

Semiconductors

I²C Logic Selection Guide 2003

PHILIPS

I²C overview

Originally, the I^2C bus was designed to interact within a small number of devices on a single card, such as to manage the tuning of a car radio or TV. The maximum allowable capacitance was set at 400 pF to allow proper rise and fall times for optimum clock and data signal integrity with a top speed of 100 kbit/s. In 1992, the maximum bus speed was increased to 400 kbit/s, to keep up with the ever-increasing performance requirements of new ICs. The latest I^2C specification, released in 1998, increased top speed to 3.4 Mbit/s. All I^2C devices are designed to be able to communicate together on the same two-wire bus and system functional architecture is limited only by the imagination of the designer.

While its application to bus lengths within the confines of consumer products such as PCs, cellular phones, car radios or TV sets grew quickly, only a few system integrators were using it to span long distances. The l^2C bus is now being used in multiple card systems, such as a blade servers and rack mouted servers, where the l^2C bus to each card needs to be easy to isolate to allow for card insertion and removal while the rest of the system is in operation. In some systems, many more devices may need to be located onto the same card, where before the total device and trace capacitance would have exceeded 400 pF. New bus extension & control devices help expand the l^2C bus beyond the 400 pF limit of about 20 to 30 devices and help control more devices, even multiple identical devices with the same address. These new devices are popular with designers as they continue to expand and increase the use of the l^2C bus in maintenance and control applications.

This selection guide focuses on general purpose devices like General Purpose I/O Expanders, LED Blinkers, Temperature and Voltage Hardware Monitors, DIP Switch Replacements, Multiplexers, Bus Masters/Microcontrollers, Bus Repeater/Hub/ Extenders, Serial EEPROMs, Voltage Level Translators and Analog to Digital Converters.

I²C features

- Only two bus lines are required: a serial data line (SDA) and a serial clock line (SCL)
- Each device connected to the bus is software addressable through a unique address and simple master/slave relationships exist at all times; masters can operate as master-transmitters or as master-receivers
- I²C is a true multi-master bus including collision detection and arbitration, to prevent data corruption if two or more masters simultaneously initiate data transfers
- Serial, 8-bit oriented, bi-directional data transfers can be made at up to 100 kbit/s in the Standard-mode, up to 400 kbit/s in the Fast-mode, or up to 3.4 Mbit/s in the High-speed mode
- On-chip filtering (50 ns) rejects spikes on the bus data line to preserve data integrity
- The number of ICs that can be connected to the same bus segment is limited to a maximum bus capacitive loading of 400 pF

Semiconductors

I^2C designer benefits

- Functional blocks on the block diagram correspond with the actual ICs; designs proceed rapidly from block diagram to final schematic
- No need to design bus interfaces because the l²C-bus interface is already integrated on-chip
- Integrated addressing and data-transfer protocol allow systems to be completely software-defined
- The same IC types can often be used in many different applications
- Design-time improves as designers quickly become familiar with the frequently used functional blocks represented by I²C-bus compatible ICs
- ICs can be added to or removed from a system without affecting any other circuits on the bus
- Fault diagnosis and debugging are simple; malfunctions can be immediately traced
- Software development time can be reduced by assembling a library of reusable software modules

I²C manufacturers benefits

- The simple 2-wire serial I²C-bus minimizes interconnections so ICs have fewer pins and there are fewer PCB tracks; resulting in smaller and less expensive PCBs
- The completely integrated l²C-bus protocol eliminates the need for address decoders and other 'glue logic'
- The multi-master capability of the l²C-bus allows rapid testing/ alignment of end-user equipment via external connections to an assembly-line
- Increases system design flexibility by allowing simple construction of equipment variants and easy upgrading to keep design up-to-date
- The l²C-bus is a de facto world standard that is implemented in over 1000 different ICs (Philips has > 400) and licensed to more than 70 companies

Applications

There are some specific applications for certain types of l^2C devices such as TV or radio tuners, but in most cases a general purpose l^2C device can be used in many different applications because of its simple construction.

