
MaxScore User Manual, p1 of 35

MaxScore – music notation for Max/MSP

Created by Nick Didkovsky with Georg Hajdu

This manual was updated Friday, April 25, 2008

Introduction
Thank-you for downloading MaxScore, the music notation object for Max/MSP.
MaxScore was written in Java and uses Java Music Specification Language (JMSL) as its
notation and playback engine, but requires no Java programming to use. While MaxScore
is free, it requires a JMSL license which can be obtained at www.algomusic.com.
MaxScore was commissioned by "Bipolar - German-Hungarian Cultural Projects."
Bipolar is an initiative of the Federal Cultural Foundation of Germany.

What is MaxScore?
MaxScore provides you with common music notation directly in the Max/MSP

environment. MaxScore is a Max object which accepts messages that can create a score,
add notes to it, perform it, save it, load it, and export the score to popular formats for
professional publishable results. MaxScore currently exports to MusicXML so you can
load your scores into Finale. MaxScore also exports to the GNU LilyPond automated
engraving system.

MaxScore is more than a notation tool. It is an interactive performance object.
MaxScore can play back a score and drive your MSP patches through a well-defined
instrument interface. Scores can be created and modified in real-time. You can add notes
explicitly by defining their properties (specifying a quarter note triplet as duration and
middle C as pitch), or generate an arbitrary stream of musical events and use MaxScore’s
Transcriber to notate them automatically.

MaxScore was programmed in Java Music Specification Language by Nick
Didkovsky but requires no Java programming to operate. While MaxScore is freely
available to the public, it requires a JMSL license to run, available at
www.algomusic.com

MaxScore User Manual, p2 of 35

Installation

MaxScore comes bundled with four “jar” files, a Max helpfile, and auxiliary files. Run
the installer appropriate for your platform. Be sure to choose your MaxMSP installation
directory when using the Windows installer. The Mac installer will look for the folder
“MaxMSP 4.6”

Licensing
1) First request a JMSL license at
http://www.algomusic.com/algomusiclicense/request_jmsl_demo_license.html
2) Your license will arrive by email a few seconds after you request it. Save the license
file that is attached to the email to your desktop, named JMSL.lic.
3) Then double click on JMSL_License_installer.jar . A window like the one shown
below will open.
4) Drag the license file from your desktop into the gray area in the installer window.

The JMSL license installer. Drag the file named JMSL.lic to the gray area.

Quick start
Let’s make sure your copy of JMSL is licensed, that the jars are in the right place, and
that Max/MSP can use MaxScore.
1) Launch Max/MSP as you normally do. Open a new window (File -> New->Patcher)
and create a new empty object box. Type “maxscore” (no quotes) and type esc before
activating the object. Alternatively, choose “mxj com.algomusic.max.MaxScore” from
the New Object menu or File -> Open the file called com.algomusic.max.MaxScore.help.
For more information on creating new objects, please refer to Max46Fundamentals.pdf.

MaxScore User Manual, p3 of 35

MaxScore’s Setup Score help patch

2) Click on the message box that reads “NewScore 5 640 480”. A new score will open
that has width and height 640x480, with five staves.

New MaxScore with five staves

MaxScore User Manual, p4 of 35

3) Add Notes
Note entry using the mouse: Right click anywhere in the staff to add a couple of notes.
Click-drag a rectangle around these notes. Tap the letter “c” on your computer keyboard
to copy these notes. Click anywhere on an empty staff. Tap the letter “v” on your
computer keyboard to paste them.
Note entry using the addNote message: In the number boxes (see screen shot below),
enter 0.5 for an eighth note duration, and 60 for pitch in the number boxes. Bang
addNote. Middle C 8th note will appear in the score.

MaxScore’s addNote message (left) and result (right)

4) That’s it! If you want to use MaxScore in your own patches make sure you connect
it to canvas.pat as is shown in the help file

MaxScore User Manual, p5 of 35

Catalog of MaxScore Messages
Here we present a catalog of messages you can send to MaxScore to create, perform,
export, and save your scores. The catalog is broken down by the help files.

p setup Score
This window contains MaxScore messages that control various properties and appearance
of your score.

newScore
args:

1. int numStaves
2. int width
3. int height

Creates a new MaxScore. You should send the openWindow message if a new window
does not open

setScoreSize
args:

• int width
• int height

MaxScore User Manual, p6 of 35

Resizes score.

setTitle
args:

• string title

Sets the title of your score. Title is included in exported MusicXML and LilyPond
formats.

setComposer
args:

• string composer's name
Setting the composer of the current score will be reflected in MusicXMLand LilyPond
output.

setTempo
args:

1. int measure index
2. int beats per minute

Sets the tempo of the indicated measure to the indicated beats per minute. Measures
added after this measure will inherit this tempo. To change the tempo of a range of
measures, iterate through them and send this message for each

addMeasure
args:

1. int time signature numerator
2. int time signature denominator

Adds an empty measure with the specified time signature to the end of the current score

insertMeasure
args:

• none

Inserts an empty measure before the currently selected measure

insertMeasure
args:

• int measure index
Inserts an empty measure before the indicated measure. Measure index is 0 based (ie
measure 0 is the first measure). New measure inherits the properties of the measure
before it. So if you insert a measure before measure 1 the new measure will take on the
time signature and tempo of measure 0

deleteMeasure
args:

MaxScore User Manual, p7 of 35

• none

Deletes the currently selected measure.

deleteMeasure
args:

• int measure index
Deletes the indicated measure. Measure index is 0 based (ie measure 0 is the first
measure).

insertStaff
args: none
Inserts a new staff above selected staff index, or at the bottom of the system if no staff is
selected.

insertStaff
args:

• int staff index
Inserts a new staff above indicated staff index, or at the bottom of the system if
staffindex equals number of staves. Staff index starts with zero being the top staff.

deleteStaff
args:

• none

Deletes the currently selected staff in every measure of score.

deleteStaff
args:

• int staff index
Deletes indicated staff of every measure on score. Staff index starts with zero being the
top staff.

setTimeSignature
args:

1. int measure index
2. int time signature numerator
3. int time signature denominator

Sets the time signature of the indicated measure to the indicated time signature. Measure
index is 0-based (first measure is 0).

setKeySignature
args:

1. int measure index
2. int staff index

MaxScore User Manual, p8 of 35

3. int numaccidentals
4. string FLAT_KEY | SHARP_KEY

Sets the key signature of the speficied staff in the specified measure. Key signature is
specified by the number of accidentals, and whether the accidentals are sharps or flats
(for example the key of D major or B minor would be specified as 2 SHARP_KEY)

setClef
args:

1. int measure index
2. int staff index

string clef type (TREBLE_CLEF, ALTO_CLEF, TENOR_CLEF, BASS_CLEF)
Set the clef for the indicated staff of the indicated measure.
Measure index is 0 based (first measure is measure 0)
Staff index is 0 based (top staff is 0)

showInstruments
args:

• boolean true | false
Show or hide the names of the instruments normally printed above the staff.

showSectionBrackets
args:

• boolean true | false
Show or hide the << >> brackets which are printed above measures indicating a section.
A section is a subrange of measures which can be performed using section play

showTimeSignatures
args:

• boolean true | false
Show or hide the time signatures normally printed on each staff.

showStaffNumbers
args:

• boolean true | false
Show or hide the staff numbers normally printed on each staff.

showMeasureNumbers
args:

• boolean true | false
Show or hide the measure numbers normally printed above the first measure of each
page.

showTempo
args:

• boolean true | false

MaxScore User Manual, p9 of 35

Show or hide the tempo normally printed above each measure

showClefs
args:

• boolean true | false
Show or hide the clefs normally printed on each staff.

setRepeatStart
args:

1. int measure index
2. boolean true | false

For the indicated measure set or unser repeat start ||:
Measure index is 0 based (first measure is measure 0)

setRepeatEnd
args:

1. int measure Index
2. boolean true | false

For the indicated measure set or unset repeat end :||
Measure index is 0 based (first measure is measure 0)

setNumRepeats
args:

1. int measure index
2. int num repeats

Set the number of repeats for the specified measure. Only makes sense if the measure has
repeat end
Measure index is 0 based (first measure is measure 0)

setSingleBar
args:

• int measure index
Set the barline of the indicated measure to a single bar
Measure index is 0 based (first measure is measure 0)

setDoubleBar
args:

• int measure index
Set the barline of the indicated measure to a double bar
Measure index is 0 based (first measure is measure 0)

setPeriodDoubleBar
args:

• int measure index
Set the barline of the indicated measure to a period double bar (one thin one thick)

MaxScore User Manual, p10 of 35

Measure index is 0 based (first measure is measure 0)

setBarNone
args:

