
eBook 1.0 – Check for Updates

© 2006 SpiderWorks, LLC. All rights reserved. Unauthorized distribution, duplication, or resale of all or any portion of this book is strictly prohibited.

Learn Objective-C
on the Macintosh

SpiderWorks
For more great books, visit us online at
http://www.spiderworks.com

$14.95 USD

http://www.spiderworks.com/books/learnobjc.php
http://www.spiderworks.com/

2 Table of Contents

Contents

How to Use this eBook 4

About this Book 5

Installing the Companion Files 6

Chapter 1: Hello 7
 Where the Future was
 Made Yesterday 8
 What’s Coming Up 8

Chapter 2: Extensions to C 10
 The Simplest Objective-C Program 10
 Deconstructing Hello Objective-C 14
 BOOL 19

Chapter 3: Introduction to
Object-Oriented Programming 25
 It’s all Indirection 26
 Object Oriented Programming
 and Indirection 35
 Object Orientation 40
 Time Out for Terminology 46
 OOP in Objective-C 47

Chapter 4: Inheritance 58
 Why Have Inheritance? 59
 Inheritance Syntax 62
 How it works 65
 Overriding Methods 71

Chapter 5: Composition 75
 Composition 75
 Accessor Methods 80
 Extending CarParts 85
 So, which to use? 87

Chapter 6: Organizing Source Files 89
 Split Interface And Implementation 90
 Breaking Apart the Car 92
 Cross-File Dependencies 95

Chapter 7: A Quick Tour of
the Foundation Kit 102
 Some Useful Types 103
 Stringing Us Along 105
 Mutability 110
 Collection Agency 112
 Family Values 120
 Bringing it All Together 123

3Table of Contents

Chapter 8: Memory Management 128
 Object Lifecycle 129
 Autorelease 134
 The Rules Of Cocoa Memory
 Management 137

Chapter 9: Object Initialization 143
 Object Allocation 143
 Object Initialization 144
 Isn’t That Convenient? 147
 More Parts is Parts 148
 The Designated Initializer 156
 Initializer Rules 161

Chapter 10: Categories 162
 Creating a Category 163
 Uses of Categories 166

Chapter 11: Protocols 179
 Formal Protocols 179
 Car-bon Copies 181
 Protocols and Data Types 188

Chapter 12: Introduction to the AppKit 190
 Making the Project 191
 Making the AppController @interface 193
 Interface Builder 194
 Laying out the User Interface 198
 Making Connections 201
 AppController Implementation 206

Appendix A: Coming to Objective-C
from Other Languages 209
 Coming from C 210
 Coming from C++ 211
 Coming from Java 215
 Coming from REALbasic 217
 Coming from Scripting Languages 218

License Agreement 220

Index 221

4 How to Use this eBook

eBook Reading Tips
We recommend using Adobe Acrobat or the free Adobe
Reader to view this eBook. Apple Preview and other
third-party PDF viewers may also work, but many of
them do not support the latest PDF features. For best
results, use Adobe Acrobat/Reader.

To view this PDF onscreen like a book using Adobe
Reader, select “Facing Pages” as your Page Layout
preference (View Menu / Page Layout / Facing). To
display the eBook full-screen using Adobe Reader, select
Full Screen from the View Menu.

To jump directly to a specific page, click on a topic from
either the Table of Contents pages or from the PDF
Bookmarks. In Adobe Reader, the PDF Bookmarks can
be accessed by clicking on the Bookmarks tab on the left
side of the screen. In Apple Preview, the PDF Bookmarks
are located in a drawer (Command-T to open).

If your mouse cursor turns into a hand icon when
hovering over some text, that indicates the text is a
hyperlink. Table of Contents links jump to a specific
page within the ebook when clicked. Text links that
begin with “http” will attempt to access an external web
site when clicked (requires an Internet connection).

Printing the eBook
Since SpiderWorks eBooks utilize a unique horizontal
page layout for optimal on-screen viewing, you should
choose the “Landscape” setting (in Page Setup) to
print pages sideways on standard 8.5” x ” paper. If
the Orientation option does not label the choices as
“Portrait” and “Landscape”, then choose the visual icon
of the letter "A" or person’s head printed sideways on the
page (see example below).

http://www.adobe.com/products/acrobat/readstep2.html
http://www.adobe.com/products/acrobat/readstep2.html

5About this Book

Written by...
Mark Dalrymple has been a Mac devel-
oper since 985 and a Unix programmer
since 990. Over the years he has worked
on projects ranging from cross-platform
development toolkits, high-performance
web server software, medical applications, and video
products for Hollywood. He is the co-author of Core
Mac OS X and Unix Programming and Advanced Mac
OS X Programming.

Scott Knaster is a legendary Mac hacker
and author of such best-selling books as
Hacking Mac OS X Tiger and Macintosh
Programming Secrets. His book How to
Write Macintosh Software was required
reading for Mac programmers for more than a decade.

Edited by...
Dave Mark, a long-time Mac developer
and author of numerous books on Mac-
intosh development including Learn C
on the Macintosh, The Macintosh Prog-
ramming Primer series, and Ultimate Mac
Programming. Dave has also served as Editor-in-Chief
and contributing writer for MacTech Magazine.

Also Available...
New to programming? Step
through the basics with the
first book in SpiderWorks'
Mac programming series,
Learn C on the Macintosh
(Mac OS X Edition), by Dave
Mark. Perfect for beginners
learning to program with
Xcode! Download the free preview and order online at
http://www.spiderworks.com/

Publisher Credits
Cover Design: Mark Dame and Dave Wooldridge

Cover Illustration: Russell Tate (iStockphoto.com)

Interior Page Design: Robin Williams

PDF Production: Dave Wooldridge

http://www.spiderworks.com/
http://www.istockphoto.com/

6 Installing the Companion Files

Downloading the
Companion Files
The collection of companion project files and examples
from this book is contained in a download called
LearnObjC_Projects.zip, which can be downloaded from
the SpiderWorks Customer Download Center at
http://www.spiderworks.com/extras/. To login, you will
need your SpiderWorks Username and Password that
were listed in your order confirmation e-mail.

Requirements
This book assumes that you are running Mac OS X 0.4
or later. To utilize the companion source code files, you
should have Apple's free Developer Tools installed.

Installation
Once you have downloaded and decompressed
LearnObjC_Projects.zip, you will see a directory called
Learn ObjC Projects. Nested inside that directory are
further sub-directories labeled for the chapter to which
the example files apply. Not all chapters have example
files in the Learn ObjC Projects collection. Move the
Learn ObjC Projects directory to a convenient location
on your hard disk from which you can open the files in
Xcode and/or other applicable software applications.

http://www.spiderworks.com/extras/

Learn Objective-C on the Macintosh

I
Chapter 3

Introduction to Object-Oriented Programming

f you’ve been using and programming computers for any length of time, you’ve
probably heard the term object-oriented programming more than once. Object-
oriented programming, frequently shortened to its initials, OOP, is a programming
technique originally developed for writing simulation programs. OOP soon caught
on with developers of other kinds of software, such as those involving graphical
user interfaces. Before long, OOP became a major industry buzzword. It promised
to be the magical silver bullet that would make programming simple and joyous.

Of course, nothing can live up to that kind of hype. Like most pursuits, OOP
requires study and practice to gain proficiency, but it truly does make some kinds of
programming tasks easier, and in some cases, even fun. In this book we’ll be talking
about OOP a lot, mainly because Cocoa is based on OOP concepts, and Objective-
C is a language that is designed to be object-oriented.

So what is OOP? OOP is a way of constructing software composed of objects.
Objects are like little machines living inside your computer and talking to each
other in order to get work done. In this chapter, we’ll look at some basic OOP
concepts. After that, we’ll examine the style of programming that leads to OOP,
describing the motivation behind some OOP features. We’ll wrap up with a

26 Learn Objective-C on the Macintosh

thorough description of the mechanics of OOP.

Like many “new” technologies, the roots of OOP
stretch way back into the mists of time. OOP evolved
from Simula in the 1960s, Smalltalk in the 1970s,
Clascal in the 1980s, and other related languages.
Modern languages such as C++, Java, Python and,
of course, Objective-C draw inspiration from these
older languages.

As we dive into OOP, stick a Babel fish in your ear and
be prepared to encounter some strange terminology
along the way. OOP comes with a lot of fancy-sounding
lingo that makes it sound more mysterious and difficult
than it actually is. You might even think that computer
scientists create long, impressive sounding words to
show everyone how smart they are – but of course, they
don’t all do that. Well, don’t worry. We’ll explain each
term as we encounter it.

