
written by
Kevin Kline,

SQL Server MVP,
Quest Software, Inc.

Worth the Wait
Why SQL Server 2008 is Great

WPD_Worth_the_Wait_011608_AG

© Copyright Quest® Software, Inc. 2008. All rights reserved.

This guide contains proprietary information, which is protected by copyright. The
software described in this guide is furnished under a software license or
nondisclosure agreement. This software may be used or copied only in accordance
with the terms of the applicable agreement. No part of this guide may be
reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying and recording for any purpose other than the purchaser's
personal use without the written permission of Quest Software, Inc.

WARRANTY

The information contained in this document is subject to change without notice.
Quest Software makes no warranty of any kind with respect to this information.
QUEST SOFTWARE SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTY OF THE
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Quest Software
shall not be liable for any direct, indirect, incidental, consequential, or other
damage alleged in connection with the furnishing or use of this information.

TRADEMARKS

All trademarks and registered trademarks used in this guide are property of their
respective owners.

World Headquarters
5 Polaris Way
Aliso Viejo, CA 92656
www.quest.com
e-mail: info@quest.com

Please refer to our Web site for regional and international office information.

Updated—January 16, 2008

http://www.quest.com/
mailto:info@quest.com

i

CONTENTS

INTRODUCTION ..1
10. SQL IMPROVEMENTS...2

GROUPING SETS.. 2
MERGE STATEMENT .. 4 T

9. DEVELOPER IMPROVEMENTS...6
LANGUAGE INTEGRATED QUERY (LINQ) ... 6
TABLE-VALUED PARAMETERS (TVPS)... 7

8. REPORTING SERVICES (RS) IMPROVEMENTS..9
DROPPING THE INTERNET INFORMATION SERVER (IIS) REQUIREMENT 9
REPORTING IMPROVEMENTS.. 9
PERFORMANCE IMPROVEMENTS .. 10

7. COMPRESSION ..11
DATA COMPRESSION .. 11
BACKUP COMPRESSION ... 12

6. DATA TYPES AND DATA STORAGE ...13
DATA TYPES .. 13
DATA STORAGE .. 14

5. SECURITY..15
TRANSPARENT DATA ENCRYPTION (TDE) .. 15
EXTENSIBLE KEY MANAGEMENT.. 15

4. RESOURCE GOVERNOR ..16
3. AUDITING AND CHANGE TRACKING ..18

AUDIT OBJECT ... 18
DDL TRIGGERS .. 19

2. ANALYSIS SERVICES (AS) PERFORMANCE IMPROVEMENTS20
1. MULTI-SERVER MANAGEMENT...22

STREAMLINED INSTALLATION .. 22
POLICY-BASED MANAGEMENT (PBM)... 23

CONCLUSION ..24
ABOUT THE AUTHOR ...25
ABOUT QUEST SOFTWARE, INC. ..26

CONTACTING QUEST SOFTWARE... 26
CONTACTING QUEST SUPPORT... 26 T

White Paper

1

INTRODUCTION

SQL Server 2008, scheduled for release in the first half of 2008, is intended to provide a
comprehensive data platform for both structured and unstructured data that is more
secure, reliable, manageable, and scalable than previous releases. In addition, SQL
Server 2008 pushes the envelope with powerful new features for developers, enabling
them to create new applications that store and consume all sorts of data on everything
from tiny mobile devices to corporate “big iron” servers. SQL Server 2008 also provides
a number of new features to turn all of that data into actionable information that enables
your users to make informed decisions with new levels of insight and prescience.

SQL Server 2008, like SQL Server 2005, provides a plethora of new features and
capabilities, as well as the usual bevy of bug fixes and performance improvements.
Microsoft, however, has identified three areas where they’re focusing their
improvements:

• Trustworthiness of the platform, its data, and its users: provide the
security, reliability, and scalability that are required by the most demanding
business applications

• Productivity of database administrators and developers: offer an array of
new data-driven management solutions that reduce the time and cost of
managing and developing applications

• Business intelligence: provide a comprehensive platform for delivering and
consuming intelligence when and where your users want it

That’s how Microsoft has divided up the main elements of their marketing thrust for
SQL Server 2008. However, as a working DBA and developer, my mind is not on
the marketing as much as it is on the particulars within SQL Server 2008 that will
make my life easier and solve my particular points of pain. With that in mind, this
white paper will introduce you to the top ten features and capabilities in SQL Server
2008 that I find to be the most exciting and valuable:

10. SQL Improvements

9. Developer Improvements

8. Reporting Services (RS) Improvements

7. Compression

6. Data Types and Data Storage

5. Security

4. Resource Governor

3. Auditing and Change Tracking

2. Analysis Services (AS) Performance Improvements

1. Multi-Server Management.

Worth the Wait: Top 10 Reasons Why SQL Server 2008 is Great

2

10. SQL IMPROVEMENTS

I just can’t help it that SQL is so important for me. I am, after all, the author of
O’Reilly’s SQL in a Nutshell, one of the industry’s leading reference manuals on
SQL. However, if you’re a full time DBA or developer, you also need to know SQL
well. Two new elements of SQL included in SQL Server 2008 that are most exciting
to me are the GROUPING SETS operator and the MERGE statement. Let’s talk about
each of these new features in more detail.

GROUPING SETS

The GROUPING SETS operator is an extension to the ANSI SQL 2006 standard of
the GROUP BY clause that lets you define multiple groupings in the same query.
Several other database platforms already support grouping sets. GROUPING SETS
enables aggregated groups on several different sets of grouping columns within the
same query. This is especially useful when you want to return only a portion of an
aggregated result set. GROUPING SETS also lets you select which grouping columns
to compare.

