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1 (SHE Section 1.2)

74. If a = b =
√

2 then a + b = 2
√

2, which is irrational. If a =
√

2 and b = −
√

2, then a + b = 0,
which is rational.
If a =

√
2 and b = 1+

√
2, then ab =

√
2+2 is irrational (see 1.2 #71). However, if a = b =

√
2,

then ab = 2, which is rational.

76. Suppose
√

3 is rational. Then
√

3 = a/b, where a and b are integers and a and b have no common
factors. Squaring both sides gives us 3 = a2/b2 or a2 = 3b2. Since 3b2 is clearly divisible by
3, then a2 is also divisible by 3. It also follows that a must be divisible by 3: suppose not, then
a = 3k +1 or a = 3k +2 for some integer k, but

(3k +1)2 = 9k2 +6k +1 = 3(k2 +2k)+1(3k +2)2 = 9k2 +12k +4 = 3(k2 +4k +1)+1

so a2 can’t be divisible by 3, a contradiction. Thus a = 3m for some integer m, so (3m)2 = 3b2,
which implies b2 = 3m2. This implies that b2 is divisible by 3, which thereby implies that b is
divisible by 3. But since a and b are both divisible by 3, this contradicts the assumption that a
and b have no common factors, hence

√
3 must be irrational.

2 Since 14a + 21b = 7(2a + 3b) and 2a + 3b is an integer, it follows that 7(2a + 3b) is divisible by 7.
But 100 is not divisible by 7, so there are no integers a and b such that 14a+21b = 100.

3 We prove for all integers n ≥ 0 that n3 + (n + 1)3 + (n + 2)3 is divisible by 9 by induction. The
statement is true for n = 0, since n3 +(n +1)3 +(n +2)3 = 9 is clearly divisible by 9. Now suppose
k3 +(k +1)3 +(k +2)3 is divisible by 9. Then

(k +1)3 +(k +2)3 +(k +3)3 = (k +1)3 +(k +2)3 + k3 +9k2 +27k +27

which is clearly divisible by 9 since (k +1)3 +(k +2)3 +k3 is divisible by 9 by the induction hypoth-
esis, and 9k2 +27k+27 = 9(k2 +3k+3) is also divisible by 9, hence the sum is divisible by 9. Hence
the statement is true for all integers n≥ 0.

4 We prove that
n

∑
j=1

j−1/2 > 2(
√

n+1− 1) for all positive integers n. The statement is true for n = 1

since
1

∑
j=1

j−1/2 = 1 > 2(
√

2− 1) (since 8 < 9 =⇒ 2
√

2 < 3 =⇒ 1 > 2
√

2− 2). Now suppose

k

∑
j=1

j−1/2 > 2(
√

k +1−1) for some integer k. Then

k+1

∑
j=1

j−1/2 =
k

∑
j=1

j−1/2 +(k +1)−1/2 > 2(
√

k +1−1)+
1√

k +1
=

2(k +1)−2
√

k +1+1√
k +1

=
2k +3√

k +1
−2 > 2(

√
k +2−1)



which is true for all positive integers k since

4k2 +12k +9 > 4k2 +12k +8 =⇒ (2k +3)2 > 4(k +2)(k +1) =⇒ (2k +3)2

k +1
> 4(k +2)

=⇒ 2k +3√
k +1

> 2
√

k +2.

5 We prove this using strong induction on n. The statement is true for n = 2 and n = 3 since

F1 +F3 = 1+2 = 3 = L2, F2 +F4 = 1+3 = 4 = L3.

Now suppose the statement Ln = Fn−1 + Fn+1 is true for n = 1,2,3,4, . . . ,k. We wish to show the
statement is true for n = k +1, that is, Lk+1 = F(k+1)−1 +F(k+1)+1. The result follows since

F(k+1)−1 +F(k+1)+1 = Fk +Fk+2 = (Fk−1 +Fk−2)+(Fk+1 +Fk) = (Fk−1 +Fk+1)+(Fk−2 +Fk)

= Lk +Lk−1 = Lk+1,

so the statement is true for all n, thus completing the proof.

6 (SHE 2.2)

12. Since x→ 0−, then x < 0, so lim
x→0−

x
|x|

= lim
x→0−

x
−x

=−1.

22. Using the figure, only ε1 works.

26. For ε = 1
10 , we choose δ = 1

2 . If 0 < |x−2|< 1
2 , then |15 x− 2

5 |=
1
5 |x−2|< 1

5 ·
1
2 = 1

10 = ε .

