
7 ANIMATION IN FLASH CS3

861XCh07.qxp 6/25/07 1:24 PM Page 283

Ahh, animation! Where would we be without the likes of Disney, Warner Bros., Walter
Lanz, Hanna-Barbera, and dozens more like them? For many people, animation is the rea-
son to get involved with Flash as a creative outlet. This makes perfect sense, because Flash
began life a full decade ago as an animation tool. Supplemental features like ActionScript,
XML parsing, and video integration—every one a tremendous addition—all followed.
What hasn’t changed in all these years is Flash’s ability to produce quality, scalable anima-
tion for the Web, and increasingly for television.

You caught the faintest whiff of tweening in Chapters 1, 2, and 3. It gets considerably more
complex (read considerably more fun!), and because this chapter has a lot of moving
parts, let’s stop with the talking already and jump directly into the fray.

What we’ll cover in this chapter:

Shape tweening

Shape hinting

Motion tweening

Easing

Using the Custom Ease In/Ease Out editor

Animating symbols

Combining timelines

Motion tween effects

Files used in this chapter:

PepperShape.fla (Chapter07/ExerciseFiles_CH07/Exercise/PepperShape.fla)

StarStar.fla (Chapter07/ExerciseFiles_CH07/Exercise/StarStar.fla)

StarCircle.fla (Chapter07/ExerciseFiles_CH07/Exercise/StarCircle.fla)

Ant.fla (Chapter07/ExerciseFiles_CH07/Exercise/Ant.fla)

LogoMorphNoHints.fla (Chapter07/Exercise Files_CH07/
Exercise/LogoMorphNoHints.fla)

LogoMorph.fla (Chapter07/ExerciseFiles_CH07/Exercise/LogoMorph.fla)

FlowerWeed.fla (Chapter07/ExerciseFiles_CH07/Exercise/FlowerWeed.fla)

GradientTween1.fla (Chapter07/ExerciseFiles_CH07/
Exercise/GradientTween1.fla)

GradientTween2.fla (Chapter07/ExerciseFiles_CH07/
Exercise/GradientTween2.fla)

BitmapFillTween.fla (Chapter07/ExerciseFiles_CH07/
Exercise/BitmapFillTween.fla)

PepperSymbol.fla (Chapter07/ExerciseFiles_CH07/
Exercise/PepperSymbol.fla)

MalletNoEasing.fla (Chapter07/ExerciseFiles_CH07/
Exercise/MalletNoEasing.fla)

FOUNDATION FLASH CS3 FOR DESIGNERS

284

861XCh07.qxp 6/25/07 1:24 PM Page 284

MalletCustomEasing.fla (Chapter07/ExerciseFiles_CH07/
Exercise/MalletCustomEasing.fla)

CustomEasingComparison.fla (Chapter07/ExerciseFiles_CH07/
Exercise/CustomEasingComparison.fla)

CustomEasingMultiple.fla (Chapter07/ExerciseFiles_CH07/
Exercise/CustomEasingMultiple.fla)

YawningParrot.fla (Chapter07/ExerciseFiles_CH07/
Exercise/YawningParrot.fla)

SyncPropertyGraphic.fla (Chapter07/ExerciseFiles_CH07/
Exercise/SyncPropertyGraphic.fla)

EditMultipleFrames.fla (Chapter07/ExerciseFiles_CH07/
Exercise/EditMultipleFrames.fla)

TimelineCombine.fla (Chapter07/ExerciseFiles_CH07/
Exercise/TimelineCombine.fla)

Grotto.fla (Chapter07/ExerciseFiles_CH07/Exercise/Grotto.fla)

tronguy.png (Chapter07/ExerciseFiles_CH07/Exercise/tronguy.png)

TronGuyGlow.fla (Chapter07/ExerciseFiles_CH07/
Exercise/TronGuyGlow.fla)

FadingParrot.fla (Chapter07/ExerciseFiles_CH07/
Exercise/FadingParrot.fla)

MotionGuide.fla (Chapter07/Exercise Files_CH07/Exercise/MotionGuide.fla)

TweenMask.fla (Chapter07/ExerciseFiles_CH07/Exercise/TweenMask.fla)

TweenMaskMotionGuide.fla (Chapter07/ExerciseFiles_CH07/
Exercise/TweenMaskMotionGuide.fla)

AnimatedButton.fla (Chapter07/ExerciseFiles_CH07/
Exercise/AnimatedButton.fla)

Zap.mp3 (Chapter07/ExerciseFiles_CH07/Exercise/Zap.mp3)

CreateMotionAS3.fla (Chapter07/ExerciseFiles_CH07/
Exercise/CreateMotionAS3.fla)

Shape tweening
As useful as symbols are, both in organizing artwork and reducing SWF file size, they
shouldn’t overshadow the importance of shapes. After all, unless a symbol is the result of
text or an imported image file, chances are good it was constructed from one or more of
Flash’s most basic of visual entities: the shape.