The GROUPING SETS operator is best explained by example. Consider the following
clauses and the result sets they return:

GROUP BY CLAUSE RESULT SETS

GROUP BY (col_A, col_B, col_C) (col_A, col_B, col_C)

GROUP BY GROUPING SETS
((col_A, col_B),
(col_A, col_C), (col_C))

(col_A, col_B)
(col_A, col_C)
(col_C)

The GROUP BY GROUPING SETS clause lets you aggregate on more than one group
in a single query. For each group set, the query returns subtotals with the grouping
column marked as NULL. If you’ve ever used the CUBE and ROLLUP operators, you
know they place predefined subtotals into the result set; the GROUPING SETS
operator, on the other hand, allows you to control what subtotals to add to the
query. The GROUPING SETS operator does not return a grand total.

Here’s a query where we chose to subtotal sales data by year and quarter and
separately by year:

SELECT order_year AS year, order_quarter AS quarter, COUNT (*) AS orders
FROM order_details
WHERE order_year IN (2003, 2004)
GROUP BY GROUPING SETS ((order_year, order_quarter), (order_year))
ORDER BY order_year, order_quarter;

White Paper

3

The results are as follows:

year quarter orders
---- ------- ------
2003 NULL 380 -- the total for year 2003
2003 1 87
2003 2 77
2003 3 91
2003 4 125
2004 NULL 268 -- the total for year 2004
2004 1 139
2004 2 119
2004 3 10

Another way to think of GROUPING SETS is to consider it to be like a UNION ALL of
more than one GROUP BY query that references different parts of the same data.
You can tell the database to add subtotals to a grouping set by simply adding in the
ROLLUP or CUBE clause according to how you would like subtotaling to occur.

GROUPING SETS can also be concatenated to concisely generate large
combinations of groupings. Concatenated GROUPING SETS yield the cross-product
of groupings from each of the sets within a GROUPING SET list. Concatenated
GROUPING SETS are compatible with CUBE and ROLLUP. Concatenated GROUPING
SETS, since they perform a cross-product of all GROUPING SETS, will generate a
very large number of final groupings from even a small number of concatenated
groupings. For example, if we extend the earlier table to include concatenated
GROUPING SETS, we get the following:

GROUP BY CLAUSE RESULT SETS

GROUP BY (col_A, col_B, col_C) (col_A, col_B, col_C)

… …

GROUP GY GROUPING SETS (col_A, col_B) (col_Y, col_Z) (col_A, col_Y)
(col_A, col_Z)
(col_B, col_Y)
(col_B, col_Z)

Note that the concatenated GROUPING SETS operator yields a large number of final
groupings. You can image how large the result set would be if the concatenated
GROUPING SETS contained a large number of groupings! However, the information
returned can be very valuable and hard to reproduce without using a stored
procedure or other procedural code.

Worth the Wait: Top 10 Reasons Why SQL Server 2008 is Great

4

MERGE Statement

The MERGE statement is sometimes called “UPSERT” because it combines the
action of multiple DML statements: if the data doesn’t exist, then INSERT; if the
data does exist, then UPDATE. Because the MERGE statement can combine multiple
actions into a single block of IO, you can avoid lots of IO especially in data
warehousing situations where lots of data manipulation occurs.

When writing a MERGE statement, you specify the source record set using a
SELECT statement and identify the type of data manipulation that will occur by
pointing to a specific target table. For example, suppose that we have a nightly
process that moves old sales order details from the order_details table into the
order_archives table. Therefore, we want to insert any new order_detail records we
encounter, and update any existing records with new values if they have changed.
With the MERGE statement, you can accomplish this with a single statement rather
than with many DML statements, as follows:

MERGE Order_Archive AS OA
USING
 (SELECT order_ID, -- The initial query to find records
 load_date = MIN(CONVERT(VARCHAR(8), GETDATE(), 112)),
 order_total = SUM(order_amount),
 order_count = COUNT(*)
 FROM order_details
 WHERE order_year <= 2008
 GROUP BY order_ID)
AS archive_cte (order_ID, load_date, order_total, order_count)
ON (oa.CustomerID = archive_cte.CustomerID
 AND oa.SalesDate = archive_cte.LoadDate)

WHEN NOT MATCHED THEN
-- The INSERT statement used when no match is found
INSERT (order_ID, order_date, order_amount, order_count,
 create_date, update_date)
VALUES(archive_cte.order_ID, archive_cte.load_date, archive_cte.order_total,
 archive_cte.order_count, GETDATE(), GETDATE())

WHEN MATCHED THEN
-- The UPDATE statement used when a match is found
UPDATE
SET oa.order_amount = oa.order_amount + archive_cte.order_amount,
 oa.TotalSalesCount = oa.order_count + archive_cte.order_count,
 oa.update_date = GETDATE();

Notice that the MERGE statement is broken in to three relatively simple sections:

• The clause MERGE table_name specifies the table whose data will be
manipulated (the “target” table)

• The USING clause specifies the table where the data comes from (the
“source” table)

• The ON clause specifies the join conditions between the source and target
tables

White Paper

5

The WHEN NOT MATCHED clause tells SQL Server the action to perform when no
matching record is found in the target table (insert a new record), and the WHEN
MATCHED clause specifies what to do if a match is found (update existing values in
the order_archive table). Note that I could have told SQL Server to DELETE the
record instead of updating the values in the record.

As you can tell, this operation can save SQL Server many trips back and forth to
cache (or even to disk if the operation is very large) compared to a stored
procedure or Transact-SQL batch that performs each separate DML statement
serially. This can be especially valuable for data warehouse ETL operations involving
millions of records.

Worth the Wait: Top 10 Reasons Why SQL Server 2008 is Great

6

9. DEVELOPER IMPROVEMENTS

It’s no secret that good developers are always trying to crank out useful code more
quickly, whether by making procedural changes to the development cycle, by
adopting techniques like SCRUM and Agile, or by coding in more powerful and
flexible languages.