• int measure index
Make the barline of the indicated measure invisible
Measure index is 0 based (first measure is measure 0)

setCurrentMeasure
args:

• int measure index
Sets the current measure as specified by the value passed to it. Note that the first measure
is measure 0, the second measure is measure 1, etc. The current measure, current staff,
and current track is where the addNote message will put its next note.

setCurrentStaff
args:

• int staff index
Sets the current staff as specified by the value passed to it. Note that the top staff is 0, the
second staff is 1, etc. The current measure, current staff, and current track is where the
addNote message will put its next note.

setCurrentTrack
args:

• int track index
Sets the current track as specified by the value passed to it. By default, every staff has
two tracks, 0 and 1. Think of track 0 as the default track for one-part music, and think of
track 1 as the second part (for example, put hihat notes for drumset in track 1 and its
stems will go up; put kick and snare in track 0 and their stems will go down). The current
measure, current staff, and current track is where the addNote message will put its next
note.

setCurrentMeasureStaffToSelectedMeasureStaff
args: none
The Selected measure and staff is where the user clicks with the mouse. Remember the
addNote message adds notes the the end of the current track of the current staff of the
current measure. This is different from the Selected measure, staff, and track. This
message provides you with a short cut to click anywhere in the score and make that the
current location.

MaxScore User Manual, p11 of 35

p note attributes
This window contains maxScore messages that allows you to select notes and apply
operations to them. Notes can be selected by hand clicking on a note, or by dragging a
rectangle around notes, or by clicking on a note and shift-clicking on another note to
select all notes between them.

MaxScore User Manual, p12 of 35

select
int: from measure index
int: from staff index
int: from track index
int: from note index
int: to measure index
int: to staff index
int: to track index
int: to note index
boolean spanToEndOfDuration

Selects notes between and including the “from note” and the “to note”. If flag is true, the
selection will be extended through the full duration of the “to note”. So for example if
the “from note” is in the top staff which contains numerous quarter notes, and the “to
note” is a whole note in the second staff, setting this flag to true will include all the
quarter notes in the top staff that span the whole note. Setting this flag to false will cause
the selection to end with the whole note and the quarter note in the staff immediately in
line with it.

selectNote
args:

1. int: measure
2. int: staff
3. int: track
4. int: pos

Selects note in specified measure, staff, track, and position. For example, passing args 0,
1, 0, 0 would select the first note in measure 1 of second staff.

addNoteToSelection
args:

5. int: measure
6. int: staff
7. int: track
8. int: pos

Adds specified note to selection buffer. See selectNote for args example. This differs
from selectNote in that addNoteToSelection adds the specified note to the selection
buffer, while selectNote first clears the buffer then adds the specified note.

selectNextNote
args: none
Assuming a note is currently selected, this command deselects it and selects the next note
in staff. If there are no more notes in the current staff, you will see the message “current
note has no next note” in the Max window.

MaxScore User Manual, p13 of 35

selectPreviousNote
args: none
Assuming a note is currently selected, this command deselects it and selects the previous
note in staff. If there are no notes preceding the note in the current staff (ie it is the first
note of measure 1, for example), you will see the message “current note has no previous
note” in the Max window.

selectPreviousInterval
args: none
Assuming a note is currently selected and it is part of a chord, this command deselects it
and selects the next note below it in the chord. If there are no more notes in the current
chord, you will see the message “root, no previous interval” in the Max window.

selectNextInterval
args: none
Assuming a note is currently selected and it is part of a chord, this command deselects it
and selects the next note above it in the chord. If there are no more notes above it in the
current chord, you will see the message “Top of chord, no next interval” in the Max
window.

insertNote
args:

1. int: measure
2. int: staff
3. int: track
4. int: pos
5. float dur
6. float pitch
7. float amp
8. float hold

Inserts a note before the indicated location. For example if the first four args are 0, 0, 0,
0, the new note will show up as the first position of the top staff of the first measure. The
last four arguments, follow standard convention where dur 1.0 is a quarter note, 0.5 is an
eighth note, 0.333 is a triplet, etc. Pitch 60 is middle C. Fractional pitches like 60.5 are
ok. Amp is usually 0..1 unless you are using MIDI. Hold is sustain time in seconds (this
is different than duration. It defined staccato versus legato performance for example;
literally how long the note is “held”).

setPrevBeamedOut
args:

Boolean true|false

Assuming a note is selected, if true, beams previous note to selected note. If false,
unbeams.

