension points, which can be used to extend
the features and capabilities of the tool. For more information, see Adobe Flex Builder 3 Extensibility API Reference
in Help.

26

Part 2: Flex Builder Basics
Topic

Working with Projects . 27
Navigating and Customizing the Flex Builder Workbench. 52

27

Chapter 4: Working with Projects

Adobe Flex Builder lets you create, manage, package, and distribute projects for building web and desktop applica-
tions. When you generate shared component library (SWC) files, you can share components and other resources
between applications or with other developers. You can also work with different versions of the Adobe Flex SDK
directly in Flex Builder.

Topics

About Flex Builder projects . 27
Creating Flex projects . 32
Managing projects. 36
Managing project resources. 40
About ActionScript projects . 44
About library projects. 47

About Flex Builder projects
Flex Builder uses a traditional approach to software development: grouping the resources (folders and files) that
constitute an application into a container called a project. A project contains a set of properties that control how the
application is built, where the built application resides, how debugging is handled, and the relationships to other
projects in the workspace.
To manage projects, you use the Flex Navigator view, which lets you add, edit, and delete resources. You can also close
projects within a workspace, import resources, and link to external resources.
In addition to Flex projects, Flex Builder provides a basic project type called an ActionScript project. Using an Action-
Script project, you can code and debug ActionScript applications that directly access the Adobe Flash Player APIs
and are compiled into SWF files. ActionScript projects do not use the Flex framework or MXML language.

Flex and ActionScript applications

Using Flex Builder, you can create Flex and ActionScript applications. You compile Flex applications into stand-
alone SWF files. For more information, see “Working with Projects” on page 27 and “About ActionScript projects”
on page 44.

Adobe AIR applications

With Flex Builder you can debug, package, and manage AIR projects. Flex Builder enables you to run Flex applica-
tions in AIR. You create AIR projects by using the New Flex Project wizard. Use the Export Release Build feature to
generate a release-quality, installable AIR package. For more information, see Developing AIR Applications with
Adobe Flex 3.
The Adobe AIR Marketplace is a place where AIR developers can publish AIR applications for users to download.
To find the Marketplace, go to http://www.adobe.com/go/marketplace. If you have questions on the Adobe AIR
Marketplace, go to http://www.adobe.com/go/marketplace_faq.

http://www.adobe.com/go/marketplace_faq
http://www.adobe.com/go/marketplace

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

28

Flex libraries

You also use Flex Builder to build custom code libraries that you share between your applications or distribute to
other developers. A library project generates a SWC file, which is an archive file for Flex components and other
resources. For more information, see “About library projects” on page 47.

Applications contained in projects

To begin building a Flex or ActionScript application in Flex Builder, you must first create a project. When you create
a Flex project, a main application file is created for you. Then you add other resources such as MXML application
files, custom MXML component files, ActionScript files, and all of the other assets that make up your Flex appli-
cation. When you create an ActionScript project, a main ActionScript file is created; then you can build an appli-
cation by using ActionScript and the Flash Player API. For more information, see “Creating Flex projects” on page 32
and “Managing projects” on page 36.

Projects managed in workspaces

Projects are managed from within a workspace, which is a defined area of the file system that contains the resources
(files and folders) that make up your applications. By default, your projects reside within the workspace. You can,
however, create projects that are located outside the workspace; Flex Builder automatically links them to the
workspace. To switch workspaces, you must restart Flex Builder.

More than one project in each workspace

You can add as many projects to a workspace as needed. All of your projects are displayed in the Flex Navigator view,
and you can manage them as you need to—adding resources, organizing your projects into folders, and building
projects in the workspace. For more information, see “Managing projects” on page 36 and “Creating folders and files
in a project” on page 41.

External linked resources

In addition to the resources in your projects, you can link to resources outside a project and workspace. Linked
external resources appear as part of the project but reside outside the project’s location. For more information, see
“Linking to resources outside the project workspace” on page 42.

More than one application in a project

Flex Builder lets you define more than one file in your project as an application. When you create a project, Flex
Builder generates a main application file that serves as the entry point into your application, and the compiler uses
this file to generate the application SWF file. However, if your project is complex, you can create additional appli-
cation files. All application files must reside in the src folder under the root folder of your project. For more infor-
mation, see “Managing project application files” on page 40.

Support for Multiple Flex SDKs

You could have projects that are in progress or an older project code base that must be maintained. With Flex Builder,
you can work with different versions of the Flex SDK. To specify the installed SDKs, you configure the Flex Builder
workspace, which provides a default SDK for any project. After you set up a project, you can add, remove, or edit
SDK configurations in the Preferences dialog by selecting Flex > Installed SDKs. You can also modify the SDK
configurations by selecting Project > Properties > Flex Compiler. For more information, see “Using multiple SDKs
in Flex Builder” on page 131.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

29

Automatic project builds

By default, your project is automatically built any time you save changes to a file. You have complete control over how
and how often your applications are built. If you have no special requirements for customizing the build, it works
transparently and automatically generates the application SWF files. For more information, see “Building Projects”
on page 121.

Export Release Build

When your application is ready to deploy, you use the Export Release Build wizard to create a release-quality non-
debug version of your Flex, AIR, or ActionScript application. The wizard copies required assets to a bin-release folder
separate from the debug version, Export Release Build with or without source code. This version is an optimized
production build that can be viewed by end users. For Adobe AIR projects, AIR applications are exported to an AIR
file. You use Export Release Build to create a digitally signed AIR file, which users install before running an appli-
cation. For more information, see “Export Release Build” on page 126.

Custom Ant scripts

Apache Ant is a Java-based build tool that you use to create custom scripts for building your Flex applications in Flex
Builder. You use Ant to modify and extend the standard build process. For more information, see “Customizing
builds with Apache Ant” on page 131.

Project types
You use Flex Builder to create project types in the following configurations:

Flex projects

Flex project configuration options are based on how your Flex application accesses data and if you have Adobe
LiveCycle Data Services ES installed. You can create Flex projects for web (runs in Flash player) or desktop (runs in
Adobe AIR) applications. Here are the options:

None If you do not have an application server, this basic configuration lets you specify the output folder for
your compiled Flex application. You also set the build paths for your new project.
ASP .NET With Microsoft Windows and Microsoft Visual Web Developer installed, you can create Flex
projects that use ASP .NET Development Server for deployment. Also, if you have access to Internet Information
Service (IIS), you can create Flex projects with a Flex output folder under IIS.
ColdFusion This project configuration lets you create Flex projects that use ColdFusion with LiveCycle Data
Services or ColdFusion Flash Remoting. If neither option is selected, a ColdFusion project is created with a Flex
output folder under web root (or virtual folder).
J2EE This project configuration lets you create Flex projects that use J2EE with or without remote object access
service and LiveCycle Data Services. When no option is selected, a Flex output folder is created under the Java
application server root. If you select the Use Remote Object Access Service option, you can use Flex with
LiveCycle Data Services and your project is deployed on a LiveCycle Data Services server. With the Eclipse Web
Tools Project (WTP) plug-in installed, you select the Create Combined Java/Flex Project Using WTP option to
create combined Java/Flex projects with or without remote object access service. For locally compiled projects
with WTP, projects are deployed on your J2EE server.
You can use LiveCycle Data Services with or without WTP. If you use it with WTP, the project will not be
deployed on the local LiveCycle Data Services server, but it will be deployed using WTP features.
PHP This project configuration lets you create Flex projects that have a Flex output folder under the
Apache/IIS web root (or virtual folder). You configure the URL and run and debug your Flex application by
using your PHP server or scripts.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

30

Other If you have an application server other than those previously listed, this option lets you specify the
output folder for your compiled Flex application. You can also set the build paths for your new project.

ActionScript projects

Based on the Flash API, not the Flex framework, ActionScript projects let ActionScript developers use Flex Builder
to code, build, and debug ActionScript-only applications. Because these projects do not use MXML to define a user
interface, you cannot view the application layout and design in Design mode. You work exclusively in the source
editor, the debugging tools as necessary, and then build the project into SWF application files to preview and test
your application in a web browser or stand-alone Flash Player. For more information about ActionScript projects,
see “About ActionScript projects” on page 44.

Flex library projects

Library projects are used to package and distribute components and other resources. They generate SWC files that
you add to other projects or distribute to other developers. For more information, see “About library projects” on
page 47.

Projects in the Flex Navigator view
All projects in a workspace are displayed in the Flex Navigator view, as the following example shows. Using this view,
you manage your projects by adding and deleting resources (folders and files), importing and linking to external
resources, and moving resources to other projects in the workspace.

Flex Builder provides the following wizards to help you create projects:
• The New Flex Project wizard automatically generates Flex project configuration files, the output (bin) folder
where your compiled application resides, and the main application file. It also lets you create an Adobe AIR project.
• The New ActionScript Project wizard generates a main ActionScript application file.
• The New Flex Library Project wizard helps you generate a Flex Library Project that you use to package and
distribute components and other resources.
From the Flex Navigator view, you can open the project resources for editing. For example, you can edit MXML and
ActionScript in <mx:Script> blocks and CSS in <mx:Style> blocks, or you can switch to Design mode and
visually manipulate components and controls to create the application’s layout and behavior. For more information
about working with the Flex Builder editors, see “About code editing in Flex Builder” on page 102 and “Building a
Flex User Interface” on page 64.
Then you add projects, files, and folders, and organize and manage them as needed (see “Creating folders and files
in a project” on page 41).

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

31

You can also modify the Flex Navigator view’s appearance. For example, you can expand and collapse projects and
folders, limit which projects and resources are visible by creating a working set (a collection of resources), create
display filters, and sort resources by name and type. For more information about modifying views, see “Navigating
and Customizing the Flex Builder Workbench” on page 52.
Most menu commands that you use in the Flex Navigator view are also available from the Flex Navigator view’s
context menu. For example, instead of selecting File > New, you can right-click (Control-click on Macintosh) in the
Flex Navigator view, and select New from the context menu.
For more information about working with projects in the Flex Navigator view, see “Managing projects” on page 36
and “Creating folders and files in a project” on page 41.

Project resources
Flex and ActionScript applications support several standard resource types (MXML, ActionScript, and CSS). The
following table lists the resource types that you can add to your projects. (To add these resources, select File > New.)

Resource type Description

ActionScript Class An ActionScript class file. When you add this type of resource, the New ActionScript Class wizard
prompts you for class definition elements, such as the superclass, interfaces, and so on. For more infor-
mation about working with ActionScript in Flex Builder, see “Creating an ActionScript class” on page 46.

ActionScript File A text file template for creating ActionScript functions.

ActionScript Interface An ActionScript interface file. When you add this type of resource, the New ActionScript Interface wizard
prompts you for interface definition elements such as extended interfaces and the package in which
they reside. For more information about working with ActionScript in Flex Builder, see “Creating an
ActionScript interface” on page 46.

ActionScript Project An ActionScript project based on the Flash API, not the Flex framework. ActionScript projects let Action-
Script developers use Flex Builder to code, build, and debug ActionScript-only applications. For more
information, see “Creating ActionScript projects” on page 45

CSS File A text file template for creating a Cascading Style Sheets file.

File An unformatted text file. For more information, see “Creating folders and files in a project” on page 41.

Flex Project A Flex project contains a set of properties that control how the application is built, where the built appli-
cation resides, how debugging is handled, and the relationships to other projects in the workspace. For
more information, see “Setting Flex project properties” on page 36.

Flex Library Project Flex Library Projects are used to package and distribute components and other resources. They generate
SWC files that you add to other projects or distribute to other developers. For more information, see
“About library projects” on page 47.

Folder A standard file system folder for organizing the contents of your projects. For more information, see
“Creating folders and files in a project” on page 41.

MXML Application A standard Flex application file with the <mx:Application> tag as the root MXML element. A Flex
project can have more than one application file. For more information, see “Managing project applica-
tion files” on page 40.

MXML Component A standard Flex component file with the <mx:Canvas> tag as the root MXML element. For more infor-
mation, see “Creating MXML components visually” on page 227.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

32

For more information about adding resources to your projects, see “Creating folders and files in a project” on
page 41.

Creating Flex projects
When you create a project, the New Flex Project wizard guides you through the steps, prompting you for the type of
project to create, the project name, location, and other options.

For information about creating an ActionScript project, see “Creating ActionScript projects” on page 45. For infor-
mation about creating library projects, see “About library projects” on page 47.

MXML Module A resource that can be added to an existing application project or created separately, but always associ-
ated with one application. For more information on using modules, “Creating modules in Flex Builder”
on page 147.

Other Other file types that are registered in Flex Builder. Select File > New > Other to add any other file types.
For example, if you have a Java plug-in installed in Flex Builder, you can add new Java classes, interfaces,
and packages.

When a file type is registered in Flex Builder, a corresponding editor is also available in the workbench.
For more information, see “Associating editors with file types” on page 56.

You can always add unregistered file types to your projects by importing them. For more information see
“Importing projects” on page 37

Resource type Description

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

33

Creating a Flex project with no server
If you do not have a server to configure, this basic configuration lets you specify the output folder for your compiled
Flex application. You can optionally set the build paths for your new project.
1 Select File > New > Flex Project.
2 Enter a project name.
3 Select the project location. The default location is the workspace, which is My Documents\Flex Builder
3\project_name (for example, C:\Documents and Settings\Flex Developer\My Documents\Flex Builder
3\myFlexApp). To choose a different project location, deselect the Use Default Location option.
4 Choose the application type (web or desktop).
5 For application server type, choose None.
6 Click Finish or click Next to select more configuration options.
7 (Optional) Specify the output folder for your Flex application. Click Finish or click Next to select more configu-
ration options.
8 (Optional) Click Next to set the build paths for your new project. Click the Source Path and Library Path tabs to
specify main source folder, main application file, and output folder URL.
9 Click Finish to create your project.

Creating a Flex project with ASP .NET
With Microsoft Windows and Microsoft Visual Web Developer installed, you can create Flex projects that use ASP
.NET for deployment. Also, if you have access to an Internet Information Service (IIS) development server, you can
create Flex projects with a Flex output folder under IIS.
1 Select File > New > Flex Project.
2 Enter a project name.
3 Specify the project location. The default location is the workspace, which is My Documents\Flex Builder
3\project_name (for example, C:\Documents and Settings\Flex Developer\My Documents\Flex Builder
3\myFlexApp). To choose a different project location, deselect the Use Default Location option.
4 Choose the application type (web or desktop).
5 For application server type, choose ASP .NET.
6 Click Next.
7 Select the ASP .NET server:

• If you are using an ASP .NET Development Server, there is no need to specify a server location.
• If you are using IIS, enter the Web Application Root and Web Application URL.
• Specify the output folder for your Flex application.

8 Click Finish or click Next to select more configuration options.
9 (Optional) Click Next to set the build paths for your new project. Click the Source Path and Library Path tabs to
specify main source folder, main application file, output folder, and output folder URL.
10 Click Finish to create the project.

Creating a Flex project with J2EE
This project configuration lets you create Flex projects that use a J2EE servlet with the remote object access service
option. When no option is selected, and Java server is used, a Flex output folder is created under the server root. If
you installed the Eclipse Web Tools Project (WTP) plug-in, you can create combined Java and Flex projects with or
without remote object access service.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

34

Note: To use LiveCycle Data Services ES in your Flex projects, you must have LiveCycle Data Services ES installed.
You have two compile options for creating a Flex project that uses J2EE. The recommended option compiles the
application locally, and then saves the files (including the SWF file and HTML wrapper) on the server. The other
option compiles the application source file directly on the server.
1 Select File > New > Flex Project.
2 Enter a project name.
3 Specify the project location. The default location is the workspace, which is My Documents\Flex Builder
3\project_name (for example, C:\Documents and Settings\Flex Developer\My Documents\Flex Builder
3\myFlexApp). To choose a different project location, deselect the Use Default Location option.
4 Choose the application type (web or desktop).
5 For application server type, choose J2EE.
6 Select the Use Remote Object Access Service option. LiveCycle Data Services ES is automatically selected. If you
installed WTP, you can also choose to create a combined Java and Flex project that uses WTP (the Java source folder
is selected for you).
7 Click Next.
8 Configure the J2EE server.

• If you selected the Use Remote Access Service and LiveCycle Data Services options, specify the root settings:
Root Folder is the Flex server (web application) that serves your application (for example,
C:\fds2\jrun4\servers\default\flex). If you choose not to use the default Flex development server option, you
can specify a new location for the root folder, but it must be a valid folder that is mapped to the specified root
URL. If you are using a remote server, specify the location; for example, myServer\MyApplica-
tions\jrun4\servers\default\flex.
Root URL is a valid root URL of the Flex server (web application) that serves your application. The default
root URL for local server instances is http://localhost:8700/flex/. If you use a remote server, the URL might
look like this: http://myserver.com:8700/flex/.
Context Root should typically match the last segment of the root URL path.

• If you selected the Create Combined Java/Flex Project Using WTP option (with or without LiveCycle Data
Services):

• Specify the names of your Java and Flex source folders and target runtime.
When you create a Flex project with LiveCycle Data Services ES, Flex Builder either creates a directory with
the same name as your project, or uses an existing directory with that name. That directory is a subdirectory
of the root folder that you specified for the project.
• With LiveCycle Data Services ES, specify a flex.war file, which is located in the server installation folder.

9 Specify the location to compile your project.
• For applications that compile locally, Flex Builder creates a projectname-debug folder in which the SWF files
and HTML wrappers are saved.
• For applications that compile on the server, the project location must be on the server.

10 (Optional) Click Next to set the build paths for your new project. Click the Source Path and Library Path tabs to
specify main source folder, main application file, and output folder URL.
11 Click Finish to create your project.
Note: Regardless of which option you choose for a LiveCycle Data Services ES project in Flex Builder, you must specify
a valid LiveCycle Data Services ES root folder and root URL. These values map the root of a LiveCycle Data Services ES
web application. If you deselect the options, you must enter only your web root and root URL.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

35

Creating a Flex project with ColdFusion
To access data that uses ColdFusion, you must have ColdFusion MX 7 Updater 2 (7.0.2) or Adobe ColdFusion 8. You
can optionally install the ColdFusion Extensions for Flex Builder. For more information, see the ColdFusion product
page.
1 Select File > New > Flex Project.
2 Enter a project name.
3 Specify the project location. The default location is the workspace, which is Documents and
Settings\username\workspace\.
4 Specify the application type (web or desktop).
5 For application server type, select ColdFusion, then choose the following options:

Use Remote ObjectAccess Service If you deselect this option, the Flex output folder is under the ColdFusion
web root or virtual folder. You must enter only your web root and root URL.
If you select this option, you have the following choices:
LiveCycle Data Services The Flex output folder is under the ColdFusion web root or virtual folder.
Additionally, you can choose whether your project is compiled in Flex Builder (recommended, because this
option generates an HTML wrapper) or whether your project uses the web-tier compiler. Flex Builder adds
fds.swc to the library path. If you use the web-tier compiler, the project must be located under the ColdFusion
web root.
ColdFusion Flash Remoting The Flex output folder is under the ColdFusion web root or virtual folder.

6 Click Next to configure the ColdFusion server.
7 Choose the server location and compilation options.

Select the ColdFusion installation type: Standalone or Deployed to J2EE server.
Click Validate Configuration to ensure the setup is correct, then click Next.

8 (Optional) Click Next to set the build paths for your new project. Click the Source Path and Library Path tabs to
specify main source folder, main application file, and output folder URL.
9 Click Finish.

Creating a Flex project with another server
If you have another type of server to configure, one that is not listed on the server type pop-up menu, this basic
configuration lets you specify the output folder for your compiled Flex application. You can optionally set the build
paths for your new project.
1 Select File > New > Flex Project.
2 Enter a project name, and then select the project location.
3 Choose the application type (web or desktop).
4 For server type, choose Other.
5 Click Finish or click Next to select more configuration options.
6 (Optional) Specify the output folder for your Flex application, and then click Finish.
7 (Optional) Click Next to set the build paths for your new project, and then click Finish.

http://www.adobe.com/products/coldfusion/
http://www.adobe.com/products/coldfusion/

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

36

Managing projects
You use the Flex Navigator view to add and import resources into projects, export projects, and move and delete
resources.

Setting Flex project properties
Each Flex project has its own set of properties. To set these properties, select the project in the Flex Navigator view.
Then select Project > Properties from the main menu, or right-click (Control-click on Macintosh) to display the
context menu and select Properties.

You can set the following project-specific preferences in Flex Builder:
Resource Displays general information about the project, settings for text encoding, and the operating system
line delimiter.
Builders Specifies the build tool to use. A standard builder is included in Flex Builder. You can use Apache
Ant (an open-source build tool) to create build scripts or import existing Ant build scripts. (See “Customizing
builds with Apache Ant” on page 131.)
Flex Applications Displays the names of the project files that are set as application files, which can be
compiled, debugged, and run as separate applications. (See “Managing project application files” on page 40.)
Flex Build Path Specifies the build path, which specifies where external source and library files are located.
You can modify the build path and also change the name of the output folder. (See “Setting up a project output
folder” on page 124 and “Building projects manually” on page 128.)
Flex Compiler Specifies optional compiler preferences, such as generating an accessible SWF file, enabling
compiler warnings and type checking, specifying additional compiler arguments, Flex SDK version, and sets
HTML wrapper settings. (See “Advanced build options” on page 128.)

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

37

Flex Modules Specifies modules to build and optimize for the project. For more information about using
modules in Flex Builder, see “Creating modules in Flex Builder” on page 147.
Flex Server Determines the location of the Flex root folder and the Flex root URL (for LiveCycle Data Services
projects only), and validates location.
Project References Lists the projects that the current project references.
Run/Debug Settings Manages launch configuration settings.

Importing projects
Flex Builder provides wizards to guide you through steps to import projects. You can work with many projects simul-
taneously. All projects in the current workspace are displayed in the Flex Navigator view.
You can import existing projects into the workspace or create new projects. Existing projects must be valid Flex
Builder projects and reside either in another workspace or, if removed from a workspace, in the file system. You can
also work with a project that is not currently in your workspace. The project may be packaged in a single .zip file, or
a complete project folder.

Import .zip project (stand-alone configuration)

If the .zip project was created with Export Flex Project Archive:
1 Select File > Import > Flex Project.
2 In the Import Flex Project dialog box, select the .zip file you want to import. If the project is compiled on the
server (ColdFusion with LiveCycle Data Services or J2EE with/without LiveCycle Data Services), the project location
must be the root of LiveCycle Data Services. If a project is not compiled in Flex Builder, you must specify a custom
path, ideally under the server’s web root. You can import any Flex, AIR, ActionScript, or Library project.
3 Click Finish.

Import .zip project (plug-in configuration)

If the .zip project was created with Eclipse’s Export Archive File:
1 Select File > Import > General > Existing Projects into Workspace. Click Next.
2 In the Import Projects dialog box, enter the root directory or archive file paths as described above.
3 Click Finish.

Import complete project folder

If you have a project that was downloaded from source control or a different workspace:
1 Select File > Import > General > Existing Projects Into Workspace and click Next.
2 In the Import Projects dialog box, select the root directory or archive file option; then select Browse to navigate
to the project location.

You can import the following archive file types: jar, zip, tar, tar.gz, and tgz.
All valid projects that are available in the specified location are listed in the dialog box.

3 Select one or more projects, and click Finish.
Note: Importing a project into a workspace creates a link from the workspace to the existing location of the project.

Import folder(s) containing other source files or assets

If you want to import source files or assets not in an actual Flex Builder project, use the New Flex Project wizard:

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

38

❖ Create a new project at a specific location and set source and output folder settings to match existing folder
structure.
or
❖ Create a new project in a different location and move source files to the new project folder structure.

Exporting projects
Flex Builder provides wizards to guide you through the steps to export a project to an archive file (.zip). You can
easily share .zip files with other developers who use Flex Builder by posting the archive file on a web site or attaching
it to a Jira bug report.
1 Select File > Export.
2 In the Export wizard, select File > Flex > Export Project, then click Next.
3 In the Export Project dialog box, select a project then enter or browse to enter the location where the .zip file will
be exported.
4 Click Finish to export your project to the designated location.

For server projects, the paths to the Flex output folder and/or server root are replaced with Eclipse variables.
When you export a project, Flex Builder opens readme_flex_export.txt listing which paths were replaced. This
readme file is located in the in the .zip archive.
For more information about Eclipse variables and linked resources, see the Eclipse documentation.

Exporting Adobe AIR application installer
For AIR projects, a production build creates a digitally signed AIR file, which users can install before running the
application. This process is similar to creating an installer .exe for a typical native application. Optionally you can
create an unsigned intermediate package which you can sign later before release. Before using Export Release Build
you should decide how to digitally sign your AIR application:
• Sign the application using a VeriSign or Thawte digital certificate
• Create and use a self-signed digital certificate
• Add a timestamp (a timestamp is an assertion from a timestamp authority that the digital certificate was valid
when the timestamp was issued). Note that AIR disallows installation if the certificate has expired and there is no
timestamp.
• Choose to package the application and sign it later
Digital certificates provided by VeriSign and Thawte give users some assurance as to your identity as a publisher and
verification that the installation file has not been altered since you signed it. Self-signed digital certificates serve the
same purpose but they are not validated by a third party. You can also package your AIR application without a digital
signature by creating an intermediate AIR file (.airi). An intermediate AIR file is not valid because it cannot be
installed. Instead, developers can use it for testing and then it can be launched using the AIR ADT command line
tool. This capability is provided because in some development environments digital signing is handled by a
particular developer or team, which ensures an additional level of security.
1 Select Project > Export Release Build.

If you have multiple projects and applications open in Flex Builder, select the AIR project you want to package.
2 Choose the export settings for project and application.

• If your project does not have a server web root associated with it, all assets are copied to the project_name
folder, which is the default location.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

39

• If your project has server web root associated with it (for example, PHP and J2EE), all assets are copied to
the web_root/project_name-debug folder.
• If you want users to view source code, select Enable View Source.
• Click Choose Source Files to select files to you want to publish, then click OK.
• Click Next.

3 On the Digital Signature page:
Specify the digital certificate that represents the application publisher's identity. To generate a self-signed certif-
icate, click Create to enter data in required fields.
If you want to export a file that will be signed later, you can export an intermediate AIRI file.

4 In the AIR File Contents page, select the output files to include in the AIR or AIRI file.
5 Click Finish.
For more information about Adobe AIR files, see Developing AIR Applications with Adobe Flex 3.

Moving a project from one workspace to another
You use a combination of deleting and importing operations to move a project from one workspace to another. When
you delete a project from a workspace, you can remove it from the workspace but leave it in the file system (see
“Deleting projects” on page 39). After you remove a project from one workspace you can import it into another.

Deleting projects
When you delete a project, you remove the project from the current workspace. You can also remove the project from
the file system at the same time.
Instead of deleting the project from the workspace, you can close the project. Closing the project lets you keep a
reference to it in your workspace and also free some system resources. For more information, see “Closing and
opening projects” on page 39.
1 In the Flex Navigator view, select the project to delete.
2 Select Edit > Delete from the main menu.
3 Select an option:

Also Delete Contents Under Directory Permanently removes the project from the workspace and the file
system.
Do Not Delete Contents Removes the project from the workspace but not from the file system.

Closing and opening projects
To save memory and improve build time without deleting a project, you can close it. When you close a project, you
collapse the project and its resources, however, the name remains visible in the Flex Navigator view. A closed project
requires less memory than an open project, and is excluded from builds. You can easily reopen the closed project
from the Flex Navigator view.
1 In the Flex Navigator view, select the project to close or reopen.
2 Right-click (Control-click on Macintosh) to display the context menu and select Close Project or Open Project.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

40

Switching the main application file
When you create a project, the main application file is generated for you. By default, it is named after the project. The
main application file is the entry point into your applications and becomes the basis of the application SWF file.
However, as you add files to your application, you might want to designate a different file as the main application file.
If you prefer to set multiple files as application files so that each application file is built into a separate SWF file, see
“Managing project application files” on page 40.
1 In the Flex Navigator view, select the MXML application file that you want to make the main application file.
2 Right-click (Control-click on Macintosh) to display the context menu and select Set as Default Application.
You can manage the application files in your project by selecting Project > Properties > Flex Applications (or Action-
Script Applications if you’re working with an ActionScript project).

Managing project application files
Usually, a project has a single main application file, which serves as the entry point to your application. The Flex
Builder compiler uses this file to generate the application SWF file.
For example, you might have a complex Flex application with many custom MXML components that represent
distinct but interrelated application elements. You can create an application file that contains a custom component
and then build, run, and test it separately.
By default, whenever you add an MXML application file to your Flex project, you can run the application, and it is
added to the list of project application files. All files defined as application files must reside in your project’s source
folder.
You can manage the list of application files by selecting a project and viewing its properties.
1 In the Flex Navigator view, select a project.
2 Select Project > Properties from the main menu or right-click (Control-click on Macintosh) to select Properties
from the context menu.
3 In the Project Properties dialog box, select Flex Applications (or ActionScript Applications if you are working
with an ActionScript project).
4 Add and remove application files as needed. Click OK.

Managing project resources
Projects consist of resources (folders and files) that you can manage from the Flex Navigator view. Projects are
contained within a workspace, which is a reflection of the file system. The Flex Navigator view is refreshed each time
you add, delete, or modify a resource.
You can also edit project resources outside Flex Builder and the Flex Navigator view, directly in the file system.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

41

Creating folders and files in a project
You can add folders and files to your project as needed. For example, you might create a folder to store all of your
data models or to organize all the assets that make up the visual design of your application, as the following example
shows:

Create a folder
1 In Flex Navigator view select File > New > Folder.
2 If you have multiple projects in your workspace, select the project to add to the stand-alone folder.

If you create the new folder in the source path folder, it is treated like a package name and you can place source
files inside that will be recognized by the compiler.
If you create the folder outside of the source path folder, you can later make it the root of a package structure by
adding it to your source path. After you complete this procedure, select Project > Properties and then select Flex
Build Path. Click Add Folder and navigate to the newly created folder.

3 Enter the folder name and click Finish.

Create a file
1 In the Flex Navigator view, select File > New > File.
2 If you have multiple projects in your workspace, select the project to which you want to add the file.
3 Enter the filename and click Finish.
You can also add folders and files that are located outside the current project; for more information, see “Linking to
resources outside the project workspace” on page 42.

Deleting folders and files
Deleting folders and files from your project removes them from the workspace and, therefore, from the file system.
Note: If you delete a linked resource, you delete only the link from your project, not the resource itself (see “Linking to
resources outside the project workspace” on page 42). However, if you’ve linked to a folder and you delete any of the files
in it, they are removed from the file system.
1 In the Flex Navigator view, select the resource to delete.
2 Select Edit > Delete or press the Delete key, and click Yes.

The resource is deleted from the file system.

Moving resources between projects in a workspace
When you work with multiple projects in a workspace, you can move resources from one project to another.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

42

1 In the Flex Navigator view, select the resource to move.
2 Do one of the following:

• Drag the resource to a new project.
• Cut and paste the resource to another project.

Note: You can move both normal resources and linked resources. For information about linking resources, see “Linking
to resources outside the project workspace” on page 42.

Refreshing resources in the workspace
As you edit, add, or delete resources in Flex Builder, the workbench automatically refreshes the various views that
display these resources. For example, when you delete a file from your project, that change is immediately reflected
in the Flex Navigator view.
You can also edit resources outside Flex Builder, directly in the file system. These changes are visible only inside Flex
Builder after you refresh the workspace.
By default, in the stand-alone configuration of Flex Builder, the workspace is refreshed automatically. This option is
available in the Flex Builder preferences dialog box, which you can access by selecting Window > Preferences >
General > Workspace. You can also change the Flex Builder default behavior so that it never refreshes the workspace
automatically.

Manually refresh the workspace
❖ In the Flex Navigator view, right-click (Control-click on Macintosh) and select Refresh from the context menu.
All project resources in the workspace are refreshed.

Turn off the automatic refresh preference
1 Open the Preferences dialog and select General > Workspace.
2 Deselect Refresh Automatically.

Linking to resources outside the project workspace
You can create links to resources outside the project and workspace location. You can link to folders and files
anywhere on the file system. This option is useful when you have resources that are shared between your projects.
For example, you can share a library of custom Flex components or ActionScript files among many different Flex
projects.
Folders that contain linked resources are marked in the Flex Navigator view (as the following example shows), so
that you can distinguish between normal and linked resources.

Other examples for linking resources include a folder of image file assets, or situations when the output folder is not
in the project root folder.
When you work with shared resources, the changes you make to the source folders and files affect all of the projects
that are linked to them. Be cautious when you delete linked resources from your projects; in some cases you merely
delete the link reference, and in others you delete the source itself. For more information, see “Deleting folders and
files” on page 41.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

43

Note: A best practice is to link other projects to your Library Project. Linked resources should only be encouraged for
third-party libraries with an SWC file.

Link to resources outside the project workspace
1 In the Flex Navigator view, select the project to add linked resources to.
2 Select File > New > Folder (or File).
3 Select the project or project folder to add the linked resources to.
4 Enter the folder or filename. The folder or filename you enter can be different from the name of the folder or file
you are linking to.
5 Click the Advanced button.
6 Select Link to folder in the file system. Enter or browse to the resource location.
7 Click Finish to link the resource to your project.

Using a path variable to link to resources

Rather than linking to resources by entering the full path to the local or network folder where you store your files,
you can define path variables. For more information, see “Creating a path variable” on page 125.
1 In the Flex Navigator view, select the project to add linked resources to.

Path variables can also be used in certain project settings, such as the library path and source path.

2 Select File > New > Folder (or File if you want to add files).
3 Select the project or project folder to add the linked resources to.
4 Click the Advanced button to display the advanced options.
5 Select Link to folder in the file system. Click the Variables button.
6 Select a defined path variable, or click New to create a path variable.

If you selected a defined path variable, skip to step 9. If you clicked New, you’ll see the New Variable dialog box.
7 Enter the path variable name and enter or browse to the file or folder location.

Click OK to create the path variable.

8 Select the new path variable in the Select Path Variable dialog box and click OK.
9 Click Finish to complete the link to the resource.

You can also define and manage path variables by using the Flex Builder workbench preferences (Open the Prefer-
ences dialog and select Preferences > General > Workspace > Linked Resources).

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

44

Adding resource folders to the project source path
To share resources between projects, place all shared resources into folders that can then be linked to each project by
using the project’s source path. This is the best method for using shared resources such as classes, MXML compo-
nents, and images. Updates to these resources are immediately available to all projects that use them. When your
projects are compiled, the shared resources are added to the SWC file.

Add an external resource folder to the source path
1 Select the project in the Flex Navigator view.
2 Select Project > Properties > Flex Build Path (or ActionScript Build Path if you are working with an ActionScript
project).
3 On the build path properties page, select the Source Path tab.
4 Click the Add Folder button.
5 Enter or and browse to the folder’s path, and click OK.

The folder is added to the source path.
You can also use the Source Path properties tab to edit, delete, or reorder items in the source path.
Folders that are added to the source path are marked in the Flex Navigator view.

Alternatives to using project references
Project references can impact build order, so Flex Builder provides alternatives to using project references.
Flex Library projects The preferred way to create a reusable library. Flex Builder creates a project reference to
ensure that the SWC project is built before the main project that includes it on the library path. Also, because Flex
Builder adds it to the library path, code hints appear in the main project for the classes in the SWC project.
Source path The recommended way to include code in your project that is not under the same folder structure.
This enables code hints in the project files and classes in related files, and the compiler knows where to find the
source code. You can add any number of source paths to your project and they are displayed as linked folders in the
Flex Navigator view.

Viewing resource properties
When you work in the Flex Navigator view, you can select a resource and view its properties.
1 In the Flex Navigator view, select a resource.
2 Select File > Properties or press Alt+Enter (Option+Enter on Macintosh).

About ActionScript projects
Flex Builder lets you create ActionScript projects that use the Flash API (not the Flex framework). This leverages the
Flex Builder workbench tools and the ActionScript editor, which means that you have a full-featured IDE for devel-
oping ActionScript applications.
ActionScript projects do not have a visual representation in Flex Builder; in other words, there is no Design mode
for ActionScript applications. You view your ActionScript applications by compiling them in Flex Builder and then
running them in Flash Player. You can use all the debugging tools.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

45

When you create an ActionScript project or a stand-alone ActionScript file to contain functions, a class, or interface,
the Flex development perspective is modified to support the ActionScript editor. The primary supporting views of
the ActionScript editor are the Outline and Problems views.

Creating ActionScript projects
When you create an ActionScript project, the New ActionScript Project wizard guides you through the steps,
prompting you for the type of project to create, the project's name, location, and other advanced options.
1 Select File > New > ActionScript Project.

2 Enter a Project name, and then specify the following:
Project Location The default location is the workspace, which is My Documents\Flex Builder 3\project_name
(for example, C:\Documents and Settings\Flex Developer\My Documents\Flex Builder 3\myASApp). You can
choose a different project location by deselecting the Use Default Location option. On the Macintosh, the default
workspace location is /Users/Flex Developer/Flex Builder 3/project_name.
Flex SDK Version Choose default or specific. You can also click the Configure SDKs link to add, edit, or
remove SDKs on the main Preferences page.

3 Click Next to set the following advanced options (otherwise, click Finish):
Source Path Specifies the path to link external resources to your application. For example, if you have a folder
of shared ActionScript classes, you can link to that folder by adding it to the source path.
Library Path Specifies the path to link external resource libraries (SWC files). By default, the library path of
new ActionScript projects contains the playerglobal.swc and utilities.swc files.
Main Source Folder Specifies, by default, the root of your project. You can, however, choose a different folder
within the project. You can browse the project folder structure and create a folder for the source if needed.
Main Application File Specifies the name of the ActionScript file that is the main application file. By default,
Flex Builder uses the project name as the main application filename. You can change this name.
Output Folder Specifies the location of the compiled application files. By default, this is the bin folder, but you
can change this.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

46

Output Folder URL Specifies the server location of the compiled application files. This is optional.
4 When you finish entering the ActionScript project settings, click Finish.

Creating an ActionScript class
You can use a wizard in Flex Builder to quickly create ActionScript classes for your Flex and ActionScript projects.
The wizard also provides an easy way to generate stubs for functions that must be implemented.
1 Select File > New > ActionScript Class.

2 Specify the basic properties of your new class in the dialog box, and then click Finish.
After clicking Finish, Flex Builder saves the file in the specified package and opens it in the code editor.
If you saved the file in the current project or in the source path of the current project, Flex Builder also displays
the component in the Components view so that you can rapidly insert it in your applications. For more infor-
mation, see “Add components in MXML Design mode” on page 67.

3 Write the definition of your ActionScript class.
For more information, see “Simple Visual Components in ActionScript” on page 105 in Creating and Extending
Adobe Flex 3 Components.

Creating an ActionScript interface
You can use a wizard in Flex Builder to quickly create ActionScript interfaces for your Flex and ActionScript projects.
An interface is a collection of constants and methods that different classes can share.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

47

1 Select File > New > ActionScript Interface.

2 Specify the basic properties of your new interface in the dialog box, and then click Finish.
3 Add any constants or methods to your ActionScript interface that different classes share.

About library projects
Library projects let you build custom code libraries that you can share between your applications or distribute to
other developers. A library project generates a SWC file, which is an archive file for Flex components and other
resources. For example, the Flex framework is contained in SWC files. When you create a Flex project, the Flex
framework SWC files are added to the project’s library path. You can view and edit the library path by accessing the
project’s build path properties page (for Flex projects, select Project > Properties > Flex Build Path).
Archived into a SWC file is a SWF file that contains components and resources and a catalog.xml file that is the
manifest of the elements contained within the SWF file. Typically, the SWF file contains one or more components
and any other required resources. Adding the library to a project lets you use those components in your application
and also enables code hinting for those components.
In addition to providing a convenient way to package and distribute components, SWC libraries are used as themes,
the visual appearance of Flex applications. A SWC theme file contains a CSS file and all the related graphic assets.
For more information about creating and using themes, see “About themes” on page 645 in the Adobe Flex 3
Developer Guide.
Libraries are useful if you create components entirely in ActionScript and use them in Design mode in Flex Builder.
ActionScript components are not visually rendered in Design mode until they are compiled into a SWF file. By
adding ActionScript components to a library project, you create a SWF file that is contained in a SWC file. You can
add the library to a project’s library path, and the ActionScript components visually render in Design mode when
you add them to the application.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

48

Configuring libraries for your applications
You use SWC libraries in your projects in the following ways:

Merged into the application When you add a SWC file to the project’s library path, the components contained
in the library are available to use in your application. When you build the application, only the library compo-
nents you actually used are compiled into the application SWF file. In other words, all of your application code
is merged into a single SWF file. This is the most common and straightforward way of using library components.
External to the application You can keep library components separate from the compiled SWF file, so they
are not merged into the file. The compiler resolves all code contained in the library that is used by the application,
but does not merge the code into the application SWF file. The advantage of this approach is that you make the
application SWF file smaller. The components contained in the SWC file are retrieved and loaded into memory
as needed, at run time.
Runtime Shared Library In Flex projects only, you can also use SWC files as a Runtime Shared Library (RSL),
which is similar to a dynamically linked library on other platforms. Use SWC files as an RSL when you have a
collection of components that are used by more than one application.
There are several advantages to sharing components between applications by using an RSL. First, the library is
loaded into memory once, cached, and then available to all the applications that use those components. Second,
the components contained within the library are only loaded when they are needed, which reduces the appli-
cation’s start-up time because the size of each application is smaller. The potential problem to this approach is
that the entire RSL is loaded into memory, rather than the individual components that the applications use. For
more information about when to use SWC files as an RSL, see “Using Runtime Shared Libraries” on page 195 in
Building and Deploying Adobe Flex 3 Applications.

Creating Flex library projects
When you create a library project, the New Flex Library Project wizard guides you through the steps, prompting you
for the project name, location, and build path information. After you create the Library project, you add compo-
nents, specify the library project elements to include in the SWC file, and then build the project to generate the SWC
file. The first step in creating a SWC file in Flex Builder is to create a Flex Library project.
1 Select File > New > Flex Library Project.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

49

2 Enter a Project name, and then specify the following:
Project Location The default location is the workspace, which is My Documents\Flex Builder 3\project_name
(for example, C:\Documents and Settings\Flex Developer\My Documents\Flex Builder 3\myLibrary). You can
choose a different project location by deselecting the Use Default Location option. On Macintosh, the default
workspace location is /Users/Flex Developer/Flex Builder 3/project_name.
Flex SDK Version Choose default or specific. You can also click the Configure SDKs link to add, edit, or
remove SDKs on the main Preferences page.
Include Adobe AIR libraries Select this option if your library must use AIR features, such as access to the AIR
APIs. Flex Builder then changes the library path of this new Flex Library project so that it includes airglobal.swc
and airframework.swc. Web-based Flex projects cannot use this library.
Do not select this option if you are writing a generic library intended to be used only in a web-based Flex appli-
cation, or in either a web-based or AIR-based application.