However, for many developers the database server represents a sort of intellectual
'firewall' (not in the computer security sense, but in the fire-fighting sense) that is
hard to break through. That’s because in most IT environments, no matter how
good you are at a .NET language like C# or VB.Net, you still have to code in SQL
and Transact-SQL. (The Common Language Runtime, which can alleviate the need
to code exclusively in Transact-SQL, is not universally adopted in the marketplace.)
Well, what if Microsoft could make that coding easier and faster for you?

Microsoft intends to do just that with a couple of new features: Language
Integrated Query (LINQ) and table-valued parameters (TVPs). Note that these
features might be more tightly associated with Visual Studio 2008, but they are
best exploited against SQL Server 2008. Let’s talk about them in more detail.

Language Integrated Query (LINQ)

LINQ allows developers to query SQL Server databases using a programming
language like C# or VB.NET instead of SQL statements. (LINQ queries still look very
much like SQL to me.) This new feature means you’ll get seamless, strongly-typed,
set-oriented queries using your favorite .NET language, whether you are running
against ADO.Net (using LINQ to SQL), ADO.Net DataSets (using LINQ to DataSets),
or ADO.NET Entity Framework (using LINQ to Entities), or via the Entity Data
Service Mapping provider. When you use the LINQ to SQL provider, you use LINQ
directly on SQL Server 2008 tables and columns.

For example, here are two versions of a standard type-safe LINQ to SQL VB query
that retrieves data from a Sales database. The first displays the query in an
ASP.NET GridView control:

Dim Sales As New SalesDataContext

Dim query = From od IN Sales.Order_Details _
 Where od.category = ‘A’ _
 AND od.price > 15 _
 Order By od.vendor_ID _
 Select od

GridView1.DataSource = query
GridView1.DataBind()

White Paper

7

The second does something similar using the LINQ DynamicQuery library:

Dim Sales As New SalesDataContext

Dim query = Sales.Order_Details _
 .Where(“od.category=‘A’ AND od.price>15”) _
 .OrderBy(“od.vendor_ID”)

GridView1.DataSource = query
GridView1.DataBind()

Table-Valued Parameters (TVPs)

While I’m not sure how widely LINQ will be used after the release of SQL Server
2008, I’m quite sure that table-valued parameters will be widely and happily
implemented by developers everywhere. Why? Simply that it is one of the most
widely requested features by among those tracked by Microsoft.

Table-valued parameters, something very much like an array, solve many
challenges for developers, including the following:

• Cleanly encapsulating tabular data that will be exchanged by the client
application and the server

• Defining stored procedures with very large numbers of parameters

• Pivoting the scalar parameters of a stored procedure data into rows

• Using scalar parameters as an array in the code and repeatedly acting
upon that data as a “row”

TVPs not only solve problems like these, but they also make maintaining code much
easier because you can much more easily add new “columns” to the logical “table”
created by the TVP. Here’s what a simple TVP looks like using Transact-SQL:

-- TSQL to CREATE a TABLE TYPE tvp_order_line_details
CREATE TYPE tvp_order_line_details
AS TABLE (
 [order_ID] int NOT NULL,
 [product_ID] int NOT NULL,
 [Qty] int NOT NULL)

Now, we’ll create a stored procedure that uses the TVP we just created, along with
another parameter for the customer who placed the order:

CREATE PROCEDURE Process_Order (
 @Customer_Id int,
 @OrderItems tvp_order_line_details READONLY)
AS
INSERT dbo.order_details
 SELECT o.order_id, o.qty
 FROM @OrderItems AS o
 INNER JOIN dbo.orders AS r ON o.order_id = r.order_id
 WHERE r.in_stock = 0

Worth the Wait: Top 10 Reasons Why SQL Server 2008 is Great

8

This is a very simple example, but it shows how TVPs make it easy for developers
to handle logical “tables” and “rows” of data as parameters. This can be a big win,
especially when you’re trying to perform business logic via set-based operations on
very large batches of data. The resulting code will also, in my opinion, be cleaner
and easier to maintain for both the client- and server-tiers. Application performance
is improved as well, especially because you’re able to leverage the power of the
SQL query processor in what would otherwise be row-based operations.

White Paper

9

8. REPORTING SERVICES (RS) IMPROVEMENTS

SQL Server Reporting Services, which was one of the celebrity features of the later
service packs of SQL Server 2000, has grown more mature with each release of the
database platform. Its widespread popularity is attributable to its stellar performance
and features coupled with zero cost (beyond the license cost for SQL Server).

Dropping the Internet Information Server (IIS)
Requirement

One of the most exciting changes for me in SQL Server Reporting Services 2008 is
that Internet Information Server (IIS) is no longer a requirement. I’d always found
the configuration and installation of IIS to be a burden. Now I don’t have to worry
about configuring and installing IIS at all! Bloggers have reported other benefits to
getting away from IIS, noting that rendering time has been improved and the
overall memory load during rendering has been reduced.