Before we get into OOP itself, let’s take a look at a key
concept of OOP: indirection.

It’s all Indirection
An old saying in programming goes something like this:
“There is no problem in computer science that can’t be
solved by adding another level of indirection.” Indirection

is a fancy word with a simple meaning: instead of using
a value directly in your code, use a pointer to the value.
Here’s a real-word example: you might not know the
phone number of your favorite pizza place, but you know
that you can look in the phone book to find it. Using the
phone book like this is a form of indirection.

Indirection can also mean that you ask another person
to do something rather than doing it yourself. Let’s say
you have a box of books to return to your friend Andrew
who lives across town. You know that your next-door
neighbor is going to visit Andrew tonight. Rather than
driving across town, dropping off the books, and driving
back, you ask your friendly neighbor to deliver the box.
This is another kind of indirection: you have someone
else do the work instead of doing it yourself.

In programming, you can take indirection to multiple
levels, writing code that consults other code, which
accesses yet another level of code. You’ve probably had
the experience of calling a technical support line. You
explain your problem to the support person, who then
directs you to the specific department that can handle
your problem. The person there then directs you the
second-level technician with the skills to help you out.
And if you’re like us, at this point you find out you called
the wrong number and you have to be transferred to
some other department for help. This runaround is a
form of indirection. Luckily, computers have infinite

27Chapter 3: Introduction to Object-Oriented Programming

patience and can handle being sent from place to place to
place looking for an answer.

Variables
You might be surprised to find out that you have already
used indirection in your programs. The humble variable
is a real-world use of indirection. Consider this small
program that prints the numbers from to 5. You can
find this program in the Learn ObjC Projects folder, in
03.0 - Count-.

#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])
{
 NSLog (@"The numbers from 1 to 5:");

 int i;
 for (i = 1; i <= 5; i++) {
 NSLog (@"%d\n", i);
 }

 return (0);

} // main

Count- has a for loop that runs 5 times, using
NSLog() to display the value of i each time around.
When you run this program, you see output like this:

2006-09-01 13:14:40.513 Count-1[2233] The
numbers from 1 to 5:

2006-09-01 13:14:40.514 Count-1[2233] 1
2006-09-01 13:14:40.514 Count-1[2233] 2
2006-09-01 13:14:40.514 Count-1[2233] 3
2006-09-01 13:14:40.514 Count-1[2233] 4
2006-09-01 13:14:40.514 Count-1[2233] 5

Now suppose you want to upgrade your program to print
the numbers from to 0. You have to edit your code in
two places, and then rebuild the program. (This version
is in the folder 03.02 - Count-2).

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 NSLog (@"The numbers from 1 to 10:");

 int i;
 for (i = 1; i <= 10; i++) {
 NSLog (@"%d\n", i);
 }

 return (0);

} // main

Count-2 produces this output:

28 Learn Objective-C on the Macintosh

2006-09-01 13:21:52.435 Count-2[2290] The
numbers from 1 to 10:

2006-09-01 13:21:52.435 Count-2[2290] 1
2006-09-01 13:21:52.435 Count-2[2290] 2
2006-09-01 13:21:52.435 Count-2[2290] 3
2006-09-01 13:21:52.436 Count-2[2290] 4
2006-09-01 13:21:52.436 Count-2[2290] 5
2006-09-01 13:21:52.436 Count-2[2290] 6
2006-09-01 13:21:52.436 Count-2[2290] 7
2006-09-01 13:21:52.436 Count-2[2290] 8
2006-09-01 13:21:52.436 Count-2[2290] 9
2006-09-01 13:21:52.436 Count-2[2290] 10

Modifying the program in this way is obviously not a
very tricky change to make: you can do it with a simple
search-and-replace, and there are only two places that
have to be changed. However, it would be a lot trickier
to do a similar search-and-replace in a larger program,
consisting of, say, tens of thousands of lines of code.
We would have to be careful about simply replacing 5
with 0: no doubt, there would be other instances of the
number 5 that aren’t related to this and so shouldn’t be
changed to 0.

This is what variables are for. Rather than sticking the
upper loop value (5 or 0) directly in the code, we can
solve this problem by putting the number in a variable,
thus adding a layer of indirection. When you add the
variable, instead of saying, “go through the loop 5 times”,
you’re telling the program “go look in this variable named

count – it will tell you how many times to run the loop”.
Now the program, Count-3, looks like this:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 int count = 5;

 NSLog (@"The numbers from 1 to %d:", count);

 int i;
 for (i = 1; i <= count; i++) {
 NSLog (@"%d\n", i);
 }

 return (0);

} // main

The program’s output should be unsurprising:

2006-09-01 13:32:43.667 Count-3[2318] The
numbers from 1 to 5:

2006-09-01 13:32:43.677 Count-3[2318] 1
2006-09-01 13:32:43.678 Count-3[2318] 2
2006-09-01 13:32:43.678 Count-3[2318] 3
2006-09-01 13:32:43.678 Count-3[2318] 4
2006-09-01 13:32:43.678 Count-3[2318] 5

29Chapter 3: Introduction to Object-Oriented Programming

The NSLog() time stamp and other information
take up a lot of space so, for clarity, we’ll leave it out
of future listings.

If you want to print the numbers from to 00, you just
have to touch the code in one obvious place:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 int count = 100;

 NSLog (@"The numbers from 1 to %d:", count);

 int i;
 for (i = 1; i <= count; i++) {
 NSLog (@"%d\n", i);
 }

 return (0);

} // main

By adding a variable, our code is now much cleaner
and easier to extend. This is especially true when other
programmers need to change the code. To change the
loop values, they won’t have to scrutinize every use of the
number 5 to see if they need to modify it. Instead, they can
just change the count variable to get the result they want.

Filenames
Files provide another example of indirection. Consider
Word-Length-, a program that prints a list of words
along with their lengths. This vital program is the key
technology for your new internet startup, Length-o-
words.com. This program is in the 03.04 - Word-Length-
folder. Here’s the listing:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 const char *words[4] = { "aardvark",
 "abacus", "allude", "zygote" };
 int wordCount = 4;

 int i;
 for (i = 0; i < wordCount; i++) {
 NSLog (@"%s is %d characters long",
 words[i], strlen(words[i]));
 }

 return (0);

} // main

The for loop determines which word in the words
array is being processed at any time. The NSLog()
function inside the loop prints out the word using the %s
format specifier. We use %s because words is an array
of C strings rather than @"NSString" objects. The %d

30 Learn Objective-C on the Macintosh

format specifier takes the integer value of the strlen()
function, which calculates the length of the string, and
prints it out along with the word itself.

When you run Word-Length-, you see informative
output like this:

aardvark is 8 characters long
abacus is 6 characters long
allude is 6 characters long
zygote is 6 characters long

 Remember that we’re leaving out the time stamp and
process ID that NSLog() adds to its output.

Now suppose the venture capitalists investing in
Length-o-words.com want you to use a different set of
words. They’ve scrutinized your business plan and have
concluded that you can sell to a broader market if you
use the names of country music stars.

Because we stored the words directly in the program,
we have to edit the source, replacing the original word
list with the new names. When we edit, we have to be
careful with the punctuation, such as the quotes in Joe-
Bob’s name and the commas between entries. Here is
the updated program, which can be found in the 03.05
- Word-Length-2 folder:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 const char *words[4]
 = { "Joe-Bob \"Handyman\" Brown",
 "Jacksonville \"Sly\" Murphy",
 "Shinara Bain",
 "George \"Guitar\" Books" };
 int wordCount = 4;

 int i;
 for (i = 0; i < wordCount; i++) {
 NSLog (@"%s is %d characters long",
 words[i], strlen(words[i]));
 }

 return (0);

} // main

Because we were careful with the surgery, the program
still works as we expect.

Joe-Bob "Handyman" Brown is 24 characters long
Jacksonville "Sly" Murphy is 25 characters long
Shinara Bain is 12 characters long
George "Guitar" Books is 21 characters long

Making this change required entirely too much work: we
had to edit main.m, fix any typos, and then rebuild the
program. If the program runs on a web site, we then have
to re-test and redeploy the program in order to upgrade
to Word-Length-2.