3 Click Next.
4 (Optional) Set the build path information. For example, you can add folders to the project’s source path that
contains the components to include in the SWC file. You can also add other projects, folder, or library SWC files to
include in your library project. See “Using SWC files in your projects” on page 50.
5 When you finish entering the project settings, click Finish.

Adding components to the library project
You add components to the library project in the following ways:
• Add new or existing custom components, ActionScript classes, and other assets to the project.
• Link to existing components in other projects in the workspace. (See “Linking to resources outside the project
workspace” on page 42.)
• Add a linked folder that contains components to the library project’s source path. (See “Deleting folders and files”
on page 41.)
Note: All the components you include in the library project must be associated with the library project (directly or as
linked resources).

Selecting library project elements to include in the SWC file
The next step in creating a library SWC file is to select the elements (components and resources) to include in the
SWC file when it is built by the compiler.
1 Select Project > Properties > Flex Library Build Path.

The components that you added to the project (either directly or by linking to them) appear in the Classes tab.
2 Select the component classes to include in the SWC file.
3 (Optional) Select the Resources tab and then select the resources to include in the SWC file.
4 After you make your selections, click OK.

Building library projects
After you select elements to include in the SWC file, and if you selected the Build Automatically option, the SWC
file is immediately compiled and generated into the project’s output folder. If you build your projects manually, you
can build the library project when you want by selecting Project > Build Project or Build All.
Building your library project generates a SWC file, which you can share with other applications or users.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

50

A SWC file is an archive file. You can open the SWC file in any archive utility, such as WinZip. Inside the SWC file
are the library.swf and catalog.xml files. There also are properties files and other embedded assets.
You can export the library as an open directory rather than as a SWC file. You typically export a library as an open
directory when you plan on using the library.swf file inside the SWC file as an RSL.
You do this by setting the directory and output compiler options. You set the output option to the name of a
directory to create, and set the directory option to true to indicate that you want an open directory and not a SWC
file when you build the library. To edit the compiler options, select Project > Properties > Flex Library Compiler, and
add the options to the “Additional compiler arguments” field; for example:
-directory=true -output=myOpenDir

Flex Builder creates a directory in the project named myOpenDir and stores the contents of the SWC file in that
directory.

Using SWC files in your projects
To use SWC files in your Flex projects, you add them to the project’s library path. The SWC files can be located in
the project, in a Flex library project, in a shared folder within the workspace, or any other location that has been
linked to the project (using a shared folder that was added to the project’s source path, for example).
When you use SWC files in applications, there are configuration options that determine whether they are statically
or dynamically linked to the application, merged into the application SWF file, or external to it and accessed
separately at run time.

Add an SWC file to the library path
1 With a project selected in the Flex Navigator view, select Project > Properties > Flex Build Path.
2 Click on the Library Path tab.
3 Select any of these options to add SWC files:

Add Project Adds a Flex library project.
Add SWC Folder Lets you add a folder that contain SWC files.
Add SWC Adds a compiled SWC file.
Add Flex SDK Lets you add other Flex SDKs. If your project already has a Flex SDK in its library path, this
button is disabled. If you remove the existing Flex SDK from your library path, the button is enabled. When you
click this button, a Flex SDK node is added, but you are not prompted which one is added. To control which Flex
SDK to use, select Project > Properties > Flex Compiler.

4 Enter or browse to and select the location of the SWC file, project, or folder. Click OK.
The SWC file, library project, or folder is added to the library path.

Merge the SWC file into the application SWF file when compiled
1 With a project selected in the Flex Navigator view, select Project > Properties > Flex Build Path.
2 Click on the Library Path tab, and then select and expand the SWC file entry to display the SWC options.
3 Double-click the Link Type option. The Library Path Items Options dialog box appears.
4 Select the Merged into Code option, and click OK.
This procedure is the equivalent of using the library-path compiler option.

Set the SWC file as an external library file
1 With a project selected in the Flex Navigator view, select Project > Properties > Flex Build Path.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

51

2 Select the Library Path tab, and then select and expand the SWC file entry to display the SWC options.
3 Double-click the Link Type option. The Library Path Items Options dialog box appears.
4 Select the External option, and click OK.
This procedure is the equivalent of using the external-library-path compiler option.

Use the SWC file as an RSL
1 With a project selected in the Flex Navigator view, select Project > Properties > Flex Build Path.
2 Select the Library Path tab, and then select and expand the SWC file entry to display the SWC options.
3 Double-click the Link Type option. The Library Path Items Options dialog box appears.
4 Select the Run-time Shared Library (RSL) option.
5 Enter the URL where the SWC library will reside when the application is deployed.
6 (Optional) To extract the SWF file in the SWC file when it is placed in the deploy location, select the Automat-
ically extract swf to deployment path option.
7 Click OK.
Using the SWC files as an RSL simplifies the process for using RSLs manually. To do this, you extract the SWF file
from the SWC file and set the values of the runtime-shared-library-path compiler option.
For more information about using SWC files as an RSL, see “Using Runtime Shared Libraries” on page 195 in
Building and Deploying Adobe Flex 3 Applications.

52

Chapter 5: Navigating and Customizing
the Flex Builder Workbench

The term workbench refers to the Flex Builder development environment. The workbench contains three primary
elements: perspectives, editors, and views. You use all three in various combinations at various points in the appli-
cation development process. The workbench is the container for all the development tools you use to develop appli-
cations.
Note: For more information about some of the Eclipse workbench features, see the Eclipse Workbench User’s Guide at
http://help.eclipse.org/help31/index.jsp.

Topics

Working with perspectives . 52
Working with editors and views . 54
Customizing the workbench . 58
Searching in the workbench . 60
Working in the editor’s Source and Design modes . 61
Accessing keyboard shortcuts . 62
Setting workbench preferences . 62

Working with perspectives
Perspectives include combinations of views and editors that are suited to performing a particular set of tasks. For
example, you normally open the Flex Debugging perspective to debug your Flex application.
For an overview of perspectives, see “About Flex Builder perspectives” on page 13.

Opening and switching perspectives
When you open a file that is associated with a particular perspective, Flex Builder automatically opens that
perspective. You can also open a perspective manually. The stand-alone configuration of Flex Builder contains three
perspectives:
• Flex Development
• Flex Debugging
• Flex Profiling (available on a trial basis or complete with Flex Builder Professional)

❖ Select Window > Perspective or choose Other to access all other Eclipse perspectives. (In the plug-in configu-
ration of Flex Builder, you select Window > Open Perspective.)

You can also click the Open Perspective button in the upper-right corner of the workbench window, then select
a perspective from the pop-up menu.
To see a complete list of perspectives, select Other from the Open Perspective pop-up menu.

http://help.eclipse.org/help31/index.jsp

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

53

When the perspective opens, its title changes to display the name of the perspective you selected. An icon appears
next to the title, allowing you to quickly switch back and forth between perspectives in the same window. By default,
perspectives open in the same window. To open perspectives in a new window, edit preferences.

Setting the default perspective
The default perspective is indicated by the word default in parentheses following the perspective name.
1 Open the Preferences dialog and select General > Perspectives.
2 Under Available Perspectives, select the perspective to define as the default, and click Make Default.
3 Click OK.

Opening perspectives in a new window
You can change the default behavior for opening perspectives to open a perspective in a new window.
1 Open the Preferences dialog and select General > Perspectives.
2 Under Open a New Perspective, select In A New Window.

To switch back to the default, select In The Same Window.
3 Click OK.

Customizing a perspective
To modify a perspective’s layout, you change the editors and views that are visible in a given perspective. For example,
you could have the Bookmarks view visible in one perspective, and hidden in another perspective.
You can also configure several other aspects of a perspective, including the File > New submenu, the Window >
Perspective > Other submenu, the Window > Other Views submenu, and action sets (buttons and menu options)
that appear in the toolbar and in the main menu items. (Menu names differ slightly in the plug-in configuration of
Flex Builder.)

Create a new perspective
1 Open an existing perspective.
2 Show views and editors as desired.

For more information, see “Opening views” on page 54, and “Opening files for editing” on page 56.
3 Select Window > Perspective > Save Perspective As (Window > Save Perspective As in the plug-in configuration
of Flex Builder).
4 In the Save Perspective As dialog box, enter a new name for the perspective, then click OK.

Configure a perspective
1 Open the perspective to configure.
2 Select Window > Perspective > Customize Perspective (Window > Customize Perspective in the plug-in config-
uration of Flex Builder).
3 Click the Shortcuts tab or the Commands tab, depending on the items you want to add to your customized
perspective.
4 Use the check boxes to select which elements to see on menus and toolbars in the selected perspective.
5 Click OK.
6 Select Window > Perspective > Save Perspective As (Window > Save Perspective As in the plug-in configuration
of Flex Builder).

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

54

7 In the Save Perspective As dialog box, enter a new name for the perspective and click OK.
When you save a perspective, Flex Builder adds the name of the new perspective to the Window > Perspective menu
(Window > Open Perspective in the plug-in configuration of Flex Builder).

Deleting a customized perspective
You can delete perspectives that were previously defined. You cannot delete a perspective you did not create.
1 Open the Preferences dialog and select General > Perspectives.
2 Under Available Perspectives, select the perspective you want to delete.
3 Click Delete, then click OK.

Resetting perspectives
You can restore a perspective to its original layout after you made changes to it.
1 Open the Preferences dialog and select General > Perspectives.
2 Under Available perspectives, select the perspective to reset.
3 Click Reset, then click OK.

Working with editors and views
Most perspectives in the workbench are composed of an editor and one or more views. An editor is a visual
component in the workbench that is typically used to edit or browse a resource. Views are also visual components in
the workspace that support editors, provide alternative presentations for selected items in the editor, and let you
navigate the information in the workbench.
For an overview of editors and views, see “About the workbench” on page 10.

Opening views
Perspectives contain predefined combinations of views and editors. You can also open views that the current
perspective might not contain.
❖ Select Window and choose a Flex Builder view or select Window > Other Views to choose other Eclipse
workbench views. (In the plug-in configuration of Flex Builder, select Window > Show View.)
After you add a view to the current perspective, you might want to save that view as part of the perspective. For more
information, see “Customizing a perspective” on page 53.
You can also create fast views to provide quick access to views that you use often. For more information, see “Creating
and working with fast views” on page 55.

Moving and docking views
You can move views to different locations in the workbench, docking or undocking them as needed.
1 Drag the view by its title bar to the desired location.

As you move the view around the workbench, the pointer changes to a drop cursor. The drop cursor indicates
where you’ll dock the view when you release the mouse button.

You can drag a group of stacked views by dragging from the empty space to the right of the view tabs.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

55

You can also move a view by using the view’s context menu. Right-click (Control-click on Macintosh) on the view
tab, select Move > View, move the view to the desired location, and click the mouse button again.

2 (Optional) Save your changes by selecting Window > Perspectives > Save Perspective As (Window > Save
Perspective As in the plug-in configuration of Flex Builder).

Rearranging tabbed views
In addition to docking views at different locations in the workbench, you can rearrange the order of views in a tabbed
group of views.
❖ Click the tab of the view to move, drag the view to the desired location, and release the mouse button. A stack
symbol appears as you drag the view across other view tabs.

Switching between views
You can switch between views to work in a different view.
❖ Click the tab of the view to switch to.

You can also press Control+F7 (Command+F7 on Macintosh), use the F7 key to select the view to switch to, and
then release the Control key.

Creating and working with fast views
Fast views are hidden views that you can quickly open and close. They work like other views, but do not take up space
in the workbench while you work.
Whenever you click the fast view icon in the shortcut bar, the view opens. Whenever you click anywhere outside the
fast view (or click Minimize in the fast view toolbar), the view becomes hidden again.
Note: If you convert the Flex Navigator view to a fast view, and then open a file from the Flex Navigator fast view, the
fast view automatically is hidden to allow you to work with that file.

Create a fast view
❖ Drag the view you want to turn into a fast view to the shortcut bar located in the lower-left corner of the
workbench window.

The icon for the view that you dragged appears on the shortcut bar. You can open the view by clicking its icon
on the shortcut bar. As soon as you click outside the view, the view is hidden again.

Restore a fast view to normal view
1 Right-click (Control-click on Macintosh) the view’s tab to open the view’s context menu.
2 Deselect Fast View.

Filtering the Tasks and Problems views
You can filter the tasks or problems that are displayed in the Tasks or Problems views. For example, you might want
to see only problems that the workbench has logged, or tasks that you logged as reminders to yourself. You can filter
items according to which resource or group of resources they are associated with, by text string in the Description
field, by problem severity, by task priority, or by task status.
1 In Tasks or Problems view taskbar, click Filter.
2 Complete the Filters dialog box and click OK.
For more information about views, see “Flex Builder Workbench Basics” on page 10.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

56

Creating working sets
If your workspace contains many projects, you can create a working set to group selected projects together. You can
then view separate working sets in the Flex Navigator and Task views and also search working sets rather than
searching everything in the workspace.

Create a working set
1 In the Flex Navigator view, open the toolbar menu and select Select Working Set.

2 Select New.
Flex Builder provides two set types: breakpoints (used in debugging) and resources.

3 Select the resources type and click Next.
4 Enter the working set name and then choose the projects in the workspace that you want to include in the
working set.
5 Click Finish.
The working set is immediately applied to the Flex Navigator view and only those projects and resources contained
in the set are displayed.

Display all projects in the workspace
❖ In the Flex Navigator view, open the toolbar menu and choose Deselect Working Set.

Opening files for editing
When you open a file, you launch an editor so that you can edit the file.
❖ Do one of the following:

• Right-click (Control-click on Macintosh) the file in one of the navigation views and select Open from the
context menu.
• Double-click the file in one of the navigation views.
• Double-click the bookmark associated with the file in the Bookmarks view.
• Double-click an error warning or task record associated with the file in the Problems view.

This opens the file with the default editor for that particular type of file. To open the file in a different editor, right-
click (Control-click on Macintosh) the file, select Open With from the context menu, and select the editor to use.

Associating editors with file types
You can associate editors with various file types in the workbench.
1 Select Window > Preferences.
2 Click the plus button to expand the General category.
3 Click the plus button to expand the Editors category, and then select File Associations.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

57

4 Select a file type from the File Types list.
To add a file type to the list, click Add, enter the new file type in the New File Type dialog box, and then click OK.

5 In the Associated Editors list, select the editor to associate with that file type.
To add an internal or external editor to the list, click Add and complete the dialog box.

6 Click OK.
You can override the default editor preferences by right-clicking (Control-clicking on Macintosh) any resource in
one of the navigation views and selecting Open With from the context menu.

Editing files outside the workbench
You can edit an MXML or ActionScript file in an external editor and then use it in Flex Builder. The workbench
performs any necessary build or update operations to process the changes that you made to the file outside the
workbench.

Refresh an MXML or ActionScript file edited outside the workbench
1 Edit the MXML or ActionScript file in the external editor of your choice.
2 Save and close the file.
3 Start Flex Builder.
4 In the workbench, right-click (Control-click on Macintosh) the file you edited in one of the navigation views and
select Refresh from the context menu.

If you work with external editors regularly, you might want to enable auto-refresh. To do this, select Window >
Preferences, expand the General category, select Workspace, and check Refresh Automatically. When you enable

this option, the workbench records any external changes to the file. The speed with which this happens depends on
your platform.

Tiling editors
The workbench lets you open multiple files in multiple editors. But unlike views, editors cannot be dragged outside
the workbench to create new windows. You can, however, tile editors in the editor area, so that you can view source
files side by side.
1 Open two or more files in the editor area.
2 Select one of the editor tabs.
3 Drag the editor over the left, right, upper, or lower border of the editor area.

The pointer changes to a drop cursor, indicating where the editor will appear when you release the mouse button.
4 (Optional) Drag the borders of the editor area of each editor to resize the editors as desired.

Maximizing a view or editor
You can temporarily maximize a view or editor so that it fills the workbench window.

Maximize a view or editor
❖ Right-click (Control-click on Macintosh) the view or editor’s title bar and select Maximize.

Restore a view or editor to its previous position and size
❖ Right-click (Control-click on Macintosh) the view or editor’s title bar and select Restore.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

58

You can also maximize or restore a view or editor by double-clicking the title bar or by clicking the
Maximize/Restore icons in the upper-right corner.

Switching the workspace
You can work in only one workspace at a time. When you install and run Flex Builder for the first time, you are
prompted to create a workspace, which becomes the default workspace. You can create other workspaces and switch
among them by either selecting the workspace when you start Flex Builder or by selecting File > Switch Workspace.

Customizing the workbench
You can customize the workbench to suit your individual development needs. For example, you can customize how
items appear in the main toolbar, create keyboard shortcuts, or alter the fonts and colors of the user interface.

Rearranging the main toolbar
Flex Builder lets you rearrange sections of the main toolbar. Sections of the main toolbar are divided by a space.
1 Ensure that the toolbar is unlocked by right-clicking (Control-clicking on Macintosh) the toolbar and
deselecting Lock the Toolbars.
2 Move the mouse pointer over the thick vertical line that is on the left side of the toolbar section you want to
rearrange.
3 Click and hold the left mouse button (mouse button on Macintosh) to grab the toolbar section.
4 Move the section left, right, up, or down, and release the mouse button to place the section in the new location.

To prevent accidental changes, lock the toolbar again by right-clicking (Control-clicking on Macintosh) the toolbar
and selecting Lock the Toolbars.

Changing keyboard shortcuts
1 Open the Preferences dialog and select General > Keys.
2 In the View screen of the Keys dialog box, select the command you want to change.
3 In the Binding field, type the new keyboard shortcut you want to bind to the command.
4 In the When pop-up menu, select when you want the keyboard shortcut to be active.
5 Click Apply or OK.

Changing fonts and colors
By default, the workbench uses the fonts and colors that your computer’s operating system provides. However, you
can customize fonts and colors in a number of ways. The workbench lets you configure the following fonts:

Banner font Appears in the title area of many wizards. For example, the New Flex Project wizard uses the
Banner font for the top title.
Dialog font Appears in widgets and dialog boxes.
Header font Appears as a section heading.
Text font Appears in text editors.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

59

CVS Console font Appears in the CVS console.
Ignored Resource font Displays resources that CVS ignores.
Outgoing Change font Displays outgoing changes in CVS.
Console font (Defaults to text font) Appears in the Debug console.
Detail Pane Text font Defaults to text font) Appears in the detail panes of Debug views.
Memory View Table font (Defaults to text font) Appears in the table of the Memory view.
Java Editor Text font (Defaults to text font) Appears in Java editors.
Properties File Editor Text font (Defaults to text font) Appears in Properties File editors.
Compare Text font (Defaults to text font) Appears in textual compare or merge tools.
Java Compare Text font (Defaults to text font) Appears in Java compare or merge tools.
Java Properties File Compare Text font (Defaults to properties file editor text font) Appears in Java properties
file compare or merge tools.
Part Title font (Defaults to properties file editor text font) Appears in view and editor titles.
View Message font (Defaults to properties file editor text font) Displays messages in the view title bar (if
present).

Plug-ins that use other fonts might also provide preferences that allow for customizing. For example, the Java Devel-
opment Tools plug-in provides a preference for controlling the font that the Java editor uses (In the Preferences
dialog, select > General > Appearance > Colors and Fonts > Java > Java Editor Text Font).
The operating system always displays some text in the system font (for example, the font displayed in the Flex
Navigator view tree). To change the font for these areas, you must use the configuration tools that the operating
system provides (for example, the Display Properties control panel in Windows).

Changing fonts and colors
1 Open the Preferences dialog and select General > Appearance > Colors and Fonts.
2 Expand the Basic, CVS, Debug, Text Compare, or View and Editor Folders categories to locate and select the font
and colors to change.
Note: You can also click Use System Font instead of Change to set the font to a reasonable value that the operating system
chooses. For example, in Windows, selecting this option causes Flex Builder to use the font selected in the Windows
Display Properties control panel.
3 Set the font and color preferences as desired.

Changing colors
The workbench uses colors to distinguish different elements, such as error text and hyperlink text. The workbench
uses the same colors that the operating system uses. To change these colors, you can also use the configuration tools
that the system provides (for example, the Display Properties control panel in Windows).

Change colors
1 Open the Preferences dialog and select General > Appearance > Colors and Fonts.
2 Expand the Basic, CVS, Debug, Text Compare, or View and Editor Folders categories to locate and select the
color to change.
3 Click the color bar to the right to open the color picker.
4 Select a new color.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

60

Controlling single- and double-click behavior
You can control how the workbench responds to single and double clicks.
1 Open the Preferences dialog and select General.
2 In the Open Mode section, make your selections and click OK.

Searching in the workbench
Flex Builder provides a search tool that lets you quickly locate resources. For more information about searching for
text in a particular file, see “Finding and replacing text in the editor” on page 112.

Searching for files
Flex Builder lets you conduct complex searches for files.
❖ In the plug-in version of Flex Builder select Search > Search or Search > File.

In the stand-alone version of Flex Builder select Edit > Find in Files.
Note: Click Customize to define what kinds of search tabs are available in the Search dialog box.

Searching for references and declarations
Flex Builder includes advanced search features that are more powerful than find and replace. To help you understand
how functions, variables, or other identifiers are used, Flex Builder lets you find and mark references or declarations
to identifiers in ActionScript and MXML files, projects, or workspaces. For more information, see “Finding refer-
ences and refactoring code” on page 113.

Using the Search view
The Search view displays the results of your search.

Open a file from the list
❖ Double-click the file.

Remove a file from the list
❖ Select the file to remove and click Remove Selected Matches.

Remove all files from the list
❖ Click Remove All Matches.

Navigate between matched files
❖ Click Show Next Match or Show Previous Match.

View previous searches
❖ Click the down arrow next to Show Previous Searches and select a search from the pull-down list.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

61

Return to the Search view after closing it
1 Select Window > Other Views > General. (Window > Show View > Other in the plug-in configuration of Flex
Builder.)
2 Expand the General category, select Search, and click OK.

Working in the editor’s Source and Design modes
The MXML editor in Flex Builder lets you work in either Source or Design mode. You can also use Flex Builder to
create a split view so that you can work in both Source and Design modes simultaneously.

View your file in Design mode
❖ Click Design at the top of the editor area.

View your file in Source mode
❖ Click Source at the top of the editor area.

Work in both Source and Design modes simultaneously
1 Right-click (Control-click on Mac OS) the editor’s tab and select New Editor.

You now have two editor tabs for the same file.
2 Drag one of the tabs to the right to position the editor windows side-by-side.
3 Set one of the editors to Design mode, and set the other editor to Source mode.

Switch between the Source and Design modes
❖ Press Control+`(Left Quote).

Accessing keyboard shortcuts
The keyboard shortcuts available to you while working in Flex Builder depend on many factors, including the
selected view or editor, whether or not a dialog is open, installed plug-ins, and your operating system. You can obtain
a list of available keyboard shortcuts at any time using Key Assist.
❖ Select Help > Key Assist.

Setting workbench preferences
You can set preferences for many aspects of the workbench. For example, you can specify that Flex Builder should
prompt you for the workspace you want to use at startup, you can select which editor to use when opening certain
types of resources, and you can set various options for running and debugging your Flex applications.
Your Flex Builder preferences apply to the current workspace only. You can, however, export your workbench prefer-
ences and then import them into another workspace. This may be helpful if you are using multiple workspaces
yourself, or if you want to share your workbench preferences with other members of your development team.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

62

You can also set preferences for individual projects within a workspace. For example, you can set separate compiler
or debugging options for each of your Flex projects.

Set Flex Builder workbench preferences
1 Select Window > Preferences.
2 Select any of the categories of workbench preferences and modify them as needed.
3 Click OK.

63

Part 3: Developing a Flex Application
User Interface
Topics

Building a Flex User Interface . 64
Adding View States and Transitions. 93
Adding Interactivity with Behaviors . 99
Creating Custom MXML Components . 227

64

Chapter 6: Building a Flex User Interface

The Adobe Flex framework consists of a component-based system for building rich Internet applications. You use
Adobe Flex Builder to rapidly build user interfaces for Flex applications. There are several options for structuring
your user interface.

Topics

About the structure of Flex user interfaces . 64
Adding and changing components . 66
Working with components visually . 69
Applying styles and skins . 78
Laying out your user interface. 85
Adding navigator containers . 88
Adding data provider controls . 90
Adding charting components . 91

About the structure of Flex user interfaces
The building blocks of Flex user interfaces are MXML containers and controls. A control is a user interface
component such as a Button, TextArea, or ComboBox. A container is a rectangular region of the Flash Player
drawing surface that you use to organize and lay out controls, other containers, and custom components.
Flex applications typically consist of an MXML application file (a file with an <mx:Application> parent tag), and
one or more components defined in separate MXML files, ActionScript files, or Flash component files (SWC files).
You can insert containers and controls directly in the MXML application file, or you can insert them in separate
MXML files to create custom components and then insert the custom components in the application file.

Generally, it is best to structure the main portions of your application inside Panel containers. Most of the Flex
controls were not designed to be used directly on the dark application background.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

65

The following example shows a simple structure for a Flex application. The containers and controls are inserted
directly into the MXML application file.

Container 1 - HBox

Control A

Control B

Control C

Control E

mx:Application

Control D

Control G

Control H

Control F

Container 2 - VBox

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

66

The following example shows a component-based structure for a Flex application. You group the controls of the user-
interface elements in separate custom component files, which you then insert into the MXML application file.

A component-based structure is useful when your user interface consists of distinct functional elements. For
example, your layout could have an element that retrieves and displays a product catalog, another element that
retrieves and displays details about any product that the user clicks in the catalog, and an element that lets the user
add the selected product to a shopping cart. This user interface could be structured as three custom components, as
in the previous example, or as a mixture of custom components and controls inserted directly into the layout.
For more information about components, see “Using Flex Visual Components” on page 88 in the Adobe Flex 3
Developer Guide.

Adding and changing components
You use Flex Builder to add, size, position, edit, or delete Flex components, as well as custom components defined
in separate MXML and ActionScript files.

mx:Application

Control A

Control B

Control C

Control D

Custom Component 1

Control E

Control F

Custom Component 2

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

67

Add components in MXML Design mode
You add standard Flex containers and controls to your user interface in MXML Design mode. You drag and drop
components from the Components view to the Design area of the MXML file and position them according to the
layout rule of the container. You can also add custom components that you define in separate MXML and Action-
Script files and save in the current project or in the source path of the current project.
1 In the MXML editor’s Design mode, open the MXML file in which you want to insert the component.

An MXML file must be open in Design mode to use the Components view. The MXML file can be the main
application file (a file with an Application container) or a custom MXML component file.

2 In the Components view, locate the component that you want to add.
If the Components view is not open, select Window > Components.

The components are organized by categories in the view.
The Custom category lists all the custom components that you define in separate MXML and ActionScript files
and save in the current project or in the source path of the current project. For example, if you create a
component file called EmployeeView.mxml and save it in your project, the EmployeeView component appears
in the Custom category. For more information, see “Creating Custom MXML Components” on page 227.
Note: The Components view lists only visible custom components (components that inherit from the UIComponent
class). For more information, see Adobe Flex Language Reference in Help.

3 Drag a component from the Components view into the MXML file.
The component is positioned in the layout according to the layout rule of the parent container.
The default layout rule of an Application, Panel, or TitleWindow container can be overridden by specifying a
layout="absolute" property. You can then drag and position the component anywhere in the container. If you
create an application or a Panel or TitleWindow component file with Flex Builder, the layout="absolute"
property is included by default.

Add components in complex layouts
1 Drag a component over to the design area in the layout where you want to insert it, and then press the Control
key.
2 Drop the component into the highlighted container, or hover over a different area and press the Control key
again to see the target container.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

68

Add components by writing code
You can use code hinting to add standard Flex containers and controls to your user interface. In Flex Builder, as in
Eclipse, code hinting is called Content Assist.
1 Open an MXML file in the MXML editor’s Source mode.

The MXML file can be the main application file (a file with an Application container) or a custom MXML
component file.

2 Place the insertion point in the parent container tag.
For example, to insert a VBox container inside an HBox parent container, place the insertion point after the
opening <mx:HBox> tag:
<mx:HBox>

insertion point here
</mx:HBox>

3 Enter the component tag.
As you enter the tag, a pop-up menu appears suggesting possible entries.

4 If necessary, use the arrow keys to select your tag from the menu, then press Enter.

In addition to the standard Flex components, the pop-up menu lists the custom components you defined in
separate MXML and ActionScript files and saved in the current project or in the source path of the current
project. For more information, see “Creating Custom MXML Components” on page 227.

Adding Flash components (SWC files)
You can add Flash components (SWC files) to your user interface either visually or by writing code.
Note: Adobe Flash CS3 Professional creates applications compatible with Adobe Flash Player 9. Adobe Flex applications
also support Flash Player 9, which means that you can import assets from Flash CS3 Professional to use in your Flex
applications. You can create Flex controls, containers, skins, and other assets in Flash CS3 Professional, and then import
those assets into your Flex application as SWC files. Before you can create Flex components in Flash CS3, you must
install the Flex Component Kit for Flash CS3. For more information, see the article Importing Flash CS3 Assets into Flex.
1 Ensure that the Flash component is saved in the library path of the current project.

The library path specifies the location of one or more SWC files that the application links to at compile time. The
path is defined in the Flex compiler settings for the project. In new projects the libs folder is on the library path
by default.
To set or learn the library path, select the project in the Flex Navigator view and then select Project > Properties.
In the Properties dialog box, select the Flex Build Path category, and then click the Library Path tab. For more
information, see “Building projects manually” on page 128.
The library path can also be defined in the flex-config.xml configuration file in Adobe LiveCycle Data Services
ES.

http://www.adobe.com/go/flex3_cs3_swfkit

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

69

2 Open an MXML file and add a Flash component in one of the following ways:
• In the MXML editor’s Design mode, expand the Custom category of the Components view and drag the
Flash component into the MXML file. For documents that are already open, click the Refresh button (the green
circling arrows icon) to display the component after you insert it.
• In Source mode, enter the component tag and then use Content Assist to quickly complete the tag.

Working with components visually
Flex Builder lets you work with components visually in the MXML and CSS editors so you can see what your appli-
cation looks like as you build it. The MXML and CSS editors have two modes: Source mode for writing code, and
Design mode for developing applications visually.

Using the MXML editor in Design mode
You can set the size of the design area in Design mode. This lets you preview how the layout of your application or
component will look at different sizes. You can also select, pan, move, resize, scroll, and magnify items in the design
area.

View an MXML file
1 If the MXML file is not already open in the MXML editor, double-click the file in the Flex Navigator view to open
it.
2 If the MXML editor displays source code, click Design at the top of the editor area.

You can quickly switch between modes by pressing Control+`(Left Quote).
Switching between Source and Design modes automatically shows or hides design-related views like the Compo-
nents, Properties, and States views. To turn this behavior on and off, select Window > Preferences, then Flex>
Editors > Design Mode, then select the Automatically Show Design-related Views option.

Set the size of the design area
1 Select a size from the Design area pop-up menu on the editor’s toolbar.

• If the size of your layout is larger than the editor window, the editor displays scrollbars to preserve the layout
at the set size.
• If you select Fit to Window, the editor doesn’t display scrollbars. Instead, it adjusts the layout (if possible) to
fit the window size.
• If you specify a size for the Application container, the size overrides the View As settings for that dimension.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

70

Select and move components in the design area
❖ Click the Select Mode (arrow) button on the right side of the editor toolbar. Select Mode is activated by default
when you open a document. Press V on the keyboard to enter Select Mode. Click and drag a component to the
desired place. You can also drag to resize and click to select.

Pan and scroll in the design area
❖ Click the Pan Mode button on the right side of the editor toolbar. Press H to enter Pan Mode from the keyboard.
To temporarily enter Pan Mode, press and hold the spacebar on the keyboard. You cannot select or move items in
Pan Mode.

Zoom in the design area

There are several ways to use the zoom tool. You can select percentages from the main and pop-up menus, click the
Zoom Mode button on the toolbar, or use keyboard shortcuts. The current magnification percentage is always
displayed in the toolbar.
• From the main menu select Design > Zoom In or Design > Zoom Out. You can also select the Magnification
submenu and choose a specific percentage.
• Click the Zoom Mode button on the toolbar or press Z from the keyboard. A plus symbol cursor will appear in
the design area.
• Select a percentage from the pop-up menu next to the Select, Pan, and Zoom Mode buttons on the editor toolbar.
The design area changes to the selected percentage or fits to the window.
• Right-click in the design area to select Zoom In, Zoom Out, or the Magnification submenu. The design area
changes to your selection.
You can always use the following keyboard shortcuts from the design area:
• Zoom In: Ctrl+= (Command+= on Mac OS)
• Zoom Out: Ctrl+- (Command+- on Mac OS)
For more keyboard shortcuts, select Help > Key Assist.

Selecting multiple components in an MXML file
You can select more than one component in an MXML file. This can be useful if you want to set a common value for
a shared property.

• Control-click (Command-click on Macintosh) each component in the layout.
• Click the page background and draw a box that overlaps the components.
• In Outline view (Window > Outline), Control-click (Command-click on Macintosh) the components in the
tree control.

Deselecting multiple components
• Click the background container.
• Click an unselected component.
• Click in the gray margin around the root component.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

71

Positioning components
You can change the position of components visually depending on the layout rules of the parent container. The
properties of the parent container can also affect the position of child components. You can also dynamically
position components by using a constraint-based layout. For more information, see “Setting layout constraints for
components” on page 87.
1 In the MXML editor’s Design mode, select the component in the layout and drag it to a new position.

The component is positioned in the layout according the layout rules of the parent container. For example, if you
move a VBox container in an HBox container, the VBox container is positioned into the horizontal arrangement
with the other child containers (if any).
If the container has absolute positioning, you can drag and position components anywhere in the container. A
container has absolute positioning if it is a Canvas container or an Application, Panel, or TitleWindow container
with a layout property set to absolute. The layout="absolute" property overrides the container’s default
layout rule. For more information, see “Using Layout Containers” on page 373 in the Adobe Flex 3 Developer
Guide.

2 In Design mode, select the component’s parent container and edit the component’s layout properties in the Flex
Properties view.

In some cases, you can change the position of child components by changing the properties of the parent
container. For example, you can use the verticalGap and horizontalGap properties of a Tile container to set
the spacing between child components and the direction property to specify either a row or column layout.

Sizing components
You can dynamically size components in an MXML file visually in the design area in a constraint-based layout. In
the design, you can anchor one or more sides of a component to the edges of the component's container or the
container’s constraint regions. You can also change the size of a component in an MXML file by selecting menu
options or by editing its properties in the Flex Properties view. For more information, see “About constraint-based
layouts” on page 85.

Size a component visually
❖ In the MXML editor’s Design mode, click on the component and drag a resize handle to resize the component.

• To constrain the proportions of the component, hold down the Shift key while dragging.
• If snapping is enabled, as you resize, snap lines appear to line up the edges of the component with nearby
components. To enable or disable snapping from the main menu, select Design > Enable Snapping.

Make two or more components the same width or height
1 In Design mode, select two or more components.
2 In the Design menu, select one of the following sizing options:

Make Same Width Sets the width property for all selected components to that of the component you selected
first.
Make Same Height Sets the height property for all selected components to that of the component you
selected first.
If all selected components are in the same container, and the first component you select has a percent width or
height specified, all items are set to that percent width or height. Otherwise, all components are set to the same
pixel width or height.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

72

Size a component by editing its properties
1 In Design mode, select the component.

You can Control-click (Shift-click on Mac OS) more than one component to set their sizes simultaneously.
2 In the Flex Properties view (Window > Flex Properties), set the height or width property of the selected
component or components.

The Flex Properties view provides three views for inspecting a component’s properties: a standard form view, a
categorized table view, and an alphabetical table view. You can switch between them by clicking the view buttons
in the toolbar.

Note: The Flex Properties view appears only when the MXML editor is in Design mode.
3 Press Tab or Enter, or click outside the view to apply your last change.

Using snapping to position components
When you drag a component visually in a container that has absolute positioning, the component may snap into
place depending on where you drop it relative to existing components. The components can line up vertically or
horizontally.
Note: A container has absolute positioning if it is a Canvas container or if it has a layout property set to absolute.
The layout="absolute" property can be used only with the Application, Panel, and TitleWindow containers. It
overrides the container’s layout rule and lets you drag and position components anywhere in the container.
You can disable snapping for one component or for all components.

Enable or disable snapping
❖ With the MXML file open in the MXML editor’s Design mode, select (or deselect) Design > Enable Snapping.

Enable or disable snapping as a preference
1 Select Window > Preferences from the main menu.
2 Select Flex> Editors > Design Mode in the sidebar of the Preferences dialog box.

3 Select or deselect the Enable Snapping option.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

73

Aligning components
You can visually align components relative to each other in a container that has absolute positioning.
Note: A container has absolute positioning if its layout property is set to absolute. Only Application, Canvas, and
Panel containers can use the layout="absolute" property. For Canvas containers, this attribute is the default; for
Application and Panel containers, you must specify layout="absolute" explicitly. This parameter overrides the
container’s layout rule and lets you drag and position components anywhere in the container.
You can also center components in a container by using a constraint-based layout. For more information, see “Setting
layout constraints for components” on page 87.

Align components in a container that has absolute positioning
1 In the MXML editor’s Design mode, select two or more components in the container.

For more information, see “Selecting multiple components in an MXML file” on page 70.
2 Select one of the following alignment options from the Design menu:

Align Left Positions all selected components so that their left edges align with that of the first component you
selected.
Align Vertical Centers Positions all selected components so that their vertical centerlines are aligned with the
vertical centerline of the first component you selected.
Align Right Positions all selected components so that their right edges align with that of the first component
you selected.
Align Top Positions all selected objects so that their top edges align with that of the first component you
selected.
Align Horizontal Centers Positions all selected components so their horizontal centerlines are aligned with
the horizontal centerline of the first component you selected.
Align Bottom Positions all selected components such that their bottom edges align with that of the first
component you selected.
Align Baselines Positions all selected components so that their horizontal text baselines are aligned with that
of the first component you selected. For components that have no text baseline (such as HBox), the bottom edge
is considered the baseline.
For objects with no layout constraints, Flex Builder adjusts the x property to change the vertical alignment, and
adjusts the y property to change the horizontal alignment.
For objects with layout constraints, Flex Builder adjusts the left and right constraints to change the vertical
alignment and adjusts the top and bottom constraints to change the horizontal alignment. Only existing
constraints are modified; no new constraints are added.
For example, suppose component A has a left constraint and no right constraint, and component B has both a
left and right constraint. If you select component A and B and then select Design > Align Vertical Centers, Flex
Builder adjusts the left constraint of object A and both the left and right constraints of object B to align them.
The unspecified right constraint of object A remains unspecified.

Nudging components
You can fine-tune the position of components in a container that has absolute positioning by adjusting the compo-
nents one pixel or ten pixels at a time in any direction with the arrow keys.

Nudge components by one pixel
❖ Select one or more components in the MXML editor’s Design mode and press an arrow key.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

74

Nudge components by ten pixels
❖ Select one or more components in the MXML editor’s Design mode and press an arrow key while holding down
the Shift key.

Holding down the arrow key continues to move the component.

Setting component properties
You visually set the properties of components in the design area or in the Flex Properties view.

Edit the text displayed by a component
❖ To edit text displayed by a component such as a Label or TextInput control, double-click the component and
enter your edits.

Change text in the ID field

When you change text in the ID field, you are prompted to update all references with the new ID. You can suppress
this dialog box on the Design Mode preferences page:
1 Select Window > Preferences from the main menu.
2 Select Flex > Editors > Design Mode.
3 Select or deselect Always Update References When Changing IDs in the Flex Properties View.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

75

Set other properties of a component
❖ Select the component and set its properties in the Flex Properties view (Window > Flex Properties).

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

76

To set the properties in Category view or Alphabetical view, click the view buttons in the toolbar:

Note: To apply your last edit, press Enter or Tab, or click outside the view.

Showing surrounding containers
You can show surrounding containers in the MXML editor’s Design mode to better visualize the containers in your
layout and to more easily insert or select containers in complex layouts.
1 Select a container in the layout.

If it is too difficult to select a container, select a control inside it instead.
2 Press the F4 key.

If you selected a control, select the parent container now. It should be easy to see.
Semitransparent overlays appear showing all the containers around the selected container, expanded outward
slightly so there is room to insert more components into them. Overlays also appear showing all the children
containers.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

77

When you select the Panel container and press F4 in the following example, Flex Builder displays overlays for the
panel’s parent container (Canvas) and child component (HBox).

The overlays change if you select another container.

Show a container’s parents and immediate children
❖ With surrounding containers turned on, click the container.

Move a container into another container
❖ Drag the container overlay over another container, wait for the target container to become highlighted, and then
drop the container.

Dismiss the surrounding containers
❖ Press the F4 key again.

Inspecting the structure of your MXML
You use Outline view (Window > Outline) in Design mode to inspect the structure of your design and to select one
or more components. When you have multiple view states, Outline view shows you the structure of the current view
state.

Canvas

HBox

Panel

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

78

❖ With the MXML file open in Design mode, select Outline view.

❖ In Outline view, click to select a single component or Control-click (Command-click on Macintosh) to select
multiple components.

Hiding container borders
By default, Flex Builder shows the borders of containers in the MXML editor’s Design mode. If you want, you can
hide these borders.
❖ Select Design > Show Container Borders.

This command is a toggle switch. Select it again to show the borders again.

Copying components to other MXML files
You can visually copy and paste components from one MXML file to another.
1 Make sure the two MXML files are open in the MXML editor’s Design mode.
2 Select the component in one file and press Control+C (Command+C on Macintosh) to copy it.
3 Switch to the other file, click inside the desired container, and press Control+V (Command+V on Macintosh)
to paste the component or components into the container.

Deleting components
You can visually delete components from your user interface.
❖ Select the component and press the Delete key on your keyboard, or right-click (Control-click on Macintosh)
the component and select Delete from the context menu.

Applying styles and skins
Styles affect the appearance of components. They alter visual parameters such as border thickness, or replace the
entire look of a component with a new image (skin). You can set style properties inline on an MXML tag or separately
using CSS code.
When you apply inline styles to components, you can convert component styles into a CSS rule in an external
stylesheet. You can also move from the MXML editor to the CSS editor when external styles are used.

Apply inline styles to a component
1 With your MXML file open in Design mode, click the component to select it.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

79

2 Enter the style property values in the Flex Properties view.

In Category view, the Styles category lists the styles that can be applied to the selected component.