End use segment

Telecom: Mobile phones, Base stations, Switching, Routers Data processing: Laptop, Desktop, Workstation, Server Instrumentation: Portable instrumentation, Metering systems Automotive: Dashboard, Infotainment Consumer: Audio/video systems, Consumer electronics (DVD, STB,...)

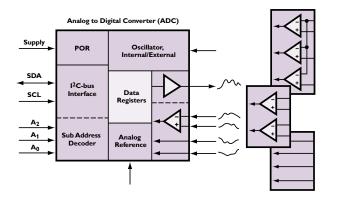
Functions

Analog to Digital Converters (A/D, D/A): MMI functions, battery & converters, temperature monitoring, control systems **Bus Controller:** Telecom, consumer electronics, automotive, Hi-Fi systems, PCs, servers

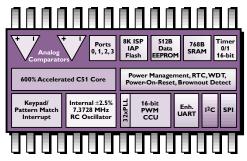
Bus Repeater, Hub & Expander: Telecom, consumer electronics, automotive, Hi-Fi systems, PCs, servers

Real Time Clock (RTC)/Calander: Telecom, EDP, consumer electronics, clocks, automotive, Hi-Fi systems, FAX, PCs, terminals DIP Switch: Telecom, automotive, servers, battery & converters, control systems

LCD/LED Display Drivers: Telecom, automotive instrument driver clusters, metering systems, POS terminals, portable items, consumer electronics


General Purpose Input/Output (GPIO) Expanders and LED Display Control: Servers, keyboard interface, expanders, mouse track balls, remote transducers, LED drive, interrupt output, drive relays, switch input

Multiplexer & Switch: Telecom, automotive instrument driver clusters, metering systems, POS terminals, portable items, consumer electronics


Serial RAM/ EEPROM: Scratch pad/ parameter storage Temperature & Voltage Monitor: Telecom, metering systems, portable items, PC, servers

Voltage Level Translator: Telecom, servers, PC, portable items, consumer electronics

Microcontroller

Analog to digital converter

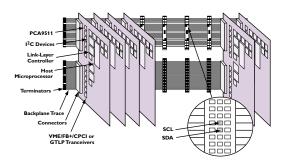
These devices translate between digital information communicated via the I^2C bus and analog information measured by a voltage.

Analog to digital conversion is used for measurement of the size of a physical quantity (temperature, pressure ...), proportional control or transformation of physical amplitudes into numerical values for calculation.

Digital to analog conversion is used for creation of particular control voltages to control DC motors or LCD contrast.

Bus controller

The master can be either a bus controller or μ controller and provides the brain behind the I²C bus operation. A bus controller adds I²C bus capability to a regular μ controller without I²C, or adds more I²C ports to μ controllers already equipped with an I²C port such as the:


- P87LPC76x— > 100 kHz l²C
- P89C66x/65x/55x— > 100 kHz l²C
- P89LPC932— > 400 kHz l²C

Microcontrollers with multiple serial ports can convert from

- I²C to UART/RS232—LPC76x, 89C66x and 89LPC9xx
- I²C to SPI—P87C51MX and 89LPC9xx family
- I²C to CAN-8 bit P87C591 and 16 bit PXA-C37

													F	eature	s											
						ent O		Vo	c RAI	NGE ((V)		FR	EQ (k	Hz)	TI	EMP (°	C)		_	P	ackage	es			
General Purpose Device	Description	# of Addresses	Interrupt (In/Out)	Hardware Reset	Current (per bit/total mA)	Internal Pull Up Curr Source/Resistor on I/	1.0	1.8	2.5	3.3	5	5V TOLERANT	100	400	3400	0 to 70	- 40 to 85	- 55 to 125	PIN COUNT	DIP	SO (narrow)	SO (wide)	ssop	QSOP	TSSOP	HVQFN
Analog / Digit																										
PCF8591	4 ch A/D and 1 ch D/A with 8-bit accuracy	8								٠	٠		٠				٠		16	P		T				
Bus Controlle	r																									
PCA9564 PCF8584	8051 based 80XX and Motorola 68000 based with snoop and long distance modes	128 128	0-1 0-1	•					•	•	•	•	•	•			•		20 20	Р		D T			PW	BS