31Chapter 3: Introduction to Object-Oriented Programming

Another way to construct this program is to move the
names completely out of the code and put them all into
a text file, one name on each line. Let’s all say it together:
this is indirection. Rather than putting the names directly
in the source code, the program looks for the names
elsewhere. The program reads a list of names from a text
file, then proceeds to print them out, along with their
lengths. The project files for this new program live in the
03.06 - Word-Length-3 folder, and the code looks like this:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 FILE *wordFile
 = fopen ("/tmp/words.txt", "r");
 char word[100];

 while (fgets(word, 100, wordFile)) {
 // strip off the trailing \n
 word[strlen(word) - 1] = ‘\0’;

 NSLog (@"%s is %d characters long",
 word, strlen(word));
 }

 fclose (wordFile);

 return (0);

} // main

Let’s stroll through Word-Length-3 and see what it’s
doing. First, fopen() opens the words.txt file for
reading. Next, fgets() reads a line of text from the file
and places it into word. The fgets() call preserves
the newline character that separates each line, but we
really don’t want it – if we leave it, it will be counted as a
character in the word. To fix this, we replace the newline
character with a zero, which indicates the end of the
string. Finally, we use our old friend NSLog() to print
out the word and its length.

Take a look at the path name we used with fopen().
It’s /tmp/words.txt. This means that words.txt is a file
that lives in the /tmp directory, the unix “temporary”
directory, which gets emptied when the computer
reboots. You can use /tmp to store scratch files that
you want to mess around with, but you really don’t
care about keeping. For a real live program, you’d
put your file in a more permanent location, such as
the home directory.

Before you run the program, use your text editor to
create the file words.txt in the /tmp directory. Type the
following names into the file:

32 Learn Objective-C on the Macintosh

Joe-Bob "Handyman" Brown
Jacksonville "Sly" Murphy
Shinara Bain
George "Guitar" Books

If you prefer, instead of typing the names, you can copy
words.txt from the 03.06 - Word-Length-3 directory
into /tmp. To see /tmp in the Finder, choose Go > Go to
Folder.

When you run Word-Length-3, the program’s output
looks just as it did before:

Joe-Bob "Handyman" Brown is 24 characters long
Jacksonville "Sly" Murphy is 25 characters long
Shinara Bain is 12 characters long
George "Guitar" Books is 21 characters long

Word-Length-3 is a shining example of indirection.
Rather than coding the words directly into your program,
you’re instead saying, “Go look in /tmp/words.txt to get
the words”. With this scheme, we can change the set of
words any time we want, just by editing this text file,
without having to change the program. Go ahead and try
it out: add a couple of words to your words.txt file and re-
run the program. We’ll wait for you here.

This approach is better, because text files are easier to
edit and far less fragile than source code. You can get
your non-programmer friends to use TextEdit to do the
editing. Your marketing staff can keep the list of words

up to date, which frees you to work on more interesting
tasks.

As you know, people always come along with new
ideas for upgrading or enhancing a program. Maybe
your investors have decided that counting the length of
cooking terms is the new path to profit. Now that your
program looks at a file for its data, you can change the
set of words all you want without ever having to touch
the code.

Despite great advances in indirection, Word-Length-
3 is still rather fragile, because it insists on using a full
path name to the words file. And that file itself is in a
precarious position: if the computer reboots, /tmp/
words.txt vanishes. Also, if someone else is using the
program on your machine with their own /tmp/words.
txt file, they could accidentally stomp on your copy.
You could edit the program each time to use a different
path, but we already know that that’s no fun, so let’s add
another indirection trick to make our lives easier.

Instead of using the technique “Go look in /tmp/words.
txt to get the words”, we’ll change it to “Go look at the
first launch parameter of the program to figure out
the location of the words file.” Here is the program (it’s
Word-Length-4, which can be found in the 03.07 - Word-
Length-4 folder). It uses a command-line parameter to
specify the file name. The changes we made to Word-

33Chapter 3: Introduction to Object-Oriented Programming

Length-3 are highlighted:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{
 if (argc == 1) {
 NSLog (@"you need to provide a file name");
 return (1);
 }

 FILE *wordFile = fopen (argv[1], "r");
 char word[100];

 while (fgets(word, 100, wordFile)) {
 // strip off the trailing \n
 word[strlen(word) - 1] = '\0';

 NSLog (@"%s is %d characters long",
 word, strlen(word));
 }

 fclose (wordFile);

 return (0);

} // main

The loop that processes the file is the same as in
Word-Length-3, but the code that sets it up is new
and improved. The if statement verifies that the user
supplied a path name as a launch parameter. The code

consults the argc parameter to main(), which holds
the number of launch parameters. Because the program
name is always passed as a launch parameter, argc is
always or greater. If the user doesn’t pass a file path,
the value of argc is , and we have no file to read, so we
print an error message and stop the program.

If the user was thoughtful and provided a file path, argc
is greater than . We then look in the argv array to see
what that file path is. argv[1] contains the file name the
user has given us. (In case you’re curious, the argv[0]
parameter holds the name of the program.)

If you’re running the program in Terminal, it’s easy to
specify the name of the file on the command line, like so:

$./Word-Length /tmp/words.txt
Joe-Bob "Handyman" Brown is 24 characters long
Jacksonville "Sly" Murphy is 25 characters long
Shinara Bain is 12 characters long
George "Guitar" Books is 21 characters long

If you’re editing the program along with us in Xcode,
supplying a file path as you run it is a little more
complicated. Launch arguments, also called command-
line parameters, are a little trickier to control from Xcode
than from Terminal. Here’s what you need to do to
change the launch arguments:

34 Learn Objective-C on the Macintosh

First, in the Xcode files list, expand Executables and
double-click the program (Word-Length), as shown in
Figure 3..

Figure 3.. Expand Executables and Double-Click the
Program

Then, as shown in Figure 3.2, click the Arguments tab,
then click the plus sign and type the launch argument
– in this case, the path to the words.txt file.

Figure 3.2. Add the Launch Argument

Now, when you run the program, Xcode passes your
launch argument into Word-Length-4’s argv array.
Figure 3.3 shows what you’ll see when you run the
program:

35Chapter 3: Introduction to Object-Oriented Programming

Figure 3.3. Running Word-Length-3

By supplying arguments at runtime, anybody can use
your program to get the length of any set of words they
want to. Users can change the data without changing
the code, just as nature intended. This is the essence of
indirection, telling us where to get the data we need.

Object Oriented Programming
and Indirection
Object-Oriented Programming is all about indirection.
OOP uses indirection for accessing data, just as we did
in the previous examples by employing variables, files
and arguments. The real revolution of OOP is that it
uses indirection for calling code. Rather than calling a
function directly, you end up calling it indirectly.

Now that you know that, you’re an expert in OOP.
Everything else is a side-effect of this indirection.

Procedural Orientation
To complete your appreciation of the flexibility of OOP,
we’ll take a quick look at procedural programming, so
you can get an idea of the kinds of problems that OOP
was created to solve. Procedural programming has been
around a long, long time, since just after the invention of
dirt. Procedural programming is the kind typically taught
in introductory programming books and classes. Most
programming in languages like BASIC, C, Tcl, and Perl is
procedural.

In procedural programs, data is typically kept in simple
structures, such as C structs. There are also more
complex data structures such as linked lists and trees.
When you call a function, you pass the data to the
function, and it manipulates the data. Functions are the
center of the procedural programming experience: you
decide which functions you want to use, and then you
call the functions, passing the data they need.

Consider a program that draws a bunch of geometric
shapes on the screen. Thanks to the magic of computers,
you can do more than consider it – you’ll find the source
code to this program in the 03.08 - Shapes-Procedural
folder. For simplicity’s sake, the Shapes-Procedural
program doesn’t actually draw shapes on the screen, it
just quaintly prints out some shape-related text.

Shapes-Procedural uses plain C and the procedural

36 Learn Objective-C on the Macintosh

programming style. The code starts out by defining some
constants and a structure.