Note: Multiword style names in Flex can be written either like an ActionScript identifier (for example, fontFamily) or
like similar HTML styles (for example, font-family).

Apply an external or embedded style to an application
1 Make sure you import the external style sheet or embed styles in your MXML file.

For example, the following expression imports an external style sheet called styles.css:
<mx:Style source="styles.css"/>

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

80

The following expression embeds two styles in the MXML file using CSS code:
<mx:Style>

.myclass { color: Red } /* class selector */
Button { fontSize: 10pt; color: Yellow } /* type selector */

</mx:Style>

For styles such as Button, the style is automatically applied to all matching components.
For styles such as .myclass follow these steps:

2 Click the component in the MXML editor’s Design mode to select it.
3 Apply the desired style by selecting it from the Style pop-up menu in the Flex Properties view.

The Style pop-up menu lists the styles defined in the external style sheet or embedded in the current file.

Convert to CSS
1 From your MXML file, click a component in the design area, then apply style values from the Flex Properties
view.
2 Click the Convert to CSS button.

3 If you have multiple projects open in your workspace, select/deselect the resource files you want to save in the
Save Resources dialog. Then click OK.
4 In the New Style Rule dialog box, select the .css file or click New to create one. Then select the type of the style
rule you want to create, which determines the components it will affect.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

81

5 Click OK.

Edit style rule

When external CSS styles are already applied to a component, you can quickly jump from the component to edit
these styles.
1 Select a component and in the Flex Properties view.
2 Click the Edit Style Rule button next to the Style pop-up menu, then select the style you want to edit.

The CSS file opens in the CSS editor’s Design mode. You use the Flex Properties view to make further changes.
You can also modify your CSS in Source mode.

Using the CSS editor in Design mode
The CSS Design mode editor allows you to visually display and edit the contents of a CSS file. As with the MXML
editor, you use the Flex Properties view to edit styles. The toolbar gives you quick access to common tasks such as
creating and deleting styles, and pan/view. You can also apply skins for Flex components in CSS Design mode.

Create new style
1 Click the New Style button next to the Style pop-up menu on the CSS Design editor toolbar.

2 In the New Style dialog box choose a Selector Type option for the style to be created.
The type selected determines which components the styles will be applied to. If there is a specific component
affected by the new style rule, select a component from the pop-up menu.
When the style is selected, it is previewed in the design area. Use the Flex Properties view to make further
changes to your CSS.

Note: You can also modify your CSS in Source mode.
For more information, see “Using Cascading Style Sheets” on page 479 in the Adobe Flex 3 Developer Guide.

Edit styles and skins

In CSS editor’s Design mode you can manipulate CSS and skin styles for Flex components.
1 In the Flex Properties Standard view, click the Style or Skin buttons to alter your CSS style or skins.
2 Choose from the controls and pop-up menus to modify your CSS or skin styles.
3 To use graphical skins, click the Skin button and then choose Image File or Flash Symbol from the pop-up menu.
The supported formats are the same as the Import Skin Artwork wizard.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

82

Edit scale grids

When an image file is applied as a skin, the Edit Scale Grid button appears in the upper-right corner of the design
area. The scaling grid allows you to visually resize image skins.
1 Click the Edit Scale Grid button.

The preview switches to editing mode with dotted lines representing the grid.
2 Drag the lines to reposition the grid.
3 Click the Edit Scale Grid button again to leave editing mode.
For more information, see “Using 9-slice scaling with embedded images” on page 784 in the Adobe Flex 3 Developer
Guide.

Edit content area

When you apply skins to a sub-class of a container (for example, VBox, Panel, Canvas) you may need to adjust the
region where the container lays out its child Flex components.
1 Select Design > Show Content Area.
2 Drag the resize handles to resize the content area.

Edit sub-parts of a component

When the selected component has an external style set on it, an Edit button appears next to the Style field. Some
components contain entire built-in sub-components with their own style and skin properties. For example,
Accordion has section header buttons and List contain a VScrollBar.
❖ While viewing the parent component, click the Edit button.

Flex Builder automatically generates CSS code for both the parent component and the sub-part.
After viewing the sub-part, click the Back button to return to the parent component.

Default values

Most style properties that are not explicitly set on the selected item will still have a default value that is inherited
through the CSS style chain. For example, ToggleButtonBar inherits any styles applied to ButtonBar.
The Flex Properties view displays default, inherited values for any style properties that are not explicitly set on a
selected item. To distinguish default values from values that are not explicitly set, text fields use gray italic text and
color swatches use a paler border.
Note: These default values apply to both the MXML editor and the CSS editor. However, in the MXML editor only some
(not all) fields in the Flex Properties view are styles. Fields that are not styles will only display values that are explicitly
set.
For more information, see “Using Styles and Themes” on page 470 in the Adobe Flex 3 Developer Guide.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

83

Additional options in the CSS editor

Many of the features in the CSS Flex Properties view are expanded versions of similar features in the MXML editor.
For example, you can also make changes to text, fill, and layout styles from this view.
Additional options in the CSS editor include an expanded fonts list, an Embed This Font option, and color swatches
for choosing rollover, selected, and disabled text. The fonts list includes all web fonts, installed OS fonts, TTF files,
and any additional embedded fonts in the current CSS file.
For more information, see the Adobe Flex 3 Developer Guide.

Importing Skin Artwork
You use the Import Skin Artwork wizard to import both vector graphics artwork and bitmap artwork from the CS3
versions of Flash, Fireworks, Illustrator, and Photoshop. (For bitmap artwork, any .PNG, .JPG, or .GIF can be used).
The artwork can then be used as skins for Flex components.
Note: Adobe provides a set of skinning templates to make it easy to create skins for the built-in Flex components. Use the
templates with Flash, Fireworks, Illustrator, or Photoshop to create the artwork. You can also use Flash to create fully
functional custom Flex components. For more information, see the articles Importing Skins into Flex Builder and
Importing Flash CS3 Assets into Flex.
1 Select File > Import > Skin Artwork.

In the plugin version, select File > Import > Artwork.
2 In the Import Skin Artwork dialog box:

• Choose a folder of bitmaps or a SWC or SWF file to import skins from, or click Browse to locate one.
Supported file types include the following:

• AS3 SWF and AS3 SWC files created in Adobe Flash CS3 for Flash Player 9
• Vector graphic files created in Adobe illustrator CS3 and exported as SWF files for Flash Player 8
• Bitmap graphic files in PNG, GIF, and JPG formats

http://www.adobe.com/go/flex3_cs3_skinning_extensions
http://www.adobe.com/go/flex3_cs3_swfkit

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

84

• Choose a folder to import the skins to. The folder must be a source folder for a Flex project (or you can
specify a subfolder in the source folder). The default selection is the folder for the Flex project currently open.
• In the Copy Artwork To Subfolder field, the default folder name is based on the folder or assets being
imported. Click Browse to choose a different location.
• In the Create Skin Style Rules In field, specify a name for a CSS file that will contain the style rules. The
default name is based on the name of the artwork folder or Flash file being imported.
• Click the Delete All Existing Rules In File checkbox if you want the specified CSS file to be overwritten upon
importing (as opposed to importing skins and keeping other existing definitions in the CSS file). The box is
unchecked by default, and if the CSS file does not exist it is disabled.
• In the Apply Styles To Application field, the default is the selected file in the Flex Navigator or active editor
view, or the main application file for the project.
• Click Next.

3 In the next Import Skin Artwork dialog box, select the skins you want to import and specify which CSS style type
and skin part property will be used. You can check items one at a time or click Check All or Uncheck All.

• If items do not have a valid style or skin part property name, they will not be checked by default. The
following examples show the naming convention used in Flex Builder:

• Button_upSkin
• Button_glow_downSkin (maps to downSkin property of Button.glow style rule)
• TabBar-tab_upSkin (upSkin property maps to tabStyleName property of TabBar style rule)
• MyCustomComponent_borderSkin
For custom components, the item will be checked if the component has been defined somewhere within the
project you are importing to.

• If necessary choose a style and skin part for the pop-up menus in each column.
• Click Finish.

A CSS file is created and displayed in the Source view. The CSS file will be attached to the application
specified in the wizard. If you import a SWC file, it is automatically added to the library path for the project.

Refreshing Design mode to render properly
If necessary, you can refresh the MXML and CSS editors’ Design mode to render your layout properly. The rendering
of your layout can become out of date in certain situations. This can happen, for example, if you modify a visual
element in a dependent Flash component (SWC). Styles and skins may also not be rendered properly because Flex
Builder needs to rebuild the file.
❖ Click the Refresh button in the editor toolbar.

Laying out your user interface
To lay out a Flex user interface, you insert and position components in a container that has absolute positioning, and
then define layout constraints for the components so they adjust automatically when a user resizes the application
window. In Flex Builder you can define layout constraints in the design area or add or modify values in the Flex
Properties view.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

85

About constraint-based layouts
Flex supports constraint-based layouts. There are several approaches to layout: absolute positioning, nested H/VBox
layouts, simple constraints, and advanced row/column constraints. The two scenarios outlined in the bullet points
are best handled either by nested H/VBoxes or by advanced constraints.
In some situations, you could use nested H/VBoxes or advanced constraints (advanced constraints can only be edited
in Source mode):
• When controls might be dynamically sized to fit their content—as in the case of localized strings, for example—
and the controls need to push each other out of the way so they don't overlap.
• When you want multiple columns that are the same size or that need to remain a specific percentage width.
To create a constraint-based layout, you must use a container that has absolute positioning. The
layout="absolute" property overrides the container’s layout rule and lets you drag and position components
anywhere in the container. This property can be used only with the Application, Canvas, and Panel containers. For
Canvas containers, layout="absolute" is the default; for Application and Panel containers, you must set this
property explicitly.
Absolute positioning gives you the ability to set layout constraints. For example, if you want a TextInput control to
stretch when you make the application window wider, you can anchor the control to the left and right edges of the
container so the width of the TextInput control is set by the width of the container.
When you create an MXML application file in Flex Builder, a layout="absolute" property is automatically
included in the <mx:Application> tag.
In the following example, all the controls are absolutely positioned in a container either by dragging them or by
setting the x and y coordinates in the Flex Properties view:

Also, a number of layout constraints are applied to the controls to ensure that the layout adjusts correctly when the
user resizes the application:
• Label A, Label B, and Label C are anchored to the left and upper edges so the labels remain in place as the user
resizes the layout.
• TextInput A and TextInput B are anchored to the left and right edges so the controls stretch or compress horizon-
tally as the user resizes the layout.

mx:Canvas

Label A

220px

Label B

Label C

TextInput A

TextInput B

TextArea C

Button

350px

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

86

• TextArea C is anchored to the left and right edges and to the upper and lower edges so that the control stretches
or compresses horizontally and vertically as the user resizes the layout.
• The Button control is anchored to the right and lower edges so that the control maintains its position relative to
the lower-right corner of the container as the user resizes the layout.
The following image shows how the constraints make the controls behave when the user resizes the layout:

The TextInput A and TextInput B controls stretch horizontally as the layout is enlarged. TextArea C control stretches
horizontally and vertically. The Button control moves down and to the right.
For more information, see “Using Layout Containers” on page 373 in the Adobe Flex 3 Developer Guide.

Row and column constraints
You may also define a grid of horizontal and vertical constraint regions, ConstraintColumn regions and
ConstraintRow regions. Components can be constrained to the edges or centers of these regions similarly to being
constrained to the edges or centers of their parent containers. Constraint columns are laid out in the container from
left to right, and constraint rows are laid out from top to bottom.
Constraint regions can be defined with fixed pixel dimensions (width or height) or as a percentage of the space in
the parent container. The set of constraint columns and rows may have any combination of fixed or percentage
dimensions.
Components within a parent container may be constrained to the container or to constraint regions or to any combi-
nation of container and region constraints.
For more information about row and column constraints, see the Adobe Flex 3 Developer Guide.

Inserting and positioning components in the layout
The first step in creating a constraint-based layout is to insert and position components in a container that has
absolute positioning.
1 Ensure that the open MXML file includes a container that has absolute positioning.
2 In the MXML editor’s Design mode, drag a component from the Components view into the container.

The component is inserted into your layout.
3 Position the component in the container either by moving it in the design area or by setting its x and y properties
in the Flex Properties view (Window > Flex Properties).
4 Set layout constraints for the component.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

87

Setting layout constraints for components
You use the Flex Properties view to set layout constraints relative to the edges of the parent container. Layout
constraints relative to constraint columns and rows can only be set by editing the source code.
1 In the MXML editor’s Design mode, select the component positioned in the container that has absolute
positioning.
2 Use the Flex Properties view to specify constraints. You can expand the Layout category in this view. (You may
need to scroll down to see the constraints tool.)

If you see a list of properties instead of a form, click the Standard View button in the toolbar.
3 Using the following table as a guide, select the constraint check boxes to achieve the effect you want when the
user resizes the application:

4 Specify the distance of the constraints from the edges of the container.
For example, you can set the component to maintain its position 90 pixels from the left edge and 60 pixels from
the right edge. If the user resizes the application, the component stretches or compresses to maintain these
distances from the edges of the application window. Flex Builder expresses these constraints in the MXML code
as follows, assuming you set a y property of 160:
<mx:TextInput y="160" left="90" right="60"/>

5 To set a component’s column and row constraints with respect to a particular constraint region, prefix the pixel
offset values with the ID of the appropriate ConstraintColumn or ConstraintRow.

Adding navigator containers
Navigator containers provide a way to organize your user interface into a group of related views. For example, you
can use them to create a tabbed user interface. The containers provide built-in mechanisms for letting the user move
through, or navigate, the views. For example, the TabNavigator container has tabs that let users select a different view.
Note: You can also create multiview interfaces with Flex view states. For more information, see “Adding View States
and Transitions” on page 93.

Effect Constraints

Maintain the component’s position and size None

Move the component horizontally Left or Right

Move the component vertically Top or Bottom

Move the component both horizontally and vertically Left + Top or Right + Bottom

Resize the component horizontally Left + Right

Resize the component vertically Top + Bottom

Resize the component both horizontally and vertically Left + Right and Top + Bottom

Center the component horizontally Horizontal center

Center the component vertically Vertical center

Center the component both horizontally and vertically Vertical center + Horizontal center

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

88

You can use Flex Builder to insert navigator containers in your application, and then create the layout of each of the
container’s views. If you use a ViewStack container, you can use Flex Builder to add the means for the user to select
a view.

Creating layouts in navigator containers
After you insert a navigator container in your application, you can use Flex Builder to create the layout of each of the
container’s views. The views are child containers of the navigator container.
Only the ViewStack, TabNavigator, and Accordion navigator containers have child containers that you can lay out.
The LinkBar, ButtonBar, and TabBar navigator containers don’t have child containers. Instead, they let users control
the active child container of a ViewStack container.
1 In the MXML editor’s Design mode, drag a ViewStack, TabNavigator, or Accordion container from the Compo-
nents view into the application.
2 To add or remove a child container in the navigator container expand the top of the container.
3 For the ViewStack container, select a child container by clicking the Left or Right arrows that appear at the top
of the container.

The arrows let you cycle through the child containers in the container.

You can also select views in the Outline view (Window > Outline).

4 For the TabNavigator and Accordion containers, click the child tab to select a child container.
5 To set properties of the child container in the Properties view, click its background.
6 Create your layout by inserting controls or containers into the child container.
7 If you are working with a ViewStack container, add a mechanism to let users select the child containers.

Letting users select a view in a ViewStack container
A ViewStack container consists of a collection of child containers stacked on top of each other with only one
container visible, or active, at a time. The ViewStack container does not have a built-in mechanism for letting users
select a child container. You must add a LinkBar, ButtonBar, or TabBar navigator container, or build the logic yourself
in ActionScript. The following example shows an example of a ViewStack container with a LinkBar container:

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

89

You use Flex Builder to add a LinkBar, ButtonBar, or TabBar to a ViewStack container so that users can select the
child containers in the ViewStack container. A LinkBar defines a horizontal row of Link controls that designate a
series of link destinations, as the following example shows:

A ButtonBar defines a horizontal row of buttons. A TabBar defines a horizontal row of tabs, as the following example
shows:

1 Ensure that you set the label property for each child in the ViewStack container.
The label property of the ViewStack children determines the text of the labels that appear on the TabBar or
LinkBar. The following example shows children of a ViewStack container:
<mx:ViewStack id="myViewStack" borderStyle="solid" width="100%">

<mx:Canvas id="search" label="Search">
<mx:Label text="Enter search terms"/>
...

</mx:Canvas>
<mx:Canvas id="custInfo" label="Customer Info">

<mx:Label text="Please enter your customer information"/>
...

</mx:Canvas>
<mx:Canvas id="accountInfo" label="Account Info">

<mx:Label text="Please enter your account information"/>
...

</mx:Canvas>
</mx:ViewStack>

2 Drag a LinkBar, ButtonBar, or TabBar container from the Components view into your layout, above the
ViewStack container.

The LinkBar, ButtonBar, and TabBar containers are listed in the Navigator category of the Components view.
3 Set the dataProvider property of the LinkBar, ButtonBar, or TabBar container to the ID of the target ViewStack
container.

To set the dataProvider property, you can select the LinkBar, ButtonBar, or TabBar and set the property in the
Flex Properties view. Alternatively, you can click the navigator’s Plus (+) button and then select the ViewStack
ID in the dialog box that appears.
Setting the dataProvider property to the ViewStack ID specifies the name of the ViewStack container
associated with it. The text of the labels on the LinkBar, ButtonBar, or TabBar correspond to the values of the
label property of each child of the ViewStack container.

Once the association is made between a ViewStack and a navigator, clicking the buttons or tabs of the navigator
in Design mode will select the corresponding view in the ViewStack.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

90

Adding data provider controls
You use Flex Builder to add data provider controls such as a ComboBox or a DataGrid to your application. For
example, a ComboBox control might be populated with a list of countries from a database or an XML file.
Data provider controls take input from a data provider, which is a collection of objects similar to an array. After
adding a data provider control, you must define a data provider for the control.
1 In the MXML editor’s Design mode, drag a data provider control from the Components view into your user
interface.

Data provider controls are listed in the Controls category of the Components view. They include the DataGrid,
HorizontalList, List, TileList, Tree, and ComboBox controls. For more information, see “Using Data-Driven
Controls” on page 295 in the Adobe Flex 3 Developer Guide.

2 Switch to Source mode and insert a <mx:dataProvider> child tag in the control’s tag.
You can use Content Assist to quickly enter the tag. In the following example, you insert the
<mx:dataProvider> tag in a Tree control tag:
<mx:Tree id="myTree">

<mx:dataProvider>
</mx:dataProvider>

</mx:Tree>

3 Specify the source of the data in the <mx:dataProvider> tag.
You can specify the data directly in the tag with an Array of Objects, as in the following example:
<mx:ComboBox>

<mx:dataProvider>
<mx:Array>

<mx:Object label="Red" data="#FF0000"/>
<mx:Object label="Green" data="#00FF00"/>
<mx:Object label="Blue" data="#0000FF"/>

</mx:Array>
</mx:dataProvider>

</mx:ComboBox>

The <mx:Object> tag in the example defines a label property that contains the string to display in the
ComboBox, and a data property that contains the value that you want to submit for processing.
You can define the data provider in an ActionScript variable, and then use the variable in the
<mx:dataProvider> tag, as in the following example:
<mx:Script>

<![CDATA[
var COLOR_ARRAY:Array =

[{label:"Red", data:"#FF0000"},
{label:"Green", data:"#00FF00"},
{label:"Blue", data:"#0000FF"}];

]]>
</mx:Script>

<mx:ComboBox>
<mx:dataProvider>

{COLOR_ARRAY}
</mx:dataProvider>

</mx:ComboBox>

In the previous example, you could also write the <mx:ComboBox> tag as follows:
<mx:ComboBox dataProvider="{COLOR_ARRAY}">
</mx:ComboBox>

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

91

Adding charting components
You can use Flex Builder to add charting components to display data in your user interface. The Flex charting
components let you create some of the most common chart types, and also give you extensive control over the
appearance of your charts. For an overview of the different charts available, see “Chart Types” on page 36 in Adobe
Flex 3 Data Visualization Developer Guide.
The Flex charts are available in Adobe Flex Builder Professional. A trial version of the charts is included in the
standard version of Flex Builder.
This section describes how to add charting components to your user interface. For information on defining chart
data, formatting chart elements, and manipulating other aspects of charts, see “Introduction to Charts” on page 2 in
Adobe Flex 3 Data Visualization Developer Guide.

Add a charting component
1 In the MXML editor’s Design mode, drag a charting component from the Components view into your user
interface as shown below.

2 Enter an ID for the chart.
3 To display more than one series of data in your chart, click the Add button and enter the new series name in the
dialog box that appears.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

92

For example, the following ColumnChart control has two data series. The bar on the left represents the gross
profit for six months, and next one is the net profit during the same period.

Remove a data series by selecting it in the list and clicking the Remove button.
4 (Optional) Select the Include Legend option.

The Include Legend option lets you add a Legend control to the chart that displays the label for each data series
in the chart and a key showing the chart element for the series.

5 Click OK to insert the chart.

93

Chapter 7: Adding View States
and Transitions

You use Adobe® Flex® Builder™ to create applications that change their appearance depending on tasks performed by
the user. For example, the base state of the application could be the home page and include a logo, sidebar, and
welcome content. When the user clicks a button in the sidebar, the application dynamically changes its appearance
(its state), replacing the main content area with a purchase order form but leaving the logo and sidebar in place.
In Flex, you can add this kind of interactivity with view states and transitions. A view state is one of several views that
you define for an application or a custom component. A transition is one or more effects grouped together to play
when a view state changes. The purpose of a transition is to smooth the visual change from one state to the next.

Topics

About view states and transitions . 93
Creating a view state . 94
Creating a state based on an existing state. 95
Setting a non-base state as the starting state . 95
Setting the initial state of a component . 95
Switching states at run time. 95
Modifying the appearance of existing states . 96
Deleting a view state . 97
Creating a transition . 97

About view states and transitions
A view state is one of several layouts that you define for a single MXML application or component. You create an
application or component that switches from one view state to another, depending on the user’s actions. You can use
view states to build a user interface that the user can customize or that progressively reveals more information as the
user completes specific tasks.
Each application or component defined in an MXML file always has at least one state, the base state, which is repre-
sented by the default layout of the file. You can use a base state as a repository for content such as navigation bars or
logos shared by all the views in an application or component to maintain a consistent look and feel.
You create a view state by modifying the layout of an existing state. Modifications can include editing, moving,
adding, or removing components. The modified layout is what the user sees when he or she switches state.
For a full conceptual overview of view states as well as examples, see “Using View States” on page 672 in the Adobe
Flex 3 Developer Guide.
Generally, you do not add pages to a Flex application as you do in an HTML-based application. You create a single
MXML application file and then add different layouts that can be switched when the application runs. While you can
use view states for these layouts, you can also use the ViewStack navigator container with other navigator containers.
For more information, see “Using Navigator Containers” on page 419 in the Adobe Flex 3 Developer Guide.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

94

When you change the view states in your application, the appearance of the user interface also changes. By default,
the components appear to jump from one view state to the next. You can eliminate this abruptness by using transi-
tions.
A transition is one or more visual effects that play sequentially or simultaneously when a change in view state occurs.
For example, suppose you want to resize a component to make room for a new component when the application
changes from one state to another. You can define a transition that gradually minimizes the first component while a
new component slowly appears on the screen. For more information on transitions, see “Using Transitions” on
page 702 in the Adobe Flex 3 Developer Guide.

Creating a view state
You use Flex Builder to create a view state for an application or a component defined in an MXML file. First, you
create a base state for the application or component, and then you create a second state based on the base state.
1 Using the layout tools in Flex Builder, design the layout of the base state of your application or component.

For more information, see “Building a Flex User Interface” on page 64.
2 In the States view (Window > States), click the New State button in the toolbar.

The New State dialog box appears. The newly created state is based on the selected state in the States view.

3 Enter a name for the new state, and click OK.
The name of the new state appears in the States view.

4 Use the layout tools in Flex Builder to modify the appearance of the state.
You can edit, move, add, or delete components. As you make changes, the changes defining the new state become
part of the MXML code.

5 Define an event handler that lets the user switch to the new state.
For more information, see “Switching states at run time” on page 95.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

95

Creating a state based on an existing state
You use Flex Builder to create a state based on a state that is not the base state.
1 Ensure that the MXML file contains at least one state that is not the base state.
2 In the States view (Window > States), click the New State button.
3 Enter a name for the new state.
4 From the Based On pop-up menu, select the state on which to base the new state.

The pop-up menu lists the states defined in the current document.
5 Click OK.
6 Use the layout tools in Flex Builder to change the layout.

You can modify, move, add, or delete components. As you make changes to the state, they’re recorded in the
MXML code.

7 Define an event handler to switch to the new state.

Setting a non-base state as the starting state
By default, an application displays the base state when it starts. However, you can display a non-base state when the
application starts.
1 With the MXML file opens in Design mode, double-click the view state that you want in the States view
(Window > States).
2 In the Edit State Properties dialog box that appears, select the Set As Start State option and click OK.

Setting the initial state of a component
If your application has multiple states, you can set the initial state of a component independently from the rest of the
application.
1 With the MXML file open in Design mode, select the component in your layout.
2 Select the initial state of the component in the State pop-up menu on the editor’s toolbar.

Switching states at run time
When your Flex application is running, users need ways of switching from one view state to another. You can use
Flex Builder to define event handlers for user controls so that users can switch states at run time.
The simplest method is to assign the currentState property to the click event of a control such as a button or a link.
The currentState property takes the name of the view state you want to display when the click event occurs. In the
code, you specify the currentState property as follows:
click="currentState='viewstatename'"

If the view state is defined for a specific component, you must also specify the component name, as follows:
click="currentState='componentID.viewstatename'"

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

96

For more information, see “Applying view states” on page 679 in the Adobe Flex 3 Developer Guide.
1 Ensure that the initial state has a clickable control, such as a Button control.

In the MXML editor’s Design mode, select the control and enter the following value in the On Click field in the
Flex Properties view:
currentState='viewstatename'

2 If you want to switch to the base state, enter currentState='' (single-quote empty string) instead.
An empty string specifies the base state.

3 To test that the states switch correctly in the application when the button is clicked, click the Run button in the
MXML editor toolbar.
You can define a transition so that the change between view states is smoother visually. For more information, see
“Creating a transition” on page 97.

Modifying the appearance of existing states
After you create a state, you can use Flex Builder to modify its appearance at any time.
1 With the MXML file open in Flex Builder, select the view state that you want to modify from the States view
(Window > States).

You can also select the view state from the State pop-up menu in the toolbar of the MXML editor in Design mode.
2 Use the layout tools in Flex Builder to make changes to the appearance of the state.

You can change properties, move components, add components, or delete components. As you work, the
changes are recorded as part of the current state. The changes don't affect the states that the current state is based
on, but they may affect states derived from the current state.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

97

Deleting a view state
You use Flex Builder to delete a view state.
1 With the MXML file open in Design mode, select the view state that you want to delete from the States view
(Window > States).
2 Click the Delete State button on the view’s toolbar.

If you attempt to delete a state that other states are based on, a dialog box appears to warn you that the other
states will be deleted too. You can cancel the operation or confirm that you want to delete the state.

Creating a transition
When you change the view states in your application, the components appear to jump from one view state to the
next. You can make the change visually smoother for users by using transitions. A transition is one or more effects
grouped together to play when a view state changes. For example, you can define a transition that uses a Resize effect
to gradually minimize a component in the original view state, and a Fade effect to gradually display a component in
the new view state.
1 Make sure you create at least one view state in addition to the base state.
2 In the MXML editor’s Source mode, define a Transition object by writing a <mx:transitions> tag and then a
<mx:Transition> child tag, as shown in the following example:

<mx:transitions>
<mx:Transition id="myTransition">
</mx:Transition>

</mx:transitions>

To define multiple transitions, insert additional <mx:Transition> child tags in the <mx:transitions> tag.
3 In the <mx:Transition> tag, define the change in view state that triggers the transition by setting the tag’s
fromState and toState properties, as in the following example (in bold):

<mx:transitions>
<mx:Transition id="myTransition" fromState="*" toState="checkout">
</mx:Transition>

</mx:transitions>

In the example, you specify that you want the transition to be performed when the application changes from any
view state (fromState="*") to the view state called checkout (toState="checkout"). The value "*" is a
wildcard character specifying any view state.

4 In the <mx:Transition> tag, specify whether you want the effects to play in parallel or in sequence by writing
a <mx:Parallel> or <mx:Sequence> child tag, as in the following example (in bold):

<mx:Transition id="myTransition" fromState="*" toState="checkout">
<mx:Parallel>
</mx:Parallel>

</mx:Transition>

If you want the effects to play simultaneously, use the <mx:Parallel> tag. If you want them to play one after the
other, use the <mx:Sequence> tag.

5 In the <mx:Parallel> or <mx:Sequence> tag, specify the targeted component or components for the transition
by setting the property called target (for one target component) or targets (for more than one target component)
to the ID of the target component or components, as shown in the following example:

<mx:Parallel targets="{[myVBox1,myVBox2,myVBox3]}">

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

98

</mx:Parallel>

In this example, three VBox containers are targeted. The targets property takes an array of IDs.
6 In the <mx:Parallel> or <mx:Sequence> tag, specify the effects to play when the view state changes by writing
effect child tags, as shown in the following example (in bold):

<mx:Parallel targets="{[myVBox1,myVBox2,myVBox3]}">
<mx:Move duration="400"/>
<mx:Resize duration="400"/>

</mx:Parallel>

For a list of possible effects, see “Available effects” on page 434 in the Adobe Flex 3 Developer Guide.
To set the properties of effects, see “Working with effects” on page 446 in the Adobe Flex 3 Developer Guide.

7 To test the transition, click the Run button in the MXML editor toolbar, then switch states after the application
starts.

99

Chapter 8: Adding Interactivity with
Behaviors

You use Adobe Flex Builder to create behaviors that add animation and motion to a component in response to user
or programmatic action. For example, you can create a behavior for a TextInput component that causes it to bounce
slightly when the user tabs to it, or you can create a behavior for a Label component that causes it to fade out when
the user passes the mouse over it.
This topic describes how to visually create behaviors for components. For information on creating behaviors in
MXML and ActionScript code, see “Using Behaviors” on page 427 in the Adobe Flex 3 Developer Guide.

Topics

About Flex behaviors . 99
Creating a behavior for a component. 99

About Flex behaviors
A behavior is a combination of a trigger paired with an effect. A trigger is an action, such as a mouse click on a
component, a component getting focus, or a component becoming visible. An effect is a visible or audible change to
a target component that occurs over a period of time, measured in milliseconds. Examples of effects are fading,
resizing, or moving a component. You can define multiple effects for a single trigger.
By default, Flex components don’t play an effect when a trigger occurs. To configure a component to use an effect,
you associate an effect with the trigger.
Triggers are not ActionScript events. For example, a Button control has both a mouseDownEffect trigger and a
mouseDown event. The trigger initiates a Flex effect; the event calls an ActionScript function or object method.
For more information, see “Using Behaviors” on page 427 in the Adobe Flex 3 Developer Guide.

Creating a behavior for a component
You use Flex Builder to visually create a behavior for an MXML component.
Note: Though you cannot visually add an effect to an ActionScript component, you can use the editor’s Source mode to
write the code that adds the effect. For more information, see “Applying behaviors in ActionScript” on page 436 in the
Adobe Flex 3 Developer Guide.
1 In the MXML editor’s Design mode, click on a component in the design area.
2 Define a trigger for the effect by selecting a trigger in the Effects category of the Flex Properties view.

The following naming conventions are used for triggers:
triggerEffect
In this convention, trigger is the trigger name. For example, to define a rollover trigger, select the
rollOverEffect trigger.
For a list of triggers you can use, see “Available triggers” on page 432 in the Adobe Flex 3 Developer Guide.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

100

3 Associate an effect with the trigger by entering the name of the effect in the field next to the trigger name.
For example, for a Label component you could enter WipeRight as the effect for the showEffect property. In a
browser, the Label component’s text becomes visible as if it were being wiped from left to right.

For a list of effects you can use, see “Available effects” on page 430 in the Adobe Flex 3 Developer Guide.
4 To customize the effect, you need to specify effect properties in the code.

For example, you can specify how long a wipe lasts by entering the value in milliseconds in the duration
property of the component, as shown in the following example:
<mx:Button id="myButton" mouseDownEffect="WipeLeft" duration="2000"/>

For more information, see “Working with effects” on page 442 in the Adobe Flex 3 Developer Guide.
5 If you want the current component to trigger the effect, you are finished creating the behavior.

If you want another component to trigger the effect, you must write and insert an ActionScript function that
triggers the effect from the other component. For more information, see “Applying behaviors in ActionScript”
on page 436 in the Adobe Flex 3 Developer Guide.

101

Part 4: Programming Flex Applications
Topics

About code editing in Flex Builder. 102
Building Projects . 121
Running and Debugging Applications. 136
Profiling Flex applications . 155
Working with Data in Flex Builder. 183

102

Chapter 9: Code Editing in Flex Builder

You edit MXML, ActionScript, and CSS code in Adobe® Flex® Builder™ with separate editors. The Flex Builder
workbench is both project- and document-centric, so the appropriate editor opens automatically because the editors
are associated with resource types. The Flex Builder editors share capabilities, including code hinting, navigation,
formatting, refactoring, and other productivity-enhancing features.

Topics

About code editing in Flex Builder. 102
About Flex Builder content assistance . 103
Navigating and organizing code . 107
Formatting and editing code . 111
Finding references and refactoring code . 113
About markers . 114
About syntax error checking . 116
Code editing keyboard shortcuts . 118

About code editing in Flex Builder
When designing and developing Flex and ActionScript applications, you work in the Flex Development perspective,
which contains the Flex Builder editors and all the views that support code editing and design tasks. The configu-
ration of the Flex Development perspective depends on which editor and mode you’re working in. For example,
when you create a Flex project, the MXML editor works in two modes (Source and Design) and each mode contains
its own collection of supporting views. For an overview of the Flex Development perspective, see “The Flex Devel-
opment perspective” on page 14.

MXML, ActionScript, and CSS editors

Flex Builder contains three editors for writing MXML, ActionScript, and CSS code.
The MXML editor lets you edit MXML files. The MXML editor contains two modes: Source and Design. In Source
mode, you write MXML and embed ActionScript and CSS code contained within <mx:Script> and <mx:Style>
tags. In Design mode, you lay out and design your Flex applications (see “Building a Flex User Interface” on page 64).
The ActionScript editor lets you edit AS files, which include main files for ActionScript projects, and class and
interface files. For more information, see “About ActionScript projects” on page 44.
You use the CSS editor to write Cascading Style Sheets (CSS files). For more information, see “Applying styles and
skins” on page 78 and “Using Styles and Themes” on page 470 in the Adobe Flex 3 Developer Guide.

MXML, ActionScript, and CSS content assistance

As you enter MXML, ActionScript, and CSS code, hints are displayed to help you complete your code. This feature
is called Content Assist. Flex Builder also assists you in quickly developing your code by including MXML tag
completion, automatic import management, integration with Adobe Flex Language Reference, and the capability of
choosing different colors and fonts to display your code in the workspace. For more information, see “About Content
Assist” on page 104 and

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

103

Custom component and ActionScript class and interface code hints

In addition to the built-in support for the Flex framework, code hints are provided for all custom components and
ActionScript classes and interfaces that are included in your project. For more information, see “Using Content
Assist” on page 106.

Streamlined code navigation

To easily navigate the many files and lines of code in your projects, Flex Builder provides convenient shortcuts, such
as folding and unfolding code blocks, opening the source of external code definitions, browsing and opening class
types, and so on. The Outline view also provides you with a convenient way to inspect the structure of and navigate
to lines of code in your documents. For more information, see “Navigating and organizing code” on page 107.

Find references and code refactoring

Flex Builder lets you find all references and declarations to identifiers in a given file, project, or workspace including
references found in elements linked from SWC files and other entries on a library path (for example, classes, inter-
faces, functions, variables, and some metadata). You use refactoring to rename identifiers in your code while
updating all references to them in your entire code base. For more information, see “Finding references and refac-
toring code” on page 113.

Automatic syntax error checking

Flex Builder compiles your projects incrementally, giving you feedback as you work with your documents. If you
introduce syntax errors while writing MXML and ActionScript code, error indicators are displayed next to the line
of code in the editor and an error message is displayed in the Problems view. For more information, see “Apply syntax
coloring preferences” on page 118.

Syntax coloring

You specify the set of colors to be applied throughout your code in the MXML, ActionScript, and CSS editors on the
Syntax Coloring Preferences page. Font style options can also be applied and previewed from the same page. For
more information, see “Getting help while writing code” on page 107 and “Using Content Assist” on page 106

Editor and debugger integration

The MXML and ActionScript editors work with the Flex Debugging perspective to assist you in debugging your
code. You set breakpoints in your code to suspend your application at troublesome or otherwise crucial lines of code.
When you begin a debugging session, the Flex Debugging perspective is displayed when the first breakpoint is
reached. You can then inspect the state of your application and isolate and resolve the problems in your code. For
more information about debugging your code, see “Running and Debugging Applications” on page 136.

About Flex Builder content assistance
The Flex Builder editors provide various ways to help you simplify and streamline code development.

Content Assist

Available in the MXML, ActionScript, and CSS editors, Content Assist provides code hints to help you complete your
code expressions. For more information, see “About Content Assist” on page 104.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

104

Auto import management

As you enter code with Content Assist, the fully qualified type names are automatically imported into the document
as needed. In an ActionScript document, the fully qualified type name is added to the beginning of the document
with the other import statements. In an MXML document, the import statement is added to an existing script block
if one exists; if not, Flex Builder creates a script block. In an ActionScript document, you can also optionally sort
import statements. For more information, see “Organizing import statements” on page 111.

MXML tag completion

As you enter MXML code, many syntax elements are automatically added, including: closing tags, indentations, new
lines, and CDATA tags within <mx:Script> tags and when you add event attributes.

Context-sensitive language reference Help

The Adobe Flex Language Reference is integrated into the editor and you can easily access it by selecting an Action-
Script language element, an MXML component tag or attribute, and then pressing Shift+F2. For more information,
see “Getting help while writing code” on page 107.

Formatting assistance

To streamline the work of coding your applications, the editors can help you reformat blocks of code and perform
bulk edits. For more information, see “Formatting and editing code” on page 111.

About Content Assist
As you enter code into the Flex Builder editors, Content Assist prompts you with a list of options for completing your
code expression (commonly referred to as code hints). For example, in an MXML document you are prompted with
the list of tags that can be added at the current location.
Code hints appear automatically as you enter your code. The following example shows the code hints that are
displayed when you add a tag to a Canvas tag:

Only those tags that can be added to the Canvas tag are contained in the list of code hints. This is true of all uses of
Content Assist: you only see relevant hints.
Code hints are categorized by type, showing you both visual and nonvisual MXML components, events, properties,
and styles.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

105

Code hints appear whenever the framework or language (MXML, ActionScript, and CSS) provides options for you
to complete the current expression. For example, if you type within an MXML component, you are prompted with
a list of all properties of that component. The following example shows code hints for properties of an MXML
component:

Selecting and entering properties displays possible property values (if predefined values exist). The following
example shows code hints for property values:

Code hints for ActionScript 3.0 are also supported. They are displayed in ActionScript documents, in <mx:Script>
tags in MXML documents, and in event attributes. Content Assist provides hints for all ActionScript 3.0 language
elements (interfaces, classes, variables, functions, return types, and so on), as the following example shows:

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

106

Content Assist also provides hints for CSS styles within embedded <mx:Style> tags or in stand-alone CSS
documents, as the following example shows:

In addition to the preceding examples, Content Assist provides hints for any custom MXML components or Action-
Script classes that you create yourself and which are part of your project. For example, if you define a custom MXML
component and add it to your project, code hints appear when you refer to the component in your MXML appli-
cation.

Using Content Assist

You can use code hints to write MXML, ActionScript, and CSS more rapidly and efficiently. Code hints appear as
you enter code into the editor.

Display Content Assist and insert code hints:
1 Begin entering a line of code.

• In an MXML document, begin entering a tag:
<
Relevant code hints are displayed, as the following example shows:

• In an ActionScript document or a Script tag in an MXML document, enter a typical language construct:
public var myVar:

• In a CSS document or a Style tag in an MXML document, enter a style name construct and press
Control+Space to display a list of attributes that can be added.
You can also display code hints while you enter a line of code by pressing Control+Space.

2 Navigate the list of code hints with the Up and Down Arrow keys.
3 Select a code hint, press Enter, and the code is added to the editor.

As you continue to enter code, additional code hints are displayed.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

107

Getting help while writing code
The Adobe Flex Language Reference is integrated into the MXML and ActionScript editors and you can quickly
review the reference Help for an MXML tag or property, a class, or other Flex framework element.
You can also use Dynamic Help, which is docked next to the current perspective and displays reference and usage
topics related to the currently selected MXML tag or ActionScript class.

Display language reference Help
1 In the MXML or ActionScript editor, select a Flex framework element (a word in your code) by highlighting or
placing the mouse pointer in the word.
2 To open the Help topic directly in the Help viewer, press Shift+F2 or select Help > Find in Language Reference.
For more information about getting help while working in the Flex Builder workbench, see “Using the Flex Builder
help system” on page 3.

Enable Dynamic Help
❖ Select Help > Dynamic Help.

Navigating and organizing code
The Flex Builder editors provide many shortcuts for navigating your code, including folding and unfolding code
blocks, opening the source of code definitions, and browsing and opening types. Multiple line code blocks can be
collapsed and expanded to help you navigate, view, and manage complex code documents. In Flex Builder,
expanding and collapsing multiple-line code statements is referred to as code folding and unfolding.

Setting, folding, and unfolding code blocks
1 In the editor, click the fold symbol (-) or the unfold symbol (+) in the editor’s left margin.

Folding a code block hides all but the first line of code.

Unfolding the code block to make it visible again. Hold the mouse over the unfold (+) symbol to show the entire
code block in a tool tip.

2 By default, code folding is turned on in Flex Builder. To turn off code folding, open the Preferences dialog and
select Flex > Editors, and then deselect the Enable Code Folding option.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

108

Using the Outline view to navigate and inspect code
The Outline view is part of the Flex Development perspective (see “The Flex Development perspective” on page 14),
and, therefore, is available when you edit code and design your application. You use the Outline view to more easily
inspect and navigate the structure of your MXML, ActionScript, and CSS documents.
The Outline view contains three modes: Class, MXML, and CSS. In Class mode, the Outline view displays the
structure of your code (classes, member variables, functions, and so on). In MXML mode, the Outline view displays
the MXML structure (tags, components, controls, and so on). In CSS mode, CSS selectors and nested properties
within them are displayed.
Selecting an item in the Outline view locates and highlights it in the editor, which makes it much easier to navigate
your code.