Reporting Improvements

RS also has new features that make it useful in more situations and that increase
its flexibility and availability to users:

• Ad-hoc reporting: Users who are not hard-core developers can quickly and
easily build ad-hoc reports of almost any structure and design through the new
Report Designer interface

• Embedded reports: Users are now able to directly embed their reports into
Web portals, dashboards, and business applications. New rendering capabilities
allow users to consume reports directly within Microsoft Office Word, as they
already could do with Excel. Additional deep integration with Microsoft Office
Sharepoint Server 2007 enables organizations to deliver reports to a central
Web library or to render reports directly within a Sharepoint dashboard.
Sharepoint integrated mode provides integrated shared storage, security, and
document access accountability

• Subscription-based deployment: RS allows reports to be deployed via both
standardized subscriptions (such as automatic delivery via e-mail to a group of
users at a predefined time) and data-driven subscriptions, which retrieve
subscription properties at run time so multiple users to get the same report, but
tailored with the parameters and formatting required by each individual user

Worth the Wait: Top 10 Reasons Why SQL Server 2008 is Great

10

Performance Improvements

In addition, a variety of performance improvements have greatly improved the
power and enterprise-readiness of SQL Server Reporting Services 2008. For
example, you can now directly control server behavior with memory management,
simplified configuration, on-demand processing, and instance-based rendering.
Other significant improvements include:

• Caching: Reports can now be cached so that frequently accessed reports
that use the same parameter values are available much more quickly.
Once a report is processed, a copy is cached so that users who later
request the same report can simply view the cached copy; the report is not
processed again

• Snapshots: You can also request snapshots of a report: the report is
processed on a schedule and made available for users to view, much like a
cached report except that the snapshot is created on schedule, before any
user requests it. This feature is especially useful for very complex or time-
consuming rendering jobs

I’ve only touched on the high points of the new performance features in Reporting
Services. However, one of the things that I like the most about the improvements
in RS is that they simply work. You don’t have to go in and recode your applications
or make difficult changes to your configurations. A simple in-place upgrade will
yield immediate and noticeable improvement in the performance of your reports.

White Paper

11

7. COMPRESSION

There is an unmistakable trend in the industry for databases to get larger and
larger. Companies not only record more information than ever before; they also
retain backups longer—sometimes many years longer than they used to. Some
progressive organizations are even thinking creatively about how to keep all data
online, and seldom if ever taking the data offline for archiving. (That doesn’t mean
they’re not taking backups. I only mean to say that some organizations keep their
data live and in use in perpetuity, even while backing it up for safekeeping.)

Microsoft has introduced two new features with SQL Server 2008 that will help
organizations more effectively drive their practice of recording more data and
keeping it on hand longer: data compression and backup compression.

Data Compression

Data compression enables you to store more data using less disk space. Moreover,
data compression improves performance for large I/O-bound workloads like data
warehousing, because fewer disk reads and writes are needed when data is
compressed. This feature will have a performance impact, so it should be used in
selective opportunities like a read-only database.

Data compression works via two strategies: ROW compression and PAGE compression:

• ROW compression occurs when SQL Server uses a technique called
variable-length storage formatting to reduce the amount of space
consumed by the column values in a row of data

• PAGE compression works by storing commonly duplicated row values
once on the page and then creating pointers the original value from the
multiple columns

You use simple DDL commands to enable data compression, as shown the following
example:

CREATE TABLE my_table1 (c1 INT, c2 CHAR(100))
WITH (DATA_COMPRESSION = ROW);
CREATE TABLE my_table2 (c1 INT, c2 CHAR(100))
ON my_partition_scheme
WITH (DATA_COMPRESSION = PAGE ON PARTITIONS (1-4),
DATA_COMPRESSION = NONE ON PARTITION (5));
ALTER INDEX my_ndx ON foo REBUILD
WITH (DATA_COMPRESSION=PAGE)

To estimate the savings data compression might yield, execute the system stored
procedure sp_estimate_data_compression_savings.

Worth the Wait: Top 10 Reasons Why SQL Server 2008 is Great

12

Backup Compression

Backups can take up a lot of space, especially if you need to keep several on hand
for a large database. Moreover, processing a large backup or restore can take a
long time. There are many sophisticated third-party backup and recovery products
available in the market today, but with the Enterprise Edition of SQL Server 2008,
backups can be compressed, so less space is consumed on the disk. Interestingly,
Microsoft has decided to implement this compression in-process. Of course, the
trade-off is that more CPU is consumed during the backups and restores because
the CPU must handle the compression algorithms, but the savings in time and disk
space can be considerable.

White Paper

13

6. DATA TYPES AND DATA STORAGE

Data Types

More and better data type inclusion is always a good feature for a database
platform. New data types can offer more logical storage for database designers as
well help applications better serve their business owners. SQL Server 2008 includes
a number of new data types; some (such as DATE and TIME) have been a part of
the ANSI SQL standard for a long time, but are only now making their way into SQL
Server. Other data types are new to the industry overall and might not even have
been seen as feasible for a relational database ten years ago; these include
FILESTREAM and the spatial data types.

Consider these new data types for SQL Server 2008:

• Date and time: SQL Server 2008 introduces several new date and time
data types that separate date and time types while providing larger data
ranges or user-defined precision for the time values:

• DATE stores only the date
• TIME stores only the time
• DATETIMEOFFSET stores datetime, but is time zone aware
• DATETIME2 is similar to the pre-existing DATETIME data type, but

with larger fractional second precision and year ranges that exceed
that of DATETIME

• FILESTREAM: The FILESTREAM data type stores very large binary data
directly on an NTFS file system, while preserving database control and
transactional consistency. For example, FILESTREAM would be just the
data type to choose if you wanted to use a database to control a library of
video files

• Spatial data types: Spatial data types enable your application to be
aware of locations within space. The GEOGRAPHY data type uses latitude
and longitude coordinates to implement round earth applications of the
Earth’s surface, while the GEOMETRY data type implements flat earth
solutions, such as those associated with interior spaces and the planar
surfaces that might go into an interior space. Spatial data types make it
easy for application designers to integrate SQL Server applications with a
GPS or mapping application, among many other examples

• HIERARCHYID: Depicting tree structures in a relational database has
always been notoriously difficult. SQL Server 2008’s new HIERARCHYID
enables database applications to model tree structures more efficiently
than ever before. Note that HIERARCHYID is a new system type
implemented by a CLR UDT, rather than a data type. HIERARCHYID store
values that represent nodes of a hierarchy tree structure and includes
some useful built-in methods for managing hierarchy nodes