First is an enumeration that specifies the different
kinds of shapes that can be drawn: circle, square, and
something vaguely egg-shaped:

typedef enum {
 kCircle,
 kRectangle,
 kOblateSpheroid
} ShapeType;

Next is an enum that defines the colors that can be used
to draw the shape:

typedef enum {
 kRedColor,
 kGreenColor,
 kBlueColor
} ShapeColor;

Then there’s a structure that describes a rectangle, which
specifies the area on the screen where the shape will be
drawn:

typedef struct {
 int x, y, width, height;
} ShapeRect;

Finally, we have a structure that pulls all these things
together to describe a shape:

typedef struct {
 ShapeType type;
 ShapeColor fillColor;
 ShapeRect bounds;
} Shape;

Next up in our example, main() declares an array
of shapes we’re going to draw. After declaring the
array, each shape structure in the array is initialized by
assigning its fields. The following code gives us a red
circle, a green rectangle, and a blue spheroid.

int main (int argc, const char * argv[])
{
 Shape shapes[3];

 ShapeRect rect0 = { 0, 0, 10, 30 };
 shapes[0].type = kCircle;
 shapes[0].fillColor = kRedColor;
 shapes[0].bounds = rect0;

 ShapeRect rect1 = { 30, 40, 50, 60 };
 shapes[1].type = kRectangle;
 shapes[1].fillColor = kGreenColor;
 shapes[1].bounds = rect1;

 ShapeRect rect2 = { 15, 18, 37, 29 };
 shapes[2].type = kOblateSpheroid;
 shapes[2].fillColor = kBlueColor;
 shapes[2].bounds = rect2;

 drawShapes (shapes, 3);

37Chapter 3: Introduction to Object-Oriented Programming

 return (0);

} // main

The rectangles in main() are declared using a
handy little C trick: when you declare a variable that’s
a structure, you can initialize all the elements of that
structure at once:

 ShapeRect rect0 = { 0, 0, 10, 30 };

The structure elements get values in the order
they’re declared. Recall that ShapeRect is declared
like this:

typedef struct {
 int x, y, width, height;
} ShapeRect;

The assignment to rect0 above means that
rect0.x and rect0.y will both have the value
zero, rect0.width will be 10, and rect0.
height will be 30.

This technique lets you reduce the amount of typing
in your program without sacrificing readability.

After initializing the shapes array, main() calls the
drawShapes() function to “draw” the shapes.

drawShapes() has a loop that inspects each Shape
structure in the array. A switch statement looks at
the type field of the structure and chooses a function
that draws the shape. The program calls the appropriate
drawing function, passing parameters for the screen area
and color to use for drawing. Check it out:

void drawShapes (Shape shapes[], int count)
{
 int i;

 for (i = 0; i < count; i++) {

 switch (shapes[i].type) {

 case kCircle:
 drawCircle (shapes[i].bounds,
 shapes[i].fillColor);
 break;

 case kRectangle:
 drawRectangle (shapes[i].bounds,
 shapes[i].fillColor);
 break;

 case kOblateSpheroid:
 drawEgg (shapes[i].bounds,
 shapes[i].fillColor);
 break;
 }
 }
} // drawShapes;

38 Learn Objective-C on the Macintosh

Here is the code for drawCircle(), which just prints
out the bounding rectangle and the color passed to it:

void drawCircle (ShapeRect bounds,
 ShapeColor fillColor)
{
 NSLog (@"drawing a circle at (%d %d %d %d)
 in %@",
 bounds.x, bounds.y,
 bounds.width, bounds.height,
 colorName(fillColor));

} // drawCircle

The colorName() function called inside NSLog()
simply does a switch on the passed-in color value
and returns a literal NSString such as @"red" or
@"blue".

The other draw functions are almost identical to
drawCircle, except that they “draw” a rectangle or an
egg.

Here is the output of Shapes-Procedural (minus the time
stamp and other information added by NSLog()):

drawing a circle at (0 0 10 30) in red
drawing a rectangle at (30 40 50 60) in green
drawing an egg at (15 18 37 29) in blue

This all seems pretty simple and straightforward, right?
When you use procedural programming, you spend

your time connecting data with the functions designed
to deal with that type of data. You have to be careful to
use the right function for each data type: for example,
you must call drawRectangle() for a shape of
type kRectangle. It’s disappointingly easy to pass a
rectangle to a function meant to work with circles.

Another problem with coding like this is that it can
make extending and maintaining the program difficult.
To illustrate, let’s enhance Shapes-Procedural to add a
new kind of shape: a triangle. You can find the modified
program in the 03.09 - Shapes-Procedural-2 project.
We have to modify the program in at least four different
places to accomplish this task.

First, we’ll add a kTriangle constant to the
ShapeType enum:

typedef enum {
 kCircle,
 kRectangle,
 kOblateSpheroid,
 kTriangle
} ShapeType;

Then, we’ll implement a drawTriangle() function
that looks just like its siblings:

39Chapter 3: Introduction to Object-Oriented Programming

void drawTriangle (ShapeRect bounds,
 ShapeColor fillColor)
{
 NSLog (@"drawing triangle at (%d %d %d %d)
 in %@",
 bounds.x, bounds.y,
 bounds.width, bounds.height,
 colorName(fillColor));

} // drawTriangle

Next, we’ll add a new case to the switch statement
in drawShapes(). This will test for kTriangle and
will call drawTriangle() if appropriate:

void drawShapes (Shape shapes[], int count)
{
 int i;

 for (i = 0; i < count; i++) {

 switch (shapes[i].type) {

 case kCircle:
 drawCircle (shapes[i].bounds,
 shapes[i].fillColor);
 break;

 case kRectangle:
 drawRectangle (shapes[i].bounds,
 shapes[i].fillColor);
 break;

 case kOblateSpheroid:
 drawEgg (shapes[i].bounds,
 shapes[i].fillColor);
 break;

 case kTriangle:
 drawTriangle (shapes[i].bounds,
 shapes[i].fillColor);
 break;
 }
 }
} // drawShapes

Finally, we’ll add a triangle to the shapes array:

int main (int argc, const char * argv[])
{
 Shape shapes[4];

 ShapeRect rect0 = { 0, 0, 10, 30 };
 shapes[0].type = kCircle;
 shapes[0].fillColor = kRedColor;
 shapes[0].bounds = rect0;

 ShapeRect rect1 = { 30, 40, 50, 60 };
 shapes[1].type = kRectangle;
 shapes[1].fillColor = kGreenColor;
 shapes[1].bounds = rect1;

 ShapeRect rect2 = { 15, 18, 37, 29 };
 shapes[2].type = kOblateSpheroid;
 shapes[2].fillColor = kBlueColor;
 shapes[2].bounds = rect2;

40 Learn Objective-C on the Macintosh

 ShapeRect rect3 = { 47, 32, 80, 50 };
 shapes[3].type = kTriangle;
 shapes[3].fillColor = kRedColor;
 shapes[3].bounds = rect3;

 drawShapes (shapes, 4);

 return (0);

} // main

OK, let’s take a look at Shapes-Procedural-2 in action:

drawing a circle at (0 0 10 30) in red
drawing a rectangle at (30 40 50 60) in green
drawing an egg at (15 18 37 29) in blue
drawing a triangle at (47 32 80 50) in red

Adding support for triangles wasn’t too bad. But our
little program only does one kind of action: drawing
shapes. The more complex the program, the trickier it is
to extend. For example, let’s say the program does more
messing around with shapes, such as computing their
area and determining if the mouse pointer lies within
them. In that case, you’ll have to modify every function
that performs an action on shapes, touching code that has
been working perfectly and possibly introducing errors.

Here’s another scenario that’s fraught with peril: adding
a new shape that needs more information to describe
it. For example, a rounded rectangle needs to know its

bounding rectangle as well as the radius of the rounded
corners. To support rounded rectangles, you could add
a radius field to the Shape structure, which is a waste of
space, because the field won’t be used by other shapes,
or you could use a C union to overlay different data
layouts in the same structure, which complicates things
by making all shapes dig into the union to get to their
interesting data.

OOP addresses these problems elegantly. As we teach
our program to use OOP, we’ll see how OOP handles the
first problem, modifying already-working code to add
new kinds of shapes.

Object Orientation
Procedural programs are based on functions. The data
orbits around the functions. Object orientation reverses
this point of view, placing a program’s data at the center,
with the functions orbiting around the data. Instead of
focusing on functions in your programs, you concentrate
on the data.

That sounds interesting, but how does it work?
In OOP, data contains references to the code that
operates on it, using indirection. Rather than telling the
drawRectangle() function “Go draw a rectangle
using this shape structure”, you instead ask a rectangle
to “Go draw yourself ”. (Gosh, that sounds rude, but

41Chapter 3: Introduction to Object-Oriented Programming

it’s really not.) Through the magic of indirection, the
rectangle’s data knows how to find the function that will
perform the drawing.

So what exactly is an object? It’s nothing more than
a fancy C struct that has the ability to find code it’s
associated with, usually via a function pointer. Figure 3.4
shows four Shape objects: two squares, a circle, and a
spheroid. Each object is able to find a function to do its
drawing.

Each object has its own draw() function that knows
how to draw its specific shape. For example, a circle
object’s draw() knows to draw a circle. A rectangle’s
draw() knows to draw four straight lines that form a
rectangle.