MaxScore User Manual, p14 of 35

setBeamedOut
args:

Boolean true|false

Assuming a note is selected, if true, beams selected note to next note. If false, unbeams.

setTiedOut
args:

Boolean true|false

Assuming a note is selected and the next note has the same pitch as the selected note, if
arg is true, ties selected note to next note. If false, unties.

setSlurredOut
args:

Boolean true|false

Assuming a note is selected, if arg is true, slurs selected note to next note. If false,
unslurs.

setCrescOut
args:

Boolean true|false

Assuming a note is selected, if arg is true, makes crescendo symbol from selected note to
next note. If false, removes cresc hairpin. This is a notation only, it does not affect the
amplitudes of the selected notes.

setDecrescOut
args:

Boolean true|false

Assuming a note is selected, if arg is true, makes decrescendo symbol from selected note
to next note. If false, removes decresc hairpin. This is a notation only, it does not affect
the amplitudes of the selected notes.

set8va
args:

Boolean true|false

Assuming a note or notes are selected, if arg is true, puts ottava alta symbol over selected
notes. If false, removes ottava alta symbol. This will cause the instrument to receive a
pitch 12 steps higher than written.

set8vb

MaxScore User Manual, p15 of 35

args:
Boolean true|false

Assuming a note or notes are selected, if arg is true, puts ottava bassa symbol over
selected notes. If false, removes ottava bassa symbol. This will cause the instrument to
receive a pitch 12 steps lower than written.

setNumDots
args:

int numDots

Assuming a note or notes are selected, set the number of dots on this note to 0, 1, or 2.
Affects playback duration.

setMark
args:
 String, one of:

MARK_NONE
MARK_ACCENT
MARK_STACCATO
MARK_TENUTO
MARK_WEDGE
MARK_ACCENT_STACCATO
MARK_ACCENT_TENUTO
MARK_WEDGE_STACCATO
MARK_FERMATA
MARK_HARMONIC
MARK_TRILL,
MARK_TRILL_FLAT
MARK_TRILL_SHARP
MARK_TRILL_NATURAL
MARK_MORDANT
MARK_INVERTED_MORDANT
MARK_FERMATA

Applies indicated mark to selected notes.

setMark
args:

int code, an integer which is one of:
MARK_NONE = 0
MARK_ACCENT = 1
MARK_STACCATO = 2
MARK_TENUTO = 3
MARK_WEDGE = 4
MARK_ACCENT_STACCATO = 5

MaxScore User Manual, p16 of 35

MARK_ACCENT_TENUTO = 6
MARK_WEDGE_STACCATO = 7
MARK_FERMATA = 8
MARK_HARMONIC = 9
MARK_TRILL = 10
MARK_TRILL_FLAT = 11
MARK_TRILL_SHARP = 12
MARK_TRILL_NATURAL = 13
MARK_MORDANT = 14
MARK_INVERTED_MORDANT = 15

Applies indicated mark to selected notes.

setDynamic
args:
 String, one of:

DYNAMIC_NONE
DYNAMIC_PPP
DYNAMIC_PP
DYNAMIC_P
DYNAMIC_MP
DYNAMIC_MF
DYNAMIC_F
DYNAMIC_FF
DYNAMIC_FFF

Applies indicated dynamic to selected notes.

setAccPref
args:
 String, one of:

ACC_PREFER_FLAT
ACC_PREFER_SHARP

Set the preference that all notes in Selection Buffer should use to spell accidentals. This
does not actually make the note sharp or flat. It tells the note which to choose in the event
it needs to be spelled with an accidental (for example if C is transposed up a half step,
should it be spelled with C# or Db).

setAltEnharmonicSpelling
args:
 boolean true|false
Determines if notes in selection buffer should use alternate enharmonic spelling (ex E#,
F##, Cb, Fbb, etc).

setPitch

MaxScore User Manual, p17 of 35

args:
 float pitch
Assign indicated pitch to all notes in selection buffer. Pitch can be fractional such as
60.123 (123 cents above middle C)

setDuration
args:
 float duration
Assign indicated duration to all selected notes. Whole note = 4.0, half note = 2.0, quarter
note = 0.5, eighth note=0.25, quarter note triplet = 0.333, 8th note quintuplet = 0.2, etc

setAmplitude
args:
 float amp
Assign indicated amplitude to all selected notes. No restrictions on units. Yo might use
0..127 for MIDI or 0..1 for patches. Interpretation depends entirely on the instrument
which will play this note.