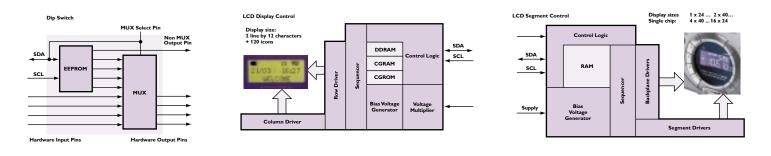
Real-Time Clock / Calendar 32 kHz S, Min, H, Day, Month, Year Alarm-, Timer- Registers (240 Byte RAM 8583) Interface Interrupt Sub Address Decoder

Bus repeater, hub & expander

Repeaters, hubs or expanders isolate the l^2C bus loading into multiple 400 pF segments, the maximum limit imposed by the l^2C specification for proper bus operation, by regenerating the l^2C clock and data signals allowing many more devices than previously possible to communicate across the same bus. Hot swapping of cards into an active system is also now possible in addition to allowing mixed systems of both newer 3.3 V and older 5 V devices, opto-isolation of power supplies/medical systems, multi-point node connections, long distance wire transmission and RF links.

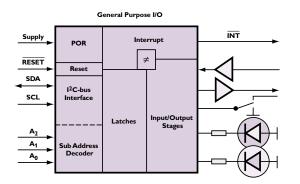
Clock & calendar

Real time clocks and event counters count the passage of time and act as a chronometer. They are used in applications such as periodic alarms for safety applications, system energy conservation, time and date stamp for point of sales terminals or bank machines.


													F	eature	es											
						Ogt		Vo	c RAI	NGE (V)		FR	EQ (k	Hz)	Т	EMP (°	C)			Р	ackage	es			
General Purpose Device	Description	# of Addresses	Interrupt (In/Out)	Hardware Reset	Current (per bit/total mA)	Internal Pull Up Current Source/Resistor on I/O		1.8	2.5	3.3	5	SV TOLERANT	100	400	3400	0 to 70	- 40 to 85	- 55 to 125	PIN COUNT	DIP	SO (narrow)	SO (wide)	SSOP	QSOP	TSSOP	HVQFN
Bus Repeater	, Hub & Expander																									
P82B715	Long distance and multi-point	NA								•	•	•	•				•		8	PN	TD					
P82B96	Long distance, multi-point, opto-isolation and level shifting	NA							•	•	•	•	•	•			•		8	PN	TD				DP	
PCA9511/13/14	Backplane buffer with idle detect, rise time	NA								•	٠	٠	•	•			•		8		D				DP	
PCA9512	accelerator, precharge Backplane buffer with idle detect, rise time	NA								3.3 8	& 5.5	•	•	•			•		8		D				DP	
0040545	accelerator, precharge, split V _{CC} s											-	-								_					
PCA9515 PCA9516	Repeater with 2 segments of 400 pF	NA NA																	8		D D				DP PW	
PCA9516 PCA9518	Hub with 5 segments of 400 pF Expandable Hub with 5 segments of 400 pF	NA																	16 20			D			PW	
Clock & Cal		INA	I		1								•		1	1			20						F V V	
PCF8563	Real Time Clock/Calendar with low voltage monitor	1	0-1	1	1	1					•	•			1	1		1	8	PN		TD	1	1	DP	
PCA8565	Expanded temperature range of PCF8563		0-1				ě			ě		ě		•		-4	0 to 12	5	8	PN		TD			DP	
PCF8573	Real Time Clock/Calendar with low voltage monitor	4					1.1	•		•	•	•	•					1	16	PN		TD				
PCF8583	Real Time Clock with 240 bytes of scratch pad RAM	2	0-1				•	•	•	•	•	•	•				•		8	PN	TD					
PCF8593	Low Power Real Time Clock/Calendar	1	0-1	٠			٠	٠	٠	٠	٠	٠	٠				•		8	Ν		TD				