Outline view in Class mode

When you edit an ActionScript document (or ActionScript contained in an MXML document), the Outline view
displays the structure of your code. This includes import statements, packages, classes, interfaces, variables not
contained in functions, and functions. This view does not include metadata, comments, namespace declarations,
and the content of functions.

In the Outline view, nodes and items in the tree structure represent both the different types of language elements and
their visibility. For example, red icons indicate private elements, green indicates public elements, and yellow indicates
that the element was neither explicitly marked private nor public.

Outline view toolbar in Class mode

In Class mode, the Outline view toolbar contains the sort and filter commands, as the following example shows:

Outline view in MXML mode

When you edit an MXML document, which can contain both MXML and ActionScript code, both the Class and
MXML modes are available in the Outline view.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

109

In MXML mode, each item in the Outline view represents an MXML tag and the following types of tags are
displayed: components, controls, nonvisual tags such as WebService or State, component properties that are
expressed as child tags (layout constraints, for example), and compiler tags such as Model, Array, and Script.

The Outline view in MXML mode does not show comments, CSS rules and properties, and component properties
expressed as attributes (as opposed to child tags, which are shown).

Outline view toolbar in MXML mode

When the Outline view is in MXML mode, the toolbar contains additional commands that let you switch between
the MXML and class views.

To switch between the two views, you use these toolbar commands. You can also switch the MXML editor modes
(from Source to Design and vice versa) to achieve the same thing.

Using Quick Outline view in the editor
Within the ActionScript and MXML editors, you can access the Quick Outline view, which displays the Outline view
in Class mode. The Quick Outline view is displayed in a pop-up window within the editor itself, not as a separate
view, and you can use it to quickly navigate and inspect your code.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

110

The Quick Outline view contains the same content as the Class mode, but it also includes a text input area that you
can use to filter the displayed items. For example, entering an item name into the Quick Outline view displays only
the items that contain those characters.

The Quick Outline view does not contain the commands that let you alphabetically sort or hide items.
As in the Outline view, selecting an item locates and highlights it in the editor.

Open the Quick Outline view
❖ With an ActionScript or MXML document open in the editor, press Control+O.

Close the Quick Outline view
❖ Navigating outside the Quick Outline view closes the view. You can also press ESC to close the Quick Outline
view.

Opening code definitions
With applications of any complexity, your projects will contain many resources and many lines of code. To help
simplify navigating and inspecting the various elements of your code, you can open the source of an external code
definition from where it is referred to in your code. For example, if you create a custom MXML component and
import it into your MXML application you can select the reference to the MXML component and open the source
file in the editor.

Open the source of a code definition
1 Select the code reference in the editor.
2 Press F3.

The source file that contains the code definition opens in the editor.
Flex Builder also supports hyperlink code navigation.

Open the source of a code definition using hyperlink navigation
1 Locate the code reference in the editor.
2 Press and hold the Control key (Windows) or Command key (Mac OS) and hold the mouse over the code
reference to display the hyperlink.
3 To navigate to the code reference, click the hyperlink.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

111

Browsing and opening class types
To quickly browse all the available types in your project (including the Flex framework), use the Open Type dialog
box.
1 From anywhere in the workbench, press Control+Shift+T (Windows) or Command+Shift+T (Mac OS).

The Open Type dialog box appears.
2 To narrow the list of types, enter characters or the desired type name.

Only the types that contain the characters or name are displayed.
3 To open the class type source file in the editor, double-click the class type name.
Note: You can browse, but not edit, the Flex framework classes.

Showing line numbers
You can add line numbers in the editor to easily read and navigate your code.
1 In the editor, right-click (Windows) or Control-click (Mac OS) in the editor margin, which is between the
marker bar and the editor, to display the context menu.

2 Select the Show Line Numbers option.

Formatting and editing code
The Flex Builder editors provide shortcuts for writing and formatting your code. These include quickly adding
comment blocks, indenting code blocks, finding, and replacing text.

Organizing import statements
When you use Content Assist in the MXML and ActionScript editors, the packages in which classes are located are
automatically imported into the document. They are added in the order in which they were entered into code.
Imports that are unused or unneeded are automatically removed.
To help organize the code in your ActionScript documents, you can alphabetically sort import statements. To do this,
open the Preferences dialog, select Flex > Editors > ActionScript Code, and then select “Keep Imports Organized.”

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

112

Sort import statements
❖ With an ActionScript document that contains import statements open in the editor, press Control+Shift+O
(Windows) or Command+Shift+O (Mac OS).

Adding comments and comment blocks
You can quickly add or remove comments using keyboard shortcuts. You can add comments (//) and comment
blocks (/* */) to ActionScript code. You can add XML comments (<!-- -->) and CDATA blocks to MXML code.
Comments in ActionScript code can be toggled on or off.

Toggle comments in ActionScript code
1 In the editor, select one or more lines of ActionScript code.
2 Press Control+Shift+C (Windows) or Command+Shift+C (Mac OS) to add, or remove, C-style comments.
3 Press Control+/ (Windows) or Command+/ (Mac OS) to add, or remove, C++ style comments.

Add XML comments in MXML code
1 In the editor, select one or more lines of MXML code.
2 Press Control+Shift+C (Windows) or Command+Shift+C (Mac OS) to add a comment.

Add CDATA blocks in MXML code
1 In the editor, select one or more lines of MXML code.
2 Press Control+Shift+D (Windows) or Command+Shift+D (Mac OS) to add a comment.

Manually indenting code blocks
The editor automatically formats the lines of your code as you enter it, improving readability and streamlining code
writing. You can also use the Tab key to manually indent individual lines of code. If, however, you want to indent a
block of code in a single action, you can use the Shift Right and Shift Left editor commands.

Shift a code block to the left or right
1 In the editor, select a block of code.
2 Select Source > Shift Right or Source > Shift Left.
3 Press Tab or Shift Tab to indent or unindent blocks of code.

Set indent preferences
1 Open the Preferences dialog and select Flex > Editors.
2 Select the indent type (Tabs or Spaces) and specify the IndentSize and Tab Size. (For more information, see
“Setting editor preferences” on page 222.)

Finding and replacing text in the editor
To find and optionally replace text strings in your code, there are two options. You can search the document that is
currently open in the editor, or you can search all resources in the projects in the workspace. For more information
about searching the entire workspace, see “Finding references and refactoring code” on page 113.
1 Open the document to search.
2 Do either of the following:

• Press Control+F(Windows) or Command+F (Mac OS)

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

113

• Select Edit > Find/Replace.
3 Enter the text string to locate.
4 (Optional) Enter the replacement text string.
5 (Optional) Set the advanced search criteria.
6 Click Find, Replace, Replace All, or Replace/Find.

If the text string is located in the document, it is highlighted and, optionally, replaced.
Note: To do an incremental find, press Control+J (Windows) or Command+J (Mac OS).

Finding references and refactoring code
Flex Builder includes advanced search features that are more powerful than find and replace. To help you understand
how functions, variables, or other identifiers are used, Flex Builder lets you find and mark references or declarations
to identifiers in ActionScript and MXML files, projects, or workspaces. You use refactor to make changes to your
code by renaming the following identifiers and then updating all references to them:
• Variables
• Functions
• Types (interface, class)
• Accessors (getter/setter)
• Attributes
• Metadata in MXML (effects, events, styles)

Mark references
1 In Source mode, click the Mark Occurrences button on the toolbar.

2 Click an identifier in the editor. All instances are marked, depending on settings in Preferences.
To change the appearance of marked references, in the Preferences dialog, select General > Editors > Text Editors >
Annotations. For more information on Markers, see “About markers” on page 114.

Find all references or declarations
1 In Source mode, click on an identifier in the editor.
2 Select Search > References or Search > Declarations from the main menu. Then select File, Project, or
Workspace. Matches appear in the Search view.

Refactor your code
1 In Source mode, click on an identifier in the editor.
2 Select Source > Refactor > Rename from the main menu.
3 Enter a new name.

Flex Builder checks rename preconditions and prompts you to confirm problems before the rename operation
occurs. Preconditions include the following:
• References cannot be renamed in read-only files.
• All files must be saved.
• If a project has build errors, a warning appears.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

114

• The new name must be within scope, which is determined by the type of element and its location. Name-
shadowing errors are also noted.
• The new name must be a valid identifier.
• The reference defined in a SWC file must include a source attachment.

4 To review the change, click Preview to see the original and refactored source, or click OK to proceed with the
change to your code.

.

About markers
Markers are shortcuts to lines of code in a document, to a document itself, or to a folder. Markers represent tasks,
bookmarks, and problems and they are displayed and managed. Selecting markers opens the associated document
in the editor and, optionally, highlights the specific line of code.
With Flex Builder, you must save a file to update problem markers. Only files that are referenced by your application
are checked. The syntax in an isolated class that is not used anywhere in your code is not checked.
The workbench generates the following task and problem markers automatically. You can manually add tasks and
bookmarks.
Tasks Task markers represent a work item. Work items are generated automatically by the workbench. You can add
a task manually to a specific line of code in a document or to the document itself. For example, to remind yourself
to define a Flex component property, you might create a task called “Define skinning properties.” You can also add
general tasks that do not apply directly to resources (for example, “Create a custom component for the employee log-
in prompt”). You use the Task view to manage all the task markers. For more information, see “Adding tasks” on
page 115.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

115

Problems Problem markers are generated by the compiler and indicate invalid states of various sorts. For example,
syntax errors and warnings generated by the compiler are displayed as problem markers in the Problem view. For
more information, see “Using the Problems view” on page 118.
Bookmarks You can manually add bookmarks to a line of code or a resource (folder or document). You use
bookmarks as a convenience, to keep track of and easily navigate to items in your projects. You use the Bookmarks
view to manage all bookmarks. For more information, see “Adding and deleting bookmarks” on page 116.
Note: The Tasks and Bookmarks views are not displayed by default in the Flex Development perspective. For more infor-
mation about adding these views, see “Opening views” on page 54.

Navigating markers
Markers are descriptions of and links to items in project resources. Whether generated automatically by the compiler
to indicate problems in your code, or added manually to help you keep track of tasks or snippets of code, markers
are displayed and managed in their associated views. You can easily locate markers in your project from the
Bookmarks, Problems, and Tasks views, and navigate to the location where the marker was set.

Go to a marker location
❖ Select a marker in the Bookmarks, Problems, or Tasks views.

The file that contains the marker is located and opened in the editor. If a marker is set on a line of code, that line
is highlighted.

Adding tasks
Tasks represent automatically or manually generated workspace items. All tasks are displayed and managed in the
Tasks view (Window > Other Views > General > Tasks), as the following example shows:

Add a task to a line of code or a resource
1 Open a file in the editor, and then locate and select the line of code where you want to add a task; or in the Flex
Navigator view, select a resource.
2 In the Tasks view, click the Add Task button in the toolbar.
3 Enter the task name, and select a priority (High, Normal, Low), and click OK.
Note: The resource, as shown in the Flex Navigator view, does not indicate that it was marked. You can view and manage
all task markers in the Task view.

Completing and deleting tasks
When a task is complete, you can mark it and then optionally delete it from the Tasks view.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

116

Mark a task as complete
❖ In the Tasks view, select the task in the selection column, as the following example shows:

Delete a task
❖ In the Tasks view, right-click (Windows) or Control-click (Mac OS) the task, and select Delete.

Delete all completed tasks
❖ In the Tasks view, right-click (Windows) or Control-click (Mac OS) anywhere in the view to display the context
menu, and select Delete Completed Tasks.

Adding and deleting bookmarks
You can use bookmarks to keep track of and easily navigate to items in your projects. All bookmarks are displayed
and managed in the Bookmarks view (Window > Other Views > General > Bookmarks), as the following example
shows:

Add a bookmark to a line of code or a resource
1 Open a file in the editor, and then locate and select the line of code to add a bookmark to.
2 From the main menu, select Edit > Add Bookmark.
3 Enter the bookmark name, and click OK.

A bookmark icon () is added next to the line of code.
Note: The resource, as shown in the Flex Navigator view, does not indicate that it was marked. You can view and manage
all bookmarks in the Bookmarks view.

Delete a bookmark
1 In the Bookmarks view, select the bookmark to delete.
2 Right-click (Windows) or Control-click (Mac OS) the bookmark and select Delete.

About syntax error checking
The Flex Builder compiler identifies syntax errors and reports them to you so that you can correct them as you are
working, before you attempt to run your application. You can easily adjust syntax coloring preferences.
When code syntax errors are encountered, you are notified in the following ways:

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

117

• An error indicator is added next to the line of code, as the following example shows:

• The Outline view indicates the error with an exclamation mark in the affected lines of code, as the following
example shows:

• The Problems view lists an error symbol and message. Double-clicking the error message locates and highlights
the line of code in the editor, as the following example shows:

Coding syntax errors are identified when your projects are built. If you do not fix syntax errors before you run your
application, you are warned that errors exist. Depending on the nature and severity of the errors, your application
might not run properly until the errors are corrected.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

118

Apply syntax coloring preferences
❖ Open the Preferences dialog and select Flex > Editors > Syntax Coloring.

Default font colors can also be configured on the Text Editors and Colors and Fonts Preferences pages (see
Window > Preferences > General > Appearance > and Window > Preferences > General > Editors > Text
Editors).

Using the Problems view
As you enter and save your code, Flex Builder compiles it in the background and displays syntax errors and warnings
(problems) to you in the Problems view. Each error or warning contains a message, the file and folder in which it is
located, and its line number in the file. When you double-click on a line of code, the file is opened in the editor and
the line of code is highlighted.

Go to the line of code where an error or warning occurs
❖ Double-click a problem in the Problems view; or select a problem and then right-click (Windows) or Control-
click (Mac OS) to display the context menu and select Go To.

Code editing keyboard shortcuts
The following table contains a list of keyboard shortcuts that are useful when editing code.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

119

For a complete list of available keyboard shortcuts, see “Accessing keyboard shortcuts” on page 61. For information
about editing existing or creating new keyboard shortcuts, see “Changing keyboard shortcuts” on page 58.

Name Keyboard shortcut Description

Switch between Source and
Design mode

Control+`(Left Quote) Switches between the MXML editor’s Source and Design
modes.

Go to Documentation (Flex
Builder plug-in)

Find in API Reference

(Flex Builder stand-alone)

Shift+F2 When you edit MXML or ActionScript, selecting a
language element and pressing Shift+F2 displays
language reference Help for the selected element. For
more information, see “Getting help while writing code”
on page 107.

Context-sensitive Help F1 (Windows)

Command+Shift+/ (Mac OS)

Displays context-sensitive Help for the currently selected
workbench element (editor, view, dialog box, and so on).
For more information, see “Using the Flex Builder help
system” on page 3.

Add Block Comment Control+Shift+C (Windows)

Command+Shift+C (Mac OS)

Adds block comment formatting to the currently selected
lines of code or adds a comment at the insertion point. For
more information, see “Adding comments and comment
blocks” on page 112.

Add CDATA Control+Shift+D (Windows)

Command+Shift+D (Mac OS)

Adds a CDATA statement at the insertion point so that you
can add ActionScript to an MXML document.

Find Matching Bracket Control+Shift+P (Windows)

Command+Shift+P (Mac OS)

Moves the cursor to the matching bracket of the selected
code statement.

Content Assist Control+Space (Windows)

Command+Shift+Space (Mac OS)

Displays code hinting. For more information, see “Using
Content Assist” on page 106.

Find All Declarations in Work-
space

Control+G (Windows)

Command+G (Mac OS)

Finds declarations in your code base. See “Finding refer-
ences and refactoring code” on page 113.

Find All References in Workspace Control+Shift+G (Windows)

Command+Shift+G (Mac OS)

Finds references to identifiers in your code base. See
“Finding references and refactoring code” on page 113

Go to Definition F3 Open the source of an external code definition. For more
information, see “Opening code definitions” on page 110.

Go to Line Control+L (Windows)

Command+L (Mac OS)

Displays the Go to Line dialog box where you can enter a
line number and navigate to it in the editor.

Last Edit Location Control+Q (Windows)

Control+Q (Mac OS)

Highlights the last edited line of code.

Mark Occurrences Marks every occurrence of the selected item in code.

Organize Imports Control+Shift+O (Windows)

Command+Shift+O (Mac OS)

When editing ActionScript, using this keyboard shortcut
alphabetizes any import statements contained in the
document. For more information, see “Organizing import
statements” on page 111.

Open Type Control+Shift+T (Windows)

Command+Shift+T (Mac OS)

Quickly browse all class types. For more information, see
“Browsing and opening class types” on page 111.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

120

Open Resource Control+Shift+R (Windows)

Command+Shift+R (Mac OS)

Displays the Open Resource dialog box where you can
quickly search for and open a resource in the editor.

Quick Outline Control+O (Windows and Mac OS) Displays the Outline view in Quick mode in the editor. For
more information, see “Using Quick Outline view in the
editor” on page 109.

Name Keyboard shortcut Description

121

Chapter 10: Building Projects

Adobe® Flex® Builder™ automatically builds and exports your projects into applications, creating application and
library files, placing the output files in the proper location, and alerting you to any errors encountered during compi-
lation.
There are several options for modifying the build settings to control how your projects are built into applications.
For example, you can set build preferences on individual projects or on all the projects in your workspace, modify
the build output path, change the build order, and so on. You can also create custom build instructions using third-
party build tools such as the Apache Ant utility.
When your applications are ready to be released, you have the option of publishing all or selected parts of the appli-
cation source code. Users can view your application source code in a web browser, similar to the way they are able
to view HTML source code.

Topics

Understanding how projects are built and exported . 121
Customizing project builds . 124
Export Release Build. 126
Advanced build options . 128
Publishing source code. 134

Understanding how projects are built and exported
A typical workflow consists of building your Flex and ActionScript projects with the Build Automatically option
enabled. During the development process, Flex Builder gives you errors and warnings in the Problems view. When
you run your application, a debug version of the SWF file is placed in the project output (bin) folder along with
required assets and an HTML wrapper. This build contains debug information and is suitable for developer use only.
For more information about exporting projects, see “Exporting projects” on page 38.
When your application is ready to deploy, you create an optimized, release-quality version of your application using
the Export Release Build wizard. This stores the SWF file in the bin-release folder. Since debug information is
removed, the file size is smaller. This version is a production build that can be viewed by end users. For Adobe AIR
projects, AIR applications are exported to an AIR file. You use Export Release Build to create a digitally signed AIR
file, which users must install before running an application (similar to an install.exe). For more information, see
“Export Release Build” on page 126.
Adobe LiveCycle Data Services ES projects may instead be compiled on the server when accessed. For more infor-
mation, see “Managing projects” on page 36.
For library projects, you do not have to export. The SWC file built by a Flex library project is suitable for both
developer and production use. For more information see “About library projects” on page 47.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

122

Build basics
MXML and ActionScript 3.0 are compiled languages. Unlike interpreted languages such as JavaScript that can be
immediately executed by their run-time environments, MXML and ActionScript 3.0 must be converted into a
compiled format before they can be executed by Flash Player. This process, along with the generation of related
output files, is called building.
Flex Builder automatically builds your projects whenever a file in your project is changed and saved. While you have
the option of building your applications manually, this should not be necessary; however, understanding the build
process and the output files that are generated will help you to diagnose and repair project configuration problems
that may arise.

Flex projects Source files and embedded assets (such as images) are compiled into a single output format
called SWF, which is a file that can be run directly in the stand-alone Flash Player or in a web browser through
an HTML wrapper file that is also generated by the build. These files are generated into the project’s output folder
(by default, this is named bin but you can name it anything you like).
LiveCycle Data Services ES projects When using LiveCycle Data Services ES you have the option of creating
projects that are compiled on the server. When the MXML application file is first accessed (through a web
browser), it is compiled into a SWF file.
Note: Even though you can configure LiveCycle Data Services ES projects to be compiled on the server, Flex Builder
compiles these projects as you develop your applications so that the compiler can validate code syntax and display
error messages. These projects have no output folder option and Flex Builder does not generate output files.
ActionScript 3.0 projects Like Flex projects, ActionScript 3.0 projects compile source files and embedded
assets into a SWF file.
Flex library projects For library projects, source files are components and related resources. When library
projects are built, a SWC file is generated into the output folder. A SWF file is archived into a SWC file containing
components, resources, and a catalog.xml file that is the manifest of the elements contained within the SWF file.

Automatic builds

In the stand-alone configuration of Flex Builder, your applications are built automatically. In the plug-in configu-
ration, you must select the Build Automatically option. While you have the option to build your applications
manually, as mentioned above, this should not be necessary. Turning off automatic builds also prevents the compiler
from identifying syntax errors and displaying warning and error messages as you enter code. In other words, you will
not get any feedback in the Problems view until the project is compiled; therefore, it is best to set Flex Builder to build
automatically.

Advanced project build options

With the advanced build options, you can control the timing and scope of your builds. For example, you can build a
single project, all projects in the workspace, or create a working set (a collection) of projects to build. All build
commands are accessible from the Project menu, as shown in the following example. For more information, see
“Advanced build options” on page 128.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

123

The Flex Builder compiler is incremental. It builds only those resources that have been added or affected by updates
and ignores all others. This saves time and system resources. You have the option, however, to rebuild all the
resources in the project. You do this by performing a clean build. You might do this if your application is behaving
erratically during testing and you want to eliminate all potential sources of the problem by discarding and rebuilding
all the files in your project. For more information, see “Advanced build options” on page 128.
If you create dependencies between separate projects in the workspace, the compiler automatically determines the
order in which the projects are built, so these dependencies resolve properly. You can, however, override the default
build order and manually set the order in which the projects in your workspace are built. For more information, see
“Building projects manually” on page 128.
You can also modify the build path, application list, and compiler settings for each project in the workspace. For
more information, see “Building projects manually” on page 128, “Managing project application files” on page 40
and “Advanced build options” on page 128.

Build errors displayed in the Problems view

Errors encountered by the compiler during builds appear in the Problems view, which is included in the Devel-
opment and Debugging perspectives, and in the code editor, where lines of code containing errors are marked with
an x, as in the following example:

For more information about working with the Problems view, see “Using the Problems view” on page 118.

Eclipse environment errors in the log file

Sometimes you encounter errors thrown by the Eclipse environment. These errors most often occur when resources
such as SWC files are not found at run time. In these cases, you can see the error messages in the Eclipse Error Log
file. The default location of this log file on Windows is c:\Documents and
Settings\user_name\workspace\.metadata\.log. For Macintosh, the default location is also in the workspace
directory, but files and directories that begin with a dot are hidden by default.

Custom build scripts with Apache Ant

You can modify and extend the standard build process by using Apache Ant, which is an open-source Java-based
build tool. For more information about creating custom builders, see “Customizing builds with Apache Ant” on
page 131.

Command-line access to the Flex framework compilers

You have direct command-line access to use the Flex framework compilers (mxmlc and compc). When you install
Flex Builder, the Flex framework prompt is available from the Windows start menu (Programs > Adobe). For more
information, see “About the command-line compilers” on page 131 in Building and Deploying Adobe Flex 3 Applica-
tions.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

124

Customizing project builds
Flex Builder allows you to build your applications automatically using the default project settings. This is the recom-
mended approach to building your applications. You can, however, customize project builds to suit your needs. For
example, you may want to change the default output folder or modify the compiler options.

Enabling and disabling automatic builds
In the stand-alone configuration of Flex Builder, your projects are built automatically. In the plug-in configuration,
you need to select this option yourself. Flex Builder is designed to automatically build your projects; turning this
option off prevents the compiler from identifying syntax errors and displaying warning and error messages as you
enter code. For more information about building your projects manually, see “Building projects manually” on
page 128.
Do one of the following:
• Select Project > Build Automatically.

• Open the Preferences dialog and select the General > Workspace. Select or deselect the Build Automatically
option.
The Build Automatically option affects all projects in the workspace.

Setting up a project output folder
When you create a project in Flex Builder, by default, the build output is generated into the output folder. This does
not apply to LiveCycle Data Services ES projects that use the server compile option because the application is
compiled on the server when you run it.
You can change the name of this folder when you create the project or after the project is created. You can either
create a folder or select an existing folder in the workspace.
1 In the Flex Navigator view, select a project.
2 Right-click (Control-click on Macintosh) and select Properties from the context menu.

The Project Properties dialog box appears.
3 Select the Flex Build Path properties page.
4 Change the existing output folder by entering a new name or by navigating to an existing folder in your project
and selecting it.
Note: You cannot change the output folder of a LiveCycle Data Services ES application in this manner because its
location is controlled by the Flex server and is accessible only through the project’s Flex-config.xml file.
5 Click OK.

The existing output folder is replaced by the new output folder.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

125

Important: When you change the name of the output folder, the original output folder and all of its contents will be
deleted. You will need to rebuild the project to regenerate the application SWF and HTML wrapper files.

Modifying a project build path
Each project has its own build path, which is a combination of the source path and the library path. (Library project
build paths are a little more complex. For more information, see “About library projects” on page 47.) The source
path is the location of the project MXML and ActionScript source files. The library path is the location of the base
Flex framework classes and any custom Flex components that you have created, in the form of SWC files.

Modify the source path
1 Select a project in the Flex Navigator view.
2 Right-click (Control-click on Macintosh) and select Properties from the context menu. The Project Properties
dialog box appears.
3 Select the Flex Build Path properties page. (If you’re working with an ActionScript project, select the Action-
Script Build Path properties page.)
4 Add a folder to the source path by clicking the Add Folder button.
5 Enter a name for the folder or click the Browse button to select the location of the custom classes.

You can also use path variables rather than entering the full path to the file system. You can either enter the name
of an existing path variable or create a new path variable; for more information, see “Creating a path variable” on
page 125.

6 Modify the source path as needed, and click OK.

Modify the library path
1 Follow steps 1 through 3 of the previous procedure to access the Flex Build Path properties page.
2 Click the Library Path tab.

The library path contains references to the Flex framework classes, which are contained in SWC files. A SWC
file is an archive file for Flex components and other assets (for more information, see “Using SWC files in your
projects” on page 50).
You can edit the path to the framework or, if you created custom Flex components, add new folders or SWC files
to the library path. You can also remove items from the path.

3 Modify the library path as needed, and click OK.

Creating a path variable
Rather than linking to resources by entering the full path to the local or network folder where you store your files,
you can define path variables. For example, you can define a path variable called Classes and then set the path to a
folder on the file system. You then select Classes as the location of the new linked folder. If the folder location
changes, you can update the defined path variable with the new location and all the projects that are linked to Classes
continue to access the resources.

Set or create a path variable
1 Select a project in the Flex Navigator view.
2 Right-click (Control-click on Macintosh) and select Properties from the context menu. The Project Properties
dialog box appears.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

126

3 Select the Flex Build Path properties page. (If you’re working with an ActionScript project, select the Action-
Script Build Path properties page.)
4 You can create a path variable for any item on the path (this includes folders in the source path and SWC folders,
projects, and SWC files in the library path). As an example, on the Source Path tab select the Add Folder button. The
Add Folder dialog box appears.
5 Enter a path variable using the following format: ${pathvariablename}.
Note: If the variable does not already exist, the path entry will fail. The list of existing resource variables is available by
selecting Window > Preferences from the main menu and then selecting General > Workspace > Linked Resources. You
can also manage linked resource variables on this properties page.
6 Click OK to add the path variable to the path.

Export Release Build
You can export an optimized release-quality version (non-debug SWF or AIR file) of your application using the
Export Release Build Wizard. Required assets are copied to a folder separate from the debug version with or without
source code (“View Source” in the application context menu). A .zip archive is also created automatically. You access
the wizard from the Project menu or on the toolbar.

Export Adobe AIR application installer
For AIR projects, a production build creates a digitally signed AIR file, which the user must install before running
the application. This process is similar to creating an installer .exe for a typical native application. Optionally you can
create an unsigned intermediate package which you can sign later before release. Before you begin the Export Release
Build, you must decide how to digitally sign your AIR application:

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

127

• Sign the application using a VeriSign or Thawte digital certificate
• Create and use a self-signed digital certificate
• Choose to package the application and sign it later
Digital certificates provided by VeriSign and Thawte give users some assurance as to your identity as a publisher and
verification that the installation file has not been altered since you signed it. Self-signed digital certificates serve the
same purpose but they are not validated by a third-party.
You also have the option of packaging your AIR application without a digital signature by creating an intermediate
AIR file (.airi). An intermediate AIR file is not valid in that it cannot be installed. It is instead used for testing (by the
developer) and can be launched using the AIR ADT command line tool. This capability is provided because in some
development environments signing is handled by a particular developer or team, which ensures an additional level
of security.
1 Select Project > Export Release Build.
2 In the Export Release Build wizard, choose the export settings for project, application, and folder.

• If your project does not have a server web root associated with it, all assets are copied to the project_name
folder, which is the default location.
• If your project has server web root associated with it (for example, PHP and J2EE), all assets are copied to
the web_root/project_name-debug folder.
• If you want users to view source code, select Enable View Source.
• Click Choose Source Files to select files to you want to publish, then click OK.
• Click Finish.

For more information about Adobe AIR files, see the Adobe AIR Developer’s Guide.

Digitally signing your AIR applications
1 Select Project > Export Release Build.

If you have multiple projects and applications open in Flex Builder, select the AIR project you want to package.
2 (Optional) Select Enable View Source if you want users to see the source code when they run the application.

Click Choose Source Files to select individual files (all source files are selected by default).
3 On the Digital Signature page:

Specify the digital certificate that represents the application publisher's identity. To generate a self-signed certif-
icate, click Create to enter data in required fields.
If you want to export a file that will be signed later, you can export an intermediate AIRI file.

4 Click Finish.

Debug version
The debug version of your application contains debugging information and is used when you debug your appli-
cation. The Export Release Build version does not include the additional debugging information and is therefore
smaller in size than the debug version. An HTML wrapper file contains a link to the application SWF file and is used
to run or debug your application in a web browser.
Note: Both the Run and Debug commands will launch the development build in the bin-output folder (not the exported
release build folder, bin-release.)

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

128

In a standard Flex application, a typical output folder resembles the following example:

You can run or debug your Flex and ActionScript applications either in a web browser or in the stand-alone Flash
Player. You control how your applications are run or debugged by modifying the project’s launch configuration (see
“Running your applications” on page 138). For more information about running and debugging your applications,
see “Running and Debugging Applications” on page 136.
When you use LiveCycle Data Services ES you create Flex applications that leverage the Flex server technologies.
When building LiveCycle Data Services ES applications, you have the option of compiling the output files locally
using Flex Builder or on the server when the application is first accessed.

Advanced build options
Flex Builder has advanced options for customizing project builds. You can, for example, builds projects manually,
change the default build order of projects in the workspace, and create custom builders using the Apache Ant utility.

Building projects manually
When you build projects manually, you can control the timing and scope of the build. For example, you can build a
single project, all projects in the workspace, or create a working set of projects or selected project resources and build
only those projects and resources. A working set is a collection of workspace resources (projects, files, and folders)
that you can select and group together and work with as you see fit. For more information about working sets, see
“Creating working sets” on page 56.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

129

The build options are available in the Project menu, as shown in the following example:

Build a single project
1 In the Flex Navigator view, select the project you want to build.
2 Select Project > Build Project from the main menu.

The selected project is built, and new or updated release and debug application files are added to the project
output folder.

Note: If any of your project files need to be saved, you are prompted to do so before the build begins. To bypass this save
prompt, you can set workspace preferences to save files automatically before a build begins.

Build all projects in the workspace
❖ Select Project > Build All from the main menu.

All projects in the workspace are built and application files are added to each project output folder. You are then
prompted to save files if you have not already chosen to save files automatically before a build begins.

Build a working set

Do either of the following:
• Select Project > Build Working Set > Select Working Set from the main menu. Click New to create a working set.
For more information about creating a working set, see “Creating working sets” on page 56.
• Choose an existing working set by selecting Project > Build Working Set > Select Working Set from the main
menu.
All projects in the working set are built and the application files are added to the project output folder.

Saving project resources automatically
When you build your projects manually, you are prompted to save all resources before the build begins. To bypass
this prompt, you can set workspace preferences to automatically save project resources.
1 Open the Preferences dialog, select General > Workspace.
2 Select the Save Automatically Before Build option.
3 (Optional) You can modify how often resources are saved by entering a value (in minutes) in the Workspace Save
Interval text box.

Performing a clean build
After a project has been built, subsequent builds affect only the resources that have been added or modified. To force
the Flex Builder compiler to rebuild all resources in a project, you can perform a clean build. You might perform a
clean build if, for example, you want to eliminate all potential sources of a problem you encountered when testing
your application.
1 Select Project > Clean from the main menu.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

130

2 Select the project (or projects) whose build files you want to discard and rebuild from scratch.
3 Click OK.

Changing the project build order
Flex Builder lets you create relationships between projects when working with multiple projects in the workspace.
For example, you can import ActionScript classes from one project into another. Creating relationships between
projects affects the order in which your projects are built.
By default, the compiler builds related projects in the order required to build them all properly. For example, if a
project refers to classes contained in another project, the project containing the classes is built first. In most cases,
relying on the compiler to build projects in the proper order is sufficient and your applications will be generated
successfully.
You can, however, change the build order. For example, you might change the build order if you created a custom
Ant builder and associated it with a project in your workspace, and you need to build that project before other
projects are built. For more information about creating custom builders, see “Customizing builds with Apache Ant”
on page 131.
1 Open the Preferences dialog and select General > Workspace > Build Order.

The Build Order dialog box displays the following options:
Use Default Build Order The default build order is dictated by the dependencies between projects and is
handled by the compiler.
Project Build Order You can manually set the build order for all the projects in the workspace. You can also
remove a project from the build order list; it will still be built, but only after all the projects in the build order list.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

131

Max Iterations When Building With Cycles If your projects contain cyclic references (something you should
avoid), you can set the number of build attempts so that the compiler can properly build all the projects. The
default maximum number of iterations is 10.

2 Modify the build order as needed, and click OK.

Customizing builds with Apache Ant
By creating a custom builder, you can modify and extend the standard build process. Flex Builder contains a standard
build script that is used to compile your applications. If needed, you can create custom build scripts using Apache
Ant, which is an open-source Java-based build tool.
While developing Ant build scripts is beyond the scope of this guide, this topic shows you how to create and apply a
custom builder to your projects.
You can apply custom builders to all the Flex Builder project types.

Create a builder
1 In the Flex Navigator view, select a project and then right-click (Control-click on Macintosh) to display the
context menu and select Properties.
2 Select the Builders properties page. If you’re using other Eclipse plug-ins, there may be more than one builder
listed. Flex Builder provides a builder named Flex, which you cannot modify.
3 Select New.
4 In the Choose Configuration Type dialog box, select the appropriate configuration type. Flex Builder supports
the program type. Select it and click OK to continue. From the new builder properties page you define the builder
properties and reference the Ant script (an XML file).
5 Click OK to apply it to the project.
Detailed information about working with Ant build scripts can be found in the Eclipse documentation, which is
available at http://help.eclipse.org/help31/index.jsp.

Using multiple SDKs in Flex Builder
Flex Builder lets you change the version of the SDK that you use to compile your projects. You can select the SDK
when you first create a project or at any time you are working on a project.
The combination of a framework and the compiler make up the SDK. If you select the Flex 2.0.1 SDK, then you are
using the 2.0.1 version of the Flex framework SWC files, and the 2.0.1 version of the Flex compiler. You cannot use,
for example, the Flex 3 compiler with the Flex 2.0.1 framework SWC files.
Using a different SDK can be useful if you are given a project that was developed using Flex Builder 2.0.1 (which uses
the Flex 2.0.1 SDK), but you are running Flex Builder 3 (which uses the Flex 3 SDK by default). By selecting an older
SDK to build with, you can maintain projects that have not been updated to be compatible with the latest version of
the SDK. In addition, if you are currently working on a project for the Flex 2.0.1 SDK, but want to use the Flex Builder
3 features such as code refactoring, you can upgrade your edition of Flex Builder, but then select the older SDK as
the default SDK.
If you develop a project and then change the SDK, Flex Builder performs a full rebuild, not an incremental build. As
a result, Flex Builder flags any differences that would throw compiler errors as if the project had been developed
under the original SDK. For example, if you use an AdvancedDataGrid component in your project (which was first
introduced in the Flex 3 SDK), but then change the project to use the 2.0.1 SDK, Flex Builder will notify you that the
AdvancedDataGrid class is unknown.

http://help.eclipse.org/help31/index.jsp

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

132

Flex Builder also regenerates all supporting files for the projects. These include the history management and deep
linking files used by the HTML wrapper. For Flex 2.0.1 SDK projects, Flex Builder creates the Flex 2.0.1. SDK–
compatible history.swf, history.html, and history.js history management files in the html-templates directory. For
Flex 3 SDK projects, Flex Builder creates the Flex 3 SDK–compatible deep-linking history.htm, history.js. and histo-
ryFrame.html files in the html-templates/history directory.
In addition, the availability of Flex Builder options change depending on the selected SDK. For example, if you add
a module to your project with a project that uses the Flex 2.0.1 SDK, Flex Builder does not let you select whether you
want to optimize that module or not. You must do this manually.
For more information about the differences between the Flex 3 SDK and the Flex 2.0.1 SDK, see “Backward compat-
ibility” on page 286 in Building and Deploying Adobe Flex 3 Applications.
When you create a new Flex project, Flex Builder uses the default SDK. The default is the latest SDK that shipped
with Flex Builder, but you can change it to any SDK that is visible in the list of available SDKs in Flex Builder.
When you create a new Flex library project or ActionScript project, you can select which SDK you want that project
to use in the New Flex Library Project and New ActionScript Project dialog boxes.

Add a new Flex SDK to the list of available SDKs
1 Open the Preferences dialog and select Flex > Installed Flex SDKs.

The currently installed SDKs are listed. The default SDK has a check mark next to its name.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

133

2 Click Add.

3 Enter the location of the SDK in the Flex SDK Location field.
4 Enter a name for the SDK in the Flex SDK Name field. You should not use the name of an existing SDK for this
field.
5 Click OK to save your changes.
6 Click OK again to add the new SDK to the list of available SDKs. This list is maintained in the Flex Builder
workspace, across Flex projects. The next time you create a new project, the list of available SDKs includes this new
SDK.

Change the SDK version for the current project
1 Select Project > Properties.
2 Select Flex Compiler.
3 Click Use a Specific SDK.
4 Select the SDK you want to use from the drop-down list. If the SDK you want to use is not in the drop-down list,
click the Configure Flex SDKs link.
5 Click OK.

Flex Builder applies the new SDK to the current project. This can cause errors and warnings to appear if the
project uses code that is not compatible with the new SDK.

Select a new default SDK
1 Open the Preferences dialog, select Flex > Installed Flex SDKs.

The default SDK has a check mark next to its name.
2 Select the check box next to an SDK. This SDK becomes the default SDK. It is also applied to any project that has
the Use Default SDK option selected in the Flex Compiler dialog box, including the current project. If the current
project is set to use a specific SDK, then it will continue to use that specific SDK, even if you change the workspace’s
default SDK to a different one.
3 Click OK to save your changes.
4 Click OK again.

Using multiple SDKs in a server-based project

You can also change the SDK when compiling in a server-based environment. When you create a new server-based
project, you are prompted either to compile the application locally or to compile the application on the server. If you
choose the first option, to compile the application locally, Flex Builder uses the server’s SDK. You can later change
the SDK to a different one. If you choose the second option, to compile the application on the server, Flex Builder
offloads the compilation to the server and uses the web-tier compiler to compile the project. In this case, you cannot
change the SDK.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

134

Publishing source code
When your applications are ready to be released, Flex Builder lets you choose whether users can view source code
and assets in the application. As with HTML, users can access and view the source in a web browser by selecting View
Source from the context menu. The source viewer formats and colors the code so that it is easy to read. It is also a
convenient way to share code with other Flex and ActionScript 3.0 developers.

Enable the view source option
1 With the completed application project open in the editor, select Project > Export Release Build.

2 Select Enable View Source or Include Source for ActionScript projects.
3 Click Choose Source Files.
4 In the Publish Application Source dialog box, select the application file or files to include in the View Source
menu. By default, the main application file is selected.
5 (Optional) Change the source output folder. By default, a source view folder is added to the project output folder.
6 Click OK.
When users run your application, they can access the source code by selecting View Source from the context menu.
The source code appears in the default web browser as a source tree that reflects the structure of the resources
(packages, folders, and files) contained in your application (the ones that you decided to publish). Selecting a source
element displays the code in the browser. Users can also download the entire set of source files by selecting the
Download.zip file link.
Note: Because of Internet Explorer security restrictions, you may not be able to view the source on your local devel-
opment computer. If this is the case, you will need to deploy the application to a web server to view the source.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

135

Adding the view source menu to ActionScript projects
In Flex projects you add the View Source menu option to your application with the Export Release Build wizard. In
ActionScript applications, you must add this option manually.
The Flex framework contains the following function that you can use in an ActionScript application’s constructor to
enable the view source menu:
com.adobe.viewsource.ViewSource.addMenuItem(obj:InteractiveObject, url:String,
hideBuiltins:Boolean = true)

You can use this in your ActionScript applications as shown here:
package {

import flash.display.MovieClip;
import com.adobe.viewsource.ViewSource;

public class MyASApp extends MovieClip
{

public function MyASApp()
{

ViewSource.addMenuItem(this, "srcview/index.html");

// ... additional application code here
}

}

}

This example demonstrates adding the view source menu using the default location of the source folder (srcview). If
you change the location of the source folder, your code should use the correct location.

136

Chapter 11: Running and Debugging
Applications

When you test your applications in Adobe® Flex® Builder™, you run the application SWF files in a web browser or the
stand-alone Flash Player. If you encounter errors in your applications, you use the debugging tools to set and manage
breakpoints in your code; control application execution by suspending, resuming, and terminating the application;
step into and over the code statements, select critical variables to watch, and evaluate watch expressions while the
application runs.

Topics

About running and debugging applications . 136
Running your applications. 138
Managing launch configurations . 139
Debugging your applications. 141

About running and debugging applications
After your projects are built into applications (see “Building Projects” on page 121), you can run and debug them in
Flex Builder.

Use debugger version of Flash Player

To use the Flex Builder debugging feature, you must run the debugger version of Flash Player. This version is
available as a browser plug-in or ActiveX control, or as a stand-alone version. This is the version that is installed with
Flex Builder, but it is also available as a download from the Adobe web site.
The installers for the debugger version of Flash Player are located in the flex_builder_install/Player directory.
You can programmatically determine which version of Flash Player you are running by using the
Capabilities.isDebugger() method. For more information, see “Determining Flash Player version in Flex” on
page 167 in Building and Deploying Adobe Flex 3 Applications.