Shapes differ significantly from symbols, though many of their features overlap. Like sym-
bols, shapes are tweened on keyframes. Tweening may be finessed by something called
easing, and can affect things like position, scale, distortion, color, and transparency. The
difference comes in how these changes are achieved. In addition, shapes can do some-
thing symbols can’t: they can actually morph from one set of contours to another!

ANIMATION IN FLASH CS3

285

7

861XCh07.qxp 6/25/07 1:24 PM Page 285

Scaling and stretching

Let’s start with the basics:

1. Open the PepperShape.fla file found in the Chapter 7 Exercise folder. You’ll
notice there’s nothing in the library—this is because the hot pepper on the stage is
composed entirely of shapes. Select Insert ä Timeline ä Keyframe to insert a
keyframe at frame 10. This effectively produces a copy of the artwork from frame
1 in frame 10, and makes the copy available for manipulation. Any changes you
make to frame 10 will not affect the shapes in frame 1, so you can always remove
that second keyframe (Modify ä Timeline ä Clear Keyframe) and start again from
scratch if you need to.

2. With frame 10 selected, choose the Free Transform tool and drag the right side of
the pepper’s bounding box to the right. As you do this, you’ll see an outline pre-
view of the shapes in their new stretched size, as shown in Figure 7-1.

Figure 7-1. Changing a shape’s shape in preparation for a shape tween

If you prefer, you can insert a blank keyframe at frame 10 (Insert ä Timelines ä Blank
Keyframe), and then copy and paste the artwork from frame 1. It makes no practical
difference, but clearly the first approach requires less effort. You may even draw com-
pletely new shapes into frame 10, and Flash will do its best to accommodate—but
that’s skipping ahead. More on that in the “Altering shapes” section.

FOUNDATION FLASH CS3 FOR DESIGNERS

286

861XCh07.qxp 6/25/07 1:24 PM Page 286

3. Select Edit ä Undo Scale to undo. This time, hold down the Alt (PC) or Option
(Mac) key while dragging to the right. Notice how the artwork now scales out from
the center. This feature often comes in handy, but it’s important to understand
what’s really going on. When the Alt/Option key is used, it’s not the center of the
artwork that becomes the pivot, but rather the transformation point, as indicated
by a small white circle. You can drag this circle where you like, even outside the
confines of the shape’s bounding box. With or without the Alt/Option key, the
transformation point acts as the fulcrum of your modifications.

Because you’re dealing with shapes, you can even use the Free Transform tool’s
Distort and Envelope options (shown in Figure 7-2). If you do, just be aware that
things can quickly fall apart with such transformations unless you use shape hints
(covered later in the chapter).

Figure 7-2. Shape tweens support the full gamut of shape transformations.

You might find that you have accidentally selected either only the pepper or only its
cap. The Free Transform tool’s bounding box will let you know at a glance which shape
you have selected, because it will either encompass the full surface area of the art-
work or it won’t. To ensure you’ve grabbed all the shapes, either use the Selection tool
to first draw a marquee around the whole pepper or, even simpler, click the keyframe
at frame 10, which selects everything on that layer in that keyframe.

ANIMATION IN FLASH CS3

287

7

861XCh07.qxp 6/25/07 1:24 PM Page 287

4. Now that you have two keyframes prepared, it’s time for the magic. Click anywhere
in the span of frames between both keyframes, and then select Shape from the
Tween property in the Property inspector (see Figure 7-3). Two things will happen:

The span of frames will turn green, which indicates a shape tween. They will also
gain an arrow pointing to the right, which tells you that the tween was successful.

The pepper will visually update to reflect a state between the artwork in either
keyframe, depending on where the playhead is positioned.

Drag the playhead back and forth to watch the pepper seem to breathe.