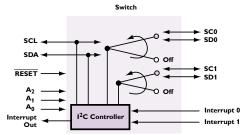
DIP switch

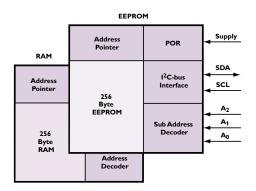
These devices serve as replacements for jumpers or dip switches and eliminate the need to open the equipment cabinet to modify settings manually, making it easier and less likely to damage the equipment. I^2C commands and/or hardware pins are used to select between the default values or the setting programmed from the I^2C bus and stored in the onboard I^2C EEPROM register. The non-volatile I^2C EEPROM register values stay resident even when the device is powered down and the devices power up with these values on the hardware output pins.


Display drivers

LCD display control provide the power to segments of an LCD that are controlled via the l²C bus. The LCD display control is an example of how "complete" a system an l²C device can be (e.g. generates the LCD voltages, adjusts the contrast, temperature compensates, stores the messages, has CGROM and RAM, etc.) The segment LCD control is a less complex LCD driver (e.g., just a segment driver).

													F	eature	s											
						Oet		Vc	c RAI	NGE (V)		FR	EQ (k	Hz)	TE	EMP (°	C)			P	ackag	es			
General Purpose Device	Description	# of Addresses	Interrupt (In/Out)	Hardware Reset	Current (per bit/total mA)	Internal Pull Up Current Source/Resistor on I/O	1.0	1.8	2.5	3.3	5	5V TOLERANT	100	400	3400	0 to 70	- 40 to 85	- 55 to 125	PIN COUNT	DIP	SO (narrow)	SO (wide)	SSOP	QSOP	TSSOP	HVQFN
DIP Switch																										
PCA8550 PCA9559 PCA9560 PCA9561 Display Driver	4 input, 5 output with 1 EEPROM register 5 input, 6 output with 1 EEPROM register 5 input, 6 output with 2 EEPROM register 5 input, 6 output with 4 EEPROM register	1 4 4 4			20-80 25-100 25-100					••••••		•	•	•		•••••••••••••••••••••••••••••••••••••••			16 20 20 20		D	D D	DB		PW PW PW PW	
Display Driver	LCD Segment Driver																									
PCF8533 PCF8566 OM4085 PCF8576C PCF8576D PCF8577C PCF8578 PCF8579	320 segment 96 segment 160 segment 160 segment 164 segment 384+ segment extension for PCF8578	16 16 16 16 16 2 2						2	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••				•					40 40 56/64 56/64 40 56/64 56/64	Baro Baro Baro Baro Baro Baro	e Die Die Die Die Die Die Die	& VSO & VSO & VSO & TQF & VSO & VSO & VSO	40 56/LQ P64 40 56/LQ)FP64		
1 0.0077	LCD Character Driver	-		1		1													100/01							
PCF2103 PCF2104 PCF2105 PCF2113 PCF2116 PCF2119	24 character 48 character 48 character 24 character + 120 icon 48 character 32 character LCD Graphic Black/White Driver	2 2 2 2 2 2 2 2		•				•	•••••••••••••••••••••••••••••••••••••••	•••••		•••••••••••••••••••••••••••••••••••••••		•					100	Bare Bare Bare Bare	e Die e Die e Die e Die e Die e Die e Die	& LQF	P100			
PCF8531 PCF8535 PCF8548 PCF8811 PCF8813 PCF8814	34 x 128 (65 + icon row) x 133 65 x 102 80 x 128 (67 + icon row) x 102 80 x 96	2 4 2 4 4 4 4					1.5	•	•	•	•	• • •	• • • •		•		• • •			Bare Bare Bare Bare	e Die e Die e Die e Die e Die e Die e Die e Die					
PCF8820 PCF8821 OM6208	LCD Graphic Grey Scale Driver 67 x 101 4 grayscale 33 x 101 4 grayscale 65 x 96 4 grayscale	4 4 16		•					•	•	•	•	•	•	•		•			Bare	e Die e Die e Die					
PCF8831/32 PCF8833 PCF8835	LCD Graphic Color STN 160 x 128 RGB 256 color 132 x 132 RGB 4 k color 68 x 98 RGB 4 k color	4 4 4		•			1.5 1.7 1.7	•	•	•		•	•	•	•		•			Bare	e Die e Die e Die e Die					


