
 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 1

Lightweight REST Framework for Java

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 2

OutlineOutline

! REST Architectural Style

! Restlet Project

! Restlet Programming

! Restlet & Other Technologies

! Deployment Options

! Overstock.com Experience

! Q & A

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 3

REST Architectural StyleREST Architectural Style

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 4

What is REST?What is REST?

! REpresentational State Transfer

! Formalized by Roy Fielding in his PhD

Dissertation

! Primarily applicable to distributed

hypermedia systems

! Think of it as resource-orientation

! Resources represent the domain concepts

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 5

RoyRoy’’ss Motivation for REST Motivation for REST

! Architectural model for how the Web was

designed and should work

! Serves as a guide for Web standards

! REST has been applied to:

! Describe the desired Web architecture

! Help identify existing problems

! Compare alternative solutions

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 6

YourYour Motivation for REST Motivation for REST

! Take advantage of what the Web does well

! Simplicity

! Scalability

! Performance

! Ease of use

! So much nicer than the alternatives

! SOAP & WS - *

! Unifies Web Sites and Web Services into
consistent Web Applications

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 7

A Style, Not a StandardA Style, Not a Standard

! But REST guides the use of standards

! For example:

! HTTP (Connector)

! URI (Resource)

! XML, HTML, GIF, etc. (Representations)

! text/xml, text/html, image/gif, etc. (Media types)

! The Web is a REST system

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 8

What is an Architectural Style?What is an Architectural Style?

“…a coordinated set of architectural constraints that

restricts the roles/features of architectural elements and

the allowed relationships among those elements within

any architecture that conforms to that style.”

- Dr. Roy Fielding

! Some Network-based Architectural Styles

! Pipe-and-Filter

! Client-Server

! Layered

! Virtual Machine

! Code on Demand

! Mobile Agent

! Event-based

! Distributed Objects

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 9

REST Architectural StyleREST Architectural Style

! Composition of styles that gains their benefits:

! Client-Server - separation of concerns, scalability

! Layered – allows intermediaries (proxies, firewalls)

without affecting interfaces

! Stateless –scalability

! Cacheable – reduces payload & latency

! Pipe-and-Filter – dynamic component connection

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 10

Representational State TransferRepresentational State Transfer

! Imagine an application as a network of web pages

! Virtual state-machine

! The user progresses by selecting links…

! State transitions

! …resulting in the next page…

! Representing the next state of the application

! …being transferred to the user

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 11

State Transitions in RESTState Transitions in REST

! Numbers are resources (URIs, eg., hyperlinks)

! Letters are representations (HTML, XML, jpg, etc),

that may contain hyperlinks to next states

S
0

S
1

S
3

S
4

S
2

1/a

2/b

3/c

3/c

4/d

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 12

ResourcesResources

! A Resource should be a fixed target of a URI

! Is semantic: "Today's weather in Park City"

! The URI-to-Resource mapping shouldn't

change, but the representation can

! Resources may map to multiple

representations, called variants

! Example: png, gif, jpg are variant

representations of an image

! Content negotiation selects the best variant

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 13

Uniform InterfaceUniform Interface

! Supports the constraints of Client/Server,

and Layered architectural styles

! Resources are manipulated by HTTP

methods

! GET – retrieve a resource

! PUT – create a resource

! POST – update (create if necessary) a resource

! DELETE – delete a resource

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 14

Interoperability on a GlobalInteroperability on a Global

ScaleScale
! REST advocates (and constrains the use of)

existing Web standards:

! URI – how resources are named and referenced

! Methods – how resources are manipulated

! HTML, XML, GIF, etc – how resources are

represented

! Media types (text/plain, etc) – metadata for

representations

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 15

CachabilityCachability

! Reduces latency, increases scalability

through reduced bandwidth utilization

! REST architectural constraints allow caches

to be injected anywhere in the application

! A cache can return copy in response to a

GET, therefore prefer GET over POST

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 16

Principles of RESTPrinciples of REST

! Some principles are still debated

! Do what makes sense for your application,

but be conscious of the tradeoffs

“You're pirates. Hang the code, and hang the

rules. They're more like guidelines anyway.”
– Elizabeth (Pirates of the Caribbean)