Use launch configurations to run and debug applications

A launch configuration defines the project name, main application file, and the path to the run and debug versions
of the application. Flex Builder contains a default Flex application launch configuration that is used to create launch
configurations automatically for each of your projects. For more information, see “Managing launch configurations”
on page 139.
Note: In the plug-in configuration of Flex Builder, a launch configuration is not automatically created for you. You need
to create one the first time you run your application. See “Running your applications” on page 138.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

137

Customize launch configurations

You can customize the launch configurations that Flex Builder creates automatically for you. For example, you can
switch the main application file or modify the path to point to the SWF file rather than the HTML wrapper file so
that you can run and debug your applications directly in the stand-alone Flash Player instead of a web browser. You
can also create separate launch configurations for each of the application files in your project. For more information,
see “Creating or editing a launch configuration” on page 139.

Run and debug applications in a browser or the stand-alone Flash Player

By default, the launch configuration specifies that the run and debug paths point to the HTML wrapper files in the
output folder of your project; therefore, your applications are run and debugged in Flash Player running in a web
browser. Instead you can run and debug your applications in the stand-alone Flash Player (see “Running the appli-
cation SWF file in the stand-alone Flash Player” on page 140). You can also override the system default web browser
setting and run your applications in any browser you have installed (see “Changing the default web browser” on
page 140).

Run debugging tools from the code editor

The Flex Debugging perspective provides all the debugging tools you expect from a robust, full-featured devel-
opment tool. The debugging tools allow you to:
• Set and manage breakpoints
• Determine how to suspend, resume, and terminate the application
• Step into and over code
• Watch variables
• Evaluate expressions
For more information about the Flex Builder debugging tools, see “Debugging your applications” on page 141.
For more information about code editing, see “About code editing in Flex Builder” on page 102.

Activate the Debugging perspective at a breakpoint

You add breakpoints to executable lines of code in the code editor. When you begin a debugging session, the appli-
cation runs until the first breakpoint is hit. The Flex Debugging perspective is then activated and you can inspect the
state of and manage the application by using the debugging tools. For more information, see “Starting a debugging
session” on page 141.

Compare debug and non-debug versions of your Flex application

By default, Flex Builder generates debug versions of your Flex application’s SWF file and stores them in your project’s
bin-debug directory. This application is larger than the non-debug version because it includes additional code and
metadata that the debugger uses.
To generate a non-debug version of your Flex application, you can do one of the following:
• Select Project > Export Release Build. This creates a non-debug SWF file or AIR file in the bin-release directory.
• Add -debug=false to the Additional Compiler Arguments field. This generates a non-debug SWF file no
matter where you export it to.
For more information about Export Release Build, see “Export Release Build” on page 126.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

138

Running your applications
Your applications are run (and debugged) based on a launch configuration. When you create new Flex and Action-
Script applications, a launch configuration specifies the location of the built applications files and the main appli-
cation file. You can modify the launch configuration or create custom launch configurations. For more information,
see “Managing launch configurations” on page 139.
Running your projects opens the main application SWF file in your default web browser or directly in the stand-
alone Flash Player. For information about changing the default web browser or running and debugging with the
stand-alone Flash Player, see “Changing the default web browser” on page 140 and “Running the application SWF
file in the stand-alone Flash Player” on page 140.
You can run your projects in a number of ways in Flex Builder. For example, you can use the Run command, which
is available from the workbench main menu and toolbar, from the Flex Navigator view, and code editor pop-up
menus.
Note: The Run button has two elements: the main action button, and a pop-up menu that shows the application files in
the project that can be run or debugged. When you click the main action button, the default application file is run. Alter-
natively you can click the pop-up menu and select any of the application files in the project and create or edit a launch
configuration in the Create, Manage, and Run Configurations dialog box.

Run project with default Flex application launch configuration
1 In the Flex Navigator view, select the project to run.
2 On the main workbench toolbar, click the Run button.

If your project is not built yet, Flex Builder builds and runs it.
Your application appears in your default web browser or the stand-alone Flash Player.

You can run and debug any project files that have been set as application files. For more information see “Managing
project application files” on page 40.

Create custom launch configuration
1 In the Flex Navigator view, select the project you want to run and open the main application file in the editor.
2 From the main menu, select Run > Run > Other.
3 In the Create, Manage, and Run Configurations dialog box, select Flex Application.
4 Click the New button on the dialog box toolbar.
5 Enter the launch configuration name.
6 (Optional) Modify the configuration properties as needed.
7 (Optional) Click Run to run the application.

Run other application files in your project
1 In the Flex Navigator view, select the project to run.
2 From the main menu, select Run > Run > Other.
3 Select the application you want to run.

Run a custom launch configuration
❖ From the main menu, select Run > Run > Other.

In the Create, Manage, and Run Configurations dialog box, select an existing custom launch configuration or
create a new one. See “Managing launch configurations” on page 139.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

139

The Run command works a bit differently in the plug-in configuration of Flex Builder. Instead of running the
currently selected project, it runs the most recently launched configuration. You can also select from a list of recently
launched configurations.

Run the last launched configuration
❖ Click the Run button on the main toolbar.

Managing launch configurations
Launch configurations are used both to run and to debug applications. Flex Builder provides a default launch config-
uration for Flex and ActionScript applications. When you first run or debug a project, a project-specific launch
configuration is created. You edit the launch configuration to change the default main application file. You can also
modify the default launch path to run or debug in the stand-alone Flash Player rather than in a web browser.

Creating or editing a launch configuration
When you create and build a project, it is ready to be run or debugged. Both running and debugging of the applica-
tions in your project are controlled by a launch configuration. By default, Flex Builder creates a launch configuration
for each of the application files in your project the first time you run or debug them. The configurations are based
on the default Flex application configuration, and you can edit them as necessary.
Launch configurations are managed in the Create, Manage, and Run Configurations dialog box.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

140

Access and edit a launch configuration
1 In the Flex Navigator view, select a project.
2 With a project file open in the code editor, open the Create, Manage, and Run Configurations dialog box. The
way to do this depends on your Flex Builder installation.

• Stand-alone Flex Builder: Select the project and then select Run > Run > Other or Run > Debug > Other.
• Flex Builder plug-in with Eclipse 3.2: Right-click (Control-click on Macintosh) to display the context menu
and select Run As > Run or Debug As > Debug.
• Flex Builder plug-in with Eclipse 3.3: Right-click (Control-click on Macintosh) to display the context menu
and select Run As > Open Run Dialog or Debug As > Open Debug Dialog.

3 Select the launch configuration to edit.
A number of configurations may be listed if you have other projects in the workspace, if you have set other
project files as application files, or if other Eclipse plug-ins are installed.
By default, the first time you run a project, Flex Builder creates a project-specific launch configuration, which is
based on the default Flex application launch configuration.
You can edit application-specific configurations. You can also create new a launch configuration or base a new
configuration on an existing configuration.

4 Modify the configuration preferences as needed, and click Run or Debug.

Running the application SWF file in the stand-alone Flash Player
Your applications are run or debugged in the default web browser. You can change the default web browser to use
run and debug applications (see “Changing the default web browser” on page 140). You can also choose to run and
debug your applications in the stand-alone Flash Player by making a simple change to the launch configuration.

Run and debug applications in the stand-alone Flash Player
1 From the Create, Manage, and Run Configurations dialog box, select the launch configuration you want to
modify.
2 In the Main tab, deselect Use Defaults.
3 In either or both of the Run and Debug paths, click Browse.

The file selection dialog box appears and lists the contents of the build output folder.
4 Select the application SWF file in the bin-debug directory. Do not select the SWF file in the bin-release directory,
if there is one. This SWF file does not contain debug information.
5 Click Open to select the file and return to the configuration dialog box.
6 Apply your changes and use the modified configuration to run or debug the application.

Changing the default web browser
Flex Builder uses the system default web browser when running and debugging applications. While you cannot set
each launch configuration to use a specific web browser, you can change the workbench web browser setting, which
affects how all of your applications are run and debugged.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

141

Change the default web browser
1 Open the Preferences dialog and select General > Web Browser.

2 Select a web browser from the list of web browsers installed on your system.
Note: The Use Internal Web Browser option does not apply to running and debugging applications. Applications are
always run and debugged in an external web browser.
You can also add, edit, and remove browsers from the list.

3 Click OK to apply your changes.

Debugging your applications
Debugging is similar to running your applications. However, when you debug you control when the application stops
at specific points in the code and whether you want it to monitor important variables, and you can test fixes to your
code. Both running and debugging use a configuration to control how applications are launched. When you debug
your application, you run the debug version of the application file.
For an overview of the debugging tools available in the Flex Debugging perspective, see “The Flex Debugging
perspective” on page 19.
In some cases, you will be prompted to look at the Eclipse log file. For more information, see “Eclipse environment
errors in the log file” on page 123.

Starting a debugging session
To begin a debugging session, you run the application launch configuration in the Flex Debugging perspective.

Debug an application
1 In the Flex Navigator view, select the project to debug.
2 Select the Debug button from the main workbench toolbar.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

142

Note: The Debug button has two elements: the main action button and a drop-down list that shows the application
files in the project that can be run or debugged. When you click the main action button, the project’s default appli-
cation file is debugged. You can alternatively click the drop-down list and select any of the application files in the
project to debug. You can also access the launch configuration dialog box and create or edit a launch configuration
by selecting the Debug command.
If your project has not been built yet, Flex Builder builds and runs it in debug mode.

3 Your application appears in your default web browser or the stand-alone Flash Player and you can then use the
Flex Builder debugger to interact with it.
4 When a breakpoint is reached, the Flex Debugging perspective is activated in the workbench.

Start a debugging session in the plug-in configuration

The Debug command works differently in the plug-in configuration of Flex Builder. Instead of running the selected
project, it debugs the most recently launched configuration. You can also select from a list of recently launched
configurations.

Adding and removing breakpoints
You use breakpoints to suspend the execution of your application so you can inspect your code and use the Flex
Builder debugging tools to explore options to fix errors. You add breakpoints in the code editor and then manage
them in the Breakpoints view when you debug your applications.
You add breakpoints to executable lines of code. The debugger stops only at breakpoints set on lines that contain the
following:
• MXML tags that contain an ActionScript event handler, such as
<mx:Button click="dofunction()" ...>
• ActionScript lines such as those enclosed in an <mx:Script> tag or in an ActionScript file
• Any executable line of code in an ActionScript file
You can set breakpoints as you write code or while you debug.

Set a breakpoint in the code editor
1 Open a project file that contains ActionScript code.
2 Locate the line of code on which you want to set a breakpoint, and double-click in the marker bar to add a break-
point.

The marker bar is along the left edge of the code editor.
A breakpoint marker is added to the marker bar and to the list of breakpoints in the Breakpoints view of the Flex
Debugging perspective.
When the debugger encounters a breakpoint, the application is suspended, the Flex Debugging perspective is
displayed, and the line of code is marked with a breakpoint that is highlighted in the code editor. You then use
the debugging commands to interact with the code. (See “Managing the debugging session in the Debug view”
on page 143).

Remove a breakpoint in the code editor
❖ In the marker bar, double-click an existing breakpoint.

The breakpoint is removed from the marker bar and the Breakpoints view of the Flex Debugging perspective.
You manage breakpoints in the Breakpoints view. You can remove one or all breakpoints in the list or disable them
and re-enable them at a later time (see “Managing breakpoints in the Breakpoints view” on page 143).

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

143

Managing breakpoints in the Breakpoints view
In the Breakpoints view you manage breakpoints during a debugging session. You can remove, disable and enable,
or skip them.
The following commands are available from the Breakpoints view toolbar (as shown left to right):

Remove breakpoints in the Breakpoints view

You can remove one, a few, or all of the breakpoints in the Breakpoints view from the Breakpoints toolbar
❖ Select one or more breakpoints from the list of breakpoints, and then click Remove Selected Breakpoints.
You can also remove all the breakpoints in the Breakpoints view in a single action.

Remove all breakpoints from the Breakpoints view
❖ In the Breakpoints view, click Remove All Breakpoints.

Managing the debugging session in the Debug view
The Debug view is the control center of the Flex Debugging perspective. You use it to control the execution of the
application, to suspend, resume, or terminate the application, or to step into or over code.
The Debug view provides the following debugging commands, which are available from the Debug view toolbar (as
shown left to right):

Button/Command Description

Remove Selected Breakpoints Removes the selected breakpoints.

Remove All Breakpoints Removes all breakpoints.

Show Breakpoints Supported by
Selected Target

Displays breakpoints that are applicable to the select debug target.

Go to File for Breakpoint Opens the file (if it is not already open) that contains the breakpoint in the code editor and highlights
the line of code on which the breakpoint was set. You can also simply double-click the breakpoint to
display it in the code editor.

Skip All Breakpoints Skips all breakpoints.

Expand All Expands all breakpoints.

Collapse All Collapses all breakpoints.

Link With Debug View Links to Debug view.

Button/Command Description

Remove All Terminated Launches Clears all terminated debugging sessions.

Resume Resumes the suspended application.

Suspend Suspends the application so that you can inspect, step into the code, and so on.

Terminate Terminates the debugging session.

Disconnect Disconnects the debugger when debugging remotely.

Step Into Steps into the called function and stops at the first line of the function.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

144

Using the Console view
The Console view displays the output from trace statements placed in your ActionScript code and also feedback from
the debugger itself (status, warnings, errors, and so on).
The Console view provides the following commands, which are available from the Console view toolbar (as shown
left to right):

Managing variables in the Variables view
The Variables view displays the variables that the currently selected stack frame defines (in the Debug view). Simple
variables (name and value) are displayed on a single line. Complex variables can be expanded to display their
members. You use the Variables view to watch variables by adding them to the Expressions view and to modify the
value of variables during the debugging session.
All superclass members are grouped in a separate tree node; by default you see only the members of the current class.
This helps reduce excess numbers of variables that are visible at one time in Variables view.

Step Over Executes the current line of the function and then stops at the next line of the function.

Step Return Continues execution until the current function has returned to its caller.

Drop to Frame This command is not supported in Flex Builder.

Use Step Filters This command is not supported in Flex Builder.

Button/Command Description

Terminate Terminates the debugging session.

Remove Launch Clears all launched debugging sessions.

Remove All Terminated Launches Clears all terminated debugging sessions.

Clear Console Clears all content from the Console view.

Scroll Lock Prevents the Console view from scrolling.

Show Console When Standard Out
Changes

Show Console When Standard Error
Changes

Pin Console Prevents the console from refreshing its contents when another process is selected.

Display Selected Console

Open Console Opens new console and displays pop-up menu to select other console views.

Button/Command Description

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

145

The Variables view provides the following actions, which are available from the Variables view toolbar (as shown left
to right):

Change the value of a variable
1 Select the variable to modify.
2 Right-click (Control-click on Macintosh) to display the context menu and select Change Value.
3 Enter the new value and click OK.

The variable contains the new value.
Modified variables are displayed in red.

Find variables
❖ To locate a variable or variable member in the Variables view, with the Variables view selected, begin entering
the name of the variable you’re looking for. You can also use the wildcard character (*) to search for words that occur
anywhere within a variable name (for example, “*color”).

Using the Expressions view
You use the Expressions view to watch variables you selected in the Variables view and to add and evaluate watch
expressions while debugging your applications.
While debugging, you can inspect and modify the value of the variables that you selected to watch. You can also add
watch expressions, which are code expressions that are evaluated whenever debugging is suspended. Watch expres-
sions are useful for watching variables that may go out of scope when you step into a different function and are
therefore not visible in the view.
The Expressions view provides the following commands, which are available from the Variables view toolbar (as
shown left to right):

You can also hover the mouse pointer over an expression or variable in the source editor to see the value of that
expression or variable as a tooltip. You can add the expression to the Expressions view by right-clicking and selecting
Watch from the menu.

Command Description

Show Type Names Displays the type names of variables.

Show Logical Structure This command is not supported in Flex Builder.

Collapse All Collapses the Variables view.

Command Description

Show Type Names Shows the object types for items in the Expressions view.

Show Logical Structure This command is not supported in Flex Builder.

Collapse All Collapses all expressions in view.

Remove Selected Expressions Removes the selected variable or watch expression.

Remove All Expressions Removes all variables and watch expressions from the Expressions view.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

146

147

Chapter 12: Creating Modules

You can create, add, optimize, and debug modules in Adobe® Flex® Builder™. For information on writing module
code, see “Creating Modular Applications” on page 780 in the Adobe Flex 3 Developer Guide.

Topics

Creating modules in Flex Builder . 147
Adding modules to your project . 152
Optimizing modules in Flex Builder . 153
Debugging modules in Flex Builder. 154

Creating modules in Flex Builder
The following steps describe how to create a new module in Flex Builder. After you create a new module, you can
compile it.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

148

Create modules in Flex Builder
1 In Flex Builder, select File > New > MXML Module. The New MXML Module dialog box appears.

2 Select a parent directory for the module. You typically store modules in the same directory as the main appli-
cation so that relative paths to shared resources are the same.
3 Enter a filename for the module; for example, MyModule.
4 Enter the Width, Height, and Layout properties for the module.
5 (Optional) Select the Optimize for Application radio button to excludes from the module classes that are used
by the application. (This can result in smaller download sizes for your SWF files.) From the pop-up menu, select the
application that will be used to optimize this module. For more information, see “Optimizing modules in Flex
Builder” on page 153.

Select Do not Optimize to include all classes in the module, whether or not they are defined in the main appli-
cation. This can improve the performance of the incremental compilation. In addition, you can load the module
into any application, not just the application that you select here, because it has all of its dependencies compiled
into it.

6 Click Finish. Flex Builder adds a new MXML module file in your project.
The following example shows the default contents of this new application:
<?xml version="1.0" encoding="utf-8"?>
<mx:Module xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute" width="400"
height="300">
</mx:Module>

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

149

Compiling modules in Flex Builder
In Flex Builder, you can either run the module as if it were an application or you can build the module’s project. If
the modules are in the same project as your Flex application, then when you run your application, Flex Builder
compiles the modules’ SWF files for you. The SWF files are then loaded into the application at run time.
You cannot run the module-based SWF file as a stand-alone Flash application or load it into a browser window. It
must be loaded by an application as a module. If you run the module in Flex Builder to compile it, you should close
Adobe Flash Player or browser window and ignore any errors. Modules should not be requested by the Player or
through a browser directly.
The module SWF files and main application SWF file are typically in the same directory, although Flex Builder
compiles the modules at the same time as your application, regardless of their location (they can be in the same
directory as the application or in subdirectories).
You can also create a separate Flex or ActionScript project for each module or for groups of modules. This gives you
greater control over how modules are compiled because each project can have different compiler options than the
application or other modules. It also lets you compile the module’s project or projects without compiling the appli-
cation. However, this approach requires that you manually compile each module before compiling the application,
unless you compile all open projects in Flex Builder at one time.
If you compile modules separately from the main application, you must be sure to include or exclude debugging
information, based on whether you want to debug your application and modules. For more information, see
“Debugging modules in Flex Builder” on page 154.
The Flex Builder workflow is designed around associating modules with a single application. If you want to use
modules across multiple applications, consider encapsulating the code in a library component or class and including
that in a simple module for each application. Modules are not intended to be used for cross-application code reuse;
that is for libraries.

Using multiple projects for modules
When you set up your project’s architecture, you can decide to include modules in your application’s project, create
a separate project for each module, or create a separate project for all modules.
Using one project for each module has the following benefits:
• Module projects can be located anywhere in the workspace.
• Module projects can have their own compiler settings, such as a custom library path.
Using one project for each module has the following drawbacks:
• Having many projects uses more memory.
• Having many projects in a single workspace can make the workspace crowded.
• By default, when you compile the application, not all module projects are compiled even if they have changed.
• To optimize your module’s file size, you must manually apply the load-externs and link-report compiler
options.
A related approach is to use a single project for all modules, while keeping the application in its own separate project.
This has some of the drawbacks of using a single project for both the application and the modules, but it has many
of the same benefits as using a separate project for each module.
Using one project for all modules has the following benefits:
• The module project can be located anywhere in the workspace.
• You can compile just the modules or just the application, without having to recompile both at the same time.
• The module project can use the load-externs compiler option to remove overlapping dependencies.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

150

Using one module project for all modules has the following drawbacks:
• All of the modules in the module project must use the same compiler settings, such as the library path.
• By default, when you compile the application, the module project is not compiled even if the module project has
changed.
• To optimize your module’s file size, you must manually apply the load-externs and link-report compiler
options.

Creating projects for modules
When creating a separate project for modules, you change the module project’s output folder to a directory that is
used by the application. You also suppress the generation of wrapper files.

Create a separate project for modules in Flex Builder
1 Create a main project.
2 Create a new project for your module or modules.
3 Right click the module’s project and select Properties. The Properties dialog box appears.
4 Select the Flex Build Path option.
5 Change the Output Folder to point to the MainProject modules directory. For example, change it to the
following:

${DOCUMENTS}\MainProject\assets

This redirects the output of your module’s compilation to your application project’s (MainProject) assets
directory. In your main application, you can point the ModuleLoader url property to the SWF files in the assets
directory. The value of this property is relative to the output folder.

6 Click OK to save your changes.
7 Open the project properties again and select the Flex Compiler option.
8 Deselect the Generate HTML Wrapper File option. This prevents the module’s project from generating the
HTML wrapper files. You typically use these files only for the application. For modules, they are not necessary.
9 Click OK to apply the changes.

Compiling projects for modules
Compiling multiple projects in Flex Builder is a common operation. First you choose the order in which you want
the projects to be compiled and then you compile all projects at the same time.

Compile all projects at the same time in Flex Builder
❖ From the main menu, select Project > Build All.

Flex builds all projects in the workspace. The application files are added to each project’s output folder. If you
haven’t already chosen to save files automatically before a build begins, you are prompted to save the files.

If you want to change the build order, you use the Build Order dialog box. This is not always necessary. Projects that
use modules need to be compiled only by the time the main project application runs, not as it is compiled. In most
cases, the default build order is adequate.
However, if you want to eliminate overlapping dependencies, you might need to change the build order so that the
main application is compiled first. At that time, you use the link-report compiler option to generate the linker
report. When you compile the modules, you use the load-externs compiler option to use the linker report that was
just generated by the shell application. For more information on reducing module size, see “Optimizing modules in
Flex Builder” on page 153.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

151

Change the build order of the projects
1 Open the Preferences dialog and select General > Workspace > Build Order.

The Build Order dialog box appears.
2 Deselect the Use Default Build Order checkbox.
3 Use the Up and Down buttons to reorder the projects in the Project Build Order list. You can also use the Remove
Project button to remove projects that are not part of your main application or that are not modules used by the
application. The removed project will still be built, but only after all the projects in the build order list are built.
4 Click OK.
5 Modify the build order as needed and then click OK.
If you create dependencies between separate projects in the workspace, the compiler automatically determines the
order in which the projects are built, so these dependencies are resolved properly.
When you use a separate project for each module, you can compile a single module at a time. This can save time over
compiling all projects at once, or over compiling a single project that contains all module and application files.

Compile a single module’s project
1 Right-click the module’s MXML file in the module’s project.
2 Select Run Application. The Player or browser window tries to run the module after it is compiled. You can close
the Player or browser window and ignore any error messages that appear at run time. Modules are not meant to be
run in the Player or in a browser directly.

Adding modules to your project
In some cases, you use modules that are not in your main application’s project. You might have the module in a
separate project so that you can use custom configuration options, or you might want to share the module across
multiple applications. You must add the module’s source code to your application’s source path and then add the
module to the application’s module list before you can use it in your project.

Add an already-compiled module to your project
1 Select the main application in the navigator.
2 Select Project > Properties > Flex Build Path to add the module’s source to the application project’s source path.
3 Click the Add Folder button and browse to the module’s source path. Click OK to select the module. You must
do this for each external module that you add to your application’s project.
4 Click OK again to save your changes.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

152

5 Click Project > Properties > Flex Modules to add the module to the application’s module list. The Flex Modules
dialog box lists all modules that have been added to the current project or that are in the current project. When you
first create a project, this dialog box is empty.

6 Click the Add button. The Add Module dialog box appears.

7 Use the Browse button or enter the location of the module’s MXML file in the Source text box. All modules that
are in the project’s source path are available to add by using this dialog box.
8 Select one of the radio buttons under Module SWF Size to enable or disable module optimization. If you select
Optimize for Application, Flex Builder compiles the module against the selected application and excludes all classes
that are defined in the main application. These can include framework classes or custom classes. When you select
this option, you cannot use the same module in another application, because the list of excluded classes might be
different. For more information, see “Optimizing modules in Flex Builder” on page 153.
9 Click OK to save your changes. Flex Builder adds the module to the list of available modules in your application’s
project.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

153

Optimizing modules in Flex Builder
In Flex Builder, you typically select a single application to optimize the module against when you first create the
module or add it to a project. If you later decide to change the application that you optimize the module against, or
if do not want to optimize the module, you can edit the module’s properties within the project. For more information,
see “Reducing module size” on page 785 in the Adobe Flex 3 Developer Guide.

Optimize modules with Flex Builder
1 Right-click the application’s project in the Navigator and select Properties. The project’s Properties dialog box
appears.
2 In the left pane, select Flex Modules.
3 From the list of modules, select the module and then click the Edit button. The Edit Module dialog box appears.

4 To remove optimization, select the Do Not Optimize radio button under Module SWF Size.
5 To optimize the module for a different application, select the new application from the Optimize for Application
pop-up menu.
6 Click OK.
To further optimize a module’s file size, you can remove debugging information. If you build a module in Flex
Builder, debugging information is included in the module by default. By removing debugging information, you can
further reduce the size of the module. For instructions on how to remove debugging information from modules, see
“Debugging modules in Flex Builder” on page 154.

Debugging modules in Flex Builder
To debug modules and applications, you must include debug information in the SWF files when they are compiled.
To do this in Flex Builder, you just run the application, because debug information is included by default. On the
command line, you set the debug compiler option to true. The default is true, but if you disabled it in a configu-
ration file, you must be sure to override it.
By default, Flex Builder builds a single SWF file that includes debug symbols, so both Run and Debug work when
you execute an application that uses modules in Flex Builder. However, including debug symbols in a module’s SWF
file makes the SWF file larger. To exclude debug symbols prior to deployment, you must disable debugging for the
application’s modules. To do this, you export the release version of the modules by selecting Project > Export Release
Build.
To exclude debugging information from SWF files in Flex Builder, you can either set the debug option to false in
the Additional Compiler Arguments text box, or you can output the SWF files by using the Export Release Build
feature, which generates nondebug SWF files. This includes the modules, if those modules are in the current project.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

154

If you create a separate project for your modules, you can enable or disable debugging for the entire project, without
changing the settings of your main application.
When you want to debug a module, you must also debug the application that loads the module. The Flex debugger
will not connect to an application that does not contain debug information, even if the modules that the application
loads contain that information. In other words, you cannot exclude debug information from the application if you
want to debug the module that the application loads.
When you’re using modules in an AIR application, the module SWF must be located in the same directory as the
main application SWF or one of its subdirectories.

155

Chapter 13: Profiling Flex applications

As you interact with your application, identify performance bottlenecks and memory leaks in your applications by
using the Adobe Flex profiler in Adobe Flex Builder. The profiler is only available for Flex Builder Professional.
This topic contains the following sections:
About profiling . 155
How the Flex profiler works . 157
Using the profiler . 158
About the profiler views. 166
About garbage collection . 179
Identifying problem areas . 180
About profiler filters . 183

About profiling
The Adobe Flex profiler helps you identify performance bottlenecks and memory leaks in your applications. You
launch it from within Adobe Flex Builder, and as you interact with your application, the profiler records data about
the state of the application, including the number of objects, the size of those objects, the number of method calls,
and the time spent in those method calls.
Profiling an application can help you understand the following about your application:
• Call frequency In some cases, you might discover that computationally expensive methods are called more
than once when multiple calls are not necessary. By identifying the most commonly called methods, you can focus
your performance-tuning time on a smaller area of the application, where it will have the most impact on perfor-
mance.
• Method duration The profiler can tell you how much time was spent in a particular method, or, if the method
is called multiple times, what the average amount of time spent in that method was during a profiling section. If you
discover that some methods cause a performance bottleneck, you can try to optimize those methods.
• Call stacks By tracing the call stack of a method, you can see the entire path that the application takes as it calls
successive methods. This might lead you to discover that methods are being called unnecessarily.
• Number of instances (object allocation) You might discover that the same object is being created many times,
when only a specific number of instances are required. In these cases, you might consider implementing a Singleton
pattern if you really require only one of those objects, or applying other techniques that reduce excessive object
allocation. If the number of objects is large, but necessary, you might consider optimizing the object itself to reduce
its aggregate resource and memory usage.
• Object size If you notice that some objects are disproportionately large, you can try to optimize those objects
to reduce their memory footprint. This is especially helpful if you optimize objects that are created many times in
the application.
• Garbage collection When comparing profiling snapshots, you might discover that some objects that are no
longer required by the application are still “loitering,” or are still stored in memory. To avoid these memory leaks,
you add logic that removes any remaining references to those objects.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

156

You should not look at profiling as only a single, discrete step in the process of developing an application. Rather,
profiling should be an integral part of each step of application development. If possible, you should profile an appli-
cation early and often during application development so that you can quickly identify problem areas. Profiling is an
iterative process, and you gain the most benefit by profiling as often as possible.

About types of profiling
Before you use the profiler, you should decide what kind of profiling you are going to do: performance profiling or
memory profiling.
Performance profiling is the process of looking for methods in your application that run slowly and can be improved.
Once identified, these hot spots can be optimized to speed up execution times so that your application runs faster
and responds more quickly to user interaction. You generally look for two things when doing performance profiling:
a method that is called only once but takes more time to run than similar methods, or a method that may not take
much time to run but is called many times. You use the performance profiling data to identify the methods that you
then optimize. You might find that reducing the number of calls to a method is more effective than refactoring the
code within the method.
Memory profiling is the process of examining how much memory each object or type of object is using in the appli-
cation. You use the memory profiling data in several ways: to see if there are objects that are larger than necessary,
to see if there are too many objects of a single type, and to identify objects that are not garbage collected (memory
leaks). By using the memory profiling data, you can try to reduce the size of objects, reduce the number of objects
that are created, or allow objects to be garbage collected by removing references to them.
Memory profiling can slow performance of your application because it uses much more memory than performance
profiling. You should only do memory profiling when necessary.
You often do both performance profiling and memory profiling to locate the source of performance problems. You
use performance profiling to identify the methods that result in excessive memory allocation and long execution
times. Then, you use memory profiling to identify the memory leaks in those methods.
When you know what kind of profiling you are going to do, you can start the profiler.

Additional resources
The profiler alone does not improve the size, speed, and perceived performance of your application. After you use
the profiler to identify the problem methods and classes, look at the following resources in the Flex documentation
for help in improving your application:
• “Optimizing Flex Applications” on page 42 in Building and Deploying Adobe Flex 3 Applications
• “Improving Startup Performance” on page 67 in Building and Deploying Adobe Flex 3 Applications

How the Flex profiler works
The profiler is an agent that communicates with the application that is running in Flash Player. It connects to your
application with a local socket connection. As a result, you might have to disable anti-virus software to use it if your
antivirus software prevents socket communication.
When the profiler is running, it takes a snapshot of data at very short intervals, and records what Adobe Flash Player
is doing at the time. This is called sampling. For example, if your application is executing a method at the time of the
snapshot, the profiler records the method. If, by the next snapshot, the application is still executing that same
method, the profiler continues to record the time. When the profiler takes the next snapshot, and the application has
moved on to the next operation, the profiler can report the amount of time it took for the method to execute.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

157

Sampling lets you profile without noticeably slowing down the application. The interval is called the sampling rate,
and it occurs every 1 ms or so during the profiling period. This means that not every operation is recorded and that
not every snapshot is accurate to fractions of a millisecond. But it does give you a much clearer idea of what opera-
tions take longer than others.
By parsing the data from sampling, the profiler can show every operation in your application, and the profiler
records the execution time of those operations. The profiler also records memory usage and stack traces and displays
the data in a series of views, or panels. Method calls are organized by execution time and number of calls, as well as
number of objects created in the method.
The profiler also computes cumulative values of data for you. For example, if you are viewing method statistics, the
cumulative data includes the time and memory allocated during that method, plus the time and memory allocated
during all methods that were called from that method. You can drill down into subsequent method calls until you
find the source of performance problems.

About the profiling APIs
The profiler uses the ActionScript APIs defined in the flash.sampler.* package. This package includes the Sample,
StackFrame, NewObjectSample, and DeleteObjectSample classes. You can use the methods and classes in this
package to write your own profiler application or to include a subset of profiling functionality in your applications.
In addition to the classes in the flash.sampler.* package, the profiler also uses methods of the System class.

About internal player actions
Typically, the profiler records that Flash Player was executing methods of a particular class during the sampling
snapshot, but sometimes it also records internal player actions. These actions are denoted with brackets and include
[keyboardEvent], [mark], and [sweep].
For example, if [keyboardEvent] is in the method list with a value of 100, you know that the player was doing some
internal action related to that event at least 100 times during your interaction period.
The following table describes the internal Flash Player actions that appear in profiling data:

You can use this information to help you identify performance issues. For example, if you see a large number of
entries for [mark] and [sweep], you can assume that there are a large number of objects being created and then
marked for garbage collection. By comparing these numbers across different performance profiles, you can see
whether changes that you make have any effect.
To view data about these internal actions, you view a performance profile in the Performance Profile view or a
memory profile in the Allocation Trace view. For more information, see “Using the Performance Profile view” on
page 174 and “Using the Allocation Trace view” on page 171.

Action Description

[generate] The just-in-time (JIT) compiler generates AS3 machine code.

[mark] Flash Player marks live objects for garbage collection.

[pre-render] Flash Player prepares to render objects (including the geometry calculations and display list traversal that happens
before rendering).

[reap] Flash Player reclaims DRC (deferred reference counting) objects.

[render] Flash Player renders objects in the display list (pixel by pixel).

[sweep] Flash Player reclaims memory of unmarked objects.

[verify] The JIT compiler performs ActionScript 3.0 bytecode verification.

[event_typeEvent] Flash Player dispatches the specified event.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

158

Using the profiler
The profiler requires Flash Player version 9.0.115 or later. You can profile applications that were compiled for Flex 2,
Flex 2.0.1, and Flex 3. You can use the profiler to profile ActionScript 3.0 applications that were built with Flash
Authoring, as well as Adobe® AIR™ applications.
The profiler requires debugging information in the application that you are profiling. When you compile an appli-
cation and launch the profiler, Flex Builder includes the debugging information in the application by default. You
can explicitly include debugging information in an application by setting the debug compiler option to true. If you
export an application by using the Export Release Build option, the application does not contain debugging infor-
mation in it.

Starting, stopping, and resuming the profiler
You can profile applications that you are currently developing in Flex Builder. Flex Builder includes debugging infor-
mation when it compiles and runs an application during a profiling session. You can also profile external applications
that you are not currently developing in Flex Builder but whose SWF file is available with a URL or on the file system.
To profile an application, the application’s SWF file must include the debugging information. For more information,
see “Profiling external applications” on page 164.

Start profiling a Flex application
1 Close all instances of your browser.
2 Open your Flex application in Flex Builder.
3 Click the Profile application_name button in the main toolbar. Flex Builder informs you that you should close all
instances of your browsers if you have not already done so.
4 Click the OK button. Flex Builder compiles the application and launches it in a separate browser window. Flex
Builder also displays the Configure Profiler dialog box.
5 Select the options in the Configure Profiler dialog box and click Resume. To profile an application, you must
select the Enable Memory Profiling option or the Enable Performance Profiling option.

The following table describes the options:

Setting Description

Connected From Shows you the server that you are launching the application from. If the application is running on
the same computer as the profiler, this value is localhost. You cannot change this value. However,
you can profile an application that is running on a separate computer.

Application Shows you which application you are about to profile. You cannot change this value.

Enable Memory Profiling Instructs the profiler to collect memory data. You use this option to detect memory leaks or find
excessive object creation.

If you are doing performance profiling, you can deselect this option.

The default value is that the option is selected.

Watch Live Memory Data Instructs the profiler to display memory data in the Live Objects view while profiling. This is not
required for doing either memory or performance profiling. You can select this option only if you
selected Enable Memory Profiling.

The default value is that the option is selected.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

159

You can change the default values of these options by changing the profiling preferences. For more information, see
“Setting profiler preferences” on page 163.
6 You can now start interacting with your application and examining the profiler data.

Pause and resume profiling a Flex application

After you have started the profiler, you can pause and restart applications in the Profile view. You select an appli-
cation and then select the action you want to perform on that application. The following example shows you the
Profile view with multiple applications. One application is currently running, and all other applications have been
terminated.

1 Select the application in the Profile view.
2 Click the Suspend button. Flex marks the application in the Profile view with [Suspended].
3 To resume profiling the application, select the application and click the Resume button. Flex marks the appli-
cation in the Profile view with [Running].

Stop profiling a Flex application
1 Select the application in the Profile view.
2 Click the Terminate button to end the profiling session. This does not close the browser or kill the Player process.
You must do that manually.
3 To return to the Flex Development perspective, select Flex Development from the perspective drop-down list.
You can also change perspectives by selecting Control+F8 on Windows.

Generate Object Allocation Stack Traces Instructs the profiler to capture a stack trace each time a new object is created. Enabling this
option can slow down the profiling experience, so you should only do it when absolutely neces-
sary. You can select this option only if you selected Enable Memory Profiling.

The default value is that the option is unselected.

If you do not select this option, you cannot view allocation trace information on the Object Refer-
ences view or on the Allocation Trace view.

Enable Performance Profiling Instructs the profiler to collect stack trace data at the sampling intervals. You use these samples
to determine where the bulk of the execution time in your application is spent.

If you are doing memory profiling, you can deselect this option.

The default value is that the option is selected.

Setting Description

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

160

About the profiler buttons
The following table describes the buttons in the profiler toolbar:

Button Name Description

Resume Resumes the profiling session. This option is enabled only when an application name is
selected and is currently suspended.

Suspend Suspends the profiling session. This option is enabled only when an application name is
selected and is currently running.

Terminate Terminates the profiling session. This option is enabled only when an application name is
selected and it has not been terminated already.

Run Garbage Collector Instructs Flash Player to run garbage collection. This option is enabled only when an
application name is selected and the application is currently running.

For more information about garbage collection, see “About garbage collection” on
page 179.

Take Memory Snapshot Stores the memory usage of an application so that you can examine it or compare it to
other snapshots.

This option is enabled only when an application name is selected and that application is
currently running and when you select Enable Memory Profiling in the launch dialog box.
The profiler adds new memory snapshots as children of the selected application in the
Profile view.

To open the new memory snapshot in the Memory Snapshot view, double-click the
memory snapshot entry.

Garbage collection occurs implicitly before memory snapshots are recorded. In other
words, clicking the Take Memory Snapshot button is the equivalent of clicking the Run
Garbage Collection button and then clicking the Take Memory Snapshot button.

For more information about memory snapshots, see “Using the Memory Snapshot view”
on page 168.

Find Loitering Objects Compares two memory snapshots in the Loitering Objects view.

This option is enabled only when two memory snapshots are selected and when you
selected Enable Memory Profiling in the launch dialog box.

For more information about the Loitering Objects view, see “Using the Loitering Objects
view” on page 177.

View Allocation Trace Compares the methods between two memory snapshots in the Allocation Trace view.

This option is enabled only when two memory snapshots are selected, and when you
select Enable Memory Profiling in the launch dialog box.

For more information about the Allocation Trace view, see “Using the Allocation Trace
view” on page 171.

Reset Performance Data Clears the performance profiling data.

This option is enabled only when an application name is selected and the application is
running and when you select Enable Performance Profiling in the launch dialog box.

You typically click this button, interact with your application and then click the Capture
Performance Profile button to get a performance snapshot of the application from the
time you reset the data.

For more information about the Performance Profile view, see “Using the Performance
Profile view” on page 174.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

161

Some views in the profiler, such as Method Statistics and Object Statistics, have navigation buttons that you use to
traverse the stack or change the view. The following table describes the navigation buttons in these profiler views:

Saving and loading profiling data
After you run the profiler, you can save the data so that you can compare a snapshot from the current profiling
session with a snapshot you take after you make changes to your code. This helps you determine if you identified the
right problem areas and if your changes are improving the performance and memory usage of your application.
When you save profiling data, you save all the application data in that profile. This includes all performance profiles,
memory snapshots, and allocation traces. Flex Builder writes this information to a group of binary files in the
location that you specify.

Save profiling data
1 Select the application in the Profile view.
2 Open the drop-down list in the Profile view and select Save. The Browser for Folder dialog box appears.
3 Choose a location to save the profile data and click OK. You should create a new folder for each set of profiling
data that you want to save. Otherwise, the new data will overwrite the old data if you choose the same folder.

Retrieve saved profiling data
1 Select the Saved Profiling Data view.
2 Click the Open button. The Browser for Folder dialog box appears.

Capture Performance Profile Stores a new performance snapshot as a child of the selected application.

This option is enabled only when an application name is selected and the application is
running and when you select Enable Performance Profiling in the launch dialog box.

To open the Performance Profile view, double-click the performance snapshot entry.

For more information about the Performance Profile view, see “Using the Performance
Profile view” on page 174.

Delete Removes the selected snapshot’s data from memory. Clicking this button also removes
the application from the profile view, if the application has been terminated.

This option is enabled only when a performance or memory snapshot is selected.

Button Name Description

Back Shows all the methods that you traversed from the first selected method to the currently displaying
method.

Forward Shows the currently displayed method and the methods that lead to the currently selected method.
This item is enabled after you move backward.

Home Displays the first selected method.

Open Source File Opens a source editor that shows the source code of the selected method.

Filters Lets you control which methods you want to include in the table. For more information, see “About
profiler filters” on page 183.

Show/Hide Zero
Time Methods

Shows or hides methods that have a time of 0.00 in the average time column, which is a result of not
showing up in any samples.

Button Name Description

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

162

3 Navigate to the folder that contains your application’s profile data and click OK. Flex Builder displays the
available profiling data in the Saved Profiling Data view. You cannot resume the application in this view, but you can
view the memory snapshots, performance profile, or other data that you saved.
You cannot delete saved application data from within Flex Builder.

Delete profiling data
1 Select the snapshot from the application in the Profile view.
2 Click the Delete button.

Setting profiler preferences
You can set some profiler preferences so that your settings are applied to all profiling sessions. You can use these
settings to define the Flash Player/browser that you use to profile the application in, as well as define the default filters
and the port number that the application is available on, if the profiled application is running on a server.