General purpose I/O and LED display control

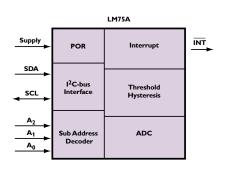

General Purpose Digital input/output (GPIO) monitor 'YES' or 'NO' information, such as whether or not a switch is closed or a tank overflows. They can also be used to control a contact, turn on or off an LED, turn off a relay, start or stop a motor, or read a digital number presented at the port (via a DIP switch, for example). The I/Os are either open drain I/Os with a weak pull-up current source/resistor or totem pole outputs.

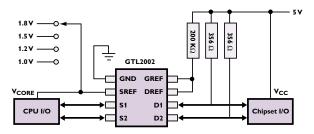
LED display control devices provide power to digital segments or LEDs that are controlled via the l^2C bus. The new LED blinkers and dimmers have an internal oscillator and two internal PWMs that can be set to blink LEDs between 160 Hz and 6.3 seconds. This frees up a timer on the bus master and reduces the amount of bus traffic.

													F	eature	s											
						ont		Vo	c RA	NGE	(V)		FR	EQ (kl	Hz)	TI	EMP (°	C)			P	ackag	es			
General Purpose Device	Description	# of Addresses	Interrupt (In/Out)	Hardware Reset	Current (per bit/total mA)	Internal Pull Up Current Source/Resistor on I/O	1.0	1.8	2.5	3.3	5	5V TOLERANT	100	400	3400	0 to 70	- 40 to 85	- 55 to 125	PIN COUNT	DIP	SO (narrow)	SO (wide)	SSOP	QSOP	TSSOP	HVQFN
General Purp	oose I/O and LED Display Control																									
PCA9500 PCA9501 PCA9530 PCA9531 PCA9532 PCA9533 PCA9550 PCA9551 PCA9551 PCA9553 PCA9553 PCA9553 PCA9558 PCF8574/74A PCF8575 SCA1064	Open Drain Outputs 8 bit with 2 kbit EEPROM 8 bit with 2 kbit EEPROM and 6 address pins 2 bit with 2 FWM - 160 Hz to 1.6 sec 16 bit with 2 PWM - 160 Hz to 1.6 sec 16 bit with 2 PWM - 160 Hz to 1.6 sec 2 bit with 2 PWM - 160 Hz to 1.6 sec 4 bit with 2 PWM - 160 Hz to 1.6 sec 2 bit with 2 PWM - 40 Hz to 6.4 sec 8 bit with 2 PWM - 40 Hz to 6.4 sec 16 bit with 2 PWM - 40 Hz to 6.4 sec 8 bit with 2 PWM - 40 Hz to 6.4 sec 8 bit with 2 kbit EEPROM and 5 input, 6 output with 1 EEPROM register DIP Switch 8 bit - A is alternate 1 ² C address version 16 bit 16 bit POW reversion of PCF8575 4 x 8 Segment LED Controller Totem Pole (Push-Pull) Outputs	2-8 2-64 2 8 8 2 2 8 8 2 2 8 8 2 2 4 8 8 2 2 4 8 8 4	0-1 0-1 0-1 0-1	•••••••••••••••••••••••••••••••••••••••	25-100 25-100 25-50 25-100 25-200 25-100 25-200 25-100 25-100 25-100 25-100 20-100 20-100 20-100 21	•			•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••					•			16 20 8 16 24 8 8 16 24 8 28 16 24 24 24 24	P	D D D D D T	D D D T	TS20 TS TS		PW PW PW PW DP PW PW PW	BS BS BS BS BS
PCA9534 PCA9535 PCA9554/54A PCA9555 PCA9556 PCA9557	Low Power version of PCA9554 Low Power version of PCA9555 8 bit - A is alternate I ² C address version 16 bit 8 bit Improved version of PCA9556	8 8 8 8 8 8	0-1 0-1 0-1 0-1	:	25-100 25-200 25-100 25-200 20-80 25-100	•			•			•		•		•	•		16 24 16 24 16 16		D	D D D	DB DB DB DB		PW PW PW PW PW	BS BS BS BS