7 We choose δ = 1
10 . If |x−2|< 1

10 , then |5x−10|= 5|x−2|< 5 · 1
10 = 1

2 .

8 We choose δ = 1
17500 . If 0 < |x− 3| < 1

17500 , then |x4− 81| = |x2 + 9| · |x + 3| · |x− 3|. In particular,
δ < 1, which means |x− 3| < 1, so 2 < x < 4, which implies |x2 + 9| < 25 and |x + 3| < 7, so
|x4−81|= |x2 +9| · |x+3| · |x−3|< 25 ·7 · 1

17500 = 1
100 , which is what we require.

9 Here we choose δ = 1. If 0 < |x− 3| < 1, then |x4− 81| = |x2 + 9| · |x + 3| · |x− 3|. In particular,
δ = 1, which means |x− 3| < 1, so 2 < x < 4, which implies |x2 + 9| < 25 and |x + 3| < 7, so
|x4−81|= |x2 +9| · |x+3| · |x−3|< 25 ·7 ·1 = 175 < 1000, which is what we require.

10 (i) We show that lim
x→2

(3x− 1) = 5, in other words, for any ε > 0 there exists δ > 0 such that 0 <

|x−2| < δ implies |(3x−1)−5| < ε . Choose δ = ε

3 . Then if 0 < |x−2| < δ , we have |(3x−
1)−5|= |3x−6|= 3|x−2|< 3δ = 3 · ε

3 = ε , or |(3x−1)−5|< ε , as required.

(ii) We show that lim
x→0

(2− 5x) = 2, in other words, for any ε > 0 there exists δ > 0 such that 0 <

|x|< δ implies |(2−5x)−2|< ε . Choose δ = ε

5 . Then if 0 < |x|< δ , |(2−5x)−2|= |−5x|=
5|x|< 5δ = 5 · ε

5 = ε , or |(2−5x)−2|< ε , as required.

(iii) We show that lim
x→4

x2−1
x+1

= 3, so we need to show that for any ε > 0 there exists δ > 0 such that

0 < |x−4|< δ implies
∣∣∣∣x2−1

x+1
−3
∣∣∣∣< ε . Choose δ = min(1,ε). Then 0 < |x−4|< δ implies

∣∣∣∣x2−1
x+1

−3
∣∣∣∣= ∣∣∣∣x2−1−3(x+1)

x+1

∣∣∣∣= ∣∣∣∣x2−3x−4
x+1

∣∣∣∣= ∣∣∣∣(x−4)(x+1)
x+1

∣∣∣∣= |x−4|



since δ < 1 implies |x− 4| < 1 or 3 < x < 5, therefore x 6= −1. Since |x− 4| < δ < ε , thus∣∣∣∣x2−1
x+1

−3
∣∣∣∣< ε as required.

(iv) We show that lim
x→2

√
x2 +5 = 3, so we need to show that for any ε > 0, there exists δ > 0 such

that 0 < |x− 2| < δ implies |
√

x2 +5− 3| < ε . Choose δ = min(1, 3
5 ε). Then 0 < |x− 2| < δ

and 0 < |x−2|< 1, so 1 < x < 3. Hence

|
√

x2 +5−3|=
∣∣∣∣ (x2 +5)−9√

x2 +5+3

∣∣∣∣= ∣∣∣∣ x2−4√
x2 +5+3

∣∣∣∣= ∣∣∣∣ 1√
x2 +5+3

∣∣∣∣ · |x+2| · |x−2|

<
1
3
·5 ·δ <

5
3
· 3

5
ε = ε

since 1/(
√

x2 +5+3) < 1
3 regardless of the value of x.

(v) We show that lim
x→ 3

2

x2

x−2
=−9

2
, so we need to show that for any ε > 0, there exists δ > 0 such that

0 < |x− 3
2 |< δ implies

∣∣∣ x2

x−2 + 9
2

∣∣∣< ε . Choose δ = min(1
4 , ε

31). We have δ ≤ 1
4 so 0 < |x− 3

2 |< δ

implies |x− 3
2 |<

1
4 =⇒ 5

4 < x < 7
4 , thus |x+6|< 31

4 and 1/|x−2|< 1
1
4

= 4. If 0 < |x− 3
2 |< δ ,

then∣∣∣∣ x2

x−2
+

9
2

∣∣∣∣= ∣∣∣∣2x2 +9x−18
2(x−2)

∣∣∣∣= ∣∣∣∣(2x−3)(x+6)
2(x−2)

∣∣∣∣= |x+6| · 1
|x−2|

· |x− 3
2 |<

31
4
·4 ·δ < ε,

which is what is required.