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 17

Principles of RESTPrinciples of REST

! URIs refer to resources, not representations

" www.overstock.com/home+and+garden

www.overstock.com/home+garden.html

! Resources are nouns, not verbs

! GET never has side effects, and anything

that has no side effects should use GET

! Use links in responses enable state transfer

Adapted from Roger L. Costello

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 18

Principles of RESTPrinciples of REST

! URI “/” means parent-child or whole-part

relationship

! Avoid query strings in URIs (debatable)

www.overstock.com/products/id=123

" www.overstock.com/products/123

! In the later case, the relationship is clear and can

be extended for subresources

! Provide data to clients via gradual unfolding

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 19

ReferencesReferences

! Roy Fielding, Architectural Styles and the Design of

Network-based Software Architectures

! Roger L. Costello, www.xfront.com

! Paul Prescod, www.prescod.net/rest

! Tim Berners-Lee, Universal Resource Identifiers --

Axioms of Web Architecture,

www.w3.org/DesignIssues/Axioms.html

! Hao He, Implementing REST Web Services: Best

Practices and Guidelines,

www.xml.com/pub/a/2004/08/11/rest.html

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 20

Restlet ProjectRestlet Project

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 21

What is What is RestletRestlet??

! An open source REST framework for Java

! A good mapping of REST principles

! Founded by Jérôme Louvel, Noelios
Consulting, Paris, France
www.restlet.org

! Built in response to:

! Need for a simple, RESTful web application
framework

! Servlet limitations

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 22

Restlet ProgrammingRestlet Programming

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 23

Restlet FrameworkRestlet Framework

Restlet API – Supports REST

call handling

Extensions – For integrating

external technologies (JDBC,

JSON, alternate containers,

connectors, template engines,

etc.)

SPI – Plugin point for alternate

implementations

Restlet Implementation –

Currently just Noelios Engine

Application

Restlet API
Extensions

Reslet
Implementation

SPI

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 24

A REST ArchitectureA REST Architecture

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 25

File Browsing ExampleFile Browsing Example

• Component contains

VirtualHosts,

Applications and

Server and Client

connectors

• Default Host is ‘built-in’

• Notice the beginnings

of a pipes-and-filters

architecture within a

client-server

architecture

Restlet Component

Default

Host

Application
HTTP Server

File Client
localhost:8182

“” Directory

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 26

Application ClassApplication Class

! Contains your “application” logic

! Contains useful services that can be

overridden, such as:

! connectorService

! decoderService

! statusService

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 27

Directory ClassDirectory Class

! Finder of file system resources

! Automatic content negotiation similar to

Apache HTTP server

! Selects best representation based on

! available variants

! client capabilities and preferences

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 28

FileServerFileServer Example Example

public class FileServer implements Constants {

 public static void main(String[] args) throws Exception {
 Component component = new Component();
 component.getServers().add(Protocol.HTTP, 8182);
 component.getClients().add(Protocol.FILE);

 Application application = new Application(component.getContext()) {
 @Override public Restlet createRoot() {
 Directory directory = new Directory(getContext(),
 "file://" + ROOT);
 directory.setListingAllowed(true);
 directory.setDeeplyAccessible(true);
 return directory;
 }
 };

 component.getDefaultHost().attach("", application);
 component.start();
 }
}

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 29

VirtualHostVirtualHost Class Class

! Router of calls from Server connectors to
Restlets; typically an Application

! Defined along three properties:

! Request's "hostRef"

! Request's "resourceRef"

! Response's "serverInfo"