Set Flex Builder preferences for multiple profiling sessions
❖ Open the Preferences dialog and select Flex > Profiler.
The following example shows the profiler preferences:

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

163

Select the options under the Profiler menu to navigate to the various options. The following table describes the
preferences you can set:

Profiling external applications
In addition to profiling applications that you are developing in Flex Builder, you can profile external applications.
External applications can be SWF files located anywhere that is accessible. This includes applications that are located
on a remote web server or an application that is on your local file system.
The external application must be compiled with debugging information in it before you can profile it. To compile an
application with debugging information in it, add debug=true to the compiler arguments. Flex Builder also returns
this error if you specify an unknown file type, such as HTML or JSP. You can only specify SWF files as external appli-
cations to profile. If the application has no debugging information, Flex Builder returns the following error:

If you get this error, recompile the application with the debug compiler option set to true and launch it again.
For the SWF file, you can specify either a URL or a file system location. If you specify a URL, Flex Builder launches
the application’s SWF file within the default browser. The browser must be using the debugger version of Flash Player
to successfully profile the application.
If you specify a file system location for the SWF file, Flex Builder opens the application within the debugger version
of the stand-alone Flash Player. In general, you should request the file by using a URL. Running applications in the
stand-alone version of Flash Player can produce unexpected results, especially if your application uses remote
services or network calls.

Profile an external application
1 Change to the Flex Profiling perspective.

Menu Selection Description

Profiler Lets you select the default profiling method. Select the options to enable or disable memory profiling and
performance profiling.

Connections Lets you define the port number that Flex Builder listens to the profiled application on.

The default port number is 9999. You cannot change the port to 7935, because that port is used by the
debugger.

Exclusion Filters Lets you define the default packages that are excluded from the profiler views. For more information on
using filters, see “About profiler filters” on page 183.

Inclusion Filters Lets you defines the default packages that are included in the profiler views. All other packages are
excluded. For more information on using filters, see “About profiler filters” on page 183.

Player/Browser Lets you define the location of the Flash Player executable and browser executable that Flex Builder uses to
run your profiled application.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

164

2 Select Profile > Profile External Application. The Profile External Application dialog box appears.

3 Select the Launch the Selected Application option (the default) and click the New button. The Add an Appli-
cation dialog box appears.

You can also manually launch the application by selecting the Launch the Application Manually Outside Flex
Builder option.

4 Enter the location of the SWF file and click OK, or click the Browse button and locate your application on your
file system.
5 Click the Launch button. If you specified a URL for the location of the application, Flex Builder launches the
application within the default browser. If you specified a file system location for the application, Flex Builder opens
the application in the stand-alone version of Flash Player.

If you specified a SWF file that was not compiled with debugging information, Flex Builder returns an error.
Recompile the application with the debug compiler option set to true and launch it again.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

165

About the profiler views
The Flex profiler is made up of several views (or panels) that present profiling data in different ways. The following
table describes each of these views:

View Description

Profile Displays the currently connected applications, their status, and all the memory and performance snapshots that
are associated with them.

Initially, profiling sessions start with no recorded performance or memory snapshots.

Saved Profiling Data Displays a list of saved snapshots, organized by application. You can load saved profiling data by double-clicking
the saved snapshot in this list.

For more information, see “Saving and loading profiling data” on page 162.

Live Objects Displays information about the classes used by the current application. This view shows which classes are instan-
tiated, how many were created, how many are in the heap, and how much memory the active objects are taking
up.

For more information, see “Viewing information in the Live Objects view” on page 167.

Memory Snapshot Displays the state of the application at a single moment in time. Contrast this with the Live Objects view, which
is updated continuously. The Memory Snapshot view shows how many objects were referenced and used in the
application and how much memory each type of objects used at that time.

You typically compare two memory snapshots taken at different times to determine the memory leaks that exist
between the two points in time.

You view the Memory Snapshot view by clicking the Take Memory Snapshot button and then double-clicking the
memory snapshot in the Profile view.

For more information, see “Using the Memory Snapshot view” on page 168.

Loitering Objects Displays the objects that were created between two memory snapshots and still exist in memory or were not
garbage collected. You can double-click a class name in the table to open the Object References view. This lets
you examine the relationship between the selected objects and the other objects.

You view the Loitering Objects view by selecting two memory snapshots and clicking the Loitering Objects
button.

For more information, see “Using the Loitering Objects view” on page 177.

Allocation Trace Displays method statistics when comparing two memory snapshots.

You view the Allocation Trace view by selecting two memory snapshots and then clicking the View Allocation
Trace button.

For more information, see “Using the Allocation Trace view” on page 171.

Object References Displays objects and the objects that reference them.

You view the Object References view by double-clicking a class name in the Memory Snapshot or Loitering
Objects views.

For more information, see “Using the Object References view” on page 169.

Object Statistics Displays details about the caller and callee of the selected group of objects.

You view the Object Statistics view by double-clicking an entry in the Allocation Trace view.

For more information, see “Using the Object Statistics view” on page 172.

Performance Profile Displays how the methods in the application performed during a given time interval. You then click a method
name in the table to open the Method Statistics view, which lets you locate performance bottlenecks.

You view the Performance Profile view by double-clicking one of the performance snapshots in the Profile view.

For more information, see “Using the Performance Profile view” on page 174.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

166

Viewing information in the Live Objects view
The Live Objects view displays information about the classes that the current application uses. This view shows
which classes are instantiated, how many were created, how many are in memory, and how much memory the active
objects are taking up.
The profiler updates the data in the Live Objects view continually while you profile the application. You do not have
to refresh the view or keep focus on it to update the data.
To use the Live Objects view, you must enable memory profiling when you start the profiler. This is the default
setting. If you close the Live Objects view and want to reopen it, open the drop-down list in the Profile view and select
Watch Live Objects.
The following example shows the Live Objects view:

The following table describes the columns in the Live Objects view:

Method Statistics Displays the performance statistics of the selected group of methods.

You view the Method Statistics view by double-clicking a row in the Performance Profile view or selecting a
method in the Performance Profile and clicking the Open Method Statistics button.

For more information, see “Identifying method performance characteristics” on page 176.

Memory Usage Graphically displays peak memory usage and current memory usage over time.

For more information, see “Using the Memory Usage graph” on page 178.

Column Description

Class The classes that have instances in the currently running application.

Package The package that each class is in. If the class is not in a package, then the value of this field is the file name that
the class is in. The number following the dollar sign is a unique ID for that class.

If the Package field is empty, the class is in the global package or the unnamed package.

Cumulative Instances The total number of instances of each class that have been created since the application started.

Instances The number of instances of each class that are currently in memory. This value is always smaller than or equal
to the value in the Cumulative Instances column.

Cumulative Memory The total amount of memory, in bytes, that all instances of each class used, including classes that are no longer
in memory.

Memory The total amount of memory, in bytes, that all instances of each class currently use. This value is always smaller
than or equal to the value in the Cumulative Memory column.

View Description

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

167

You typically use the data in the Live Objects view to see how much memory is being used by objects. As objects are
garbage collected, the number of instances and memory use decrease, but the cumulative instances and cumulative
memory use increase. This view also tells you how memory is used while the application is running.
For more information on running and analyzing the results of garbage collection, see “About garbage collection” on
page 179.
You limit the data in the Live Objects view by using the profiler filters. For more information, see “About profiler
filters” on page 183.

Using the Memory Snapshot view
The Memory Snapshot view displays information about the application’s objects and memory usage at a particular
time. Unlike the Live Objects view, the data in the Memory Snapshot view is not continually updated.
To use the Memory Snapshot view, you must enable memory profiling when you start the profiler. This is the default
setting.

Create and view a memory snapshot
1 Start a profiling session.
2 Interact with your application until you reach a point in the application’s state where you want to take a memory
snapshot.
3 Select the application in the Profile view.
4 Click the Take Memory Snapshot button.

The profiler creates a memory snapshot and marks it with a timestamp. The profiler also implicitly triggers
garbage collection before the memory snapshot is recorded.

5 To view the data in the memory snapshot, double-click the memory snapshot in the Profile view.
The following example shows the Memory Snapshot view:

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

168

The following table describes the columns in the Memory Snapshot view:

You typically use a memory snapshot as a starting point to determine which classes you should focus on for memory
optimizations or to find memory leaks. You do this by creating multiple memory snapshots at different points in time
and then comparing the differences in the Loitering Objects or Allocation Trace views.
You can save memory snapshots to compare an application’s state during a different profiling session. For more infor-
mation, see “Saving and loading profiling data” on page 162.
When you double-click a row in the Memory Snapshot view, the profiler displays the Object References view. This
view displays the stack traces for the current class’s instances. You view the stack traces for the current class’s
instances in the Object References view. For more information about the Object References view, see “Using the
Object References view” on page 169.
You can also limit the data in the Memory Snapshot view by using the profiler filters. For more information, see
“About profiler filters” on page 183.

Using the Object References view
The Object References view displays stack traces for classes that were instantiated in the application.
To open the Object References view, double-click a class name in the Memory Snapshot or Loitering Objects views.
The Object References view displays information about the selected class’s instances.
The Object References view displays data in two tables: the Instances table and the Allocation Trace table.
 The Instances table lists all objects that hold references to the current object. The number in parentheses after the
class name is the total number of references to the current object. You cannot view the number of forward references
for an object. If no objects hold references to the specified object, then there will be no objects listed in this table.
This would not normally happen because that object should have been garbage collected if it had no references.

Column Description

Class The classes that had instances in memory at the time that you recorded the memory snapshot.

Package The package that each class is in. If the class is not in a package, then the value of this field is the file name that the class is
in. The number following the dollar sign is a unique ID for that class.

If the Package field is empty, the class is in the global package or the unnamed package.

Instances The number of instances in memory of each class at the time that you recorded the memory snapshot.

Memory The amount of memory, in bytes, that all instances of each class used at the time that you recorded the memory snapshot.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

169

The following example shows the Instances table in the Object References view:

The following table describes the columns in the Instances table:

The Allocation Trace table shows the stack trace for the selected instance in the Instances table. When you select an
instance in the Instances table, the profiler displays the call stack for that instance in the Allocation Trace table.

Column Description

Instance The class of the object that holds a reference to the specified object.

Property The property of the object that holds a reference to the specified object. For example, if you have object o with a
property i, and assign that property to point to your button’s label:

o.i = myButton.label;

That creates a reference to myButton.label from property i.

id The reference ID of the object that holds the reference to the selected object.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

170

The following example shows the Allocation Trace table in the Object References view:

The following table describes the columns in the Allocation Trace table:

You can only view data in this table when you enable allocation traces when you start the profiler.
You can open the source code of the selected class by double-clicking a class in this table.

Using the Allocation Trace view
The Allocation Trace view shows which methods were called between two memory snapshots and how much
memory was consumed during those method calls. To open the Allocation Trace view, you select two memory
snapshots, and then click the View Allocation Trace button. For information on recording a memory snapshot, see
“Using the Memory Snapshot view” on page 168.
The result of the memory snapshot comparison is a list of methods that Flash Player executed between the two
memory snapshots. For each of these methods, the profiler reports the number of objects created in that method.
You can use this information to optimize performance. After you identify methods that create an excessive number
of objects, you can optimize those hot spots.
To use the Allocation Trace view, you must enable allocation traces when you start the profiler. The default is
disabled.

Column Description

Method The top-level method in this table is the method that created the instance of the class that is listed in the Instances
table.

You can expand the method to show the stack trace of the method. This can help you determine where the call stack
began.

Location The file where the method is defined.

Line The line number in the file.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

171

The following example shows the Allocation Trace view:

The following table describes the columns in the Allocation Trace view:

When recording methods during sampling intervals, the profiler also records internal Flash Player actions. These
actions show up in the method list in brackets and appear as [mouseEvent] or [newclass] or with similar names.
For more information about internal Flash Player actions, see “How the Flex profiler works” on page 157.
To open the Object Statistics view, click a row in the Allocation Trace table. This view provides details about the
objects that were created in the method that you selected. It also lets you drill down into the objects that were created
in methods that were called from this method. For more information, see “Using the Object Statistics view” on
page 172.
You limit the data in the Allocation Trace view by using the profiler filters. For more information, see “About profiler
filters” on page 183.

Column Description

Method The method that was called during the snapshot interval. This column also contains the class whose instance
called this method.

Package The package that each class is in. If the class is not in a package, then the value of this field is the file name that
the class is in. The number following the dollar sign is a unique ID for that class.

If the Package field is empty, the class is in the global package or the unnamed package.

Cumulative Instances The number of objects instantiated in this method and all methods called from this method.

Self Instances The number of objects instantiated in this method. This does not include objects that were instantiated in
subsequent method calls from this method.

Cumulative Memory The amount of memory, in bytes, used by the objects instantiated in this method and all methods called from
this method.

Self Memory The amount of memory, in bytes, used by the objects instantiated in this method. This does not include the
memory used by objects that were instantiated in subsequent method calls from this method.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

172

Using the Object Statistics view
The Object Statistics view shows the performance statistics of the selected group of objects. This view helps you
identify which methods call a disproportionate number of other methods. It also shows you how much memory the
objects instantiated in those method calls consume. You use the Object Statistics view to identify potential memory
leaks and other sources of performance problems in your application.
To access the Object Statistics view, you select two memory snapshots in the Profile view and view the comparison
in the Allocation Trace view. Then you double-click a row to view the details in the Object Statistics view.
There are three sections in the view:
• A summary of the selected object’s statistics, including the number of instances and amount of memory used.
• Self Instances table—A list of objects that were instantiated in the method that you selected in the Allocation
Trace view. This does not include objects that were instantiated in subsequent method calls from this method. The
number of objects in this list matches the number of objects specified in the Self Instances column in the Allocation
Trace view.
• Callee Instances table—A list of objects that were instantiated in methods that were called by the method that
you selected in the Allocation Trace view. This does not include objects that were instantiated in the method itself.
The number of objects in this list matches the number of objects specified in the Cumulative Instances column in
the Allocation Trace view.
The following example shows the method summary and the Self Instances and Callee Instances tables of the Object
Statistics view:

The following table describes the fields in the Self Instances table in the Object Statistics view:

Column Description

Class The classes that were instantiated only in the selected method. This does not include classes that were instan-
tiated in subsequent calls from this method.

Package The package that each class is in. If the class is not in a package, then the value of this field is the file name that
the class is in. The number following the dollar sign is a unique ID for that class.

If the Package field is empty, the class is in the global package or the unnamed package.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

173

The following example shows the Callee Instances table of the Object Statistics view:

The following table describes the fields in the Callee Instances table of the Object Statistics view:

Using the Performance Profile view
The Performance Profile view is the primary view to use when doing performance profiling. It shows statistics such
as number of calls, self-time, and cumulative time for the methods that are called during a particular sampling
interval. You use this data to identify performance bottlenecks.
The process of performance profiling stores a list of methods and information about those methods that were called
between the time you clear the performance data and the time you capture new data. This time difference is known
as the interaction period.
To use the Performance Profile view, you must enable performance profiling when you start the profiler. This is the
default setting.

Generate a performance profile
1 Start a profiling session with performance profiling enabled.
2 Interact with your application until you reach the point where you want to start profiling.
3 Click the Reset Performance Data button.
4 Interact with your application and perform the actions to profile.

Self Instances The number of instances of this class that were created only in the selected method. This does not include
instances that were created in subsequent calls from this method.

Self Memory The amount of memory, in bytes, that is used by instances that were created only in the selected method. This
does not include the memory used by instances that were created in subsequent calls from this method.

Column Description

Class The classes that were instantiated in the selected method. This includes classes that were instantiated in subse-
quent calls from this method.

Package The package that each class is in. If the class is not in a package, then the value of this field is the file name that
the class is in. The number following the dollar sign is a unique ID for that class.

If the Package field is empty, the class is in the global package or the unnamed package.

Cumulative Instances The number of instances of this class that were created in the selected method and in subsequent calls from
this method.

Cumulative Memory The amount of memory, in bytes, that is used by instances that were created in the selected method and in
subsequent calls from this method.

Column Description

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

174

5 Click the Capture Performance Profile button.
The time difference between when you clicked Reset Performance Data and the time you clicked Capture Perfor-
mance Profile is the interaction period. If you do not click the Reset Performance Data button at all, then the
performance profile includes all data captured from the time the application first started.

6 Double-click the performance profile in the Profile view.
The following example shows the Performance Profile view:

The following table describes the columns in the Performance Profile view:

If you double-click a method in the Performance Profile view, Flex displays information about that method in the
Method Statistics view. This lets you drill down into the call stack of a particular method. For more information, see
“Identifying method performance characteristics” on page 176.
You limit the data in the Performance Profile view by using the profiler filters. For more information, see “About
profiler filters” on page 183.
You can save performance profiles for later use. For more information, see “Saving and loading profiling data” on
page 162.

Column Description

Method The name of the method and the class to which the method belongs.

Internal actions executed by Flash Player appear as entries in brackets; for example, [mark] and [sweep]. You
cannot change the behavior of these internal actions, but you can use the information about them to aid your
profiling and optimization efforts. For more information on these actions, see “How the Flex profiler works” on
page 157.

Package The package that the class is in. If the class is not in a package, then the value of this field is the file name that
the class is in. The number following the dollar sign is a unique ID for that class.

If the Package field is empty, the class is in the global package or the unnamed package.

Calls The number of times the method was called during the interaction period. If one method is called a dispropor-
tionately large number of times compared to other methods, then you can look to optimizing that method so
that the execution time is reduced.

Cumulative Time The total amount of time, in milliseconds, that all calls to this method, and all calls to subsequent methods, took
to execute during the interaction period.

Self Time The amount of time, in milliseconds, that all calls to this method took to execute during the interaction period.

Avg. Cumulative Time The average amount of time, in milliseconds, that all calls to this method, and calls to subsequent methods,
took to execute during the interaction period.

Avg. Self Time The average amount of time, in milliseconds, that this method took to execute during the profiling period.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

175

Identifying method performance characteristics
The Method Statistics view shows the performance characteristics of the selected method. You typically use the
Method Statistics view to identify performance bottlenecks in your application. By viewing, for example, the
execution times of a method, you can see which methods take a disproportionate amount of time to run. Then you
can selectively optimize those methods.
For more information, see “Using the Performance Profile view” on page 174.

View method details in the Method Statistics view
1 Double-click a row in the Performance Profile view or select a method in the Performance Profile view.
2 Click the Open Method Statistics button.
There are three sections in the view:
• A summary of the selected method’s performance, including the number of calls, cumulative time, and self-time.
• Callers table—Details about the methods that called the selected method. In some situations, it is important to
know if the selected method is being called excessively, how it is being used, and whether it is being used correctly.
• Callees table—Details about the methods that were called by the selected method.
The following example shows the method summary and the Callers and Callees tables of the Method Statistics view:

The following table describes the fields in the Callers table of the Method Statistics view:

Column Description

Method The methods that called the method that appears in the summary at the top of this view. If this list is empty, the
target method was not called by any methods that are not filtered out.

Package The package that each class is in. If the class is not in a package, then the value of this field is the file name that
the class is in. The number following the dollar sign is a unique ID for that class.

If the Package field is empty, the class is in the global package or the unnamed package.

Cumulative Time The amount of time, in milliseconds, that each calling method, and all subsequent methods, spent executing.

Self Time The amount of time, in milliseconds, that each calling method spent executing. This does not include methods
called by subsequent methods.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

176

The following table describes the fields in the Callees table of the Method Statistics view:

You can navigate the call stack while you attempt to find the performance bottlenecks by clicking the methods in
either the Callers or Callees tables. If you double-click a method in these tables, the profiler displays that method’s
summary at the top of the Method Statistics view and then shows the callers and callees for the newly selected
method in the two tables.
Note: The cumulative time minus the self-time in this view will not always equal the cumulative time of the callers. That
is because if you drill up to a caller, then the cumulative time will be the self-time of that caller plus all chains from which
the original method was called, but not other callees.
You can also use the Back, Forward, and Home profiler buttons to navigate the call stack.
You can limit the data in the Method Statistics view by using the profiler filters. For more information, see “About
profiler filters” on page 183.

Using the Loitering Objects view
The Loitering Objects view shows you the differences between two memory snapshots of the application that you
are profiling. The differences that this view shows are the number of instances of objects in memory and the amount
of memory that those objects use. This is useful in identifying memory leaks. The time between two memory
snapshots is known as the snapshot interval.
To open the Loitering Objects view, select two memory snapshots and click the Loitering Objects button. For infor-
mation on recording a memory snapshot, see “Using the Memory Snapshot view” on page 168.
The following example shows the Loitering Objects view:

Column Description

Method The methods that were called by the method that is shown in the summary at the top of this view. If this list is
empty, then the target method was not called by any methods that are not filtered out.

Package The package that each class is in. If the class is not in a package, then the value of this field is the file name that
the class is in. The number following the dollar sign is a unique ID for that class.

If the Package field is empty, the class is in the global package or the unnamed package.

Cumulative Time The amount of time, in milliseconds, that each called method, and all subsequent methods, spent executing.

Self Time The amount of time, in milliseconds, that each called method spent executing. This does not include methods
called by subsequent methods.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

177

The following table describes the columns in the Loitering Objects view:

For more information on identifying memory leaks, see “Locating memory leaks” on page 180.

Using the Memory Usage graph
The Memory Usage graph shows you the memory used by the application that you are profiling. This value is
different from the memory usage of the Flash Player and its browser. That is because this value does not include the
profiler agent or the browser’s memory usage. It consists only of the sum of the profiled application’s live objects. As
a result, if you compare the value of memory usage in this graph against the amount of memory the browser uses as
shown in, for example, the Windows Task Manager, you will get very different results.
The following image shows the graph in the Memory Usage view:

The value for Current Memory is the same as the sum of the totals in the Live Objects view’s Memory column,
assuming that all filters are disabled.
The value for Peak Memory is the highest amount of memory that this application has used during the current
profiling session.
The Memory Usage graph shows the application’s memory for the last 100 seconds. You cannot configure this
number, and you cannot save historical data for the chart.
If you close the Memory Usage graph and want to reopen it, click the drop-down menu button in the Profile view
and select Memory Usage.

Column Description

Class The classes that were created but not destroyed during the snapshot interval.

Package The package that each class is in. If the class is not in a package, then the value of this field is the filename that
this class is in. The number following the dollar sign is a unique ID for that class.

If the Package field is empty, the object is in the global package or the unnamed package.

Instances The number of instances created during the snapshot interval. This is the difference between the number of
instances of each class that existed in the first snapshot and the number of instances of each class in the second
snapshot.

For example, if there were 22,567 strings in the first snapshot, and 22,861 strings in the second snapshot, the
value of this field would be 294.

Memory The amount of memory allocated during the snapshot interval. This is the difference between the amount of
memory that the instances of each class used at the time the first snapshot was taken and the amount of
memory that the instances of each class used at the time the second snapshot was taken.

For example, if Strings took up 2,031,053 bytes in the first snapshot and 2,029,899 bytes in the second snapshot,
the value of this field would be 1154 bytes.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

178

About garbage collection
Garbage collection is the act of removing objects that are no longer needed from memory. Memory used by instances
that no longer have any references to them should be deallocated during this process.
Flash Player performs garbage collection as necessary during an application’s life cycle. Unreferencing an object does
not trigger garbage collection. So, when you remove all references to an object, the garbage collector does not neces-
sarily deallocate the memory for that object. That object becomes a candidate for garbage collection.
Clicking the Run Garbage Collector button does not guarantee that all objects that are eligible for garbage collection
will be garbage collected. Garbage collection is typically triggered by the allocation of memory for new resources.
When new resources require memory that is not available in the current allocation, the garbage collector runs and
frees up memory that has been marked for deallocation. As a result, even if you remove all references to it, it might
not be immediately garbage collected, but likely will be garbage collected when other instances are created and used.
If an application is idle, you can watch its memory allocation. Even though there may be objects that are marked for
collection, an idle application’s memory usage typically does not change until you start interacting with it.
Flash Player allocates memory in blocks of many bytes, and not one byte at a time. If part of a block has been marked
for garbage collection, but other parts of the block have not been marked, the block is not freed. The garbage
collector attempts to combine unused portions of memory blocks into larger blocks that can be freed, but this is not
guaranteed to occur in every pass of the garbage collector.
Garbage collection occurs implicitly before memory snapshots are recorded. In other words, clicking the Take
Memory Snapshot button is the equivalent of clicking the Run Garbage Collector button and then clicking the Take
Memory Snapshot button.

Run garbage collection while profiling your application
❖ Select the application in the Profile view, and click the Run Garbage Collector button.
You analyze the garbage collector’s effectiveness by comparing two memory snapshots before and after garbage
collection occurs.

Identifying problem areas
You can use a variety of techniques to identify problem areas in your applications by using the profiler.

Locating memory leaks
One of the most common problems you face in application development is memory leaks. Memory leaks often take
the form of objects that were created within a period of time but not garbage collected. By comparing two memory
snapshots in the Loitering Objects view, you can determine which objects are still in memory after a particular series
of events.

Find loitering objects
1 Create two memory snapshots. For more information, see “Create and view a memory snapshot” on page 168.
2 Select the two memory snapshots to compare.

Note: If you have more than two memory snapshots, you cannot select a third one. You can compare only two
memory snapshots at one time.

3 Click the Find Loitering Objects button.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

179

Loitering Objects view shows you potential memory leaks. The Instances and Memory columns show the differ-
ences between the number of instances of a class and the amount of memory consumed by those instances
during the interval between one snapshot and the next. If you see a class that you did not expect to be created
during that time, or a class that you expected to be destroyed during that time, investigate your application to see
if it is the source of a memory leak.

4 To determine how an object in the Find Loitering Objects view was instantiated, double-click the object in the
view. The Object References view shows you the stack trace for each instance that you selected.
One approach to identifying a memory leak is to first find a discrete set of steps that you can do over and over again
with your application, where memory usage continues to grow. It is important to do that set of steps at least once in
your application before taking the initial memory snapshot so that any cached objects or other instances are included
in that snapshot.
Then you perform that set of steps in your application a particular number of times — 3, 7, or some other prime
number — and take the second memory snapshot to compare with the initial snapshot. In the Find Loitering Objects
view, you might find loitering objects that have a multiple of 3 or 7 instances. Those objects are probably leaked
objects. You double-click the classes to see the stack traces for each of the instances.
Another approach is to repeat the sequence of steps over a long period of time and wait until the memory usage
reaches a maximum. If it does not increase after that, there is no memory leak for that set of steps.
Common sources of memory leaks include lingering event listeners. You can use the removeEventListener()
method to remove event listeners that are no longer used. For more information, see “Object creation and
destruction” on page 54 in Building and Deploying Adobe Flex 3 Applications.

Analyzing execution times
By analyzing the execution times of methods and the amount of memory allocated during those method calls, you
can determine where performance bottlenecks occur.
This is especially useful if you can identify the execution time of methods that are called many times, rather than
methods that are rarely called.

Determine frequency of method calls
1 Start a profiling session and ensure that you enable performance profiling when configuring the profiler on the
startup screen.
2 Select your application in the Profile view.
3 Interact with your application until you reach the point where you want to start analyzing the number of method
calls. To see how many times a method was called from when the application started up, do not interact with the
application.
4 Click the Reset Performance Data button. This clears all performance data so that the next performance profile
includes any data from only this point forward.
5 Interact with your application until you reach the point where you check the number of method calls since you
reset the performance data.
6 Click the Capture Performance Profile button.
7 Double-click the performance profile in the Profile view.
8 In the Performance Profile view, sort the data by the Method column and find your method in the list.

The value in the Calls column is the number of times that method was called during this sampling interval. This
is the time between when you clicked the Reset Performance Data button and when you clicked the Capture
Performance Profile button.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

180

Examine the values in the Cumulative Time, Self Time, Avg. Cumulative Time, and Avg. Self Time columns of the
Performance Profile view. These show you the execution time of the methods.
Compare the time each method takes to execute against the time that all the methods that are called by a particular
method take to execute. In general, if a method’s self-time or average self-time are high, or high compared to other
methods, you should look more closely at how the method is implemented and try to reduce the execution time.
Similarly, if a method’s self-time or average self-time are low, but the cumulative time or average cumulative time are
high, look at the methods that this method calls to find the bottlenecks.

Locating excessive object allocation
One way to identify trouble areas in an application is to find out where you might be creating an excessive number
of objects. Creating an instance of an object can be an expensive operation, especially if that object is in the display
list. Adding an object to the display list can result in many calls to style and layout methods, which can slow down
an application. In some cases, you can refactor your code to reduce the number of objects created.
After you determine whether there are objects that are being created unnecessarily, decide whether it is reasonable
or worthwhile to reduce the number of instances of that class. For example, you could find out how large the objects
are, because larger objects generally have the greatest potential to be optimized.
To find out which objects are being created in large numbers, you compare memory snapshots of the application at
two points in time.

View the number of instances of a specific class
1 Start a profiling session and ensure that you enable memory profiling when configuring the profiler on the
startup screen.
2 Interact with your application until you reach the place to take a memory snapshot.
3 Click the Take Memory Snapshot button. The profiler adds a new memory snapshot to the application list in the
Profile view.
4 Open the memory snapshot by double-clicking it in the Profile view.
5 To view the number of instances of a particular class, and how much memory those instances use, sort by the
Class column and find your class in that column. You can also sort by the other columns to quickly identify the
objects that take up the most memory or the objects with the most instances. In most cases, Strings are the class with
the most instances and the most memory usage.
For more information about the Memory Snapshot view, see “Using the Memory Snapshot view” on page 168.

Locate instances of excessive object allocation
1 Start a profiling session and ensure that you enable memory profiling when configuring the profiler on the
startup screen.
2 Interact with your application until you reach the first place to take a memory snapshot.
3 Click the Take Memory Snapshot button.

The profiler saves the memory snapshot in the Profile view, and marks the snapshot with a timestamp.
4 Interact with your application until you reach the second place to take a memory snapshot.
5 Click the Take Memory Snapshot button again.

The profiler saves the second memory snapshot in the Profile view, and marks the snapshot with a timestamp.
6 Select the two memory snapshots to compare.

Note: If you have more than two memory snapshots, you cannot select a third one. You can compare only two at a
time.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

181

7 Click the View Allocation Trace button.

About profiler filters
The amount of data in a profiler view can sometimes be overwhelming and the level of detail can be too great. The
internal actions of Flash Player might obscure the data that you are truly interested in, such as your own methods
and classes. Also, Flash Player creates and destroys many objects without your direct interaction. Thus, you could
see that thousands of strings or arrays are being used in your application.
You can set filters in the following views:
• Live Objects
• Memory Snapshot
• Performance Profile
• Method Statistics
• Allocation Trace
You can define which packages should appear in the profiler views. You do this by using the profiler filters. There are
two types of filters:
Exclusion filters The exclusion filters instruct the profiler to exclude from the profiler views packages that match
the patterns in its pattern list. If you use charting controls, for example, but do not want to profile them, you can add
the mx.charts.* pattern to the exclusion filter.
Inclusion filters The inclusion filters instruct the profiler to include in the profiler views only those packages that
match the patterns in its pattern list. If you have a custom package named com.mycompany.*, for example, you can
view details about only classes in this package by adding it to the inclusion filter.
The default exclusions are flash.*.* and mx.*.*, and the Flex framework classes in the global or unnamed package.
These include global classes such as String and Array. This means that the default inclusions are user-defined classes
in the unnamed package and user-defined classes in nonframework packages (such as com.mycompany.MyClass).
You can exclude user-defined classes that are in the unnamed package from the profiling data. To do this, add “*” to
the exclusion list.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

182

Set default filter preferences
❖ Open the Preferences dialog and select Flex > Profiler > Inclusion Filters or Exclusion Filters.

When displaying profiler data, the profiler applies the exclusion filters first; then it applies the inclusion filters. For
example, suppose you set the exclusion filter to mx.controls.*, but set the inclusion filter to mx.*.*; the profiler does
not show details about any classes in the mx.controls package because that package was excluded, even though their
pattern matches the inclusion pattern list. Similarly, suppose you set the exclusion filter to mx.*.* and the inclusion
filter to mx.controls.*; the profiler does not show details about any classes in mx.controls.* package because they
were excluded before it was included.
When you filter out certain data points, the percentage values of columns are adjusted to reflect only the percentage
of nonfiltered data.
The profiler maintains filters from one profiling session to the next for the same application.
The filter settings are not inherited by subviews. For example, if you apply a filter to the data in the Memory Snapshot
view, and then navigate to the Object References view by double-clicking a method, the Object References view does
not apply the same filter.

Determine whether data is being filtered
1 Click the Filter button or look at the titles of the data tables. If there are filters applied, the Package column’s
heading is Package (Filtered).
2 (Optional) Reset the filters to the default by clicking the Restore Defaults button.

183

Chapter 14: Working with Data in
Flex Builder

In Adobe® Flex® Builder™, you interact with data and the data-driven controls directly in your MXML and Action-
Script code. You can work with data, automatically generate database applications, generate and use proxy code for
web services, and generate and use code that works with the Flex Ajax Bridge. You can also manage Adobe Flash
Player data access security issues and use Flex Builder with a proxy service.

Topics

About working with data in Flex Builder . 183
Automatically generating database applications. 186
Automatically generating web service proxies . 190
Automatically generating Flex Ajax Bridge code . 204
Managing Flash Player security . 208

About working with data in Flex Builder
You work with data in Flex Builder by directly modifying your MXML and ActionScript application code.

Data-driven controls and containers
Flex provides control and container components from which you build your Flex application user interface. A
number of these components present data, which users can select and interact with when using the application. Here
are a few examples of how data-driven controls are used:
• On an address form, you can provide a way for users to select their home country (or other typical form input)
by using the ComboBox or List controls.
• In a shopping cart application, you can use the TileList or HorizontalList controls to present product data that
includes images.
• You can provide standard navigation options by using containers such as the TabBar, LinkBar, and ButtonBar
controls.
You provide data input to all of the data-driven controls with a data provider.
For information about using the data-driven controls, see “Using Data-Driven Controls” on page 293 in the Adobe
Flex 3 Developer Guide.

Data providers and collections
A collection object contains a data object, such as an Array or an XMList object, and provides a set of methods that
let you access, sort, filter, and modify the data items in that data object. Several Adobe Flex controls, known as data
provider controls, have a dataProvider property that you populate with a collection.
The following simple example shows how a data provider is defined (as an ActionScript ArrayCollection) and used
by a control:
<?xml version="1.0"?>

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

184

<!-- dpcontrols\ArrayCollectionInAS.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" initialize="initData()">
 <mx:Script>
 <![CDATA[
 import mx.collections.*;
 [Bindable]
 public var stateArray:ArrayCollection;

 public function initData():void {
 stateArray=new ArrayCollection(
 [{label:"AL", data:"Montgomery"},
 {label:"AK", data:"Juneau"},
 {label:"AR", data:"Little Rock"}]);
 }
]]>
 </mx:Script>

 <mx:ComboBox id="myComboBox" dataProvider="{stateArray}"/>
</mx:Application>

For more information about data providers and collections, see “Using Data Providers and Collections” on page 106
in the Adobe Flex 3 Developer Guide.

Remote data access
Flex contains data access components that are based on a service-oriented architecture (SOA). These components
use remote procedure calls to interact with server environments, such as PHP, Adobe ColdFusion, and Microsoft
ASP.NET, to provide data to Flex applications and send data to back-end data sources.
Depending on the type of interfaces you have to a particular server-side application, you can connect to a Flex appli-
cation by using one of the following methods:
• HTTP GET or POST by using the HTTPService component
• SOAP-compliant web services by using the WebService component
• Adobe Action Message Format (AMF) remoting services by using the RemoteObject component
Note: When you use Flex Builder to develop applications that access server-side data, you must use a cross-domain.xml
file or a proxy if data is accessed from a domain other than the domain from which the application was loaded. See
“Managing Flash Player security” on page 208.
You can also use Flex Builder to build applications that use LiveCycle Data Services ES, a separate product that
provides advanced data service features. LiveCycle Data Services ES provides proxying for remote procedure call
(RPC) service applications as well as advanced security configuration. LiveCycle Data Services ES also provides the
following data services:
Data Management Service Allows you to create applications that work with distributed data and also to manage
large collections of data and nested data relationships, such as one-to-one and one-to-many relationships.
Message Service Allows you to create applications that can send messages to and receive messages from other appli-
cations, including Flex applications and Java Message Service (JMS) applications.
Flex Builder provides a set of data wizards that automatically generate database applications that use PHP, J2EE, or
ASP.NET. For more information, see “Automatically generating database applications” on page 186.

Data binding
In the code example in “Data providers and collections” on page 183, you may have noticed that the value of the
ComboBox control’s dataProvider property is "{stateArray}". This is an example of data binding.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

185

Data binding copies the value of an object (the source) to another object (the destination). After an object is bound
to another object, changes made to the source are automatically reflected in the destination.
The following example binds the text property of a TextInput control (the source) to the text property of a Label
control (the destination), so that text entered in the TextInput control is displayed by the Label control:
<mx:TextInput id="LNameInput"></mx:TextInput>
...
<mx:Label text="{LNameInput.text}"></mx:Label>

To bind data from one object to another, you use either the curly braces ({ }) syntax (as shown in the example) or the
<mx:Binding> tag. For more information, see “Using data binding with data models” on page 981 and “Binding
Data” on page 977 in the Adobe Flex 3 Developer Guide.

Data models
A data model is an object that you can use to temporarily store data in memory so that it can be easily manipulated.
You can define a data model in ActionScript, in MXML by using a tag such as <mx:Model>, or by using any object
that contains properties. As an example, the following data model shows information such as a person’s name, age,
and phone number:
<mx:Model id="Employee">
<Employee>

<name>
<first>Jennifer</first>
<last>Nadeau</last>

</name>
<age>30</age>
<work_tel>555-555-5555</work_tel>

</Employee>
</mx:Model>

The fields of a data model can contain static data (as in the example), or you can use data binding to pass data to and
from the data model.
You can also define the data model within an XML file. You then reference the XML file through the file system or
through a URL by using the <mx:Model> tag’s source property, as the following example shows:
<mx:Model source="content.xml" id="Contacts"/>
<mx:Model source="http://www.somesite.com/companyinfo.xml" id="myCompany"/>

For more information about data models, see “Storing Data” on page 1000 in the Adobe Flex 3 Developer Guide.

Data validation
You use data validation to ensure that the data the user enters into your application is valid. For example, if you want
the user to enter a valid ZIP code you use a ZIP code data validator.
Flex provides predefined data validators for the following types of data: credit card, currency, date, e-mail, number,
phone number, regular expression, social security, string, and ZIP code.
Data validators are nonvisual Flex components, which means that you do not access them from the Components
panel. Instead, you work with them in code, as the following MXML example shows:
<!-- Define the ZipCodeValidator. -->
<mx:ZipCodeValidator id="zcV" source="{zipcodeInput}" property="text"/>
<!-- Define the TextInput control for entering the zip code. -->
<mx:TextInput id="zipcodeInput"/>

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

186

In this MXML example, the validator is defined with the appropriate MXML tag, and it is bound to the ID property
of a TextInput control. At run time, when the user enters the phone number into the TextInput control, the number
is immediately validated.
You can, of course, use data validators in ActionScript by defining a variable as an instance of a validator class and
then creating a function to bind it to the input control.
Data validators are often used with data models. For more information, see “Validating Data” on page 1008 in the
Adobe Flex 3 Developer Guide.

Data formatting
To display the proper format of certain types of data in your application, you use a data formatter. Flex provides
predefined data formatters for the following types of data: currency, date, number, phone, and ZIP code.
Data formatters are bound to input controls, and they format data correctly after the user enters it. For example, a
user might enter a date in this format:
120105
Bound to the text input control is a data formatter that stores and displays the date in this format:
12/01/05
As with data validators, data formatters are nonvisual Flex components that you can work with either as MXML tags
or as ActionScript classes.
For more information, see “Formatting Data” on page 1039 in the Adobe Flex 3 Developer Guide.

Automatically generating database applications
You can use Flex Builder data wizards to automatically generate create, read, update, delete (CRUD) database appli-
cations for existing PHP, J2EE, and ASP.NET server projects. From the Create Application from Database option on
the Data menu, you can select an SQL database table and generate an entire application that includes both client-side
and server-side code.
For information about creating server projects in which you can create database applications, see “Working with
Projects” on page 27.

Generating a PHP database application
You can generate an application that uses PHP and a MySQL database. To generate this type of application, you must
have a local PHP server and access to a target MySQL database table.

Generate PHP application code
1 If you have not already done so, create a Flex project that specifies PHP as its application server type.
2 Select Data > Create Application from Database.
3 From the Project list, select the PHP project to use.
4 From the Connection list, select a database connection profile. To create and use a new connection profile, click
the New button and complete the text boxes. For more information, see “Directory structure and deployment
considerations for PHP” on page 187.
5 From the Table list, select the database table to use.
6 From the Primary Key list, select the primary key of the database table if it is not already selected.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

187

7 Click Next.
8 Specify a Main Source Folder and a Main Application File, or accept the default values. You can generate the PHP
files in the bin-debug folder, which is the default location, or in the src folder. If you want to export the project after
using the data wizard, you must generate the PHP files in the src folder; otherwise, the project is exported without
the PHP files and does not function.
9 Click Next.
10 Deselect any database columns that you do not want to appear in the DataGrid that the wizard generates.
11 Choose a database filter column, or accept the default value.
12 Click Finish.
13 Select Run > External Tools > Run As > Run on Server.
14 Select Run > Run to run the application on the server.

Directory structure and deployment considerations for PHP

When you use the data wizard to generate a PHP application, the default location of the generated files is the
[web_server_root]\[project_name]_debug directory. The directory includes a PEAR subdirectory that contains the
PEAR XML parsing utility, and a history subdirectory that contains files for Flex history management.
The main deployment directory contains tablename.php, databasenameconn.php, functionsinc.php, and XmlSeri-
alizer.class.php PHP files. It also contains a SWF file named tablename.swf and an HTML wrapper named
tablename.html.
The project src directory contains the following files: tablename.mxml, tablenameconfig.as, and tablenamescript.as.