Figure 7-3. Applying a shape tween

5. Select anywhere between the two keyframes and choose None as the Tween prop-
erty setting. The tween goes away.

6. Let’s purposefully make a mistake. This time, choose Motion as the Tween property.
Motion tweening is not supported for shapes, and Flash gives you an unmistakable
sign that you’ve gone wrong if you try to use it. Instead of green, the span of
frames will become purple—the indication of motion tweens. More importantly,
the arrow is now the broken line shown in Figure 7-4. Time to either undo or
change the Tween property in the Property inspector.

If you applied the tween while in frame 1—a perfectly legal choice, by the way—you
wouldn’t immediately see the pepper change. Why? Because the tweening is applied
between the two keyframes, and frame 1 still represents the artwork as it was before
tweening was applied. Drag the playhead back and forth, and you’ll see the tween.

What if the tweened frames don’t turn green? By default, they will, but you may have
experimented with your Timeline panel settings. Click in the panel’s upper-right corner,
just below the x, and ensure that Tinted Frames is selected in the context menu.

FOUNDATION FLASH CS3 FOR DESIGNERS

288

861XCh07.qxp 6/25/07 1:24 PM Page 288

Figure 7-4. Erroneous tweens (top) are indicated by a
broken line, while successful tweens (bottom) are
indicated by a solid arrow.

7. Change the Tween property back to Shape. Select frame 10 and choose the Free
Transform tool once again. Drag one of the bounding box corners to change both
the horizontal and vertical scale. If you like, hold down Shift to constrain the aspect
ratio, and Alt/Option to apply changes from the center of the transformation point.
Make the pepper a good bit bigger than the original size. This shows that it’s possi-
ble to adjust keyframes even after they’re already part of a tween.

Shape tween modifiers

There are a couple ways to refine a shape tween once it’s applied. These are shown in the
Property inspector when you click in a tweened span of frames: Ease and Blend. We’ll
cover easing in greater detail in the “Motion tweening” section, but for now, here’s the
punch line: easing tends to make tweens look more lifelike because it gradually varies the
amount of distance traveled between each frame.

If an astronaut throws a golf ball in outer space, the ball
flies at a constant rate until . . . well, until it hits some-
thing. That’s not how it works on a planet with gravity.
The ball flies faster at first, and then gradually slows
down. This deceleration is called easing out. A ball
dropped from a tall building begins its descent slowly,
and then gradually increases speed. This acceleration is
called easing in. Adjust the Ease slider in the Property
inspector to see how easing affects the shape tween
applied to the pepper in the previous exercise. Supported values range from 100 (strong
ease out), through 0 (no easing), to –100 (strong ease in). As shown in Figure 7-5, easing
can have a profound effect upon an object in motion.

If you right-click (PC) or Ctrl-click (Mac) between any two keyframes, you’ll see a
Create Shape Tween choice in the context menu. This is new to Flash CS3 and is an
alternate approach to applying a shape tween. This mechanism happens to be smart
enough to avoid mistakes, so if you try to apply a shape tween to something that
doesn’t support shape tweens, it will simply ignore your attempt. If you open this con-
text menu on an already shape-tweened span, you’ll see a choice of Remove Tween.

ANIMATION IN FLASH CS3

289

7

Figure 7-5. Examples of easing; from top to bottom:
easing in, no easing, and easing out

861XCh07.qxp 6/25/07 1:24 PM Page 289

Blend is a much subtler matter.

There are two blend settings: Distributive and Angular. According to Adobe, Distributive “cre-
ates an animation in which the intermediate shapes are smoother and more irregular,”
while Angular “creates an animation that preserves apparent corners and straight lines in
the intermediate shapes.” In actual practice, the authors find this distinction negligible, at
best. In short, don’t worry yourself over this setting. Use it or not, but we’re willing to bet
our hats that you won’t be able to tell one from the other.

OK, so far, so good. These tweens have been pretty straightforward. In fact, as you’ll find
later in the chapter, everything you’ve seen to this point can be accomplished just as eas-
ily with motion tweens. This raises a good question: What makes shape tweens so special?
Why not just use motion tweens?

The answer comes in two parts: gradients and shape. Let’s tackle shape first, because it has
the potential to set your teeth on edge if you aren’t prepared for it.

Altering shapes

The compelling reason to use shape tweens is for their ability to manipulate the actual
form of the artwork itself, beyond scaling and stretching. Let’s keep playing:

1. Continuing with PepperShape.fla, use the Free Transform tool at frame 10 to rotate
the pepper about 90 degrees in either direction.