Worth the Wait: Top 10 Reasons Why SQL Server 2008 is Great

14

Some of the methods exposed by the UDT include:

• GETROOT(), which returns the root or top-level of the hierarchy type
• GETDESCENDANT(child1, child2), which returns a child ID between

child1 and child2
• ISDESCENDANT(child), which returns true when child is >= the

compared value
• GETLEVEL(), which returns an integer representing the level of the

tree or 0 for the root
• GETANCESTOR(n), which returns the hierarchy ID representing the

nth ancestor of the compared value

Data Storage

In addition to the data type additions, SQL Server 2008 includes some nice new
capabilities around how it stores data. For example, in earlier versions, Full Text
Search catalogs were external to the SQL Server database; SQL Server 2008’s
integrated Full Text Search makes search for text and relational data easy and
seamless.

SQL Server 2008 has also improved the implementation of sparse columns (a
sparse column is one that frequently stores a great deal of NULL values). In earlier
versions of SQL Server, NULL data consumed space. Now, sparse columns consume
no physical space and provide a highly efficient way to manage frequently empty
columns in a table.

Finally, SQL Server 2008 eliminates the 8KB size limit for User-Defined Types
(UDTs). Because UDTs can be dramatically enlarged, their flexibility and power are
similarly increased.

White Paper

15

5. SECURITY

A lot of people don’t realize how secure SQL Server has become in the years
following the SQL Slammer internet worm. Since then SQL Server has had only five
critical security fixes—Oracle had over 100 in the same time period. That’s rather
reassuring for me. SQL Server 2008 continues this long run of excruciating
attention to security with support for transparent data encryption and extensible
key management.

Transparent Data Encryption (TDE)

Transparent data encryption is called “transparent” because the developer or
application doesn’t have to do anything to seamlessly protect the data. You can
protect data not only from outside intruders or unauthorized former employees or
consultants; you can also selectively protect data from a DBA who needs to see
only part of your employee salary database. Transparent data encryption enables
you to encrypt an entire database, data files, or log files, without changing your
application. And even if someone were to obtain a backup of your encrypted data,
that data would be encrypted and unreadable, which might be especially valuable to
organizations who host their applications and backups through a service provider
who shouldn’t be able to read their data.

While SQL Server 2005 offered column-level and cell-level encryption, SQL Server
2008 offers the complementary feature of encrypting an entire database. The
syntax is very easy:

ALTER DATABASE my_database_name SET ENCRYPTION [ON | AUTO | OFF]

Encryption works by using a special key, called the database encryption key (DEK),
and it is tracked in the sys.dm_database_encryption_keys DMV.

Extensible Key Management

SQL Server 2005 provided the first comprehensive solution for encryption and key
management. SQL Server 2008 builds on that solution by supporting third-party
key management and hardware security module (HSM) vendors to register their
devices in SQL Server 2008 Enterprise Edition, as well as in the Developer and
Evaluation editions. SQL Server 2008’s extensible key management leverages the
Microsoft Cryptographic API (MSCAPI) provider for encryption and key generation.
Encryption keys for data are stored in transient key containers (and can be stored
in an HSM such as a card key, adding an extra layer of security by separating the
key from the software). They must be exported by the provider before they can be
stored in the database, thereby enabling key management that includes both an
encryption key hierarchy and key backup to be handled by SQL Server.

Worth the Wait: Top 10 Reasons Why SQL Server 2008 is Great

16

4. RESOURCE GOVERNOR

The resource governor is a feature of SQL Server 2008 that many DBAs have
coveted for years. With the resource governor, you can specify the resource limits
and priorities of the different workloads running on your SQL Server, thereby
enabling concurrent workloads to use a consistent amount of system resources and,
by extension, provide a consistent and predictable response to end users. And may
I say just for the record that this is a really cool feature. (You can get the complete
lowdown on the resource governor in the TechNet article Introducing Resource
Governor at http://technet.microsoft.com/en-us/library/bb895232(SQL.100).aspx.)

The resource governor works by allocating resources to various working pools or
groups. There is always a default resource pool. If there are no other workload groups
defined for the SQL Server, then all activities both of users and internal process run
within the context of the default resource pool. Separate from, but often synonymous
with the default group, is the internal group. The internal group includes activities like
the lazy writer, ghost record cleanup, and certain trace activities.

A bit of terminology is due. An instance can have one or more resource pools (but
no more than 20). Beneath the resource pools, you can create one or more groups.
There’s no physical limit on the number of groups you can create, but I encourage a
conservative approach. A group must be assigned to a single resource pool, but
resource pools can have one or more groups.

You might create a workload group for quality assurance that looks like this:

CREATE WORKLOAD GROUP grp_qa
WITH (GROUP_MAX_REQUESTS = 25,
 IMPORTANCE = LOW,
 REQUEST_MAX_MEMORY_GRANT_PERCENT = 25,
 MAX_DOP = 1)

Assume that we’ve also created other separate workload groups for the DBA
(grp_sa), developers (grp_dev), and so forth. Now we need to assign the workload
groups to users or applications connecting to the SQL Server instance through a
function like this:

CREATE FUNCTION rg_classifier() RETURNS SYSNAME
WITH SCHEMABINDING
AS
BEGIN
 DECLARE @grp_name AS SYSNAME
 IF (SUSER_NAME() = 'sa')
 SET @grp_name = 'grp_sa'
 IF (SUSER_NAME() = 'qa')
 SET @grp_name = 'grp_qa'
 IF (APP_NAME() LIKE '%MANAGEMENT STUDIO%') OR (APP_NAME()
 LIKE '%QUERY ANALYZER%')
 SET @grp_name = 'grp_adhoc'
 IF (APP_NAME() LIKE '%REPORT SERVER%')
 SET @grp_name = 'grp_rpt'
 RETURN @grp_name
END

http://technet.microsoft.com/en-us/library/bb895232(SQL.100).aspx.)