Deploy an application to a remote server
1 Set up the host:

a Create a new database. Typically, the host has a naming convention like sitename_dbname.
b Create a web user with a password (for example, name: bigryans_webuser, pw: webuser). Give the web user
the following privileges: insert, update, delete, and select.
c Create the database table or tables (you can export the SQL and run it in your MySQL administrator appli-
cation, or you can create it manually); for example:
CREATE TABLE users (
userid int(10) unsigned NOT NULL auto_increment,
username varchar(255) collate latin1_general_ci NOT NULL,
emailaddress varchar(255) collate latin1_general_ci NOT NULL,
PRIMARY KEY (userid)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci;

2 Edit the Flexphpconn.php file. This file creates the connection to the database for your Flex application users:
$hostname_conn = "localhost"; // If your database and Flex app are on the same server
$database_conn = "bigryans_flexphp"; // name you gave it in step 1 $username_conn =
"bigryans_webuser"; // name you created in step 1 $password_conn = "webuser"; // password
you gave it in step 1

3 Upload the files. You need the following subset of the files that the wizard outputs:
• /history directory (if you want to support history management/deep linking)
• /PEAR directory
• AC_OETags.js
• Flexphpconn.php
• functions.inc.php
• playerProdInstall.swf (if you want to support express installation)

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

188

• Flex application files:
• users.html (HTML wrapper)
• users.swf (Flex application)
• users.php (PHP functions for the Flex application)
• XMLSerializer.class.php

You do not need to upload the xxx-profile.swf files, the projectname.swf file, or the projectname.html file.

Generating a J2EE database application
You can generate an application that uses Java and a SQL database. To generate this type of application, you must
have a local Java application server and access to a target SQL database table. You can generate an application that
uses a Java servlet to access a database and return data to the Flex application; or if you have LiveCycle Data Services
ES, you can choose to generate an application that uses the data management service to access a database and dynam-
ically distribute data to and from clients.

Generate J2EE application code
1 If you have not already done so, create a new Flex project that specifies Java 2 Enterprise Edition (J2EE) as the
application server type.
2 Select Data > Create Application from Database.
3 From the Project list, select the J2EE project to use.
4 From the Connection list, select a database connection profile. To create and use a new connection profile, click
the New button and complete the text boxes.
5 From the Table list, select the database table to use.
6 From the Primary Key list, select the primary key of the database table.
7 Click Next.
8 To use a specific Java package for the Java classes that will be generated, enter the package name in the Java
Package text box.
9 By default, the names of the generated Java classes are prefixed with the name of the selected database table. To
use a different prefix, enter it in the Class Name Prefix text box.
10 If your project uses LiveCycle Data Services ES, select whether to use LiveCycle Data Services ES or XML over
HTTP for communication between the client and the server. If you select LiveCycle Data Services ES, the Data
Management Service is used. If you select XML over HTTP, a servlet passes XML between the client and the server.
11 Click Next.
12 (Optional) Deselect any of the listed table fields to exclude them from the generated Flex DataGrid control.
13 Click Finish.
14 Select Run > External Tools > Run As > Run on Server.
15 Select Run > Run to run the application on the server.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

189

Directory structure and deployment considerations for J2EE

The Flex Builder project’s WebContent directory contains directories to be deployed into the root directory of the
web application. Depending on the type of Java application server, the web application is deployed as a WAR file or,
as is the case with Tomcat, as a linked web application directory. The Flex Builder project’s src directory contains Java
source files for classes that are deployed to the WEB-INF/classes directory of the web application. For projects that
are compiled with Flex Builder, the contents of the Flex Builder project’s bin and flex_src directories are included in
the list of files that are deployed to the web application; however, the compiled SWF files are deployed rather than
the corresponding MXML files that are in the flex_src directory. All of the files in those folders are deployed to the
root of the web application.

Generating an ASP .NET database application
You can generate an application that uses ASP .NET and a Microsoft SQL Server database. To generate this type of
application, you must have a local .NET installation and access to a target Microsoft SQL Server database table. You
can generate an application that uses an ASP .NET page to access a database and return data to the Flex application.

Generate ASP .NET application code
1 If you have not already done so, create a new Flex project that specifies ASP .NET as the application server type.
You can deploy the application to the Visual Studio Development Server or the Internet Information Server (IIS) web
server that comes with Windows. If you use IIS, the deployment directory specified in the New Flex Project wizard
must be defined in the IIS administration console as an ASP Application.
2 Select Data > Create Application from Database.
3 From the Project list, select the ASP .NET project to use.
4 From the Connection list, select a database connection profile. To create and use a new connection profile, click
the New button and complete the text boxes.
5 From the Table list, select the database table to use.
6 From the Primary Key list, select the primary key of the database table.
7 Click Next.
8 Specify a .NET class name, or accept the default value.
9 Choose either C# with Web Services or VB with Web Services as the server language.
10 Click Next.
11 (Optional) Deselect any of the listed table fields to exclude them from the generated Flex DataGrid control.
12 Click Finish.
13 Select Run > External Tools > Run As > Run on Server.
14 Select Run > Run to run the application on the server.

Directory structure and deployment considerations for ASP .NET

When you run Project > Export Release Build, files are saved in the project bin_release directory and the optimized
application runs from that location.

Creating a database connection profile
To generate a database application, you must have a database connection profile that provides information about the
database that you want to use.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

190

Create a connection profile
1 If the Create Application from Database dialog box is not already open, select Data > Create Application from
Database.
2 Click the New button to the right of the Connection text box.
3 In the Create Connection Profile dialog box, enter a connection name in the Name text box. You can also
complete the optional Description text box.
4 (Optional) When the wizard is finished or when the Data Source Explorer is opened, select the Autoconnect
option to connect to the database.
5 Click New.
6 Complete the database connection text boxes. The fields vary depending on the type of database connection you
choose. For PHP projects, you use MySQL. For ASP.NET projects, you use Microsoft SQL Server. For J2EE projects,
you can select from a list of choices, but MySQL and Microsoft SQL Server are supported.
7 Click Test Connection to make sure that the connection is valid.
8 Click Next.
9 Click Finish.

Automatically generating web service proxies

You can use the Flex Builder Import Web Service feature to automatically generate connection code for invoking
SOAP-based web service operations. The generated code includes client-side (ActionScript) web service proxy
classes that return strongly typed objects. You can use the generated code to call web service operations directly and
to pass strongly typed objects as operation parameters.

Generate client code for a WSDL document
1 Select Data > Import Web Services (WSDL).
2 Select the project source folder in which to save the generated code.
3 Click Next.
4 Specify the URI of the WSDL to use. If your project uses LiveCycle Data Services ES, you can optionally select a
LiveCycle Data Services ES web service destination. For a LiveCycle Data Services ES destination to appear in the
Import Web Service menu, it must be defined in the proxy-config.xml file and be configured in the following way:

• The adapter=”soap-proxy” attribute must be specified on the destination element. This implies that you
have an adapter definition with the id=”soap-proxy” attribute defined somewhere else in your configuration
files.
• The destination must also have an id attribute (the value of the id attribute is displayed in the pop-up menu).
• The destination must have a wsdl child element. Its text value is prefilled in the WSDL URI text box in the
wizard.

5 Click Next.
6 Deselect any of the listed web service operations for which you do not want to generate code.
7 (Optional) Select a different service and or port from the Service and Port pop-up menus.
8 (Optional) Change the default package name and the main class name.
9 Click Finish to generate the ActionScript proxy classes.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

191

Generated web service proxy files

The Import Web Service feature introspects a WSDL file and generates the following types of ActionScript class files:

Managing generated web service code
The Manage Web Services feature lets you add, update, or delete generated web service proxy code.

Generate web service code
1 Select Data > Manage Web Services.
2 Select a project from the tree of projects.
3 Click Add.
4 Click Next.
5 Enter a new WSDL URI or select an existing one from the pop-up menu. Optionally, if you have a LiveCycle Data
Services ES installation, you can use a LiveCycle Data Services ES destination.
6 Complete the Configure Code Generation text boxes and click Finish.

Update generated web service code
1 Select Data > Manage Web Services.
2 Within a project, select the WSDL URI for which you want to update generated code.
3 Click Update.
4 Click Refresh to find out if the WSDL document has changed since you imported it.
5 If the WSDL document has changed, select the operations to update (if different from the default selections).
6 Click Finish to regenerate code based on the current version of the WSDL document.

Delete generated web service code
1 Select Data > Manage Web Services.
2 Within a project, select the WSDL URI for the generated code to delete.
3 Click Delete and then click Yes in the Confirm Imported WSDL Deletion dialog box.

Generated file Description

BaseServiceName.as A base implementation of the web service. This class contains the internal code that maps the operations
from the WSDL file to Flex WSDLOperation instances and sets the corresponding parameters.

IServicename.as The service interface that defines all of the methods that users can access.

Servicename.as The concrete web service implementation.

BaseServicenameSchema.as A file containing the XSD schema of the web service as an ActionScript custom type.

OperationnameResultEvent.as For each web service operation, Flex Builder generates a strongly typed event type class. You can use these
classes to benefit from strongly typed results.

Operationname_request.as For each web service operation that passes parameters to the server operation, Flex Builder generates a
request wrapper class with the parameters as members. The request object is intended for use with the
MXML tag syntax.

Type.as For each complex type defined in the WSDL file, Flex Builder generates a class with the same name as the
complex type or with the same name as the enclosing element.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

192

Creating an application that uses the generated proxy code
You can use MXML tags or ActionScript to call a web service. Equivalent MXML-centric and ActionScript-centric
applications use an address book web service that exposes the following operations:
• AddEntry lets you store someone's address.
• FindEntry lets you retrieve the address when you provide the person’s name.
The AddEntry operation takes an Entry object as input and returns nothing. The FindEntry operation takes a string
as input and returns an Entry object.
These sample applications demonstrate the following concepts for working with the code that Flex Builder generated
from the WSDL document:
• You can call a web service operation directly, as the following example shows:

myWebService.callOperation(parameters)

• The parameters passed to the web service operations are strongly typed and reflect the types that are described
in the WSDL document.
• The generated code includes event listeners that are specific to each operation; these listeners return strongly
typed results.
The MXML and ActionScript address book applications both use the following generated ActionScript classes:

Calling a service with MXML

For an MXML-centric application, you create an instance of the web service in an MXML tag, as the following code
snippet shows. Note that the application uses a custom namespace, ws; this namespace is declared as
xmlns:ws="com.adobe.*" in the <mx:Application> tag.
<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute"
xmlns:ws="com.adobe.*">
...

<!-- This is how we create an instance of the AddressBookService generated class.-->
<ws:AddressBookService id="myWebService">

<!-- We need to specify the request variables that are passed to the corresponding
operations. -->

<ws:addEntry_request_var>

Generated file Description

BaseAddressBookService.as A base implementation of the web service. This class contains the internal code that maps the operations
from the WSDL file to Flex WSDLOperation instances and sets the corresponding parameters.

IAddressBookService.as The service interface that defines all of the methods that users can access.

AddressBookService.as The concrete web service implementation.

BaseAddressBookService-
Schema.as

The XSD schema of the web service as an ActionScript custom type.

FindEntryResultEvent.as A strongly typed event type object for the FindEntry operation. For each web service operation, Flex
Builder generates a strongly typed event type class. You can use these classes to benefit from strongly
typed results.

AddEntry_request.as A request wrapper class for the AddEntry operation with the parameters as members. The request object
is intended for use with the MXML tag syntax.

FindEntry_request.as A request wrapper class for the FindEntry operation with the parameters as members. The request object
is intended for use with the MXML tag syntax.

Entry.as For each complex type defined in the WSDL file, Flex Builder generates a class with the same name as the
complex type or with the same name as the enclosing element.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

193

<!-- The addEntry operation has one input parameter. This parameter's type is
Entry. -->

<ws:AddEntry_request>
<ws:param0>

<ws:Entry>
<!-- We bind each of the members of an Entry object to the

corresponding text input field.-->
<ws:name>{tiNameInput.text}</ws:name>
<ws:city>{tiCityInput.text}</ws:city>
<ws:street>{tiStreetInput.text}</ws:street>
<ws:state>{tiStateInput.text}</ws:state>
<ws:postalCode>{tiPostalCodeInput.text}</ws:postalCode>

</ws:Entry>
</ws:param0>

</ws:AddEntry_request>
</ws:addEntry_request_var>

<!-- The findEntry operation has one input parameter of the String type. -->
<ws:findEntry_request_var>

<!-- We bind the corresponding text input field to the operation's input
parameter.

 Since the operation's input parameter has a simple type, you can use the
following syntax to do the data binding.

 Alternatively you could do:
 <ws:FindEntry_request>

<ws:param0>{tiSearch.text}</ws:param0>
 </ws:FindEntry_request>
 -->
<ws:FindEntry_request param0="{tiSearch.text}">
</ws:FindEntry_request>

</ws:findEntry_request_var>
</ws:AddressBookService>

...

On the click event for the Add entry button, call the addEntry_send() method to pass the request to the service, as
the following code snippet shows:
...
<mx:Button label="Add entry" labelPlacement="top" click="myWebService.addEntry_send();
clearInputFields()"/>
...

On the click event for the Find entry button, call the findEntry_send() method to pass the request to the service,
as the following code snippet shows:
...
<mx:Button label="Add entry" labelPlacement="top" click="myWebService.addEntry_send();
clearInputFields()"/>
...

In a Form control, bind the results of the findEntry operation to Form fields:
...

<mx:HBox id="hbResults" x="10" y="70" width="100%" verticalAlign="middle"
borderStyle="solid" visible="true">

<mx:Label text="Results:"/>
<!-- In the form that we use to display the data that is returned by the

web service, we bind each
member of the last result returned for the findEntry operation to

its corresponding text control. -->
<mx:Form width="293" height="181" borderStyle="solid">

<mx:FormItem label="Name">

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

194

<mx:Text id="txNameOutput"
text="{myWebService.findEntry_lastResult.name}"/>
...

</mx:Form>
</mx:HBox>

...

The following example shows the complete MXML-centric address book application:
<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute"
xmlns:ws="com.adobe.*">

<mx:Script>
<![CDATA[

/**
@private

This method clears the input fields from the Add Entry view.
*/
private function clearInputFields():void {

tiNameInput.text = "";
tiCityInput.text = "";
tiStreetInput.text = "";
tiStateInput.text = "";
tiPostalCodeInput.text = "";

}

]]>
</mx:Script>

<!-- This is how we create an instance of the AddressBookService generated class.-->
<ws:AddressBookService id="myWebService">

<!-- We need to specify the request variables that are passed to the corresponding
operations. -->

<ws:addEntry_request_var>
<!-- The addEntry operation has one input parameter. This parameter's type is

Entry. -->
<ws:AddEntry_request>

<ws:param0>
<ws:Entry>

<!-- We bind each of the members of an Entry object to the
corresponding text input field. -->

<ws:name>{tiNameInput.text}</ws:name>
<ws:city>{tiCityInput.text}</ws:city>
<ws:street>{tiStreetInput.text}</ws:street>
<ws:state>{tiStateInput.text}</ws:state>
<ws:postalCode>{tiPostalCodeInput.text}</ws:postalCode>

</ws:Entry>
</ws:param0>

</ws:AddEntry_request>
</ws:addEntry_request_var>

<!-- The findEntry operation has one input parameter of the String type. -->
<ws:findEntry_request_var>

<!-- We bind the corresponding text input field to the operation's input
parameter.

 Since the operation's input parameter has a simple type, you can use the
following syntax to do the data binding.

 Alternatively you could do:
 <ws:FindEntry_request>

<ws:param0>{tiSearch.text}</ws:param0>
 </ws:FindEntry_request>

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

195

 -->
<ws:FindEntry_request param0="{tiSearch.text}">
</ws:FindEntry_request>

</ws:findEntry_request_var>
</ws:AddressBookService>

<mx:Panel width="640" height="480" layout="absolute" verticalCenter="0"
horizontalCenter="0" title="AddressBook Client App">

<mx:TabNavigator x="10" y="10" width="100%" height="100%">
<mx:Canvas label="Add" width="100%" height="100%" id="tabAdd">

<mx:HBox x="10" y="10" width="100%" verticalAlign="middle"
borderStyle="solid">

<mx:Label text="New entry details:"/>
<mx:Form width="293" height="181" borderStyle="solid">

<mx:FormItem label="Name">
<mx:TextInput id="tiNameInput"/>

</mx:FormItem>
<mx:FormItem label="City">

<mx:TextInput id="tiCityInput"/>
</mx:FormItem>
<mx:FormItem label="Street">

<mx:TextInput id="tiStreetInput"/>
</mx:FormItem>
<mx:FormItem label="State">

<mx:TextInput id="tiStateInput"/>
</mx:FormItem>
<mx:FormItem label="Postal Code">

<mx:TextInput id="tiPostalCodeInput"/>
</mx:FormItem>

</mx:Form>
<!-- On the click event for the Add entry button, we call the

addEntry_send() method of the web service that we defined earlier. -->
<mx:Button label="Add entry" labelPlacement="top"

click="myWebService.addEntry_send(); clearInputFields()"/>
</mx:HBox>

</mx:Canvas>
<mx:Canvas label="Search" width="100%" height="100%" id="tabSearch">

<mx:HBox x="10" y="10" width="100%">
<mx:Label text="Name"/>
<mx:TextInput id="tiSearch"/>
<!-- On the click event for the 'Find entry' button we call the

'findEntry_send()' method of the web service we defined earlier. -->
<mx:Button label="Find entry" click="myWebService.findEntry_send()"/>

</mx:HBox>
<mx:HBox id="hbNoResults" x="10" y="40" height="22" visible="false">

<mx:Text text="'No entry was found!"/>
</mx:HBox>
<mx:HBox id="hbResults" x="10" y="70" width="100%" verticalAlign="middle"

borderStyle="solid" visible="true">
<mx:Label text="Results:"/>
<!-- In the form that we use to display the data that is returned by the

web service, we bind each
member of the last result returned for the findEntry operation to

its corresponding text control. -->
<mx:Form width="293" height="181" borderStyle="solid">

<mx:FormItem label="Name">
<mx:Text id="txNameOutput"

text="{myWebService.findEntry_lastResult.name}"/>
</mx:FormItem>
<mx:FormItem label="City">

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

196

<mx:Text id="txCityOutput"
text="{myWebService.findEntry_lastResult.city}"/>

</mx:FormItem>
<mx:FormItem label="Street">

<mx:Text id="txStreetOutput"
text="{myWebService.findEntry_lastResult.street}"/>

</mx:FormItem>
<mx:FormItem label="State">

<mx:Text id="txStateOutput"
text="{myWebService.findEntry_lastResult.state}"/>

</mx:FormItem>
<mx:FormItem label="Postal Code">

<mx:Text id="txPostalCodeOutput"
text="{myWebService.findEntry_lastResult.postalCode}"/>

</mx:FormItem>
</mx:Form>

</mx:HBox>
</mx:Canvas>

</mx:TabNavigator>
</mx:Panel>

</mx:Application>

Calling a service with ActionScript

For an ActionScript-centric application, you create an instance of the web service in ActionScript, as the following
code snippet shows:
...
<mx:Script>

<![CDATA[
import com.adobe.*;
import mx.rpc.events.FaultEvent;
import mx.controls.Alert;

// Declare an instance of the generated web service class.
public var agenda:AddressBookService;
public function initApp():void
{

// Instantiate the new object.
agenda = new AddressBookService();

...
}

...

If you are using a LiveCycle Data Services ES destination, you pass the destination name to the service as a parameter
of the constructor.
Add a result event listener (a function that you have previously defined) for the operation to call, as the following
code snippet shows:
agenda.addEntryEventListener(myResultHandlingFunction);

In the addEntry() method, call the addEntry operation of the service and pass the correct values as arguments, as
the following example shows:
agenda.addEntry(myparam0);

In the searchEntry() method, call the findEntry operation of the service and bind the results of the findEntry
operation to Form fields:
...

/**

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

197

* The handleSearchResult() method is the result event handler for the
* findEntry operation.
* It displays the address of a given person by populating the corresponding
* Form fields with the members of the strongly typed Entry result that
* you get when the call to the operation succeeds. Or, if we have no record of the

person’s address, a message is displayed that
* no entry was found.
*/
public function handleSearchResult(event:FindEntryResultEvent):void
{

if(event.result != null) {
// Instantiate a new Entry object with the result that we got from the call.
var res:Entry = event.result;

// Populate the result Form fields with the corresponding data.
txNameOutput.text = res.name;
txCityOutput.text = res.city;
txStreetOutput.text = res.street;
txStateOutput.text = res.state;
txPostalCodeOutput.text = res.postalCode;

// Make sure that the no entry found message is not displayed.
hbNoResults.visible = false;

// Show the results.
hbResults.visible = true;

// Clear the search name field
tiSearch.text = "";

}
else {

// Display the no entry found message.
hbNoResults.visible = true;

// Hide any previous results.
hbResults.visible = false;

}
}

...

The following example shows the complete ActionScript-centric address book application:
<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute"
creationComplete="initApp()">
<mx:Script>

<![CDATA[
import com.adobe.*;
import mx.rpc.events.FaultEvent;
import mx.controls.Alert;

// Declare an instance of the generated web service class.
public var agenda:AddressBookService;

/**
* In the initApp() method we will create a new web service object and
* add the fault event listener for that web service.
* Unlike the event listeners, we get only one fault event listener per
* web service class, as opposed to the event listeners that we get for each
* operation that returns something.
*/
public function initApp():void

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

198

{
// Instantiate the new object.
agenda = new AddressBookService();

// Register the fault event listener method.
agenda.addAddressBookServiceFaultEventListener(handleFaults);

}

/**
* The addEntry() method is used to call the addEntry web service operation.
* The method gets called when the user clicks the Add Entry button.
* It builds an Entry object by using the data that the user has provided, calls the
* web service operation and passes along the strong typed parameter, and then
* clears the user input fields to provide the visual hint that an action has been

taken.
*/
public function addEntry():void
{

// Instantiate a new Entry object.
var newEntry:Entry = new Entry();

// Use the data that the user has provided to populate the Entry object.
newEntry.name = tiNameInput.text;
newEntry.city = tiCityInput.text;
newEntry.street = tiStreetInput.text;
newEntry.state = tiStateInput.text;
newEntry.postalCode = tiPostalCodeInput.text;

// Call the addEntry operation directly from the web service class instance and
// pass along the required parameter.
agenda.addEntry(newEntry);

// Clear the user input fields.
clearInputFields();

}

private function clearInputFields():void {
tiNameInput.text = "";
tiCityInput.text = "";
tiStreetInput.text = "";
tiStateInput.text = "";
tiPostalCodeInput.text = "";

}

/**
* The handleFaults() method is a very basic fault event handler method that
* displays an Alert with the error message.
*/
public function handleFaults(event:FaultEvent):void
{

Alert.show("A fault occured contacting the server. Fault message is: " +
event.fault.faultString);

}

/**
* The searchEntry() method is used to call the findEntry web service operation.
* It gets called when the user clicks the Find Entry button.
* It adds the specific findEntry event listener, and if the user has provided a name
* it makes a call to the web service operation with the provided name.
*/
public function searchEntry(name:String):void

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

199

{
// Register the event listener for the findEntry operation.
agenda.addfindEntryEventListener(handleSearchResult);

// Call the operation if we have a valid name.
if(name!= null && name.length > 0)

agenda.findEntry(name);
}

/**
* The handleSearchResult() method is the result event handler for the
* findEntry operation.
* It displays the address of a given person by populating the corresponding
* form fields with the members of the strongly typed Entry result that
* you get when the call to the operation succeeds. Or, if we have no record of a

person’s address, a message is displayed that
* no entry was found.the
*/
public function handleSearchResult(event:FindEntryResultEvent):void
{

if(event.result != null) {
// Instantiate a new Entry object with result that we got from the call.
var res:Entry = event.result;

// Populate the result form fields with the corresponding data.
txNameOutput.text = res.name;
txCityOutput.text = res.city;
txStreetOutput.text = res.street;
txStateOutput.text = res.state;
txPostalCodeOutput.text = res.postalCode;

// Make sure that the no entry found message is not displayed.
hbNoResults.visible = false;

// Show the results.
hbResults.visible = true;

// Clear the search name field.
tiSearch.text = "";

}
else {

// Display the no entry found message.
hbNoResults.visible = true;

// Hide any previous results.
hbResults.visible = false;

}
}

]]>
</mx:Script>

<mx:Panel width="640" height="480" layout="absolute" verticalCenter="0"
horizontalCenter="0" title="AddressBook Client App">

<mx:TabNavigator x="10" y="10" width="100%" height="100%">
<mx:Canvas label="Add" width="100%" height="100%" id="tabAdd">

<mx:HBox x="10" y="10" width="100%" verticalAlign="middle"
borderStyle="solid">

<mx:Label text="New entry details:"/>
<mx:Form width="293" height="181" borderStyle="solid">

<mx:FormItem label="Name">
<mx:TextInput id="tiNameInput"/>

</mx:FormItem>

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

200

<mx:FormItem label="City">
<mx:TextInput id="tiCityInput"/>

</mx:FormItem>
<mx:FormItem label="Street">

<mx:TextInput id="tiStreetInput"/>
</mx:FormItem>
<mx:FormItem label="State">

<mx:TextInput id="tiStateInput"/>
</mx:FormItem>
<mx:FormItem label="Postal Code">

<mx:TextInput id="tiPostalCodeInput"/>
</mx:FormItem>

</mx:Form>
<mx:Button label="Add entry" labelPlacement="top" click="addEntry()"/>

</mx:HBox>
</mx:Canvas>
<mx:Canvas label="Search" width="100%" height="100%" id="tabSearch">

<mx:HBox x="10" y="10" width="100%">
<mx:Label text="Name"/>
<mx:TextInput id="tiSearch"/>
<mx:Button label="Find entry" click="searchEntry(tiSearch.text);"/>

</mx:HBox>
<mx:HBox id="hbNoResults" x="10" y="40" height="22" visible="false">

<mx:Text text="'No entry was found!"/>
</mx:HBox>
<mx:HBox id="hbResults" x="10" y="70" width="100%" verticalAlign="middle"

borderStyle="solid" visible="false">
<mx:Label text="Results:"/>
<mx:Form width="293" height="181" borderStyle="solid">

<mx:FormItem label="Name">
<mx:Text id="txNameOutput"/>

</mx:FormItem>
<mx:FormItem label="City">

<mx:Text id="txCityOutput"/>
</mx:FormItem>
<mx:FormItem label="Street">

<mx:Text id="txStreetOutput"/>
</mx:FormItem>
<mx:FormItem label="State">

<mx:Text id="txStateOutput"/>
</mx:FormItem>
<mx:FormItem label="Postal Code">

<mx:Text id="txPostalCodeOutput"/>
</mx:FormItem>

</mx:Form>
</mx:HBox>

</mx:Canvas>
</mx:TabNavigator>

</mx:Panel>
</mx:Application>

Working with special types

In addition to the simple classes that the code generator creates for WSDL-defined complex types and request and
result event wrappers, special classes are generated for the following types:
• Simple types that enumerate accepted values
• Array types

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

201

Generated code for simple types, enumerations, and restrictions

When the code generator introspects a WSDL document and encounters the definition of a simple type that is a
restriction of a certain type, and the WSDL provides a list of accepted values, the generated ActionScript model
exposes the acceptable values. To do so, the actual value has [Inspectable] metadata attached to it. When using
MXML syntax, the values read from the WSDL document are proposed as hints, and any other values are rejected
by the compiler.
As an example, consider the definition of a simple type that is a string with possible length unit values. Its definition
inside the WSDL document is:
<s:simpleType name="Lengths">

<s:restriction base="s:string">
<s:enumeration value="Angstroms"/>
<s:enumeration value="Nanometers"/>
<s:enumeration value="Microinch"/>
<s:enumeration value="Microns"/>
<s:enumeration value="Mils"/>

</s:restriction>
</s:simpleType>

The code generator translates this into an ActionScript class called Lengths.as with a single member (_Lengths), of
type String. Inside the generated class, it also adds the[Inspectable] metadata with the values it read from the
WSDL document, as the following example shows:
public class Lengths
{

/**
* Constructor, initializes the type class.
*/
public function Lengths() {}

[Inspectable(category="Generated values",
enumeration="Angstroms,Nanometers,Microinch,Microns,Mils", type="String")]
public var _Lengths:String;
public function toString():String {
return _Lengths.toString();

}
)

Generated code for array types

When an operation must return an array of a specific type and it is defined as a complex type inside the WSDL
document, a class is generated for it. This class extends mx.collections.ArrayCollection and implements all of the
utility methods that are defined in the base class. To make it easier to see what the underlying type of the array is, all
of the methods are slightly modified from their original. For example, getItemAt(index:int) becomes
getBaseTypeAt(index:int), getItemIndex(item:Object) becomes getBaseTypeIndex(item:BaseType),
and so on.
Consider the following structure:
<s:complexType name="ArrayOfAlert">

<s:sequence>
<s:element minOccurs="0" maxOccurs="unbounded" name="Alert" type="tns:Alert" />

</s:sequence>
</s:complexType>

This structure results in the following generated class:
public class ArrayOfAlert extends ArrayCollection {
/**

* Constructor - initializes the array collection based on a source array
*/
public function ArrayOfAlert(source:Array = null) {

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

202

super(source);
}
public function addAlertAt(item:Alert,index:int):void {

addItemAt(item,index);
}
public function addAlert(item:Alert):void {

addItem(item);
}
public function getAlertAt(index:int):Alert {

return getItemAt(index) as Alert;
}
public function getAlertIndex(item:Alert):int {

return getItemIndex(item);
}
public function setAlertAt(item:Alert,index:int):void {

setItemAt(item,index);
}
public function asIList():IList {

return this as IList;
}
public function asICollectionView():ICollectionView {

return this as ICollectionView;
}

}

One exception to this naming rule happens when the base type is another complex type named Item. This causes the
generation of methods that override the ones implemented in the base class, but without actually specifying it. In this
case, the base type is renamed to MyItem, inside method names. When used as actual argument type, the base type
name is left unchanged.

Adding a header to an operation call and getting the header from an operation result

Operations defined in a WSDL document can optionally have headers attached to them, either when calling an
operation or when returning the result. The code that Flex Builder generates lets the user handle both the request
headers and the result headers.

Request headers

If the WSDL document defines request headers for an operation, the generated code has the following extra methods
for each operation:
setOperationName_header() Sets the operation’s request header. You must pass it the exact header object that
the operation expects.
getOperationName_header() Gets the object that was previously passed as the operation header.
addOperationName_header(header_arguments:headerType) Adds a new header item for the operation. This
is the preferred way of adding headers becaue it automatically takes care of encoding the header and you need to
provide only a strong typed object, the method argument.
You can add a request header to an operation call, as the following example shows:
...
public function doCall():void {

var myHeader:LicenseInfo = new LicenseInfo()
//Or use the keywordSearchRequest_header property to set the value.
myService.addkeywordSearchRequest_header(myHeader);
myService.addkeywordSearchRequestEventListener(handleResults);
myService.keywordSearchRequest(inputParams);

}
...

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

203

Result headers

Some operations also return information in headers along with the actual result. You can retrieve the array of headers
by accessing the headers property on the typed result event, inside the operation’s result event handler, as the
following example shows:
...
public function doCall():void {

myService.addkeywordSearchRequestEventListener(handleResults);
myService.keywordSearchRequest(inputParams);

}
public function handleResult(event:KeywordSearchRequestResultEvent):void {

trace(event.result.TotalResults); //do something with the result
trace(event.headers); //do something with the result headers

}

Handling the result of an operation call

After calling a web service operation, you must retrieve the result and manipulate it. The result of a web service call
can be either a SOAP-encoded response or a SOAP fault that contains an error.
To facilitate access to the response of a web service operation call, the code generator also creates some typed event
classes. Because Flex operates asynchronously, you must use events to be notified of the result or fault. You can do
this in any of the following ways:
• By using the token returned when the operation call is placed
• By using the utility methods defined on the typed service
• By binding elements via MXML to the service’s lastResult property

Using a return token

When the call to the operation is made, the user gets an AsyncToken object returned immediately. This can be used
to attach event listeners (methods that are executed when a specific event occurs), by using syntax like the following
example:
...
private function doCall():void {

var ret:AsyncToken;
ret = myService.keywordSearchRequest(input);
ret.addEventListener

(KeywordSearchRequestResultEvent.KeywordSearchRequest_RESULT,handleResult);
ret.addEventListener(FaultEvent.FAULT,handleFaults);

}
...

In this example, the handleResult() and handleFaults() methods are user-defined methods. When using this
approach, the result handling method has an argument of type ResultEvent, instead of a strongly typed, operation-
specific event, as in the following example:
public function handleResults(event:ResultEvent):void {

trace(event.result); //do something with the result
}

Using utility methods

Through metadata, the service provides a list of events to which the user can listen. There is a single unified fault
event, and one result event for each operation. This is because each operation returns a different type of result, but
the fault is the same for all. The service provides the following utility methods for attaching event listeners to an
operation call:
• The method to add the fault event listener for the service, as the following example shows:

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

204

public function addSearchServiceFaultEventListener(listener:Function):void

• The method on each operation to add the listener to process the result, as the following example shows:
public function addkeywordSearchRequestEventListener(listener:Function):void

The types of events that the service exposes are available via code hints and as metadata on the service. Each event
metadata is commented and exposes the method that dispatches it, as the following example shows:
/**
 * Dispatched when a call to the operation KeywordSearchRequest completes successfully
 * and returns some data.
 * @eventType KeywordSearchRequestResultEvent
 */
[Event(name="KeywordSearchRequest_result", type="KeywordSearchRequestResultEvent")]

When using this approach, the result handling method takes the strongly typed, operation-specific event, as the
following example shows:
public function handleResults(event:KeywordSearchRequestResultEvent):void
{
 trace(event.result);//do something with the result
}

Using MXML binding

The generated service class exposes for each operation a specific property, operationName_lastResult, which is
populated each time the result of the operation call is returned. You can bind this property through MXML, and
when the operation returns a value, it automatically populates all bound items. The following example shows a
binding to operationName_lastResult in an MXML tag:
<mx:Text text={myService.keywordSearchRequest_lastResult} />

Automatically generating Flex Ajax Bridge code
You use the Create Ajax Bridge feature to generate JavaScript code and an HTML wrapper file that let you more easily
use a Flex application from JavaScript in an HTML page. This feature works in conjunction with the Flex Ajax Bridge
JavaScript library, which lets you expose a Flex application to scripting in the web browser. The generated JavaScript
code is very lightweight, as it is intended to expose the functionality that the Flex Ajax Bridge already provides. For
more information about the Flex Ajax Bridge, see “Using the Flex Ajax Bridge” on page 844 in the Adobe Flex 3
Developer Guide. The sample Ajax Bridge application referenced in this topic is available in an importable Flex
Builder project at http://learn.adobe.com/wiki/display/Flex/Download+Projects.
The Create Ajax Bridge feature generates JavaScript proxy code that is specific to the Flex application APIs that you
want to call from JavaScript. You can generate code for any MXML application or ActionScript class in a Flex Builder
project.
For MXML application files, you can generate code for any or all of the following items in the MXML code:
• List of inherited elements, which can expand nonrecursively
• Public properties, including tags with id properties
• Public constants
• Public functions, including classes defined in line
For ActionScript classes, you can generate code for any or all of the following items:
• List of inherited elements
• Public properties; for each property, a get and set method is displayed

http://learn.adobe.com/wiki/display/Flex/Download+Projects

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

205

• Public constants
• Public methods
In a directory that you specify, the Create Ajax Bridge feature generates *.js and *.html files that correspond to the
MXML applications and ActionScript classes that you select for generation; it places a copy of the Flex Ajax Bridge
library (fabridge.js) in a subdirectory of the code generation directory. This feature also generates MXML helper files
in the project’s src directory; these files are used to complete the JavaScript code generation.

Generating Ajax Bridge code
1 Right-click a project in the Flex Navigator and select Create Ajax Bridge.
2 In the Create Ajax Bridge dialog box, select the MXML applications and ActionScript classes for which you want
to generate JavaScript code. You can select the top-level checkbox to include the entire object, or you can select
specific members.
3 Specify the directory in which to generate proxy classes.
4 Click OK to generate the code. The following example shows a .js file generated for an application that displays
images:
*
 * You should keep your JavaScript code inside this file as light as possible,
 * and keep the body of your Ajax application in separate *.js files.
 *
 * Do make a backup of your changes before regenerating this file. (Ajax Bridge
 * display a warning message.)
 *
 * For help in using this file, refer to the built-in documentation in the Ajax Bridge
application.
 *
 */

/**
 * Class "DisplayShelfList"
 * Fully qualified class name: "DisplayShelfList"
 */
function DisplayShelfList(obj) {

if (arguments.length > 0) {
this.obj = arguments[0];

} else {
this.obj = FABridge["b_DisplayShelfList"].

create("DisplayShelfList");
}

}

// CLASS BODY
// Selected class properties and methods
DisplayShelfList.prototype = {

// Fields form class "DisplayShelfList" (translated to getters/setters):

// Methods form class "DisplayShelfList":

getAngle : function() {
return this.obj.getAngle();

},

setAngle : function(argNumber) {
this.obj.setAngle(argNumber);

},

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

206

setCurrentPosition : function(argNumber) {
this.obj.setCurrentPosition(argNumber);

},

setSelectedIndex : function(argNumber) {
this.obj.setSelectedIndex(argNumber);

},

setPercentHeight : function(argNumber) {
this.obj.setPercentHeight(argNumber);

},

setPercentWidth : function(argNumber) {
this.obj.setPercentWidth(argNumber);

},

DisplayShelfList : function() {
return this.obj.DisplayShelfList();

},

setFirst : function(argNumber) {
this.obj.setFirst(argNumber);

},

setFormat : function(argString) {
this.obj.setFormat(argString);

},

setLast : function(argNumber) {
this.obj.setLast(argNumber);

}
}

/**
 * Listen for the instantiation of the Flex application over the bridge.
 */
FABridge.addInitializationCallback("b_DisplayShelfList", DisplayShelfListReady);

/**
 * Hook here all of the code that must run as soon as the DisplayShelfList class
 * finishes its instantiation over the bridge.
 *
 * For basic tasks, such as running a Flex method on the click of a JavaScript
 * button, chances are that both Ajax and Flex have loaded before the
 * user actually clicks the button.
 *
 * However, using DisplayShelfListReady() is the safest way, because it lets
 * Ajax know that involved Flex classes are available for use.
 */
function DisplayShelfListReady() {

// Initialize the root object. This represents the actual
// DisplayShelfListHelper.mxml Flex application.
b_DisplayShelfList_root = FABridge["b_DisplayShelfList"].root();

// YOUR CODE HERE
// var DisplayShelfListObj = new DisplayShelfList();

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

207

// Example:
// var myVar = DisplayShelfListObj.getAngle ();
// b_DisplayShelfList_root.addChild(DisplayShelfListObj);

}

5 Edit the generated .js files. In the xxxReady() function of the generated .js files, add the code that must run as
soon as the corresponding class finishes its instantiation over the Ajax Bridge. Depending on your application,
default code may be generated in this method. The bold code in the following example shows custom initialization
code for the sample image application:
...
function DisplayShelfListReady() {

// Initialize the root object. This represents the actual
// DisplayShelfListHelper.mxml Flex application.
b_DisplayShelfList_root = FABridge["b_DisplayShelfList"].root();

 // Create a new object.
 DisplayShelfListObj = new DisplayShelfList();
 // Make it as big as the application.
 DisplayShelfListObj.setPercentWidth(100);
 DisplayShelfListObj.setPercentHeight(100);
 //Set specific attributes.
 DisplayShelfListObj.setFirst(1);
 DisplayShelfListObj.setLast(49);
 DisplayShelfListObj.setFormat("./photos400/photo%02d.jpg");
 //Add the object to the DisplayList hierarchy.
 b_DisplayShelfList_root.addChild(DisplayShelfListObj.obj);
}

6 Edit the generated .html files. In the part of the HTML pages that contains the text “Description text goes here,”
replace the text with the HTML code that you want to use to access the Flex application from the HTML page. For
example, this code adds buttons to control the sample image application:
<h2>Test controls</h2>

<input type="button" onclick="DisplayShelfListObj.setCurrentPosition(0)"
value="Go to first item"/>

<input type="button" onclick="DisplayShelfListObj.setCurrentPosition(3)"
value="Go to fourth item"/>

<input type="button" onclick="DisplayShelfListObj.setSelectedIndex(0)"
value="Go to first item (with animation)"/>

<input type="button" onclick="DisplayShelfListObj.setSelectedIndex(3)"
value="Go to fourth item (with animation)"/>

<input type="button" onclick="alert(DisplayShelfListObj.getAngle())"
value="Get photo angle"/>

<input type="button" onclick="DisplayShelfListObj.setAngle(15);"
value="Set photo angle to 15°"/>

7 Open the HTML page in a web browser to run the application.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

208

Managing Flash Player security
Flash Player does not allow an application to receive data from a domain other than the domain from which it was
loaded, unless it has been given explicit permission. If you load your application SWF file from
http://mydomain.com, it cannot load data from http://yourdomain.com. This security sandbox prevents malicious
use of Flash Player capabilities. (JavaScript uses a similar security model to prevent malicious use of JavaScript.)
To access data from a Flex application, you have three choices:
• Add a cross-domain policy file to the root of the server that hosts the data service. See “Using cross-domain
policy files” on page 208.
• Place your application SWF file on the same server that hosts the data service.
• On the same server that contains your application SWF file, create a proxy that calls a data service hosted on
another server. See “Setting up Flex Builder to use a proxy for accessing remote data” on page 208.

Using cross-domain policy files
A cross-domain policy file is a simple XML file that gives Flash Player permission to access data from a domain other
than the domain on which the application resides. Without this policy file, the user is prompted to grant access
permission through a dialog box—a situation that you want to avoid.
The cross-domain policy file (named crossdomain.xml) is placed in the root of the server (or servers) containing the
data that you want to access. The following example shows a cross-domain policy file:
<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-
policy.dtd">
<cross-domain-policy>
 <allow-access-from domain="www.yourdomain.com" />
</cross-domain-policy>

For more information about configuring cross-domain policy files, see the following tech note:
http://www.adobe.com/go/tn_14213.

Setting up a proxy to access remote data
Another option for managing Flash Player security (aside from using a cross-domain policy file) is to use a proxy.
LiveCycle Data Services ES provides a complete proxy management system for Flex applications. You can also create
a simple proxy service by using a web scripting language such as ColdFusion, JSP, PHP, or ASP.
The proxy service processes requests from the application to the remote service and responses from the remote
service back to the application (Flash Player).
When developing your applications, a common technique is to host the proxy on your local computer. To do this, you
need to run a web server and scripting language on your local development computer.
For more information about creating your own proxy, see the following tech note:
http://www.adobe.com/go/tn_16520.

Setting up Flex Builder to use a proxy for accessing remote data
After you have set up a proxy to access data from a remote service, you place the application files in the same domain
as the proxy. In Flex Builder, you can modify both the project build settings and the launch configuration to manage
the use of a proxy.

http://www.adobe.com/go/tn_14213
http://www.adobe.com/go/tn_16520

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

209

If you use Flex Builder to compile your applications and the proxy server is also set up on your local development
computer, you can modify the project build settings to automatically copy the compiled application files to the
appropriate location on your web server.