! Host multiple applications in a single JVM

! Same IP address shared by several domain names

! Same domain name load-balanced across several IP
addresses

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 30

Virtual Hosts ExampleVirtual Hosts Example

• A VirtualHost

routes requests to
Applications by

regular expression

matching

• Grey items are

included for illustration

Restlet Component

Virtual

Host 1

Application

3

Virtual

Host 2

Virtual

Host 3

Application

2

Application

1

HTTP Server

AJP Server

HTTPS Server

HTTP Client

File Client

SMTP Client

localhost

127.0.0.1

C1LPT083

/docs/deprecated

/page

/jar

/docs/

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 31

VirtualHostVirtualHost Example Example

public class VirtualHostServer implements Constants {

 public static void main(String[] args) throws Exception {
 Component component = new Component();
 component.getServers().add(Protocol.HTTP, 8182);
 component.getClients().add(Protocol.FILE);

 VirtualHost vh1 = new VirtualHost(component.getContext());
 // Host names must be distingushed and not made up.
 vh1.setHostDomain("localhost");

 Application application1 =
 new Application(component.getContext()) {
 @Override public Restlet createRoot() {
 Directory directory = new Directory(getContext(),
 DOC_URI);
 return directory;
 }
 };

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 32

……ContinuedContinued

 VirtualHost vh2 = new VirtualHost(component.getContext());
 vh2.setHostDomain("127.0.0.1");
 Application application2 =
 new Application(component.getContext()) {
 @Override public Restlet createRoot() {
 Restlet jarRestlet = new Restlet(getContext()) {
 @Override public void handle(Request request,
 Response response) {
 File file = new File(JAR_PATH);
 FileRepresentation frep =
 new FileRepresentation(file,
 MediaType.APPLICATION_JAVA_ARCHIVE, 1000);
 response.setEntity(frep);
 response.setStatus(Status.SUCCESS_OK);
 }
 };
 return jarRestlet;
 }
 };

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 33

……ContinuedContinued

 VirtualHost vh3 = new VirtualHost(component.getContext());
 vh3.setHostDomain("C1LPT083");
 Application application3 =
 new Application(component.getContext()) {
 @Override public Restlet createRoot() {
 Restlet pageRestlet = new Restlet(getContext()) {
 @Override public void handle(Request request,
 Response response) {
 File file = new File(PAGE_PATH);
 FileRepresentation frep =
 new FileRepresentation(file, MediaType.TEXT_HTML,
 1000);
 response.setEntity(frep);
 response.setStatus(Status.SUCCESS_OK);
 }
 };
 return pageRestlet;
 }
 };

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 34

……ContinuedContinued

 vh1.attach("/docs/", application1);

 vh1.attach("/docs/deprecated",

 application3);

 component.getHosts().add(vh1);

 vh2.attach("/jar", application2);

 component.getHosts().add(vh2);

 vh3.attach("/page", application3);

 component.getHosts().add(vh3);

 component.start();

 }

}

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 35

RestletRestlet Class Class

! Uniform interface class

! Get, Put, Post, Delete

! Context

! Life cycle support

! Its subclasses implement specific ways to

process calls

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 36

RestletRestlet Class Class

Uniform

Restlet

FilterConnector Component

VirtualHostServerClient

Redirector

FinderApplication Router

RouteGuardDirectory

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 37

Router ClassRouter Class

! Restlet for routing calls to one of the

attached routes (e.g., to another Restlet)

! attach(pattern, Restlet)

! Creates a route based on URI patterns matching

the beginning of a the resource reference's

remaining part

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 38

Restlet Component

Application

Example ApplicationExample Application

• Same host/port

• Routes based on URI

Router

Restlet

Restlet

DirectoryHTTP Server

File Client
localhost

/page

/jar

/docs

Default

Host

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 39

Router ExampleRouter Example

public class RouterServer implements Constants {
 public static void main(String[] args) throws Exception {
 // Initialize connectors as before...