Figure 3.4. Basic Objects

42 Learn Objective-C on the Macintosh

The program Shapes-Object (available at 03.0 - Shapes-
Object) does the same stuff as Shapes-Procedural, but
uses Objective-C’s object-oriented features to do it.
Here’s drawShapes() from Shapes-Object:

void drawShapes (id shapes[], int count)
{
 int i;

 for (i = 0; i < count; i++) {
 id shape = shapes[i];
 [shape draw];
 }

} // drawShapes;

This function contains a loop that looks at each shape in
the array. In the loop, the program tells the shape to draw
itself.

Notice the differences between this version of
drawShapes() and the original. For one thing, this
one is a lot shorter! The code doesn’t have to ask each
individual shape what kind it is.

Another change is shapes[], the first argument to the
function: it’s now an array of ids. What is an id? Is it a
psychological term referring to the part of the mind in
which innate instinctive impulses and primary processes
are manifest? Not in this case: it stands for identifier,
and it’s pronounced “eye-dee”. An id is a generic type

that’s used to refer to any kind of object. Remember that
an object is just a C struct with some code attached, so
ids are actually pointers to these structures; in this case,
they’re structures that make various kinds of shapes.

The third change to drawShapes() is the body of the
loop:

id shape = shapes[i];
[shape draw];

The first line looks like ordinary C. The code gets an id
– that is, a pointer to an object – from the shapes array
and sticks it into the variable named shape, which has
the type id. This is just a pointer assignment: it doesn’t
actually copy the entire contents of the shape. Take a
look at Figure 3.5 to see the various shapes available
in Shapes-Object. shapes[0] is a pointer to the red
circle, shapes[1] is a pointer to a green rectangle, and
shapes[2] is a pointer to a blue egg.

43Chapter 3: Introduction to Object-Oriented Programming

Figure 3.5. The Shapes Array

Now we’ve come to the last line of code in the function:

[shape draw];

This is seriously weird. What’s going on? We know that
C uses square brackets to refer to array elements, but
it doesn’t look like we’re doing anything with arrays
here. In Objective-C, square brackets have an additional
meaning: they’re used to tell an object what to do. Inside
the square brackets, the first item is an object, and the
rest is an action that you want the object to perform.
In this case, we’re telling an object named shape to
perform the action draw. If shape is a circle, a circle is
drawn. If shape is a rectangle, we’ll get a rectangle.

In Objective-C, telling an object to do an action is called
sending a message. The code [shape draw] sends
the message draw to the object shape. One way to
pronounce [shape draw] is “send draw to shape.”
How the shape actually does the drawing is up to the
shape’s implementation.

When you send a message to an object, how does
the necessary code get called? This happens with the
assistance of behind-the-scenes helpers called classes.

Take a look at Figure 3.6 on the next page, please. The
left side of the figure shows that this is the circle object
at index zero of the shapes array, last seen in Figure
3.5. The object has a pointer to its class. The class is a
structure that tells how to be an object of its kind. In
Figure 3.6, the Circle class has a pointer to code for
drawing circles, for calculating the area of circles, and
other stuff required in order to be a good Circle citizen.

What’s the point of having class objects? Wouldn’t it be
simpler just to have each object point directly to its code?
Indeed it would be simpler, and there are some OOP
systems that do just that. But having class objects is a
great advantage: if you change the class at runtime, all
objects of that class automatically pick up the changes.
We’ll discuss this more in later chapters.

Figure 3.7 (next page) shows how the draw message
ends up calling the right function for the circle object.

44 Learn Objective-C on the Macintosh

Figure 3.6. A Circle and its Class

Figure 3.7. Circle finds its draw code

45Chapter 3: Introduction to Object-Oriented Programming

Here are the steps:

1. The object that is the target of the message (the red
circle in this case) is consulted to see what its class is.

2. The class looks through its code and finds out where
the draw function is.

3. Once it’s found, the function that draws circles is
executed.

Figure 3.8 shows what happens when you call [shape
draw] on the second shape in the array, which is the
green rectangle. The steps used are nearly identical:

Figure 3.8. A Rectangle find its draw code.

1. The target object of the message (the green rectangle)
is consulted to see what its class is.

2. The rectangle class checks its pile of code and gets the
address of the draw function.

3. Objective-C runs the code that draws a rectangle.
This is some very cool indirection in action! In the
procedural version of this program, we had to write
code that determined which function to call. Now, that
decision is made behind the scenes by Objective-C, as it
asks the objects which class they belong to. This reduces

46 Learn Objective-C on the Macintosh

the chance of calling the wrong function and makes our
code easier to maintain.

Time Out for Terminology
Before we dig into the rest of the Shapes-Object
program, let’s take a moment to go over some object-
oriented terminology. We’ve already talked about some
of these terms – others are brand new.

Class: A structure that represents an object’s type. An
object refers to its class to get various information about
itself, particularly what code to run to handle each
action. Simple programs might have a handful of classes;
moderately complex ones will have a couple of dozen.
Objective-C style encourages us to capitalize class names.

Object: A structure containing values and a hidden
pointer to its class. Running programs typically have
hundreds or thousands of objects. Objective-C variables
that refer to objects are typically not capitalized.

Instance: Another word for object. For example, a circle
object can also be called an instance of class Circle.

Message: An action that an object can perform. This is
what you send to an object to tell it to do something. In
the code [shape draw] above, the draw message is
sent to the shape object to tell it to draw itself. When
an object receives a message, its class is consulted to find

the proper code to run.

Method: The code that runs in response to a message.
A message, such as draw, can invoke different methods
depending on the class of the object.

Method Dispatcher: The mechanism used by Objective-
C to divine which method will be executed in response
to a particular message. We’ll get out our shovels and
dig a lot more into the Objective-C method dispatch
mechanism in the next chapter.

Those are the key OOP terms you’ll need for the rest
of the book. In addition, there are a couple of generic
programming terms that will soon become very
important:

Interface: The description of the features provided by a
class of objects. For example, the interface for class Circle
declares that circles can accept the draw message.

The concept of interfaces is not limited to OOP. For
example, header files in C provide interfaces for
libraries such as the standard I/O library (which you
get when you #include <stdio.h>), and the
math library (#include <math.h>). Interfaces do
not provide implementation details, and the general
idea is that you shouldn’t care about them.

47Chapter 3: Introduction to Object-Oriented Programming

Implementation: This is the code that makes the
interface work. In our examples, the implementation for
the circle object holds the code for drawing a circle on
the screen. When you send the draw message to a circle
object, you don’t know or care how the function works,
just that it draws a circle on the screen.

OOP in Objective-C
If your brain is starting to hurt now, that’s OK. We’ve
been filling it up with a lot of new stuff, and it takes
awhile to assimilate all the terms and technology. While
your subconscious is chewing on the previous couple
of sections, let’s take a look at the rest of the code for
Shapes-Object, including some new syntax for declaring
classes.

The @interface Section
Before you can create objects of a particular class, the
Objective-C compiler needs some information about
that class. Specifically, it has to know about the data
members of the object (that is, what the C struct for the
object looks like), and which features it provides. You use
the @interface directive to give this information to
the compiler.

In Shapes-Object, we put everything into its main.
m. In larger programs you’ll use multiple files, giving
each class its own set of files. We’ll explore ways of
organizing classes and files in a later chapter.

Here is the interface for the Circle class.

@interface Circle : NSObject
{
 ShapeColor fillColor;
 ShapeRect bounds;
}

- (void) setFillColor: (ShapeColor) fillColor;

- (void) setBounds: (ShapeRect) bounds;

- (void) draw;

@end // Circle

This code includes some syntax we haven’t talked about
yet, so let’s examine it now. There’s a lot of information
packed into these few lines. Let’s pull it apart.

The first line looks like this:

@interface Circle : NSObject

As we said in Chapter 2, whenever you see an at-sign
in Objective-C, you’re looking at an extension to the C

48 Learn Objective-C on the Macintosh

language. @interface Circle says to the compiler
“Here comes the interface for a new class named Circle.”

The NSObject in the @interface line tells the
compiler that the Circle class is based on the
NSObject class. This statement says that every
Circle is also an NSObject, and every Circle
will inherit all the behaviors that are defined by
class NSObject. We’ll explore inheritance in much
greater detail in the next chapter.