Multiplexer & Switch

The multiplexers or switch fan one SCL/SDA channel to multiple downstream SCx/SDx channels that are selected by I²C commands. The multiplexers can select only one downstream SCx/SDx channel at a time whereas the switches can select multiple downstream SCx/SDx channels at a time making them useful as multiplexers in addition to voltage translators. Used in video projectors, servers or any other application where there is an address conflict (e.g., SPD EEPROMs on DIMMs), a need to isolate I²C sub-branches to reduce capacitive loading or to provide I²C bus voltage level shifting.


Serial EEPROM & RAM


RAM: Random Access Memory EEPROM: Electrically Erasable Programmable Read On Memory

Common small serial memories are used in multiple applications. EEPROMs are particularly useful in applications where data retention during power-off is essential (for example: meter readings, electronic key, product identification number, etc). EEPROMs store data (2 kbits organized in 256 X 8 in the PCF8582C-2 for example), including your set points, temperature, alarms, and more, for a guaranteed minimum storage time of ten years in the absence of power. EEPROMs are capable of being programmed 1,000,000 times and have an infinite number of read cycles.

												F	eature	es											
						O	Vo	c RAI	NGE ((V)		FR	EQ (k	Hz)	T	EMP (°	C)			P	ackag	es			
General Purpose Device	Description	# of Addresses	Interrupt (In/Out)	Hardware Reset	Current (per bit/total mA)	Internal Pull Up Current Source/Resistor on I/O	1.8	2.5	3.3	5	5V TOLERANT	100	400	3400	0 to 70	- 40 to 85	- 55 to 125	PIN COUNT	DIP	SO (narrow)	SO (wide)	ssop	QSOP	TSSOP	HVQFN
Multiplexer &																									
PCA9540 PCA9541 PCA9542 PCA9543 PCA9544 PCA9545 PCA9545 PCA9546 PCA9548	1 to 2 Multiplexer 2 to 1 Demultiplexer with Interrupt 1 to 2 Multiplexer with Interrupt 1 to 4 Multiplexer with Interrupt 1 to 4 Multiplexer with Interrupt 1 to 4 Switch with Interrupt 1 to 4 Switch 1 to 8 Switch	1 16 8 4 8 4 8 8 8 8	1-2 2-1 2-1 4-1 4-1	•														8 16 14 14 20 20 16 24			D D D			DP PW PW PW PW PW PW	BS BS BS BS BS
Serial EEPRO	DM & RAM 1 Kbit EEPROM	1.0		1			1							1		25 to 85			L NI						
PCA8581(C) PCF85102C-2 PCF85103C-2 PCF85103C-2 PCF8570 PCF8582C-2 PCF8594C-2 PCF8598C-2	1 Kbit EEPROM 2 Kbit EEPROM 2 Kbit EEPROM 2 Kbit EEPROM 2 Kbit EEPROM 4 Kbit EEPROM 8 Kbit EEPROM	8 8 1 8 8 4 2						C	C •				•					888888888	N N N P N N N	D D D T D D	D				