White Paper

17

This function then needs to be applied to the resource governor like this:

ALTER RESOURCE GOVERNORE WITH (CLASSIFIER_FUNCTION = dbo.rg_classifier);

The next step is to configure which system resources are assigned to each of the
workload groups:

ALTER WORKLOAD GROUP grp_qa
WITH (REQUEST_MAX_CPU_TIME_SEC = 25);

ALTER WORKLOAD GROUP grp_adhoc
WITH (MAX_CPU_PERCENT = 50);

You must finally apply the changes to the resource governor process, which is
active and running in memory:

ALTER RESOURCE GOVERNOR RECONFIGURE;

Note that you should be cautious when altering the resource governor because
changes will take effect immediately. You can later change process to run with
different resources at any time, immediately affecting all processes already
running. However, once a session is bound to a group or pool, it remains bound
until it is disconnected.

Worth the Wait: Top 10 Reasons Why SQL Server 2008 is Great

18

3. AUDITING AND CHANGE TRACKING

Several important new U.S. laws have a direct impact on how organizations store
data and audit the activity against that data. In particular, medical companies must
comply with HIPAA and be able to prove their compliance to external auditors.
Similarly, publicly traded companies must comply with Sarbanes-Oxley (SOX). SQL
Server 2008 provides features that make compliance, data access control, and
change tracking much easier.

Audit Object

SQL Server 2008 supports the Audit object, which enables you to capture database
activity and store it in a log file or Windows application or security logs. To enable
auditing on your SQL Server, you must use the CREATE SERVER AUDIT syntax,
which configures the Audit object and determines where its auditing data is written,
as shown in the following example:

CREATE SERVER AUDIT sox_audit_file
 TO (FILEPATH=’\\BOSTON\DATA\AUDIT\’);

CREATE SERVER AUDIT sox_application_audit_file
 TO APPLICATION_LOG
 WITH (QUEUE_DELAY = 300, ON_FAILURE = SHUTDOWN);

The queue_delay clause enables asynchronous auditing when data is written to a
log file, which can boost performance. The on_failure clause enables you to specify
what SQL Server should if it can no longer write to the audit log; in this example,
SQL Server will shut down if auditing cannot continue.

If you specify that the audit data should be written to a file, you do not need to
provide a name; SQL Server will provide one for you in the format audit-
name_audit-guid_nn_tstamp.sqlaudit, where audit-name is the name chosen in the
CREATE SERVER AUDIT statement, audit-guid is a unique identifier for the Audit
object, nn is the partition number used to partition file sets, and tstamp is a
timestamp value.

Once the server audit is created, you can add more database-level events to audit
using the CREATE DATABASE AUDIT SPECIFICATION statement. For example, the
following statement causes the audit we created earlier to record whenever a failed
login attempt occurs:

CREATE SERVER AUDIT SPECIFICATION failed_login
FOR SERVER AUDIT sox_audit_file
 ADD (failed_login_group);

White Paper

19

Similarly, if we wanted to know whenever a DDL operation occurs (such as CREATE,
ALTER, or DROP statements), plus whenever any INSERT, UPDATE, or DELETE
statements are executed against the GeneralLedger schema by the Manager or
Admin users, we would specify the following:

CREATE DATABASE AUDIT SPECIFICATION gl_audit_specification
FOR SERVER AUDIT sox__application_audit_file
 ADD (DATABASE_OBJECT_CHANGE_GROUP) – captures create/alter/drop
 ADD (INSERT, UPDATE, DELETE - captures DML by Manager and Admin
 ON Schema::GeneralLedger
 BY Manager, Admin);

DDL Triggers

DDL triggers first appeared in SQL Server 2005 and are in many ways similar to a
regular INSERT, UPDATE, or DELETE trigger. The primary difference is that the DDL
triggers fire after a triggering event such as an ALTER USER statement or a DROP
TABLE statement at the database level, or ALTER DATABASE or CREATE LOGIN at
the server level. Think of DDL triggers as triggers for the CREATE, ALTER, and
DROP statements. SQL Server provides a shorthand with groups. Thus, you could
write one trigger for DDL_TABLE_EVENTS to handle CREATE_TABLE, ALTER_TABLE,
and DROP TABLE statements. For full details, refer to SQL Server 2008 Books
Online at http://msdn2.microsoft.com/en-us/library/bb543165(sql.100).aspx.

You can use DDL triggers to prevent certain DDL operations from occurring, or to
restrict the activities of particular users. But you can also use this feature to
capture and audit DDL activity within a database by writing data to an audit table in
the database or server, or to an audit file on the file system.

http://msdn2.microsoft.com/en-us/library/bb543165(sql.100).aspx

Worth the Wait: Top 10 Reasons Why SQL Server 2008 is Great

20

2. ANALYSIS SERVICES (AS) PERFORMANCE

IMPROVEMENTS

SQL Server 2008 Analysis Services have gotten a lot faster, so if you are one of the
many users who make heavy use of Analysis Services, you’re going to be very
happy with SQL Server 2008. The following are a few of the features that improve
the performance of Analysis Services:

• Block computations: Block computations provide big performance gains
by eliminating unnecessary aggregation calculations, such as NULL values
in an aggregation. (It’s called “block mode” because it evaluates data by
blocks rather than the previous “cell-by-cell mode” of early versions of AS.)
Some bloggers have reported anecdotal testing results that show
calculations being 50-60% faster than the same calculations on SQL Server
2005. Cube calculation times are likewise much faster, so users can
increase the depth of their hierarchies, perform more complex calculations,
or simply accomplish the same work as before more quickly.