 Application application =
 new Application(component.getContext()) {
 @Override public Restlet createRoot() {
 Router router = new Router(getContext());
 // Create the Restlets as before...
 router.attach("/docs", directory);
 router.attach("/jar", jarRestlet);
 router.attach("/page", pageRestlet);
 return router;
 }
 };

 component.getDefaultHost().attach("", application);
 component.start();
 }
}

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 40

Router URI PatternsRouter URI Patterns

! URI Template Spec for variables

! Example URI patterns:

! /docs/ to display static files

! /users/{user} to display a user’s account

! /users/{user}/orders to display the orders

of a particular user

! /users/{user}/orders/{order} to display

a specific order

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 41

Restlet Component

Application

URI RoutingURI Routing

Router
OrderRestlet

OrdersRestletHTTP Server
http://host:8080/server

/orders/{order}

/orders

Default

Host

Router

/users

UsersRestlet

/users/{user}

UserRestlet

http://host:8080/server/users/123/orders/456

! Router sees: /users/123/orders/456

! Router sees: /orders/456

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 42

Advanced RouterAdvanced Router

! A Route can compute a score for each call
depending on various criteria

! Several routing modes are supported:

! Best match (default)

! Round robin

! Random match

! First match

! Last match

! Custom

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 43

Round Robin ExampleRound Robin Example

 @Override public Restlet createRoot() {
 Router router = new Router(getContext());
 Restlet restlet1 = new Restlet(getContext()) {
 @Override public void handle(Request request,
 Response response) {
 StringRepresentation rep =
 new StringRepresentation("Restlet 1");
 response.setEntity(rep);
 response.setStatus(Status.SUCCESS_OK);
 }
 };

 Restlet restlet2 = new Restlet(getContext()) { ...};

 router.setRoutingMode(Router.NEXT);
 router.attach("", restlet1);
 router.attach("", restlet2);
 return router;
 }

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 44

Filter ClassFilter Class

! Impose before/after handling in call flow

Restlet Component

Application

Router

Restlet

Directory

HTTP Server

File Clientlocalhost

/public

/private

/docs

Default

Host

Router Guard

Directory

JaxbFilter

/ws

Router

Route

RestletRoute

/a

/a

NOTE:NOTE:

A Web ApplicationA Web Application

&&

 Web Service Web Service

UNIFIED!UNIFIED!

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 45

ResourceResource

! Remember this?

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 46

Resource ClassResource Class

! Typically created by a Finder

! Selects a variant Representation

! A final handler of calls in the pipeline

! Not shared between calls; can be thread-unsafe

! Where the RESTful view of your Web application

can be integrated with domain objects

! Databases, beans, other services, etc.

! By default, ony the GET method is enabled

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 47

Using ResourceUsing Resource

! Override REST methods you support: post(),
put(), delete()

! Override the matching allow*() methods

! Optionally override handle*() method for custom
content negotiation

! Restlet calls are dynamically dispatched to the
handle*() methods via introspection

! To support a custom MOVE method

! add handleMove()

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 48

Representation ClassRepresentation Class

Representation

Variant

InputRepresentation

SaxRepresentatio

n

…

FileRepresentation

StringRepresentation

XmlRepresentation

ChannelRepresentation

OutputRepresentation

StreamRepresenation

DomRepresentation

ObjectRepresentation

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 49

Bookmark ExampleBookmark Example

@Override public Restlet createRoot() {
 Router router = new Router(getContext());
 router.attach("/users/{username}",
 UserResource.class);
 router.attach("/users/{username}/bookmarks",
 BookmarksResource.class);
 Route uriRoute =
 router.attach("/users/{username}/bookmarks/{URI}",
 BookmarkResource.class);
 uriRoute.getTemplate().getVariables().put("URI",
 new Variable(Variable.TYPE_URI_ALL));

 return router;
 }

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 50

UserResource.javaUserResource.java

public class UserResource extends Resource {
...
 public UserResource(Context context, Request request,
 Response response) {
 super(context, request, response);
 this.userName = (String)
 request.getAttributes().get("username");
...
 this.user = findUser();
 if (user != null) {
 getVariants().add(new Variant(MediaType.TEXT_PLAIN));
 }
 }

 @Override public boolean allowDelete() { return true; }

 @Override public boolean allowPut() { return true;}
...