2. You should still have a shape tween applied—if not, add one—and then drag the
playhead back and forth to see a result that may surprise you. Rather than rotating,
the pepper temporarily deforms itself as it changes from one keyframe to another
(see Figure 7-6).

Figure 7-6. Sometimes shape tweens perform unexpected transformations.

FOUNDATION FLASH CS3 FOR DESIGNERS

290

861XCh07.qxp 6/25/07 1:24 PM Page 290

What on earth is going on here? Though it may look like an absolute mess, what you are
seeing is the key distinction between shape tweening and motion tweening. Believe it or
not, this behavior can be a very useful thing. We’ll see an example in just a moment. First,
let’s take a quick field trip to frame 10 in order to illustrate a point.

3. Choose the Subselection tool and click in frame 10 of the PepperShape.fla file.
You’ll see dozens of tiny squares that act as anchor points among the various lines
and curves that make up the pepper’s shape. All those points exist in frame 1 as
well, of course, but they’re in different positions relative to one another.

With shape tweens, Flash does not think of artwork in terms of a whole; instead, it manipu-
lates each anchor point separately. What seems like a rotation to you is, to a shape tween,
nothing more than a rearrangement of anchor points—sometimes a chaotic one, at that!

Think of it like a square dance. If a particular point happens to be in the upper-left corner
on frame 1, it has no idea that its corresponding point may be in the upper-right corner on
frame 10. It simply changes a partner—do-si-do!—and moves to a new spot during the
tween. Like square dancing, there are sophisticated rules at play, and movement across the
dance floor may appear unpredictable. It’s possible, for example, that two keyframes may
even present a completely different number of anchor points. Let’s look at that next.

1. Open the StarStar.fla file from the exercise files for this chapter, and take note
of the 22-point star in frame 1. Use the Subselection tool, if you like, to see the indi-
vidual anchor points (there are 44). Click in frame 20 to see a 7-point star (14
anchor points). Note that a shape tween has already been applied between these
two keyframes. Drag the playhead back and forth to watch the promenade (shown
in Figure 7-7). Flash handles the reduction in anchor points in a neat, organized
way. In this case, by the way, the star in the second keyframe was drawn as new art-
work into frame 20.

Figure 7-7. The 44 anchor points artfully become 14.

2. Open the StarCircle.fla file and run through the same steps to see a 22-point
star become an 8-point circle. These are some nifty transformations that are simply
not possible with motion tweens.

In case you’re worried, we’ll put your mind at ease without further ado: it is entirely
possible to rotate artwork with tweens in Flash. In fact, it’s easy. In contrast to shape
tweens, motion tweens always maintain a strict marriage between one keyframe’s
anchor points and the next. We’ll show you why later in the chapter. When you under-
stand what each approach does best, you’ll know which one to use for the task at hand.

ANIMATION IN FLASH CS3

291

7

861XCh07.qxp 6/25/07 1:24 PM Page 291

This opens up a whole avenue of vector-morphing possibilities, from sunshine gleams to
water ripples to waving hair and the antennae shown in Figure 7-8. For anything where you
need the actual shape of an item to change—where anchor points themselves need to be
rearranged—shape tweens are the way to go. Keep in mind that tweens happen on a
keyframe basis, and timeline layers are distinct. If you have a complex set of shapes and
you only wish to tween some of them, move those shapes to a separate layer. In fact, you
may want to put every to-be-tweened shape on its own layer because that reduces the
number of anchor points under consideration for each keyframe. Let’s try it by setting
some antennae in motion:

1. Open Ant.fla and insert a keyframe in frame 21 of the antenna2 layer.

2. Select the Subselection tool and change the shape of the antenna in the layer.

3. Add a shape tween between the keyframes and scrub through the timeline. The
antennae move around (see Figure 7-8).

Figure 7-8. Need to change the shape of those antennae? Shape tweens to the rescue!

As we’ve seen, Flash can make some fairly stylish choices of its own in regard to the reposi-
tioning of anchor points. Well, most of the time. The earlier pepper rotation demonstrates
that Flash’s choices aren’t always what you might expect. Fortunately, Flash provides a way
to let you take control of shape tweens gone awry. The solution is something called shape
hints.

FOUNDATION FLASH CS3 FOR DESIGNERS

292

861XCh07.qxp 6/25/07 1:24 PM Page 292

Shape hints

What are shape hints? Though often overlooked and misunderstood, these useful con-
traptions allow you to specify a partnership between a region of your choosing from one
keyframe to the next. They are a means by which you can guide an anchor point, curve, or
line toward the destination you’ve determined is the right one. Let’s take a look.