Since block mode computations are driven by proper MDX code, see the
full list of MDC commands that work with or invalid block computations in
the white paper Performance Improvements for MDX in AS 2008, available
at http://msdn2.microsoft.com/en-us/library/bb934106(SQL.100).aspx.

• Writeback: Writeback is the ability to change the structure of a dimension
even as you analyze it. Efficient writeback is critical to high-performance
what-if scenario modeling. SQL Server 2008 includes a new MOLAP-
enabled writeback feature that removes the need to query ROLAP
partitions. The new writeback technique means that fewer round trips are
needed between the client and the OLAP partition to complete the
analytical modeling. That is, writeback occurs faster in SQL Server 2008,
so that when changes are made to a model, they are then written back to
the database, which in turn refreshes the cube in a more timely manner.
Users get better and faster writeback scenarios without giving up any of
the advantages of a traditional OLAP engine for aggregating data.

Note that writeback has been in SQL Server Analysis Services for a while,
but the improvements in SQL Server 2008 are drastic enough that you will
not be able to use writebacks created using earlier versions of SQL Server
with the 2008 release; you’ll need to recreate all of your writebacks when
you upgrade.

http://msdn2.microsoft.com/en-us/library/bb934106(SQL.100).aspx

White Paper

21

• Star join query optimizations: By default, the SQL Server query engine
is very efficient at choosing a query plan, even when dealing with millions
of rows of data for a single query. One technique SQL Server uses to
improve star schema joins is through a bitmap filter, a miniature model of
a set of values from a table in one part of the operator tree to filter rows
out of a second table in another part of the tree. By making sure to join
only to qualified records in the second table when analyzing records in the
first table, the bitmap filter significantly reduces the amount of data that
needs to be processed. SQL Server 2005 allowed the use of bitmap filtering
after optimization, but SQL Server 2008 also allows a bitmap filter to be
dynamically applied during query plan generation. When the bitmap filter is
applied, non-qualifying rows in the fact table are immediately eliminated,
so the query is enormously faster. Read more about the intricacies of this
new feature in the TechNet article Optimizing Data Warehouse Query
Performance Through Bitmap Filtering at http://technet.microsoft.com/en-
us/library/bb522541(SQL.100).aspx.

Other improvements to SQL Server 2008 Analysis Services provide
enhanced analytical capabilities and support more complex computations
and aggregations. And less prominent features offer useful incremental
improvements in the overall performance of Analysis Services. Without a
doubt, SQL Server 2008 Analysis Services will be the fastest and most
powerful release yet.

http://technet.microsoft.com/en-us/library/bb522541(SQL.100).aspx
http://technet.microsoft.com/en-us/library/bb522541(SQL.100).aspx

Worth the Wait: Top 10 Reasons Why SQL Server 2008 is Great

22

1. MULTI-SERVER MANAGEMENT

Multi-server management is a topic near and dear to my heart because I struggled
mightily with it for many years of my career. And I see a strong trend for DBAs and
developers to be able to deploy large numbers of SQL servers throughout their IT
environments and then to adequately support and maintain them. On the one hand,
many shops still work under the policy of “one application, one server,” which
results in rampant and sometimes entirely unnecessary server proliferation. On the
other hand, even in shops where server proliferation is tightly controlled, the
enterprise often simply needs a lot of SQL servers but cannot afford a lot of DBAs
to maintain them. Consequently, most enterprise SQL Server DBAs have to support
a LOT of SQL servers in their shops.

With previous versions of SQL Server, I (and others like me) would automate as
much work as possible through clever use of SQL Server Agent jobs and scripts. For
example, one DBA I know gets new servers to administer so frequently that he
can’t keep up with getting them on backup rotations. So he built a script and a job
to look for new servers in his shop and put all of the databases on any new server
onto a backup schedule. SQL Server 2008 makes managing multiple servers much
easier, in part through two improvements, streamlined installation and Policy-based
Management.

Streamlined Installation

Microsoft completely overhauled the process of installation, setup, and configuration
of SQL Server. Whereas earlier versions forced you to perform all three activities at
once, SQL Server 2008 separates the installation of the physical bits on the
hardware from the configuration of SQL Server. This means that a centralized IT
group or a third-party provider can give sites a recommended installation
configuration (contained in a file) without also having to install SQL Server. Once a
local administrator is able to install SQL Server, the configuration file tells SQL
Server how to set up and configure itself without user intervention.

White Paper

23

Policy-Based Management (PBM)

You might have heard of Policy-based Management by its early CTP name, the
Declarative Management Framework (DMF). It doesn’t sound terribly exciting by
either moniker, but it is. It’s an entirely new way to manage SQL Server, both
conceptually and operationally.

PBM is a policy-based system for managing one or more instances of SQL Server
2008. This is a very important shift because most DBAs organize their work around
tasks, such as creating backups or performing consistency checks, not policies. PBM
enables you to implement a “monitor by exceptions” style of working in which you
need to get involved only when an exception to the rules of good operations occurs.
For example, you can use PBM to create policies that manage entities on the server
(such as the instance of SQL Server, databases, and other SQL Server objects), as
well as the things you want to restrict (such as failed logins), the things you’d like
to enforce (like naming standards), and the things you’d like to monitor (like
blocked processes). And you can even scope your policies to both the entire server
and a specific database. Wow!

PBM also allows some really neat automation. Anyone in the PolicyAdministratorRole
can create and apply policies. Under PBM, you can run policies on demand or use one
of these automated execution modes:

• Changes are attempted and, when out of compliance, are prevented. PBM
uses DDL triggers to prevent policy violations

• Changes are attempted and, when out of compliance, are allowed
but logged. PBM uses event notification to evaluate a policy when a
relevant change occurs

• On schedule, log out-of-compliance. PBM uses a SQL Server Agent job
to periodically evaluate a policy on all the servers where it’s applied

You can create a policy using Management Studio. Once you’ve created a policy,
you can export it to an XML file and then import it, individually or by group, into
other SQL Servers.