setHold
args:
 float holdTime
Specifies how long a note sustains. This is different from duration. A quarter note
(duration 1.0) might have a very short staccato hold time of 0.1, or a long hold time
greater than 1.0. holdTime does not interfere with rhythm. It is simply how long a note
sounds once it is started.

setText
args:
 string text
 int xOffset
 int yOffset
Sets specified text near selected notes. X and Y offset specify how far away from the note
the text appears.

setNoteVisible
args:
 boolean true|false
Sets selected notes visible or invisible.

beamTransform
 args: none
Toggles Beam Transform on selected notes. Transforms are undoable/redoable.

restToggleTransform
 args: none
Toggles Rest Transform on selected notes. Transforms are undoable/redoable.

MaxScore User Manual, p18 of 35

ottavaAltaTransform
 args: none
Toggles 8va on selected notes. Transforms are undoable/redoable.

ottavaBassaTransform
 args: none
Toggles 8vb on selected notes. Transforms are undoable/redoable.

noteheadTransform
 args:

string, one of:
 NOTEHEAD_STANDARD

NOTEHEAD_X
NOTEHEAD_DIAMOND
NOTEHEAD_TRIANGLE
NOTEHEAD_INVERTED_TRIANGLE
NOTEHEAD_X_DIAMOND
NOTEHEAD_SLASH

Applies specified notehead to selected notes.

tupletTransform
args:

int, one of: 0, 3, 5, 7, 9, 11, 13, 17, 19

Applies tuplet to selected notes, where 0 removes tuplet and restores note to its binary
value.

durationTransform
args:

string coreduration, which is one of:
WHOLE
HALF
QUARTER
EIGHTH
SIXTEENTH
THIRTYSECOND
SIXTYFOURTH
ONEHUNDREDTWENTYEIGHTH
TWOHUNDREDFIFTYSIXTH

Change the core duration of a note. This does not affect whether it is a tuplet or has dots.
Just changes the “core duration”.

slurTransform

MaxScore User Manual, p19 of 35

args: none
 Toggles slur applied to selected notes.

crescTransform
args: none
 Toggles cresc applied to selected note. This differs from setCrescOut in that the
crescTransform terminates the cresc on the final selected note.

decrescTransform
args: none
 Toggles decresc applied to selected note. This differs from setDecrescOut in that
the decrescTransform terminates the decresc hairpin on the final selected note.

transpositionTransform
args:
 float steps
Transposes selected note by indicated amount. 12 transposes up an octave. -12 transposes
down an octave.

lyricLevelTransform
args: none
 Applies a transform which sets the x,y offsets of text of each selected note to
values which are below the note and below the staff, so all are vertically at the same
level. If a note is too low below the staff, the text will be pushed down below it and will
not align with other text.

MaxScore User Manual, p20 of 35

p get score info
This window contains maxScore messages that allows you to query your score for
various attributes and information. All info gets sent out the second outlet.

getNumMeasures
args: none
Sends the number of measures out the second outlet.

getNumStaves
args: none
sends the number of staves out the second outlet.

getNumTracks
args:

1. int measure index
2. int staff index

Sends the number of tracks of the indicated staff of the indicated measure out the second
outlet.
Measure index is 0 based (first measure is measure 0)

MaxScore User Manual, p21 of 35

Staff index is 0 based (top staff is 0)

getNumNotes
args:

1. int measure index
2. int staff index
3. int track index

Sends the number of notes contained in the indicated track of the indicated staff of the
indicated measure out the second outlet
Measure index is 0 based (first measure is measure 0)
Staff index is 0 based (top staff is 0)
Track index is 0 based (first track is 0)

getNumIntervals
args:

1. int measure index
2. int staff index
3. int track index
4. int note index

A chord is represented as a Note (called a handle of the chord) with some number of
intervals. A triad is a note with two intervals, for example.
This message sends the number of intervals contained in the indicated note of the
indicated track of the indicated staff of the indicated measure out the second outlet
Measure index is 0 based (first measure is measure 0)
Staff index is 0 based (top staff is 0)
Track index is 0 based (first track is 0)
Note index is 0 based (first note is 0)

dumpScore
args: none
Dump xml note list (with all its attributes) from Score to the Max environment. Format is
XML with all measure and note attributes specified. Same as JMSL Score's file format (ie
this is JMSL's own XML format, not MusicXML)

dumpScore
args:

1. int start measure index
2. int num measures

Dump xml listing about specified measure range in XML format. Note that indexes are
zero-based (ie first measure is 0), so getMeasureInfo(1, 3) would dump info for the
second, third, and fourth measures.

getStaffInfo
args:

1. int measure index
2. int staff index

MaxScore User Manual, p22 of 35

Sends staff properties out second outlet in XML format.
Measure index is 0 based (first measure is measure 0)
Staff index is 0 based (top staff is 0)

getMeasureInfo
args:

• int measure index
Sends measure properties out second outlet in XML format. This is in JMSL's own XML
format (not MusicXML)
Measure index is 0 based (first measure is measure 0)

getNoteInfo
args:

• int measure index
• int staff index
• int track index
• int note index

Sends xml note description to second outlet. Does not include interval info if it is a chord.

isChord
args:

• int measure index
• int staff index
• int track index
• int note index

Is specified note a chord? Sends true|false numIntervals to second outlet

getIntervalInfo
args:

• int measure index
• int staff index
• int track index
• int note index

Sends XML info for specified interval in chord out second outlet. 0 gives first interval
itself (not the chord root). So in a two note chord, getNoteInfo gives you the chord handle
while passing interval 0 to getIntervalInfo gives you the second note.

getSelectedNoteInfo
args: none
Dump note info for each note in selection buffer. Follows JMSL Score's native XML
format. If a Note is a handle to a chord it will print all its intervals' xml info as well.

getNotePosition
args: none
Get position of selected note(s): measure index, staff index, track index, position of note

MaxScore User Manual, p23 of 35

in track. All indexes are zero based so first measure is 0, top staff is 0, first note is 0. For
example, first note in top staff of first measure returns 0 0 0 0. Sends out second outlet.

getNoteLevel
args: none
Sends vertical level of selected notes out second outlet

getNoteAnchor
args: none
Sends drawing anchor (x, y) of selected notes out second outlet. x and y are relative to
(0, 0) at top left of score canvas

getSelectedLocation
args: none
Get the measure index and staff index of score's selected measure and selected staff. This
is where the user clicked. Sends -1 -1 if there is no currently selected measure and staff.
Sends out second outlet.

getCurrentLocation
args: none
Get the measure index and staff index of score's current measure and current staff. This
is where the next addNote() will go. Sends out second outlet.

MaxScore User Manual, p24 of 35

p load save export
This window contains MaxScore messages that allows you to load and save score as well
as export to external music notation formats.

loadScore
args:

• string filename
Load a score from a file in JMSL's own XML format (not MusicXML)
Specify full path and filename, quote if path contains spaces.

saveScore
args:

• string filename
Save current score in XML format (JMSL's own XML format, not MusicXML). Specify
full path and filename. If you specify a filename that ends with .zip then your XML
score will zip compressed, which MaxScore can also load back in with loadScore (as
long as .zip is specified in the filename of course). Zipping an XML file compresses it
greatly because there is so much redundancy in XML

saveMusicXML
args:

• string filename
Save current score in Recordare's MusicXML format. You can load MusicXML into
Finale and Sibelius for professional quality music publishing.

saveLilyPond
args:

• string filename
Save current score in LilyPond format for professional quality music publishing. For
more information about LilyPond, visit www.lilypond.org

print
args: none
 Prints a bitmap image of score to printer. Works under Windows only.

MaxScore User Manual, p25 of 35

p page navigation
This window contains MaxScore messages that allows you to navigate through the score
(turn pages, etc). Pages are not absolute locations in MaxScore. You can scroll through a
score on e measure at a time, and an entire page will be laid out with that measure as the
first one on the page. Rendering and layout is based on the first measure requested to be
displayed.

nextPage
Renders a page of the current score starting at the next unrendered measure. For example
if the current page displays measures 100..200, the nextPage message will display a new
page starting with measure 201, containing as many measures as will fit on that page.

previousPage
Renders a new page whose last measure is the one preceding the first measure of the
current page. For example, if the current page displays measures 100..200, the
previousPage message will display a new page ending with measure 99. The first
measure of that new page depends on how many measure fit on that page.

render
args:

• int measure index
Layout and render a page starting with specified measure. Measure index is 0-based (ie
first measure is 0)

setRenderAllowed
args:

• Boolean true| false

MaxScore User Manual, p26 of 35

Enables or disables internal render commands which occur automatically at the end of
many MaxScore messages. Disable if you intend to perform operations on hundreds of
notes, for example. Then enable when you are done with your operations and call render
to see the new state of your score.

p edit

This window contains MaxScore messages that copy and paste notes in a variety of
flavors. This window also demonstrates how to assign keystrokes to actions.

copy
args: none
Copy notes in selection buffer to copy buffer. Note that UnaryCopyBufferTransforms
operate on notes found in this buffer

cut
args: none
Copy notes in selection buffer to copy buffer and remove them from score

paste
args: none
Paste notes from copy buffer into selected location of score. The Selected location is the
measure and staff where the user clicks with the mouse. Relative measure and staff
boundaries of the copied notes are maintained after pasting.

MaxScore User Manual, p27 of 35

freeflowPaste
args: none
Paste notes from copy buffer into selected location of score. The Selected location is the
measure and staff where the user clicks with the mouse. Copied notes that were
originally in different measures and staves will be pasted as a contiguous stream without
preserving original measure and staff boundaries.

delete
args: none
Deletes selected notes. Does not put them in copy buffer.

clearSelection
args: none
Removes all selected notes from the selection buffer (is deselects all notes).

selectAll
args: none
Selects all notes in score.

copyToAux1
args: none
Copy notes in selection buffer to auxiliary copy buffer 1. BinaryCopyBufferTransforms
operate on notes found in this buffer and in aux buffer 2, using notes contained in these
two copy buffers as operands.

copyToAux2
args: none
Copy notes in selection buffer to auxiliary copy buffer 1. BinaryCopyBufferTransforms
operate on notes found in this buffer and in aux buffer 2, using notes contained in these
two copy buffers as operands.

setCurrentMeasureStaffToSelectedMeasureStaff
args: none
The Selected measure and staff is where the user clicks with the mouse. Remember the
addNote message adds a note to the end of the current measure, staff, and track. This is
different from the selected measure, staff, and track. This message provides you with a
short cut to click anywhere in the score and make that selected location the current
location.

MaxScore User Manual, p28 of 35

p playback
This window contains MaxScore messages that control playback of a Score. For n
important discussion of the “jmsl_instrument_output” portion of this window, see the
next section entitled “note dimensions”.

start
args: none
Begins score playback starting with the first measure.

stop
args: none
Finishes score playback.

setSection
args:

• int start measure index
• int end measure index

A section is a subrange of measures of a score which can be played back independently.
Measure index is 0-based (ie measure 0 is the first measure). << >> will appear over the
first and last measures of a section.

playSection
args: none
Beings section playback (a section is a subrange of measures specified with the
setSection message)

setLoopingPlayback
args:

• Boolean true | false
Sets playback behavior to loop or not. When playing a section, the section will looping if

MaxScore User Manual, p29 of 35

this is true. When playing back a score, the entire score will loop if this is true.

MaxScore User Manual, p30 of 35

p note dimensions

A Note contains an array of floating point numbers, or “dimensions”. Dimensions are
indexed 0, 1, 2, 3… The meaning of first 5 dimensions is fixed as follows:
0 – duration
1 – pitch
2 – amplitude
3 – hold time
4 - sustain/play flag

Dimensions numbered 5 and higher are user-definable and could be used to control
custom inlets of your MSP patches, for example.

When a Note is played, it passes its data to the MaxScoreInstrument assigned to its staff.
This MaxScoreInstrument in turn passes the data to the main MaxScore object, which
massages it and sends its third outlet (which in the Help File is connected to “s
jmsl_instrument_output”). The first value of the array passed to the outlet is the
instrument index. Each instrument has a unique index, so you can inspect this value and
thereafter route the rest of its data appropriately, since you know which staff the data
came from.