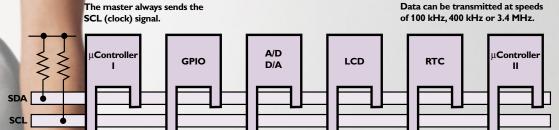
Temperature & voltage monitor

Hardware Monitors sense the system temperature and/or voltage and use the l^2C bus to report the temperature and/or voltage. Some of the temperature monitors include hardware pins that allow transistors/diodes to be located in external components (e.g., processors) so that the temperature is sensed much more accurately than if the sensor was mounted externally on the package.

Voltage level translator

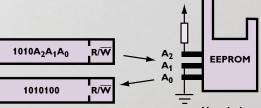
The voltage level translators provide bi-directional level translation without the need for a direction control pin, to and from any voltage between 1.0 V and 5.0 V. They are open drain on both sides of the device, with no drive (no V_{CC}). The reference voltage clamps the output voltage, allowing the voltage translation with a very low propagation delay. BiCMOS processing provides excellent ESD performance. A typical application for these devices is the translation of a lower voltage ASIC I²C port to a higher voltage 3.3 V and/or 5.0 V I²C bus/chipset.

													F	eature	s											
						Qet		Vo	c RAI	NGE (V)		FR	EQ (kł	Hz)	TE	MP (°	C)			Р	ackage	es			
General Purpose Device	Description	# of Addresses	Interrupt (In/Out)	Hardware Reset	Current (per bit/total mA)	Internal Pull Up Current Source/Resistor on I/O	1.0	1.8	2.5	3.3	5	SV TOLERANT	100	400	3400	0 to 70	- 40 to 85	- 55 to 125	PIN COUNT	DIP	SO (narrow)	SO (wide)	SSOP	QSOP	TSSOP	HVQFN
	and Voltage Monitor					'																				
LM75A	Temperature Sensor and Thermal WatchDog with resolution of 0.125°C and accuracy of +/- 2°C	8	0-1						2.8	•	•		•	•				•	8		D				DP	
NE1617A	Temperature Sensor with accuracy of +/- 2°C on chip and +/- 3°C remote sensor	9								•	•	•	٠			0	to 125		16					DS		
NE1618	High Accuracy Temperature Sensor with accuracy of	9								•		•	٠			0	to 125		16					DS		
NE1619	+/- 2°C on chip and +/- 1.5°C w/1.0°C resolution or +/- 1.0°C w/0.125 C resolution on remote sensor HECETA 4 Temperature and Voltage Monitor resolution of 1°C and accuracy of +/- 2°C on chip and +/- 3°C remote sensor and monitor 12V,5 V, 3.3 V, 2.5 V,V _{CCP} ,V _{DD}	2								•	•	•	•	•		0	to 125		16					DS		
Voltage Leve																			40						DOOL	
GTL2000 GTL2002 GTL2010	22 bit - 1.0V through 5.0V Translator 2 bit - 1.0V through 5.0V Translator 10 bit - 1.0V through 5.0V Translator						•	•	•	•	•	•	•	•			•		48 8 8				DL		DGG DP PW	BS



How I²C works

Any I^2C device can be attached to a common I^2C bus and every device can talk with any master, passing information back and forth. The I^2C bus (or its derivatives such as SMBus, DDB, etc) is the only 2-wire bus where devices are addressed completely by software.