Here are some examples of things you can configure in a policy:

• Impose the surface area configuration settings of one instance onto another

• Create and enforce a naming convention policy

• Enable, disable, or assign values using SP_CONFIGURE

• Set the service account to a privileged user

• Place a database in read-only mode

• Create a schedule to run DBCC statements

And because the policies are easy to automate and easy to apply to many servers
at once, you can use PBM to control most all aspects of your SQL Server
environment—as long as the servers are running SQL Server 2008.

Worth the Wait: Top 10 Reasons Why SQL Server 2008 is Great

24

CONCLUSION

SQL Server 2008 has so many new features and capabilities that I can’t possibly list
them all here. Instead, explained in detail the features that I’m most excited about.
Take the time to get to know why these features are so useful and then explore on
your own. You may find other new features in SQL Server 2008 that are even more
exciting for your particular situations.

To review, my top ten favorite features in SQL Server 2008 are:

10. The SQL improvements offered by GROUPING SETS and the MERGE
statement

9. The developer-centric improvements of LINQ and table-valued parameters

8. Reporting Services improvements: dropping the requirement for IIS;
powerful new features for ad-hoc reporting, embedded reports, and
subscription-based deployment; and performance improvements like
improved caching and snapshot reports

7. The data and backup compression features in SQL Server 2008 Enterprise
Edition

6. The new spatial, FILESTREAM, HIERARCHYID, and date and time data
types

5. The security improvements of transparent data encryption and extensible
key management

4. The oh-so-sweet resource governor

3. The audit and change tracking abilities of audit objects and DDL triggers

2. The big gains in Analysis Services performance with things like block
computations and writeback improvements

1. The multi-server management capabilities of Policy-based Management
and streamlined installation.

White Paper

25

ABOUT THE AUTHOR

Kevin Kline is the technical strategy manager for SQL Server solutions at Quest
Software, a leading provider of award-winning tools for database management and
application monitoring on the SQL Server platform. Kevin is the president of the
international Professional Association for SQL Server (PASS; www.sqlpass.org). He
has been a Microsoft SQL Server MVP since 2004. Kevin is the lead author of SQL in
a Nutshell (http://www.oreilly.com/catalog/sqlnut2/), as well as a co-author of both
Professional SQL Server 2005 Database Design and Optimization
(http://www.apress.com/book/bookDisplay.html?bID=10005) and Database
Benchmarking (http://www.rampant-
books.com/book_2007_1_database_benchmarking.htm).

Kevin writes monthly columns for Database Trends and Applications and SQL Server
Magazine. He also maintains blogs at SQLBlog.com and SQLMag.com. Kevin is a
top-rated speaker, appearing at international conferences such as Microsoft TechEd,
the PASS Community Summit, Microsoft IT Forum, DevTeach, and SQL
Connections. When he’s not pulling out his hair over work, he loves to spend time
with his four kids and in his flower and vegetable gardens.

Worth the Wait: Top 10 Reasons Why SQL Server 2008 is Great

26

ABOUT QUEST SOFTWARE, INC.

Quest Software, Inc. delivers innovative products that help organizations get more
performance and productivity from their applications, databases and Windows
infrastructure. Through a deep expertise in IT operations and a continued focus on
what works best, Quest helps more than 50,000 customers worldwide meet higher
expectations for enterprise IT. Quest Software can be found in offices around the
globe and at www.quest.com.

Contacting Quest Software

Phone: 949.754.8000 (United States and Canada)

Email: info@quest.com

Mail: Quest Software, Inc.
 World Headquarters
 5 Polaris Way
 Aliso Viejo, CA 92656
 USA

Web site www.quest.com

Please refer to our Web site for regional and international office information.

Contacting Quest Support

Quest Support is available to customers who have a trial version of a Quest product
or who have purchased a commercial version and have a valid maintenance
contract. Quest Support provides around the clock coverage with SupportLink, our
web self-service. Visit SupportLink at http://support.quest.com

From SupportLink, you can do the following:

• Quickly find thousands of solutions (Knowledgebase articles/documents).

• Download patches and upgrades.

• Seek help from a Support engineer.

• Log and update your case, and check its status.

View the Global Support Guide for a detailed explanation of support programs,
online services, contact information, and policy and procedures. The guide is
available at: http://support.quest.com/pdfs/Global Support Guide.pdf

http://www.quest.com/
mailto:info@quest.com
http://www.quest.com/
http://support.quest.com/
http://support.quest.com/pdfs/Global%20Support%20Guide.pdf

	Worth the Wait: Top 10 Reasons Why SQL Server 2008 is Great
	Contents
	Introduction
	10. SQL Improvements
	GROUPING SETS
	MERGE Statement

	9. Developer Improvements
	Language Integrated Query (LINQ)
	Table-Valued Parameters (TVPs)

	8. Reporting Services (RS) Improvements
	Dropping the Internet Information Server (IIS) Requirement
	Reporting Improvements
	Performance Improvements

	7. Compression
	Data Compression
	Backup Compression

	6. Data Types and Data Storage
	Data Types
	Data Storage

	5. Security
	Transparent Data Encryption (TDE)
	Extensible Key Management

	4. Resource Governor
	3. Auditing and Change Tracking
	Audit Object
	DDL Triggers

	2. Analysis Services (AS) Performance Improvements
	1. Multi-Server Management
	Streamlined Installation
	Policy-Based Management (PBM)

	Conclusion
	About the Author
	About Quest Software, Inc.
	Contacting Quest Software
	Contacting Quest Support