1. Open the LogoMorphNoHints.fla file from the samples for this chapter. Take a look
at frame 1 to see a lowercase i that has been broken apart from a text field into
two shapes. In frame 55, you’ll see an abstract shape that represents a hypothetical
logo. The aim here is to morph between the shapes in an appealing way, but some-
thing has gone horribly wrong (see Figure 7-9). Drag the playhead along the time-
line and note the atrocities committed between frames 20 and 35.

Figure 7-9. Something has gone horribly wrong.

This looks as bad as (if not worse than) the hot pepper rotation . . . but why? On
the face of it, this should be a basic shape tween. Seemingly, the letter and logo
shapes aren’t especially intricate, and yet . . . the timeline doesn’t lie.

2. Click in frame 20, and select Modify ä Shape ä Add Shape Hint (see Figure 7-10).
This puts a small red circle with the letter a in the center of your artwork. Meet
your first shape hint.

At this point, the authors look deftly side to side, and with a sly, “Hey, pssst,” invite
you to step with them into a small, dimly lit alley. (Don’t worry, we’re here to help.)
“The thing is,” begins the first, “honestly, there’s often a bit of voodoo involved with
shape tweens, and that’s the truth.” “That’s right,” chimes in the other, lowering his
voice. “To be frank, if I may”—you nod—“we don’t know why these anchor points
sometimes go kablooey. It’s just a thing, and you have to roll with it.” There is a slight
pause, and suddenly a cappuccino machine splooshes in the distance. The first author
draws a finger across his nose. “Keep that in mind as we continue,” he says. Another
pause. “You wanna see the shape hints?” You nod again.

ANIMATION IN FLASH CS3

293

7

861XCh07.qxp 6/25/07 1:24 PM Page 293

Figure 7-10. Inserting a shape hint

3. Make sure object snapping is on, either by selecting Snap to Objects in the Tools panel
or ensuring that a check mark is present under View ä Snapping ä Snap to Objects.
Snapping significantly helps the placement of shape hints. Drag and snap the a circle
to the lower-left corner of the letter’s upper serif, as shown in Figure 7-11.

Figure 7-11. Positioning a shape hint

4. This next point is important: what you’ve done is placed one half of a shape hint
pair. The other half—the partner—is on the next keyframe, frame 35. Drag the
playhead to this frame and position the second a circle on the corresponding serif
on this keyframe’s shape, as shown in Figure 7-12.

FOUNDATION FLASH CS3 FOR DESIGNERS

294

861XCh07.qxp 6/25/07 1:24 PM Page 294

Figure 7-12. Positioning the shape hint’s partner

5. When this partner snaps into place, it will turn green. Return to frame 20 and
notice that the original shape hint has turned yellow. It may be that shape hints
have a thing for stoplights (not that there’s anything wrong with that), but the
point is that the color change indicates something. It tells you that this shape hint
pair has entered into a relationship. You have now indicated to Flash your intention
that these paired regions correspond.

6. Slide the playhead along the timeline again, and you’ll see a remarkable
improvement (as shown in Figure 7-13). So remarkable, in fact, that the
authors look deftly side to side, wink, and silently mouth the word
voodoo. To be frank, if we may, the placement of shape hints often
makes a noticeable difference, but the decision on placement is some-
thing of a dark art. We encourage you to reposition your first shape
hint pair at other corners to see how the remaining trouble spots rip-
ple to other areas.

7. You should get the idea by now that shape hints are a bit like cloves
(you know, the star-shaped things you poke into your ham during the
holidays)—a little goes a long way. Let’s add a few more, but do so
sparingly. To get rid of the kink in the upper curve, add a new shape
hint to the upper-right corner of the i on frame 20. This time, you’ll see
a small b in a red circle. Snap its b partner to the upper-right corner of
the logo at frame 35, and drag the playhead again to see your progress.

8. Add shape hints c and d to the lower-left and right corners, and you
should see a very smooth morph along this span of frames. The only thing remain-
ing, if you’re a perfectionist, is a slight wrinkle along the bottom of the “egg”
between keyframes 37 and 55. Remedy this by adding a new shape at frame 37—it
will start again at a, because this is a new pair of keyframes—and snap it in place to
the corresponding curve at frame 55.