Each device must have a unique 7-bit l^2C address so that the master knows specifically who it is communicating with. Typically the first four bits are fixed and assigned to specific categories of devices, e.g. 1010 is assigned to serial EEPROMs. The next three bits (e.g., A_2 , A_1 and A_0) are set by hardware address pins on the package that modify the l^2C address allowing up to eight different address combinations and therefore allowing up to eight identical devices to operate on the l^2C bus. These pins are held high to V_{CC} (1) or held low to GND (0).

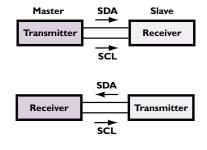
The last bit of the initial byte indicates if the master is going to send (write) or receive (read) data from the receiver, typically a slave device. Each transmission sequence must begin with the start condition and end with the stop or restart condition. If there are two masters on the same bus, there are arbitration procedures if both try to take control of the bus at the same time. Once a master (e.g., microcontroller) has control, no other master can take control until the first master sends a stop condition and places the bus in an idle state.

The open drain/collector outputs provide for a "wired-AND" connection that allows devices to be added or removed without impact and always requires a pull-up resistor.

Each device is addressed individually by software with a unique address that can be modified by hardware pins.

New devices or functions can be easily clipped on to an existing bus!

I²C bus terminology


- Transmitter—the device that sends data to the bus. A transmitter can either be a device which puts data on the bus of its own accord (a 'master-transmitter'), or in response to a request from data from another device (a 'slave-transmitter').
- Receiver—the device that receives data from the bus.
- Master—the component that initiates a transfer, generates the clock signal and terminates the transfer. A master can be either a transmitter or a receiver.
- Slave—the device addressed by the master. A slave can be either receiver or transmitter.
- Multi-master—the ability for more than one master to co-exist on the bus at the same time without collision or data loss.
- Arbitration—the prearranged procedure that authorizes only one master to take control of the bus at a time.
- Synchronization—the prearranged procedure that synchronizes the clock signals provided by two or more masters.
- SDA—data signal line (Serial DAta)
- SCL—clock signal line (Serial CLock)

Write Data

	te	Dala							
F	s	Slave Address	w a	Data	A	Data	Ā	Ρ	F
				< n data bytes >		last data byte			
				•		•			
Rea	d D	Data							
F	s	Slave Address	RA	Data	A	Data	Ā	Ρ	F
				< n data bytes >		last data byte			
s =	Sta	rt condition	A	= Acknowledge					
F =	Fre	e	R	/W = read / Not w	rit	e			
P =	Sto	op condition	A	= Not Acknowled	lge				

Terminology for bus transfer

- F (FREE)—the bus is free or idle; the data line SDA and the SCL clock are both in the high state.
- S (START) or S_R (Repeated START)—data transfer begins with a start condition. The level of the SDA data line changes from high to low, while the SCL clock line remains high. When this occurs, the bus becomes 'busy'.
- C (CHANGE)—while the SCL clock line is low, the data bit to be transferred can be applied to the SDA data line by a transmitter. During this time, SDA may change its state as long as the SCL line remains low.
- D (DATA)—a high or low bit of information on the SDA data line is valid during the high level of the SCL clock line. This level must be kept stable during the entire time that the clock remains high, to avoid misinterpretation as a Start or Stop condition.
- P (STOP)—data transfer is terminated by a stop condition. This occurs when the level on the SDA data line passes from the low state to the high state, while the SCL clock line remains high. When the data transfer has been terminated, the bus becomes free once again.

Philips Semiconductors

Philips Semiconductors is a worldwide company with over 100 sales offices in more than 50 countries. For a complete up-to-date list of our sales offices please e-mail sales.addresses@www.semiconductors.philips.com. A complete list will be sent to you automatically. You can also visit our website http://www.semiconductors.philips.com/sales.

www.semiconductors.philips.com

© Koninklijke Philips Electronics N.V. 2002

All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

> date of release: December 2002 document order number: 9397 750 10591

Printed in U.S.A.

www.semiconductors.philips.com/logic/i2c

Purchase of Philips I²C components conveys a license under the Philips' patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips.