After starting to declare a new class, we tell the compiler
about the various pieces of data that circle objects need:

{
 ShapeColor fillColor;
 ShapeRect bounds;
}

The stuff between the curly braces is a template used
to churn out new Circle objects. It says that when a
new Circle object is created, it will be made up of two
elements. The first, fillColor, of type ShapeColor,
is the color used to draw the circle. The second,
bounds, is the circle’s bounding rectangle. Its type is
ShapeRect. This rectangle tells where the circle will be
drawn on the screen.

You specify fillColor and bounds in the class

declaration. Then, every time a Circle object is
created, it includes these two elements. So, every object
of class Circle has its own fillColor and its own
bounds. The fillColor and bounds values are
called instance variables for objects of class Circle.

The closing brace tells the compiler we’re done specifying
the instance variables for Circle.

What follows are some lines that look kind of like C
function prototypes:

- (void) draw;

- (void) setFillColor: (ShapeColor) fillColor;

- (void) setBounds: (ShapeRect) bounds;

In Objective-C, these are called method declarations.
They’re a lot like good old-fashioned C function
prototypes, which are a way of saying “Here are the
features I support”. The method declarations give the
name of each method, the method’s return type, and any
arguments.

Let’s start out with the simplest one, draw:

- (void) draw;

The leading dash signals that this is the declaration for an
Objective-C method. That’s one way you can distinguish

49Chapter 3: Introduction to Object-Oriented Programming

a method declaration from a function prototype, which
has no leading dash. Following the dash is the return
type for the method, enclosed in parentheses. In our
case, draw just draws, and won’t be returning anything.
Objective-C uses void to indicate that there’s no return
value.

Objective-C methods can return the same types as C
functions: standard types (int, float, char), pointers,
object references, and structures.

The next method declarations are more interesting:

- (void) setFillColor: (ShapeColor) fillColor;

- (void) setBounds: (ShapeRect) bounds;

Each of these methods takes a single argument.
setFillColor: takes a color for its argument.
Circles uses this color when they draw themselves.
setBounds: takes a rectangle. Circles use this
rectangle to define their bounds.

Objective-C uses a syntax technique called
infix notation. The name of the method and its
arguments are all intertwingled. For instance, you
call a single-argument method like this:

[circle setFillColor: kRedColor];

A method that takes two arguments is called like
this:

[textThing setStringValue:
 @"hello there"
 color: kBlueColor];

The setStringValue: and color: thingies
are the names of the arguments (and are actually
part of the method name – more on that later), and
@"hello there" and kBlueColor are the
arguments being passed.

This syntax differs from C, in which you call a function
with its name followed by all its arguments, like so:

setTextThingValueColor (textThing,
 @"hello there",
 kBlueColor);

We really like the infix syntax, although it does look
a little weird at first. It makes the code very readable,
and it’s easy to match arguments with what they do.
With C and C++ code, you’ll sometimes have four or
five arguments to a function and it can be difficult
to know exactly which argument does what without
consulting the documentation.

50 Learn Objective-C on the Macintosh

The setFillColor: declaration starts out with the
usual leading dash and the return type in parentheses:

- (void)

As with the draw method, the leading dash says, “This is
the declaration for a new method.” The (void) says that
this method will not return anything. Continuing:

setFillColor:

The name of the method is setFillColor:. The
trailing colon is part of the name. It’s a clue to compilers
and humans that a parameter is coming next.

 (ShapeColor) fillColor;

The type of the argument is specified in parentheses,
and in this case it’s one of our ShapeColors (such
as kRedColor, kBlueColor, and so on). The name
that follows, fillColor, is the parameter name. You
use this name to refer to the parameter in the body of
the method. You can make your code easier to read by
choosing meaningful parameter names, rather than
naming them after your pets or favorite superheroes.

It’s important to remember that the colon is a very
significant part of the method’s name. The method

- (void) scratchTheCat;

is distinct from

- (void) scratchTheCat:
 (CatType) critter;

A common mistake made by many freshly minted
Objective-C programmers is to indiscriminately add
a colon to the end of a method name that has no
arguments. In the face of a compiler error, you might
be tempted to toss in an extra colon and hope it
fixes things. The rule to follow is: “If a method takes
an argument, it has a colon. If it takes no arguments,
it has no colons.”

The declaration of setBounds: is exactly the same as
the one for setFillColor:, except that the type of
the argument is ShapeRect rather than ShapeColor.

The last line tells the compiler we’re finished with the
declaration of the Circle class:

@end // Circle

We advocate putting comments on all @end statements
noting the class name. This makes it easy to know what

51Chapter 3: Introduction to Object-Oriented Programming

you’re looking at if you’ve scrolled to the end of a file, or
you’re on the last page of a long printout.

That’s the complete interface for the Circle class.
Now anyone reading the code knows that that this class
has a couple of instance variables and three methods.
One method sets the bounds, one sets the color, and the
third draws the shape.

Now that we have the interface done, it’s time to write
the code to make this class actually do stuff. (You didn’t
think we were done, did you?)

The @implementation section
The @interface section, which we just discussed,
defines a class’s public interface. The interface is
often called the API, which is a TLA for “Application
Programming Interface”. (TLA is a TLA for “Three Letter
Acronym”.) The actual code to make objects work is
found in the @implementation section.

Here is the implementation for class Circle in its
entirety:

@implementation Circle

- (void) setFillColor: (ShapeColor) c
{
 fillColor = c;
} // setFillColor

- (void) setBounds: (ShapeRect) b
{
 bounds = b;
} // setBounds

- (void) draw
{
 NSLog (@"drawing a circle at (%d %d %d %d)
in %@",

 bounds.x, bounds.y,
 bounds.width, bounds.height,
 colorName(fillColor));
} // draw

@end // Circle

Now we’ll examine the code in detail, in our customary
fashion. The implementation for Circle starts out with
the line

@implementation Circle

@implementation is a compiler directive that
says you’re about to present the code for the guts
of a class. The name of the class appears after
@implementation. There is no trailing semicolon
on this line, because you don’t need semicolons after
Objective-C compiler directives.

The definitions of the individual methods are next. They

52 Learn Objective-C on the Macintosh

don’t have to appear in the same order as they do in
the @interface. You can even define methods in an
@implementation that don’t have a corresponding
declaration in the @interface. You can think of these
as private methods, used just in the implementation of
the class.

You might think that defining a method solely in
the @implementation makes it inaccessible from
outside the implementation, but that’s not the case.
Objective-C doesn’t really have private methods.
There is no way to mark a method as being private
and preventing other code from calling it. This is a
side effect of Objective-C’s dynamic nature.

setFillColor: is the first method defined:

- (void) setFillColor: (ShapeColor) c
{
 fillColor = c;
} // setFillColor

The first line of the definition of setFillColor:
looks a lot like the declaration in the @interface
section. The main difference is that this one doesn’t have
a semicolon at the end. You may notice that we renamed
the parameter to simply c. It’s OK for the parameter
names to differ between the @interface and the

@implementation. In this case, if we had left the
parameter name as fillColor, it would have hidden
the fillColor instance variable and generated a
warning from the compiler).

Why exactly do we have to rename fillColor?
We already have an instance variable named
fillColor defined by the class. We can refer to
that variable in this method – it’s “in scope”. So, if
we define another variable with the same name, the
compiler will cut off our access from the instance
variable. Using the same variable name “hides” the
original variable. We avoid this problem by using a
new name for the parameter.

In the @interface section, we used the name
fillColor in the method declaration because it
tells the reader exactly what the argument is for. In the
implementation, we have to distinguish between the
parameter name and the instance variable name, and it’s
easiest to simply rename the parameter.

The body of the method is one line:

 fillColor = c;

If you’re extra-curious, you might wonder where the
instance variables are stored. When you call a method

53Chapter 3: Introduction to Object-Oriented Programming

in Objective-C, a secret hidden parameter called self
is passed to the receiving object that refers to the
receiving object. For example, in the code [circle
setFillColor: kRedColor], the method passes
circle as its self parameter. Because self is
passed secretly and automatically, you don’t have to do
it yourself. Code inside a method that refers to instance
variables works like this:

self->fillColor = c;

By the way, passing hidden arguments is yet another
example of indirection in action (bet you thought we
were all done talking about indirection, huh?). Because
the Objective-C runtime can pass different objects as the
hidden self parameter, it can change which objects get
their instance variables changed.

The Objective-C runtime is the chunk of code that
supports applications, including ours, when users
are running them. The runtime performs important
tasks like sending messages to objects and passing
parameters. We’ll have more about the runtime in
future chapters.

The second method, setBounds: is just like
setFillColor:

- (void) setBounds: (ShapeRect) b
{
 bounds = b;
} // setBounds

This code sets a circle object’s bounding rectangle to be
the rectangle that’s passed in.