Modifying the project build path
1 In the Flex Navigator, select a project.
2 Right-click and select Properties. The Project Properties dialog box appears.
3 Select the Flex Build Path properties page.
4 Change the existing output folder by entering a new path or by browsing to the appropriate folder of your web
server (for example, C:\inetpub\wwwroot\myApp\).
5 Click OK.
To run and debug the application from the web server, you must modify the project’s launch configuration.

Modifying the launch configuration
1 With the project’s main application file open in Flex Builder, right-click in the editor and select Run As > Open
Run Dialog. The Create, Manage, and Run Configurations dialog box appears.
2 From the list of configurations, select the project’s launch configuration.
3 (Optional) On the Main tab, deselect the Use Defaults option to modify the URL or path to launch.
4 In the Debug text box, enter the URL or path to the debug version of the application.
5 In the Profile text box, enter the URL or path to the profiler version of the application.
6 In the Run text box, enter the URL or path to the main application file.
7 Click Apply and then click Close.

210

Chapter 15: Flex Builder User Interface
Reference

In the Adobe® Flex® Builder™ IDE, you typically access Flex Builder project properties, work in various Flex Builder
views, and create resources to include in your Flex Builder project.

Topics

Setting project properties . 210
Using Flex Builder views . 214
Creating project resources . 220

Setting project properties

Project text encoding properties
Use the Info properties page to specify Flex, ActionScript, and Flex Library project text encoding properties.

Specify text encoding properties
1 In the Flex Navigator view, select a project.
2 Right-click (Control-click on Mac OS) to display the context menu and select Properties > Resource.
3 Specify the following properties:

Text File Encoding Sets the default text file encoding. You can select the file encoding of the application
container (UTF-8) or other text encoding formats such as ASCII and UTF-16.
New Text File Line Delimiter Sets the text file line delimiter, which can be inherited from the application
container or by the selected type of operating system.

4 Click OK.

Project compiler properties
Use the Compiler properties page to modify how Flex, ActionScript, and Flex Library projects are built.

Set project compiler properties
1 In the Flex Navigator view, select a project.
2 Right-click (Control-click on Mac OS) to display the context menu and select Properties > (Flex, ActionScript,
or Flex Library) Compiler.
3 You can set the following compiler properties:

Copy Non-Embedded Files To Output Folder Copies all project assets (images for example) that are part of
but not embedded into the SWF file into the output folder. For example, an image file that is embedded into the
SWF file (<image source="@Embed('filename')"/>) is not copied to the output folder; it is compiled into
the SWF file.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

211

Generate Accessible SWF File Enables accessibility features when compiling the application. For more infor-
mation about creating accessible applications, see “Creating Accessible Applications” on page 916 in the Adobe
Flex 3 Developer Guide.
Enable Strict Type Checking (-strict) Specifies that projects are compiled in strict mode. This option enforces
typing and reports run-time verifier errors when projects are compiled. All errors appear in the Problems view.
For more information about strict typing errors, see “Viewing errors and warnings” on page 131 in Building and
Deploying Adobe Flex 3 Applications.
Enable Warnings (-warnings) Specifies that ActionScript projects are compiled in Warnings mode, which
generates migration warnings. These include ActionScript syntax anomalies, obsolete or removed ActionScript
2.0 APIs, and differences in the behavior of ActionScript 2.0 and 3.0 APIs. Warnings appear in the Problems
view. For more information about debugging your applications, see “Running and Debugging Applications” on
page 136 in Using Adobe Flex Builder 3. For more information about warnings, see “Viewing errors and
warnings” on page 131 in Building and Deploying Adobe Flex 3 Applications.
Namespace URL and Manifest File (Flex Library projects only) You can create a custom namespace for the
components contained within a library project by specifying a namespace URL and a manifest file. For more
information, see “Using compc, the component compiler” on page 121 in Building and Deploying Adobe Flex 3
Applications.
Additional Compiler Arguments Allows you to add optional compiler arguments. For more information
about using compiler arguments, see “Using the Flex Compilers” on page 90 in Building and Deploying Adobe
Flex 3 Applications.

Run-time web browser properties
For Flex and ActionScript projects, you can also set the following run-time web browser properties:

Generate HTML Wrapper File Automatically generates the HTML wrapper file when the project is compiled
and places it in a folder called html-template within your project.
Require Flash Version Checks to see if the user has the specified version of Flash Player installed and if not
prompts the user to install it.
Use Express Install Prompts the user to install the correct version of Flash Player using Express Install, which
is a streamlined (quicker and easier) version of the Flash Player installer.
Enable Integration With Browser Navigation Enables your application to use the web browser’s back button.

Modify the compiler properties as needed, and click OK.

Setting project application file properties
Use the Applications properties page to specify the Flex and ActionScript project files that should be compiled as
applications. Flex

Set applications properties
1 In the Flex Navigator view, select a project.
2 Right-click (Control-click on Mac OS) to display the context menu and select Properties > Flex Applications (or
ActionScript Applications).
3 You can set the following compiler properties:

Select the Runnable Application Files Selects the list of project files that have been set as runnable files.
Add Allows you to select project files set as runnable application files (compiled as separate SWF files).
Remove Removes the selected file from the list of runnable application files.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

212

Set as Default Sets the selected application files as the default (main) application file in your project.
4 Modify the list of application files as needed, and click OK.

Flex and ActionScript project build path properties
Use the Build Path properties page to specify Flex and ActionScript project build path properties. For information
about setting build path properties for Flex Library projects, see “Flex library project build path properties” on
page 212.

Specify build path properties
1 In the Flex Navigator view, select a project.
2 Right-click (Control-click on Macintosh) to display the context menu and select Properties > (Flex or Action-
ScriptActionScript) Build Path.
3 Specify the following properties:

Source path Specifies the link to external resources to your application. For example, if you have a folder
of shared ActionScript classes, you can link to that folder by adding it to the source path. You can also edit a
folder’s path, remove the folder from the source path, and arrange the order of the folders using the Up and
Down buttons.
Library path Specifies the link to external resource libraries (SWC files). By default, the library path of
new ActionScript projects contains the playerglobal.swc and utilities.swc files. You can link library projects,
SWC folders, and compiled SWCs to the library path. You can also edit the path entry, remove the entry from
the library path, and arrange the order of the folders using the Up and Down buttons.
Main source folder Specifies by default the root of your project. You can, however, choose a different
folder within the project. You can browse the project folder structure and create a folder for the source if
needed. (Optional)
Output folder Specifies the location of the compiled application files. By default, this is named bin but you
can change this if you like. For more information, see “Setting up a project output folder” on page 124.
Output folder URL Specifies the server location of the compiled application files. (Optional)

4 Click OK.

Flex library project build path properties
Use the Flex Library Build Path properties page to specify Flex Library project build path properties.

Specify build path properties
1 In the Flex Navigator view, select a project.
2 Right-click (Control-click on Macintosh) to display the context menu and select Properties > Flex Library Build
Path.
3 Specify the following properties:

Classes Tab lists the classes that can be included in the SWC file. The classes that are listed are added directly
to the project or linked to it using a folder in the source path. For more information, see “Selecting library project
elements to include in the SWC file” on page 49.
Resources Tab lists all the resources in the project. You can select the resources to include in the SWC file.
Source Path Tab lets you add and manage folders in the source path. Components contained in folders on the
source path can be selected as component classes to include in the SWC file.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

213

Library Path Tab lets you add other SWC files to the project. You can add other projects to the library path
and modify library settings to use your library project as an RSL, and so on. For more information, see “Using
SWC files in your projects” on page 50.
You can also set the following properties:
Main Source Folder Specifies the location of the project source files. By default, the project source files are
located in the root of the project. You can specify a different location (folder) in the project.
Output Folder Specifies the location of the compiled SWC file. By default, this is named bin but you can
change this if you like. For more information, see “Setting up a project output folder” on page 124.

4 Click OK.

Flex server properties
Use the Flex Server properties page to specify server properties for Flex projects that use either the ColdFusion Flash
Remoting Service or LiveCycle Data Services ES.

Specify server properties
1 In the Flex Navigator view, select a project.
2 Right-click (Control-click on Mac OS) to display the context menu and select Properties > Flex Server.
3 Specify the following properties:

Root folder Specifies the root folder of the Flex web application (for example,
C:\fds2\jrun4\servers\default\flex).
Root URL Specifies the URL of the Flex web application root (for example, http://localhost:8700/flex/).
Context root Specifies the context root of the Flex server. Typically, this is same as the last portion of the server
URL (for example, flex).

4 Click OK.

Project builder properties
Use the Builder properties page to configure the builders that will be used to compile your projects. For more infor-
mation, see “Customizing builds with Apache Ant” on page 131.

Access project builder properties
1 In the Flex Navigator view, select a project.
2 Right-click (Control-click on Mac OS) to display the context menu and select Properties > Builders.

Project references
Use the Project References properties page to create references to other projects in the workspace. For more infor-
mation, see “Alternatives to using project references” on page 44.
1 In the Flex Navigator view, select a project.
2 Right-click (Control-click on Mac OS) to display the context menu and select Properties > Project References.

Using Flex Builder views
This section provides information about the views provided by Flex Builder:

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

214

Components view
The Components view lets you rapidly insert Flex components in MXML files in the MXML editor’s Design mode.
Nonvisible components, such as effects, formatters, and validators, are not listed in the Components view. You must
insert these components in the code.

Custom category

The Components view has a category of components called Custom:

You must open a file in Flex Builder to view the components in this category. The category lists the custom compo-
nents available to the project that contains the currently active document. If there is no active document, or the active
document is not in a project, the Custom category is empty.
The Components view only lists visible custom components (components that inherit from the UIComponent
class).
The Custom category lists all the custom components that you saved in the current project or in the source path of
the current project. For example, if you create a component file called LoginBox.mxml and save it in your project,
the LoginBox component appears in the Custom category of the Components view. Like any component, you can
insert these components in your layout by dragging them from the Components view.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

215

Controls category

The Components view has a category of components called Controls:

The following table briefly describes the components in this category:

Component Description

Button Control that displays a variable-size button that can include a label, an icon image, or both.

Checkbox Control that shows whether a particular Boolean value is true (checked) or false (unchecked).

ColorPicker Control that allows the user to select a color from a palette.

ComboBox Data provider control that displays a drop-down list attached to a text field that contains a set of values.

DataGrid Data provider control that displays data in a tabular format.

DateChooser Control that displays a full month of days to let you select a date.

DateField Control that displays the date with a calendar icon on its right side. When a user clicks anywhere inside
the control, a DateChooser control pops up and displays a month of dates.

HorizontalList Data provider control that displays a horizontal list of items.

HSlider Control that lets users select a value by moving a slider horizontally.

Image Control that imports a JPEG, PNG, GIF, or SVG image or SWF file.

Label Control that displays a noneditable single-line field label.

LinkButton Control that displays a simple hypertext link.

List Data provider control that displays a scrollable array of choices.

NumericStepper Control that displays a dual button control you can use to increase or decrease the value of the underlying
variable.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

216

Layout category

The Components view has a category of components called Layout:

The following table briefly describes the components in this category:

PopUpButton Control that consists of two horizontal buttons: a main button, and a smaller button called the pop-up
button, which only has an icon. The main button is a Button control.

PopUpMenuButton Control that consists of two horizontal buttons: a main button, and a smaller button that displays a menu
when clicked.

ProgressBar Control that provides visual feedback of how much time remains in the current operation.

RadioButton Control that can be selected or deselected. In a RadioButtonGroup, only one can be selected at a time.

RadioButton Group Control that forces the RadioButton controls associated with it to be mutually exclusive.

RichTextEditor Control that lets the user edit text and apply simple styles such as bold and italic.

SWFLoader Control that displays the contents of a specified SWF file.

Text Control that displays a noneditable multiline text field.

TextArea Control that displays an editable text field for user input that can accept more than a single line of input.

TextInput Control that displays an editable text field for a single line of user input. Can contain alphanumeric data,
but input will be interpreted as a String data type.

TileList Data provider control that displays a tiled list of items. The items are tiled in vertical columns or horizontal
rows.

Tree Data provider control that lets a user view hierarchical data arranged as an expandable tree.

VideoDisplay Control that lets you play an FLV file in a Flex application. It supports streaming video from the Flash Media
Server, FLV files, and from a Camera object.

VSlider Control that lets users select a value by moving a slider vertically.

Component Description

ApplicationControlBar Control bar that can appear docked across the top of the application, or undocked within an application.

Canvas Container that lets you explicitly position and size its children. Automatically inserted when creating an
MXML Application file.

ControlBar Container that holds components shared by the other children in a Panel container.

Form Container that arranges its children in a standard form format. Should only be used in a Panel container.

Component Description

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

217

Navigators category

The Components view has a category of components called Navigators:

The following table briefly describes the components in this category:

FormHeading Control that specifies an optional label for a group of FormItem containers. Only valid in a Form.

Grid Container that arranges children as rows and columns of cells, similar to an HTML table.

HBox Container that lays out its children horizontally in a single row.

HDividedBox Container that lays out its children horizontally like a HBox container, except that it inserts an adjustable
divider between each child.

HRule Control that displays a single horizontal rule. Typically used to create dividing lines within a container.

Panel Container that displays a title bar, caption, border, and its children. Used as a basic building block in struc-
turing the overall application layout.

Spacer Invisible control that lets you control the spacing between components in a container.

Tile Container that arranges its children in multiple rows or columns.

TitleWindow Container that displays a modal window that contains a title bar, caption, border, close button, and its
children. The user can move and resize it.

VBox Container that lays out its children vertically in a single column.

VDividedBox Container that lays out its children vertically like a VBox container, except that it inserts an adjustable
divider between each child.

VRule Control that displays a single vertical rule. Typically used to create dividing lines within a container.

Component Description

Accordion Navigator container that organizes information in a series of child panels, where one panel is active at any
time.

ButtonBar Navigator container that defines a row of Button controls designating a series of link destinations. Often
used with a ViewStack container.

LinkBar Navigator container that defines a row of Link controls designating a series of link destinations. Often
used with a ViewStack container.

MenuBar Container that displays a horizontal menu bar that contains one or more submenus of Menu controls.

TabBar Navigator container that defines a horizontal row of tabs. Often used with a ViewStack container.

TabNavigator Navigator container that displays a container with tabs to let users switch between different content
areas.

Component Description

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

218

Charts category

The Flex charts are available in Adobe Flex Builder Professional. A trial version of the charts is included in the Flex
Builder Standard.
The Components view has a category of components called Charts:

The following table briefly describes the components in this category:

Flex Properties view
The Flex Properties view lets you rapidly set the properties of visual components in the MXML editor’s Design mode.
The view is not available in Source mode.

ToggleButtonBar Like ButtonBar, except the button stays pressed.

ViewStack Navigator container that defines a stack of panels that displays a single panel at a time.

Component Description

AreaChart Area charts represent data as an area bounded by a line connecting the data values.

BarChart Bar charts represent data as a series of horizontal bars, the length of each determined by data values.

BubbleChart Bubble charts represents data with three values for each data point: one for the x axis, one for the y
axis, and another for the size of the bubble.

CandlestickChart Candlestick charts represent financial data as a series of candlesticks representing the high, low,
opening, and closing values of a data series.

ColumnChart Column charts represent data as a series of vertical columns, the size of each determined by data
values.

HighLowOpenCloseChart HLOC charts represent financial data as a series of lines representing the high, low, opening, and
closing values of a data series.

Legend Legend controls match the fill patterns on your chart to labels that describe the data series shown with
those fills.

LineChart Line charts represent data as a series of points, in Cartesian coordinates (x and y axes forming a plane),
connected by a continuous line.

PieChart Pie charts represent data as slices of a pie, the data determining the size of each slice.

PlotChart Plot charts represent data as Cartesian coordinates, with data points for both the x and y axes. You
provide shape for the data points using a display renderer (the circle renderer, for example).

Component Description

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

219

You cannot use the Flex Properties view to set the properties of nonvisible components such as effects, formatters,
and validators. You must set the properties of these components in the code.
The toolbar of the Flex Properties contains the following buttons:
Standard view Displays the most commonly used properties in a form layout.
Category view Displays the properties in a categorized list.
Alphabetical view Displays the properties in an alphabetical list.
To use a default property value, or use the value set by a CSS rule, leave the field blank.

Flex Navigator view
The Flex Navigator view allows you to manage the projects and resources contained within the workspace.

Outline view
You use the Outline view to more easily inspect and navigate the structure of your MXML and ActionScript
documents.

States view
The States view shows the states defined for the current application in Flex Builder. The list of states appears in a tree
structure, showing which states are based on which other states.
Your view contains the following options:
The tree structure Lets you select a state to display and edit in the MXML editor’s Design mode. When you select
a state in the tree, Flex Builder displays the state’s layout in Design mode. You can modify the layout by using the
design tools in Flex Builder.
New State Lets you create a state. For more information, see “Setting running and debugging preferences” on
page 223.
Edit State Properties Lets you edit some basic properties of the selected state. You can also double-click the state
in the tree to edit the properties. For more information, see “Edit State Properties dialog box” on page 219.
Delete State Lets you remove the selected state. If you attempt to delete a state that other states are based on, a
dialog box appears to warn you that the other states will be deleted too. You can cancel the operation or confirm that
you want to delete the state.
Selecting Edit > Undo restores the state that you deleted.

New State dialog box

The New State dialog box lets you define a new state. It contains the following options:
Name Lets you specify the name of the new state.
Based On Lets you select the state on which to base the new state. The pop-up menu lists the states defined in the
current document.
Set As Start State Shows this state when the application starts.

Edit State Properties dialog box

The Edit State Properties dialog box lets you modify the properties of an existing state, such as its name and whether
it appears when the application starts. It contains the following options:
Name Lets you specify a new name for the state. You cannot rename the base state.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

220

Set As Start State Shows or hides this state when the application starts.

Creating project resources
This section provides information about dialog boxes used to create project resources.

Setting New ActionScript Class dialog box options
The New ActionScript Class dialog box lets you rapidly create an ActionScript class.
1 (Optional) Specify a package for your class.

A package is a named collection of classes. If you don’t specify a package, the class will be declared in the default
package ("package { ... }").
If you specify a package folder that does not exist, the wizard will create it.

2 Name the class file.
The filename defines the class name. For example, if you name the file LoginBox.as, the class is named LoginBox.

3 Select one of the following modifiers:
Public Specifies that the class is available to any caller. Classes are internal by default, which means that they
are visible only within the current package. To make a class visible to all callers, you must use the public
attribute.
Internal Specifies that the class is available to any caller within the same package.
Dynamic Specifies that the class is a dynamic class that can be altered at run time by adding or changing
properties and methods.
Final Specifies that the class cannot be extended.

4 In the Superclass text box, specify the class from which you want to derive your new class.
Container classes are commonly used as the superclasses of derived classes used for layout. For example, if you
select the HBox class as the superclass, Flex Builder inserts the following code in your class:
import mx.containers.HBox;
public class LoginBox extends HBox {

}

5 Add any interface that contains constants and methods that you want to use in your new class.
An interface is a collection of constants and methods that different classes can share. For more information on
the Flex interfaces, see Adobe Flex Language Reference in Help.

6 Select any of the following code generation options:
Generate Constructor from Superclass Generates a constructor with a super() call. If the superclass
constructor takes arguments, the arguments are included in the generated constructor and passed up in the
super() call.
Generate Functions Inherited from Interfaces Generates function stubs for each interface method. The stubs
include a return statement that returns null (or 0 or false for primitive types) so that the stubs will compile.
Generate Comments Inserts a "//TODO: implement function" in the bodies of any generated functions or
constructors.

7 Click Finish.
Flex Builder saves the file in the specified package and opens it in the code editor.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

221

If you saved the file in the current project or in the source path of the current project, Flex Builder also displays
the component in the Components view so that you can rapidly insert it in your applications. For more infor-
mation, see “Add components in MXML Design mode” on page 67.

8 Write the definition of your ActionScript class.
For more information, see “Creating Simple Visual Components in ActionScript” in Creating and Extending
Adobe Flex 3 Components.

Setting New ActionScript Interface dialog box options
The New ActionScript Interface dialog box lets you rapidly create an ActionScript interface.
1 (Optional) Specify a package for your interface.

A package is a named collection of classes and interfaces. If you don’t specify a package, the interface will be
declared in the default package ("package { ... }").
If you specify a package folder that does not exist, the wizard will create it.

2 Name the interface.
3 Select one of the following modifiers:

Public Specifies that the interface is available to any caller.
Internal Specifies that the interface is available to any caller within the same package.

4 In the Extended Interfaces area, add any interface that contains constants and methods that you want to use in
your new ActionScript interface.

Your new interface will be extended with the other interfaces. For more information on the Flex interfaces, see
Adobe Flex Language Reference in Help.

5 Add any constants or methods to your ActionScript interface that you want different classes to share.

Setting the New MXML Component dialog box options
The New MXML Component dialog box lets you rapidly create an MXML component.
1 Specify the parent folder for your custom component file.

Save the file in the current project or in the source path of the current project if you want the component to
appear in the Components view.

2 Specify the filename of the component.
The filename defines the component name. For example, if you name the file LoginForm.mxml, the component
is named LoginForm.

3 Select the base component of your custom component.
Custom components derive from existing components. Containers are commonly used as the base components
of custom components.

4 Click Finish.
Flex Builder saves the file in the parent folder and opens it in the editor.
If you saved the file in the current project or in the source path of the current project, Flex Builder also displays
the component in the Components view so that you can rapidly insert it in your applications. For more infor-
mation, see “Add components in MXML Design mode” on page 67.

5 Develop your custom component.
For more information, see “Simple MXML Components” on page 45 in Creating and Extending Adobe Flex 3
Components.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

222

Create Chart dialog box
The Create Chart dialog box lets you add charting components to your application rapidly. The dialog box has the
following options:
ID Specifies the ID for the new chart.
Series Elements Lists the series of data in your chart. For more information, see “About charting” on page 2 in
Adobe Flex 3 Data Visualization Developer Guide.
Add Lets you add more than one data series to your chart. Enter the new series name in the dialog box that appears
after you click the button.
Remove Lets you remove a data series selected in the list.
Up and Down Let you change the order of the data series.
Include Legend Lets you add a Legend control to your chart that displays the label for each data series in the chart
and a key showing the chart element for the series.

Setting editor preferences

This dialog box allows you to specify preferences that apply to the MXML, ActionScript, and CSS editors.
1 Open the Preferences dialog and select Flex > Editors:

Indent Using (Tabs or Spaces) Specifies that closing braces are indented so that your code is properly
formatted and easier to read.
Auto Indent Braces When Typing Specifies that when you select a code expression’s opening brace, the
closing brace is highlighted in the code editor.
Enable Code Folding Enables Content Assist to automatically provide code hints while entering code.

2 Click OK.

Setting MXML editor preferences
This dialog box allows you to specify MXML editor preferences.
1 Open the Preferences dialog and select Flex > Editors:

Automatically Show Design-related Views Specifies that when you switch into Design mode all of the design
mode views are displayed.
Enable Snapping Specifies that the components you place into the editor in Design mode snap to guidelines.
Render Skins When Opening a File Specifies that when you load a MXML file into the MXML editor the
skins will be rendered and displayed.
Collapse Data Binding Expressions Collapses data binding expressions in the code editor. You can expand
these expressions using code folding.

2 Click OK.

Setting ActionScript editor preferences
This dialog box allows you to specify ActionScript editor preferences.
1 Open the Preferences dialog and select Flex > Editors > ActionScript Editor:

Keep Close Braces Correctly Indented Specifies that closing braces are indented so that your code is properly
formatted and easier to read.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

223

Highlight Matching Braces Specifies that when you select a code expression’s opening brace, the closing brace
is highlighted in the code editor.
Wrap Strings Automatically Wraps lines of code wrap to the size of the editor window.

2 Click OK.

Setting MXML Code Assist preferences
This dialog box allows you to specify MXML formatting and Code Assist preferences.
Note: The Code Assist feature is also referred to as Content Assist and these terms are used interchangeably.
1 From the main menu, select Window > Preferences.

The Preferences dialog box appears.
2 Select the Flex > Editors > MXML Editor > Code Assist preferences page and set the following preferences:

Insert Closing Quote When Completing Attributes Automatically adds a closing quote (") when entering
attribute values.
Insert Close Tags When Completing Tags Automatically adds a closing tag (/>) when entering MXML tags.
Insert New Line and Indent When Completing Tags Adds and properly indents a new line of code when a
tag is completed.
Insert Default Namespace Attribute for mx:XML, mx:XMList, and mx:request Automatically adds a
namespace attribute to mx:XML, mx:XMList, and mx:request tags.
Insert CDATA for mx:Script Inserts a CDATA construct when you enter an <mx:Script> tag.
Insert CDATA for Child Event Attributes Inserts a CDATA construct for child event attributes.
Insert CDATA for mx:htmlText Inserts a CDATA construct when you enter an <mx:htmlText> tag.
Enable Auto-activation Enables Content Assist to automatically provide code hints while entering code.
Set Auto-activation Delay Specifies in one hundreths of a second the delay before code hinting appears.
Set Auto-activation Characters Sets the characters that trigger Content Assist.

3 Click OK.

Setting running and debugging preferences
You can specify that the project is built before it is run as an application and also set other launch-related preferences
in Flex Builder.
1 Open the Preferences dialog and select Run/Debug > Launching:

Save Required Dirty Editors Before Launching Specifies that editors containing unsaved data will be saved
(the options are Always, Never, or Prompt). The term dirty editor refers to editors that contain code that has not
been saved.
Wait for Ongoing Build to Complete Before Launching Allows you to set the wait before launching
preference to Always, Never, or Prompt.
Launch in Debug Mode When Workspace Contains Breakpoints Select Always, Never, or Prompt.
Continue Launch if Project Contains Errors Select Always or Prompt.
Build (If Required) Before Launching Is selected by default. If needed, builds the project specified in the
launch configuration before launching the application.
Remove Terminated Launches When a New Launch is Created Clears all of the terminated launches in the
Debug view.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

224

Size of Recently Launched Applications List Specifies the number of recently launched applications that are
displayed in the Run As menu. The default is 10.

2 Click OK.

Setting Console view preferences
You can modify preferences that affect how text in the Console view is displayed.
1 Open the Preferences dialog and select Run/Debug > Console:

Fixed Width Console Sets the Console view to a fixed width based on the maximum character width you
enter.
Limit Console Output Sets the Console view to a buffer size equal to the maximum buffer size (in characters)
that you enter.
Displayed Tab Width Sets the character width of tabs in the Console view.
Show When Program Writes to Standard Out Shows the Console view (if hidden or inactive) when it is
invoked by an application that creates output to the view.
Show When Program Writes to Standard Error Shows the Console view (if hidden or inactive) when an error
is encountered while an application is run or debugged.
Standard Out Text Color Specifies the color of the standard output text.
Standard Error Text Color Specifies the color of the error output text.
Standard In Text Color Specifies the color of the text that you enter into the Console view.
Standard Background Color Specifies the background color of the output text.

2 Click OK.

Setting Run/Debug preferences
You can specify general settings for running and debugging your applications in Flex Builder.
1 Open the Preferences dialog and select Run/Debug:

Reuse Editor When Displaying Source Code Displays all source files in the same editor, rather than opening
a new editor for each source file.
Activate the Workbench When a Breakpoint is Hit Activates the workbench title bar so that it flashes when
a breakpoint is hit, alerting you that the debugger is active.
Activate the Debug View When a Breakpoint is Hit Displays the Flex Debugging perspective when a break-
point is hit.
Skip Breakpoints During a ‘Run to Line’ Operation Is not supported in Flex Builder.
Changed Value Color Specifies the text color of the changed value of a variable.
Changed Value Background Color Specifies the background color for the text of the changed value of a
variable.
Memory Unbuffered Color Is not supported in Flex Builder.
Memory Buffered Color Is not supported in Flex Builder.

2 Click OK.

Setting Flex debugging preferences
You can specify debugging settings that are specific to the Flex Builder debugger.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

225

1 Open the Preferences dialog and select Flex > Debug:
Warn When Trying to Launch Multiple Debugging Sessions Is selected by default. Firefox only supports one
debugging session at a time; therefore, if you attempt to begin another debugging session, the current session
will be terminated. If you deselect this preference, you will never receive a warning and the existing debugging
session will be automatically terminated.
Automatically Invoke Getter Functions Is selected by default. When debugging, if a getter function is
displayed in the Variables view, the function is invoked. If you turn this preference off, you can manually invoke
a getter function in the Variables view by selecting it, right-clicking (Control-clicking on Macintosh) to display
the context menu and selecting Invoke Getter.
Changing this preference does not affect the current debugging session, only subsequent debugging sessions.

2 Click OK.

227

Chapter 16: Creating Custom MXML
Components

An application in Adobe Flex typically consists of an MXML application file (a file with an <mx:Application>
parent tag), one or more standard Flex components, and one or more custom components defined in separate
MXML, ActionScript, or Flash component (SWC) files. By dividing the application into manageable chunks, you can
write and test each component independently from the others. You can also reuse a component in the same appli-
cation or in other applications, which increases efficiency.
You can use Adobe Flex Builder to build custom MXML and ActionScript components visually and then insert them
into your applications. This topic describes how to build custom MXML components visually. For more information
on building ActionScript components, see “Creating an ActionScript class” on page 46.
You can also build an MXML component directly using code. For more information, see “Simple MXML Compo-
nents” on page 63 in Creating and Extending Adobe Flex 3 Components.

Topics

About custom components . 227
Creating MXML components visually . 227
Designing components visually . 229
Distributing custom components . 229

About custom components
You might want to create custom components for a number of reasons. For example, you might simply want to add
some functionality to an existing component, or you might want to build a reusable component, like a search box or
the display of an item in a data grid. You might want to write a completely new kind of component that isn't available
in the Flex framework.
If your component is composed mostly of existing components, it is convenient to define it using MXML. However,
if it is a completely new kind of component, you should define it as an ActionScript component. For more infor-
mation, see “Creating an ActionScript class” on page 46.

Creating MXML components visually
You use Flex Builder to create custom MXML components.
1 Select File > New > MXML Component.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

228

The New MXML Component dialog box appears:

2 Specify the parent folder for your custom component file.
Save the file in a folder in the current project folder or in the source path of the current project if you want the
component to appear in the Components view.

3 Specify a filename for the component.
The filename defines the component name. For example, if you name the file LoginBox.mxml, the component
is named LoginBox.

4 Select the base component of your custom component.
Custom components are typically derived from existing components. Containers are commonly used as the base
components of layout custom components.

5 (Optional) If you base the component on a Panel or TitleWindow component, a Layout pop-up menu appears
letting you select how the children of the component will be laid out—absolutely, horizontally, or vertically.
6 (Optional) If you base the component on any container, you get options to set the width and height of the
component.

You can set these options to a fixed width and height or to percentages, or you can clear them. When you create
an instance of the component, you can override the component’s width and height in the instance.
If you set a percentage width and height or if you set no width and height, you can preview how the component
will look at different sizes using the Design Area pop-up menu in the toolbar of the MXML editor’s toolbar in
Design mode. For more information, see “Designing components visually” on page 229.

7 Click Finish.

ADOBE FLEX BUILDER 3
Using Adobe Flex Builder 3

229

Flex Builder saves the file in the parent folder and opens it in the editor.
If you saved the file in the current project or in the source path of the current project, Flex Builder also displays
the component in the Components view so that you can rapidly insert it in your applications. For more infor-
mation, see “Add components in MXML Design mode” on page 67.

Note: The Components view lists only visible custom components (components that inherit from the UIComponent
class). For more information, see Adobe Flex Language Reference.
8 Create your custom component.

For more information, see “Simple MXML Components” on page 63 in Creating and Extending Adobe Flex 3
Components.

Designing components visually
You can lay out a custom component visually in the MXML editor as you would a regular MXML application file.
All the tools in Design mode are available. For example, you can add child controls from the Components view and
set properties in the Properties view. For more information, see “Working with components visually” on page 69.
The size of a custom component displayed in Design mode is determined by the following rules:
• If your component has a fixed width and height, Flex Builder automatically sets the design area to that width and
height.
• If the component has no width and height, or has a 100% width and height, you can select the size of the design
area from the Design Area pop-up menu in the editor’s toolbar.

Selecting different sizes allows you to preview the component as it might appear in different circumstances. The
design area defaults to 400x300 pixels for containers and to Fit to Content for controls.

• If the component has a percentage width and height other than 100%, Flex Builder renders it as a percentage of
the selected size in the Design Area menu.

Editing and distributing custom MXML components
Flex Builder renders any visible custom components (components that inherit from UIComponent) in the MXML
editor’s Design mode. You can double-click a custom component in the layout to open its file and edit it.
1 Open an MXML file that uses a custom component.
2 In Design mode, double-click a custom component in the layout.

The component file opens in the editor.
You can also right-click a custom component to display the context menu and select Open Custom Component.

3 Edit the custom component.

Distributing custom components
Distribute custom components by creating library projects. For more information, see “About library projects” on
page 47.

	Chapter 1: Learning Flex Builder
	Using Flex and Flex Builder documentation
	Getting the most from the Flex and Flex Builder learning resources
	Using the Flex Builder help system
	Searching Help
	Using Help bookmarks
	Changing the Help viewer font size
	Using the Flex Start page

	Chapter 2: About Flex Builder
	What you can do with Flex Builder
	Flex Builder versions
	Flex Builder configurations
	Activating Flex Builder
	Managing Flex licenses

	Chapter 3: Flex Builder Workbench Basics
	About the workbench
	About Flex Builder editors
	Code hinting
	Code navigation
	Code formatting
	Find references and code refactoring

	About Flex Builder perspectives
	The Flex Development perspective
	Flex Development perspective in Design mode
	The Flex Debugging perspective
	The Flex Profiling perspective
	Other useful workbench views

	Workbench menus, toolbars, and shortcuts
	The workbench toolbar
	The MXML editor toolbar
	The CSS editor toolbar
	Using keyboard shortcuts

	Extending the Flex Builder workbench

	Chapter 4: Working with Projects
	About Flex Builder projects
	Project types
	Flex projects
	ActionScript projects
	Flex library projects

	Projects in the Flex Navigator view
	Project resources

	Creating Flex projects
	Creating a Flex project with no server
	Creating a Flex project with ASP .NET
	Creating a Flex project with J2EE
	Creating a Flex project with ColdFusion
	Creating a Flex project with another server

	Managing projects
	Setting Flex project properties
	Importing projects
	Exporting projects
	Exporting Adobe AIR application installer
	Moving a project from one workspace to another
	Deleting projects
	Closing and opening projects
	Switching the main application file
	Managing project application files

	Managing project resources
	Creating folders and files in a project
	Deleting folders and files
	Moving resources between projects in a workspace
	Refreshing resources in the workspace
	Linking to resources outside the project workspace
	Using a path variable to link to resources

	Adding resource folders to the project source path
	Alternatives to using project references
	Viewing resource properties

	About ActionScript projects
	Creating ActionScript projects
	Creating an ActionScript class
	Creating an ActionScript interface

	About library projects
	Configuring libraries for your applications
	Creating Flex library projects
	Adding components to the library project
	Selecting library project elements to include in the SWC file
	Building library projects
	Using SWC files in your projects

	Chapter 5: Navigating and Customizing the Flex Builder Workbench
	Working with perspectives
	Opening and switching perspectives
	Setting the default perspective
	Opening perspectives in a new window
	Customizing a perspective
	Deleting a customized perspective
	Resetting perspectives

	Working with editors and views
	Opening views
	Moving and docking views
	Rearranging tabbed views
	Switching between views
	Creating and working with fast views
	Filtering the Tasks and Problems views
	Creating working sets
	Opening files for editing
	Associating editors with file types
	Editing files outside the workbench
	Tiling editors
	Maximizing a view or editor

	Switching the workspace
	Customizing the workbench
	Rearranging the main toolbar
	Changing keyboard shortcuts
	Changing fonts and colors
	Changing fonts and colors
	Changing colors
	Controlling single- and double-click behavior

	Searching in the workbench
	Searching for files
	Searching for references and declarations
	Using the Search view

	Working in the editor’s Source and Design modes
	Accessing keyboard shortcuts
	Setting workbench preferences

	Chapter 6: Building a Flex User Interface
	About the structure of Flex user interfaces
	Adding and changing components
	Add components in MXML Design mode
	Add components in complex layouts
	Add components by writing code
	Adding Flash components (SWC files)

	Working with components visually
	Using the MXML editor in Design mode
	Selecting multiple components in an MXML file
	Deselecting multiple components
	Positioning components
	Sizing components
	Using snapping to position components
	Aligning components
	Nudging components
	Setting component properties
	Showing surrounding containers
	Inspecting the structure of your MXML
	Hiding container borders
	Copying components to other MXML files
	Deleting components

	Applying styles and skins
	Using the CSS editor in Design mode
	Default values
	Additional options in the CSS editor

	Importing Skin Artwork
	Refreshing Design mode to render properly

	Laying out your user interface
	About constraint-based layouts
	Row and column constraints
	Inserting and positioning components in the layout
	Setting layout constraints for components

	Adding navigator containers
	Creating layouts in navigator containers
	Letting users select a view in a ViewStack container

	Adding data provider controls
	Adding charting components

	Chapter 7: Adding View States and Transitions
	About view states and transitions
	Creating a view state
	Creating a state based on an existing state
	Setting a non-base state as the starting state
	Setting the initial state of a component
	Switching states at run time
	Modifying the appearance of existing states
	Deleting a view state
	Creating a transition

	Chapter 8: Adding Interactivity with Behaviors
	About Flex behaviors
	Creating a behavior for a component

	Chapter 9: Code Editing in Flex Builder
	About code editing in Flex Builder
	About Flex Builder content assistance
	About Content Assist
	Using Content Assist
	Getting help while writing code

	Navigating and organizing code
	Setting, folding, and unfolding code blocks
	Using the Outline view to navigate and inspect code
	Using Quick Outline view in the editor
	Opening code definitions
	Browsing and opening class types
	Showing line numbers

	Formatting and editing code
	Organizing import statements
	Adding comments and comment blocks
	Manually indenting code blocks
	Finding and replacing text in the editor

	Finding references and refactoring code
	About markers
	Navigating markers
	Adding tasks
	Completing and deleting tasks
	Adding and deleting bookmarks

	About syntax error checking
	Apply syntax coloring preferences
	Using the Problems view

	Code editing keyboard shortcuts

	Chapter 10: Building Projects
	Understanding how projects are built and exported
	Build basics
	Customizing project builds
	Enabling and disabling automatic builds
	Setting up a project output folder
	Modifying a project build path
	Creating a path variable

	Export Release Build
	Export Adobe AIR application installer
	Debug version

	Advanced build options
	Building projects manually
	Saving project resources automatically
	Performing a clean build
	Changing the project build order
	Customizing builds with Apache Ant
	Using multiple SDKs in Flex Builder
	Using multiple SDKs in a server-based project

	Publishing source code
	Adding the view source menu to ActionScript projects

	Chapter 11: Running and Debugging Applications
	About running and debugging applications
	Running your applications
	Managing launch configurations
	Creating or editing a launch configuration
	Running the application SWF file in the stand-alone Flash Player
	Changing the default web browser

	Debugging your applications
	Starting a debugging session
	Adding and removing breakpoints
	Managing breakpoints in the Breakpoints view
	Managing the debugging session in the Debug view
	Using the Console view
	Managing variables in the Variables view
	Using the Expressions view

	Chapter 12: Creating Modules
	Creating modules in Flex Builder
	Compiling modules in Flex Builder
	Using multiple projects for modules
	Creating projects for modules
	Compiling projects for modules

	Adding modules to your project
	Optimizing modules in Flex Builder
	Debugging modules in Flex Builder

	Chapter 13: Profiling Flex applications
	About profiling
	About types of profiling
	Additional resources

	How the Flex profiler works
	About the profiling APIs
	About internal player actions

	Using the profiler
	Starting, stopping, and resuming the profiler
	About the profiler buttons
	Saving and loading profiling data
	Setting profiler preferences
	Profiling external applications

	About the profiler views
	Viewing information in the Live Objects view
	Using the Memory Snapshot view
	Using the Object References view
	Using the Allocation Trace view
	Using the Object Statistics view
	Using the Performance Profile view
	Identifying method performance characteristics
	Using the Loitering Objects view
	Using the Memory Usage graph

	About garbage collection
	Identifying problem areas
	Locating memory leaks
	Analyzing execution times
	Locating excessive object allocation

	About profiler filters

	Chapter 14: Working with Data in Flex Builder
	About working with data in Flex Builder
	Data-driven controls and containers
	Data providers and collections
	Remote data access
	Data binding
	Data models
	Data validation
	Data formatting

	Automatically generating database applications
	Generating a PHP database application
	Directory structure and deployment considerations for PHP

	Generating a J2EE database application
	Directory structure and deployment considerations for J2EE

	Generating an ASP .NET database application
	Directory structure and deployment considerations for ASP .NET

	Creating a database connection profile

	Automatically generating web service proxies
	Managing generated web service code
	Creating an application that uses the generated proxy code
	Calling a service with MXML
	Calling a service with ActionScript
	Working with special types
	Adding a header to an operation call and getting the header from an operation result
	Handling the result of an operation call

	Automatically generating Flex Ajax Bridge code
	Managing Flash Player security
	Using cross-domain policy files
	Setting up a proxy to access remote data
	Setting up Flex Builder to use a proxy for accessing remote data

	Chapter 15: Flex Builder User Interface Reference
	Setting project properties
	Project text encoding properties
	Project compiler properties
	Run-time web browser properties
	Setting project application file properties
	Flex and ActionScript project build path properties
	Flex library project build path properties
	Flex server properties
	Project builder properties
	Project references

	Using Flex Builder views
	Components view
	Custom category
	Controls category
	Layout category
	Navigators category
	Charts category

	Flex Properties view
	Flex Navigator view
	Outline view
	States view
	New State dialog box
	Edit State Properties dialog box

	Creating project resources
	Setting New ActionScript Class dialog box options
	Setting New ActionScript Interface dialog box options
	Setting the New MXML Component dialog box options
	Create Chart dialog box
	Setting editor preferences
	Setting MXML editor preferences
	Setting ActionScript editor preferences
	Setting MXML Code Assist preferences
	Setting running and debugging preferences
	Setting Console view preferences
	Setting Run/Debug preferences
	Setting Flex debugging preferences

	Chapter 16: Creating Custom MXML Components
	About custom components
	Creating MXML components visually
	Designing components visually
	Editing and distributing custom MXML components
	Distributing custom components