Below is the format of the Note data as it is passed out of MaxScore’s third outlet as
an array of floats.
0) instrument index
1) timestamp in MaxClock time (the ‘on-time’ of this note)
2) pitch
3) amplitude
4) hold time in seconds (ie sustain time ie Max "duration")
5) event flag (describes state of this event, see discussion below)
6...n) any additional dimensions

MaxScore User Manual, p31 of 35

Some comments:
Note that the timestamp will be a precise value a little in the future. This is useful to
absorb wiggle of the underlying scheduler which is implemented using Java threads. See
the “jitter compensation” object in the “p playback” window for an example on how to
utilize this feature

The event flag specifies the state of the note event. It is not set by the user, it is set at
runtime by MaxScoreInstrument. The event flag can be one of four values, as is shown
below:

MAX_INS_OFF = 0;
MAX_INS_ON = 1;
MAX_INS_UPDATE = 2;
MAX_INS_PLAY = 3;
The “update” and “play” values are most important. When a note is played, this

flag will be set to 3. When a note is tied in, however, this value will be 2 (ie it is being
updated). What does updated mean? You might for example have dimension 6 assigned
to a filter cutoff frequency. Imagine you have two quarter notes, with the first tied to the
second. Sine they are tied, each has the same pitch but they might have different
amplitudes (dimension 3) and different cutoff frequencies (dimension 6). The first note is
played, and its event flag will be 3 (max_ins_play). When the next, tied-in note is played,
it will send the event flag 2 (max_ins_update). This will notify you not to re-attack your
MSP patch, but only to update its amplitude and cutoff frequency inlets. Notice that the
first quarter note will send a hold time (ie sustain time) for the full duration of itself plus
the durations of the tied-in note after it (in ths case a value of 1.8 would be reasonable,
which is 1.0 for the first quarter plus 0.8 for the second quarter, holding its tone just a
little short of the full duration).

setInstrumentDimension
args:
 int instrument index
 int dimension
 String dimension name
 float low limit

float high limit
float default

Each staff of a score is assigned its own MaxScoreInstrument. This message lets you set
the dimensions of a MaxScoreInstrument. Call this message to set up your dimensions
before adding notes to the staff. For example, passing the following args…
0 5 Rate 0. 2. 1.
…is interpreted as, “Set the 5th dimension of instrument 0 to be named ‘Rate’. Set its low
limit to 0.0, its high limit to 2.0 and its default value to 1.0”. From then on, every note
added to the staff containing this instrument will conform to this dimension name space.
Read the discussion above for more information on how such extra dimensions can be
used to drive your custom MSP patches.

MaxScore User Manual, p32 of 35

setNoteDimension
args:
 int dimension index
 float value
Set the value of the specified dimension of the selected notes. Passing 5 0.22 for example
would set the 5th dimension of all selected notes to 0.22. This assumes you have first set
up the instrument dimensions how you want them (see setInstrumentDimension above)

setNoteDimension
args:
 String dimension name
 float value
Set the value of the specified dimension of the selected notes. Passing Rate 0.22 for
example would set the dimension named “Rate” to 0.22 for all selected notes. Same as
setNoteDimension above except you can refer to the dimension by name inseatd of by
index.

MaxScore User Manual, p33 of 35

p auto transcribe

The “auto transcribe” window shows how to use MaxScore’s transcriber to capture a
real-time stream of musical events and transcribe them to common music notation. Use
this if you have a Max patch that generates musical material and you want to notate it.
The duration between events does not have to be quantized or massaged to conform to
standard durations. MaxScore’s transcriber will look for the best fit to assign standard
durations to your input events.

 The auto transcribe window above shows a simple patch that generates a sequence
of note events that the transcriber can capture. The metro 250 object fires 4 times per
second (16th notes), but you may change that during capture. The metro triggers three
numbers very time it plays: a voice index which assigns a note event to a staff, a pitch
within two octaves of pitch 60 (middle C), and a random MIDI-style velocity between 60
and 120. It packs these three numbers and sends them to MaxScore’s “capture” method.
When finished, the user sends the transcribe method to convert these captured events into
common music notation.

startCapture
args: none
 MaxScore begins capturing events that arrive in its “capture” inlet.

stopCapture
args: none
 MaxScore will stop capturing events that arrive in its “capture” inlet.

MaxScore User Manual, p34 of 35

printCapture
args: none
 Prints captured events to the Max window.

transcribe
args: none
 MaxScore will process all captured events and send common music notation into
the current active score. Transcription will begin in the currently selected measure and
staff. You may set the current measure and staff by clicking there with the mouse and
then sending the setCurrentMeasureStaffToSelectedMeasureStaff message. Alternatively,
you may set this programmatically by sending setCurrentMeasure and setCurrentStaff
messages.

MaxScore User Manual, p35 of 35

Acknowledgements

Nick Didkovsky would like to thank Georg Hajdu for driving this project, and Langdon
Crawford for his enthusiasm, expertise, and support.