The last method is our draw method. Note that there’s
not a colon at the end of the method’s name, which tells
us that it doesn’t take any arguments.

- (void) draw
{
 NSLog (@"drawing a circle at (%d %d %d %d)
in %@",

 bounds.x, bounds.y,
 bounds.width, bounds.height,
 colorName(fillColor));
} // draw

The draw method uses the hidden self parameter
to find the values of its instance variables, just as
setFillColor: and setBounds: did. This method
then uses NSLog() to print out the text for all the world
to see.

The @interface and @implementation for the
other classes (Rectangle and OblateSphereoid)
are nearly identical to those for Circle.

54 Learn Objective-C on the Macintosh

Instantiating Objects
Now we’re ready for the final, meaty part of Shapes-
Object, in which we create lovely shape objects, such as
red circles and green rectangles. The big-money word
for this process is instantiation. When you instantiate
an object, memory is allocated, and then that memory
is initialized to some useful default values – that is,
something other than the random values you get with
freshly allocated memory. When the allocation and
initialization steps are done, we say that a new object
instance has been created.

Because an object’s local variables are specific to
that instance of the object, we call them instance
variables, often shortened to “ivars”.

To create a new object, we send the new message to
the class we’re interested in. Once the class receives
and handles the new message, we’ll have a new object
instance to play with.

One of the nifty features of Objective-C is that you can
treat a class just like an object and send it messages. This is
handy for behavior that isn’t tied to one particular object,
but is global to the class. The best example of this kind of
message is allocating a new object. When you want a new
circle, it’s appropriate to ask the Circle class for that
new object, rather than asking an existing circle.

Here is Shapes-Object’s main() function, which creates
the circle, rectangle, and egg:

int main (int argc, const char * argv[])
{
 id shapes[3];

 ShapeRect rect0 = { 0, 0, 10, 30 };
 shapes[0] = [Circle new];
 [shapes[0] setBounds: rect0];
 [shapes[0] setFillColor: kRedColor];

 ShapeRect rect1 = { 30, 40, 50, 60 };
 shapes[1] = [Rectangle new];
 [shapes[1] setBounds: rect1];
 [shapes[1] setFillColor: kGreenColor];

 ShapeRect rect2 = { 15, 19, 37, 29 };
 shapes[2] = [OblateSphereoid new];
 [shapes[2] setBounds: rect2];
 [shapes[2] setFillColor: kBlueColor];

 drawShapes (shapes, 3);

 return (0);

} // main

You can see that Shapes-Object’s main() is very similar
to Shapes-Procedural’s. There are a couple of differences,
though. Instead of an array of Shapes, Shapes-Object
has an array of id’s (which you probably remember are

55Chapter 3: Introduction to Object-Oriented Programming

pointers to any kind of object). You create individual
objects by sending the new message to the class of object
you want to create:

 ...
 shapes[0] = [Circle new];
 ...
 shapes[1] = [Rectangle new];
 ...
 shapes[2] = [OblateSphereoid new];
 ...

Another difference is that Shapes-Procedural initializes
objects by assigning struct members directly. Shapes-
Object, on the other hand, doesn’t muck with the object
directly. Instead, Shapes-Object uses messages to ask
each object to set its bounding rectangle and fill color:

 ...
 [shapes[0] setBounds: rect0];
 [shapes[0] setFillColor: kRedColor];
 ...
 [shapes[1] setBounds: rect1];
 [shapes[1] setFillColor: kGreenColor];
 ...
 [shapes[2] setBounds: rect2];
 [shapes[2] setFillColor: kBlueColor];
 ...

After this initialization frenzy, the shapes are drawn
using the drawShapes() function we looked at

earlier, like so:

 drawShapes (shapes, 3);

Extending Shapes-Object
Remember back awhile ago when we added triangles to
the Shapes-Procedural program? Let’s do the same for
Shapes-Object. It should be a lot neater this time. You
can find the project for this in the 03. - Shapes-Object-2
folder of Learn ObjC Projects.

We had to do a lot of stuff to teach Shapes-Procedural-
2 about triangles: edit the ShapeType enum, add a
drawTriangle() function, add a triangle to the list of
shapes, and modify the drawShapes() function. Some
of the work was pretty invasive, especially the surgery
done to drawShapes(), in which we had to edit the
loop that controls the drawing of all shapes, potentially
introducing errors.

It’s better with Shapes-Object-2. We only have to do
two things: create a new Triangle class, then add a
Triangle object to the list of objects to draw.

Here is the Triangle class, which happens to
be exactly the same as the Circle class with all
occurrences of “Circle” changed to “Triangle”:

56 Learn Objective-C on the Macintosh

@interface Triangle : NSObject
{
 ShapeColor fillColor;
 ShapeRect bounds;
}
- (void) setFillColor: (ShapeColor) fillColor;
- (void) setBounds: (ShapeRect) bounds;
- (void) draw;

@end // Triangle

@implementation Triangle

- (void) setFillColor: (ShapeColor) c
{
 fillColor = c;
} // setFillColor

- (void) setBounds: (ShapeRect) b
{
 bounds = b;
} // setBounds

- (void) draw
{
 NSLog (@"drawing triangle at (%d %d %d %d)
in %@",

 bounds.x, bounds.y,
 bounds.width, bounds.height,
 colorName(fillColor));
} // draw

@end // Triangle

One drawback to “cut and paste programming”
like this is that it tends to create a lot of duplicated
code, like the setBounds: and setFillColor:
methods. We’ll introduce you to inheritance in the
next chapter, which is a fine way to avoid redundant
code like this.

Next, we need to edit main() so it will create the new
triangle. First, change the size of the shapes array from
3 to 4 so it will have enough room to store the new object:

 id shapes[4];

Then add a block of code that creates a new Triangle, just
like we create a new Rectangle or Circle:

 ShapeRect rect3 = { 47, 32, 80, 50 };
 shapes[3] = [Triangle new];
 [shapes[3] setBounds: rect3];
 [shapes[3] setFillColor: kRedColor];

And finally, we update the call to drawShapes()with
the new length of the shapes array:

 drawShapes (shapes, 4);

And that’s it. Our program now groks triangles:

57Chapter 3: Introduction to Object-Oriented Programming

drawing a circle at (0 0 10 30) in red
drawing a rectangle at (30 40 50 60) in green
drawing an egg at (15 19 37 29) in blue
drawing triangle at (47 32 80 50) in red

Note that we were able to add this new functionality
without touching the drawShapes() function or any
other functions that deal with shapes. That’s the power of
object-oriented programming at work.

This code provides an example of object-oriented
programming guru Bertrand Meyer’s “Open-Closed
Principle”. The drawShapes() function is open to
extension: just add a new kind of shape object to
the array to draw. drawShapes() is also closed to
modification: we can extend it without modifying it.
Software that adheres to the Open-Closed principle
tends to be more robust in the face of change,
because you don’t have to edit code that’s already
working correctly.

Summary
This is a big “head space” chapter: lots of concepts and
ideas – and it’s a long chapter, too. We talked about
the powerful concept of indirection and showed that
you’ve already been using indirection in your programs,
such as when you deal with variables and files. Then we

discussed procedural programming and saw some of the
limitations caused by its “functions first, data second”
view of the world.

We introduced object-oriented programming, which
uses indirection to tightly associate data with code
that operates on it. This permits a “data first, functions
second” style of programming. We talked about
messages, which are sent to objects. The objects handle
these messages by executing methods, the chunks of
code that make the object sing and dance. Every method
call includes a hidden parameter named self, which
is the object itself. By using this self parameter,
methods find and manipulate the object’s data. The
implementation for the methods and a template for the
object’s data are defined by the object’s class. You create a
new object by sending the new message to the class.

Coming up in our next chapter: inheritance, a feature
that lets you leverage the behavior of existing objects
so you can write less code to do your work. Hey, that
sounds great! We’ll see you there.

220 Terms of Use

License Agreement
This is a legal agreement between you and SpiderWorks, LLC, a
Virginia Limited Liability Corporation, covering your use of this
electronic book and related materials (the “Book”). Be sure to read the
following agreement before using the Book. BY USING THE BOOK,
YOU ARE AGREEING TO BE BOUND BY THE TERMS OF THIS
AGREEMENT. IF YOU DO NOT AGREE TO THE TERMS OF
THIS AGREEMENT, DO NOT USE THE BOOK AND DESTROY
ALL COPIES IN YOUR POSSESSION.