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 51

UserResource.javaUserResource.java (continued) (continued)

@Override
public Representation getRepresentation(Variant variant) {
 Representation result = null;
 if (variant.getMediaType().equals(MediaType.TEXT_PLAIN)) {
 StringBuilder sb = new StringBuilder();
 sb.append("------------\n");
 sb.append("User details\n");
 sb.append("------------\n\n");
 sb.append("Name: ")
 .append(this.user.getFullName()).append('\n');
 sb.append("Email: ")
 .append(this.user.getEmail()).append('\n');
 result = new StringRepresentation(sb);
 }
 return result;
}

@Override public void put(Representation entity) {
 // Creates a user in a database ...
}

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 52

Deployment OptionsDeployment Options

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 53

Many Ways to DeployMany Ways to Deploy

! Deploy as a jar file

! Any Servlet compliant container

! Tomcat, Jetty

! Native service using Java Service Wrapper

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 54

Restlet & OtherRestlet & Other

TechnologiesTechnologies

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 55

Plays Well With OthersPlays Well With Others

! Various Connectors

! HTTPS, AJP, Apache HTTP Client, SMTP[S],
JDBC, FILE

! Lots of Representations

! DOM, SAX, XPath, XSLT

! Template Engine: Velocity, FreeMarker

! NIO, Apache Upload

! Easy 3rd party integration

! Eg., Struts, Spring, Hibernate, Acegi, Seam, etc

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 56

Overstock.com ExperienceOverstock.com Experience

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 57

RestletRestlet @ Overstock.com @ Overstock.com

! Created in-house Web Services framework

! XSD for requests and responses

! JAXB Filter converts between XML and our

object model

! About 6 active developers, more to come

! 3 projects in production, 3 in DEV or QA

! Easy to learn, quick to code, reliable & fast

OVERSTOCK IS HIRING!! TALK TO ME

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 58

Not CoveredNot Covered

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 59

LotLot’’s of Other Thingss of Other Things

! Finders

! Restlet on the client

! Redirection

! Guards

! NIO

! Logging and error handling

! JSR 311 – REST Annotations

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 60

Q & AQ & A

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 61

Resource Content NegotiationResource Content Negotiation

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 62

GET vs. POSTGET vs. POST

! The result of a GET is to return a

representation of the resource

! The result of a POST is to post something to

a processing resource, which may create a

new subordinate resource

! In general, the response entity of the POST will

describe the status of the method execution, if it

succeeded or if it failed

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 63

Returning a Represenation fromReturning a Represenation from

POSTPOST
! Example: a complex search request

! Reasons for bending the REST style:

! URI length overflow – search requests can be

very large

! Information hiding – keep information off the URI

! Tradition/legacy/migration – “this is how we've

done it before”

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 64

Returning a Represenation fromReturning a Represenation from

POSTPOST
! When POST modifies the target resource,

and you want to return the best

representation, do this at the end of the

post() method:

getResponse().setEntity(

 getPreferredRepresentation());

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 65

Returning a Represenation fromReturning a Represenation from

POSTPOST
! To directly return the representation of the

created resource, instantiate a new

Resource, and manually call:

Resource res = new

 MyDelegateResource(...);

Representation rep =

 res.getPreferredRepresentation();

getResponse().setEntity(rep);

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 66

Returning a Represenation fromReturning a Represenation from

POSTPOST
! Finally, if you don't need to take advantage of

content negotiation, you can directly set the

response entity manually in your post()

method:

getResponse()

 .setEntity(myJaxbRepresentation);

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 67

Multi-step StrategiesMulti-step Strategies

! POST /queries

! Pass the query document in the request entity

! Return a status document and a redirectRef with

the created query URI

! GET /queries/264794

! Returns the result of the query

! Idempotent, can be cached

! DELETE /queries/264794

! Cache auto-deletes old queries

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 68

Content NegotiationContent Negotiation

 Overstock.com

slandis@overstock.comLightweight REST framework for Java

03/15/2007 Slide 69

Types of Content NegotiationTypes of Content Negotiation

! Server-driven - Server picks representation

from prior knowlege of client, or uses HTTP

header information

! Client-driven - Client requests; server

returns list of representations; client picks

one...requires 2 calls

! Proxy-driven - Proxy chooses from a list

returned by server, using client preferences

URI-specified – Uses the query string