Unauthorized distribution, duplication, or resale of all or any portion
of this Book is strictly prohibited. No part of this Book may be
reproduced, stored in a retrieval system, shared or transmitted in any
form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embodied in critical
articles or reviews.

By using the Book, you acknowledge that the Book and all related
products constitute valuable property of SpiderWorks and that all
title and ownership rights to the Book and related materials remain
exclusively with SpiderWorks. SpiderWorks reserves all rights with
respect to the Book and all related products under all applicable
laws for the protection of proprietary information, including, but
not limited to, intellectual properties, trade secrets, copyrights,
trademarks and patents.

The Book is owned by SpiderWorks and is protected by United
States copyright laws and international copyright treaties, as well as
other intellectual property laws and treaties. Therefore, you must
treat the Book like any other copyrighted material. The Book is
licensed, not sold. Paying the license fee allows you the right to use
the Book on your own personal computer. You may not store the
Book on a network or on any server that makes the Book available

to anyone other than yourself. You may not rent, lease or lend the
Book, nor may you modify, adapt, translate, copy, or scan the Book.
If you violate any part of this agreement, your right to use this Book
terminates automatically and you must then destroy all copies of the
Book in your possession.

The Book and any related materials are provided “AS IS” and without
warranty of any kind and SpiderWorks expressly disclaims all other
warranties, expressed or implied, including, but not limited to, the
implied warranties of merchantability and fitness for a particular
purpose. Under no circumstances shall SpiderWorks be liable for any
incidental, special, or consequential damages that result from the use
or inablility to use the Book or related materials, even if SpiderWorks
has been advised of the possibility of such damages. In no event shall
SpiderWorks’s liability exceed the license fee paid, if any.

Copyright 2006 SpiderWorks, LLC. “SpiderWorks” is a trademark
of SpiderWorks, LLC. Macintosh is a trademark of Apple Computer,
Inc. Microsoft Windows is a trademark of Microsoft Corporation.
All other third-party names, products and logos referenced within
this Book are the trademarks of their respective owners. All rights
reserved.

221Index

Index

Symbols
#import 14, 94
#include 14, 94
%@ format specifier 23
/tmp 31
@\ 16
@class 96, 99
@implementation 51
@interface 47
@selector 177

A
accessor methods 80, 81, 82, 83, 88
alloc 143, 144, 147, 148, 150, 151, 153, 155, 156, 158, 159,

161
API 51
AppController 192, 193, 194, 196, 197, 198, 201, 202,

203, 204, 205, 206
AppKit 15
Application Kit 190, 208
ArgumentsXcode

 run-time arguments 34
autorelease 134, 135, 136, 137, 138, 139, 140, 141
autorelease pool 134, 135, 136, 139, 140, 141, 142

B
Bonjour 172
BOOL 19
BreakpointXcode

 setting breakpoints 114

C
C++ 7, 8
categories 162
cClass 46
circular dependency 97
classes 43
class clusters 120
class method 106
class object 106
class variables 214
composition 58, 74, 75, 76, 77, 78, 85, 87, 88
composition composed 96
convenience initializers 147, 156
cross-file dependencies 95
C callbacks 210

D
dealloc 130, 131, 132, 135, 137, 139, 140, 141
deep copy 182
delegation 172
designated initializer 159, 160, 161

222 Index

E
equivalence 108
exceptions 114
ExecutablesXcode

 executables 34

F
factory methods 106
fgets 31
fopen 31
formal protocol 179, 180, 189
forward Invocation 211
forward reference 97, 170
Foundation framework 15, 102
Foundation Kit 190
framework 15

G
getter 80, 81, 82, 88

H
"has a" relationship 87
header files 90

I
IBAction 193, 194, 207, 208
IBOutlet 193, 194, 203, 206
id 42

identity 108
immutable immutability 110
implementation 47
implementation files 90
indirection 26, 57

 and OOP 35
 code 35
 filenames 29
 variables 27

infix notation 49
informal protocols 172, 176
inheritance 58, 61, 62, 63, 65, 67, 68, 69, 70, 72, 74, 75,

85, 87
init 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153,

155, 156, 157, 159, 160, 161
initialization 144, 145, 146, 147, 148, 156, 157, 159, 161
instance 46, 54
instance variables 48, 52
instantiation 54
interface 46
Interface Builder 191, 193, 194, 195, 196, 204, 205, 208
"is a" relationship 87
isa 69, 70
iTunes 172
ivars. See instance variables

223Index

J
Java 7, 8, 215

M
master header file 15
message 46
messages to nil 213
message dispatch 43
method 46
method declarations 48
method dispatcher 66, 67, 68, 71, 73
multiple inheritance 63
Mutability 110

N
name collisions 16
New ProjectXcode

 New Project 11, 20
NeXT 8
NeXTStep 8
nib 194, 195, 197, 205, 206
NSArray 112
NSCoding 180, 181
NSComparisonResult 108
NSCopying 180, 181, 182, 184, 185, 186, 189
NSDictionary 118
NSDirectoryEnumerator 123
NSEnumerator 117

NSFileManager 123
NSLog 16, 77, 79, 83, 84
NSMutableArray 116
NSMutableDictionary 118
NSMutableString 110
NSNetServiceBrowser 172
NSNull 122
NSNumber 120
NSObject 48
NSPoint 104
NSRange 103
NSRect 104
NSSize 104
NSString 17, 76, 77, 85, 86, 105
NSTimer 178
NSValue 121
NS Prefix 16

O
object 46
Objective-C++ 90, 214
Objective-C runtime 53
object orientation 40
object ownership 132
OOP 25
open-closed principle 57

224 Index

P
polymorphism 70
poseAsClass 213
precompiled headers 16
printf 16
procedural programming 35

R
REALbasic 217
refactoring 65, 98
reference counting 129
reflection 212
Rendezvous 172
respondsToSelector 177
run loop 173

S
scope 52
selector 177
self 53, 57, 70, 71
sending a message 43
setter 80, 81, 82
shallow copy 182
singleton 124, 139
splitting a class implementation 166
square brackets 43
square bracket syntax 43
superclass 62, 65, 67, 69, 70, 71, 72, 74

super init 78, 79

T
temporary directory 31
text files 31
TLA 51

U
UML 61, 62
undefined results 117

V
vtable 211

X
Xcode 191, 193, 194

 build 13
 Groups & Files 92
 making new files 90
 Treat warnings as errors 18

SpiderWorks

Want to Read More of this Book?

Learn Objective-C on the Macintosh and other
exclusive books are available for purchase online at:

http://www.spiderworks.com

http://www.spiderworks.com/

	Title Page
	Table of Contents
	How to Use this eBook
	About this Book
	Installing the Companion Files
	Chapter 1: Hello
	Where the Future was Made Yesterday
	What’s Coming Up

	Chapter 2: Extensions to C
	The Simplest Objective-C Program
	Deconstructing Hello Objective-C
	BOOL

	Chapter 3: Introduction to Object-Oriented Programming
	It’s all Indirection
	Object Oriented Programming and Indirection
	Object Orientation
	Time Out for Terminology
	OOP in Objective-C

	Chapter 4: Inheritance
	Why Have Inheritance?
	Inheritance Syntax
	How it works
	Overriding Methods

	Chapter 5: Composition
	Composition
	Accessor Methods
	Extending CarParts
	So, which to use?

	Chapter 6: Organizing Source Files
	Split Interface And Implementation
	Breaking Apart the Car
	Cross-File Dependencies

	Chapter 7: A Quick Tour of the Foundation Kit
	Some Useful Types
	Stringing Us Along
	Mutability
	Collection Agency
	Family Values
	Bringing it All Together

	Chapter 8: Memory Management
	Object Lifecycle
	Autorelease
	The Rules Of Cocoa Memory Management

	Chapter 9: Object Initialization
	Object Allocation
	Object Initialization
	Isn’t That Convenient?
	More Parts is Parts
	The Designated Initializer
	Initializer Rules

	Chapter 10: Categories
	Creating a Category
	Uses of Categories

	Chapter 11: Protocols
	Formal Protocols
	Car-bon Copies
	Protocols and Data Types

	Chapter 12: Introduction to the AppKit
	Making the Project
	Making the AppController @interface
	Interface Builder
	Laying out the User Interface
	Making Connections
	AppController Implementation

	Appendix A: Coming to Objective-C from Other Languages
	Coming from C
	Coming from C++
	Coming from Java
	Coming from REALbasic
	Coming from Scripting Languages

	License Agreement
	Index
	How to Buy this Book