ANIMATION IN FLASH CS3

295

7

Figure 7-13. A dramatic
improvement, but there
are still a few trouble
spots

861XCh07.qxp 6/25/07 1:24 PM Page 295

Compare your work with the LogoMorph.fla file, if you like. When you open a file that
already contains shape hints, you’ll need to take one small step to make them show, as
they like to hide by default. To toggle shapes hints on and off, select View ä Show Shape
Hints.

Even with the benefit of shape hints, we caution you to keep simplicity in mind. Certain
collections of shapes are simply too intricate to handle gracefully. It is entirely possible to
choke Flash through the use of an overwhelming number of anchor points, as shown in
Figure 7-14.

1. Open the FlowerWeed.fla file and drag the playhead along the timeline. The morph
isn’t especially polished, but it certainly doesn’t count as a complete eyesore.

2. Test the SWF (Control ä Test Movie), and you’ll see that playback slows nearly to a
halt as the tweening progresses. No amount of shape hinting can fix that.

Figure 7-14. Moderation in all things! While this transformation doesn’t look awful, it nearly chokes
Flash Player.

Altering gradients

If you want to animate gradients, shape tweens are the only
way to do it. You may not immediately think of gradients as
shapes, but when you select the Gradient Transform tool and
click into a gradient, what do you see? You see the handles
and points shown in Figure 7-15.

That center point, to Flash, is not much different from an
anchor point. The resize, radius, and rotate handles are not
much different from Bezier control point handles. In effect,
you are manipulating a shape—just a special kind. When ani-
mating a gradient, you simply change these gradient-specific
features from keyframe to keyframe, rather than a shape’s
corners, lines, and curves.

FOUNDATION FLASH CS3 FOR DESIGNERS

296

Figure 7-15. Gradients,
like anything else, can be
edited on keyframes, and
those keyframes are
tweenable.

861XCh07.qxp 6/25/07 1:24 PM Page 296

1. Open the GradientTween1.fla file and drag the playhead along the timeline to see
an example in action. Frame 1 contains a solid red fill. Frame 10 contains the built-
in rainbow gradient, which is rotated 90 degrees in frame 20.

Frames 20 through 30 provide a bit of interest because they spell out a limitation of gra-
dient shape tweens: it is not possible to tween one type of gradient to another. Well, we
take that back. You certainly can, but the results are unpredictable. Flash tries its best to
convert a linear gradient into a radial one, but between frames 29 and 30, the gradient
pops from one type to the other.

2. Open the GradientTween2.fla file. This example shows a combination of gradient
and shape change at the same time. Not only does the gradient fill transform, but
anchor points move, and even stroke color (and thickness!) changes from keyframe
to keyframe.

3. Experiment with solid colors as well as the Color panel’s Alpha property. When you
finish, close the file without saving the changes.

4. Even bitmap fills are tweenable, which, as shown in Figure 7-16, makes for some
interesting visual possibilities. Open the BitmapFillTween.fla file and press the
Enter/Return key. As with other types of gradients, use the Gradient Transform tool
to manipulate gradient control handles at each keyframe, and then let the shape
tween handle the rest. Easing works the same way.

Figure 7-16. Shape tween your bitmap fill transformations for some real zing!

Motion tweening
When we left that hapless hot pepper hanging, it had been hoping to rotate. It didn’t, and
instead found its molecules tumbling in a frenzied jumble. We told you there was a much
easier way to handle that rotation, and motion tweening is it. Shape tweens are for rear-
ranging anchor points and animating gradients; motion tweens are for everything else,
from enlivening text and imported photos to animating vector artwork drawn directly in
Flash or imported from another application like Illustrator CS3 or Fireworks CS3.

In contrast to shape tweens, motion tweens require self-contained entities. These include
symbols, primitives, drawing objects, and grouped elements, which many designers find
easier to work with than raw shapes. Open PepperSymbol.fla, for example, and you’ll see
that it’s easier to select the whole pepper without accidentally omitting the cap.

ANIMATION IN FLASH CS3

297

7

861XCh07.qxp 6/25/07 1:24 PM Page 297

Rotation

Let’s pick up with that rotation, shall we?

1. Open the PepperSymbol.fla file. This time, you’ll see a pepper symbol in the
library because the shapes from the earlier PepperShape.fla have been placed
inside a graphic symbol. Add a keyframe in frame 10. Select the Free Transform tool
and rotate the artwork 90 degrees in either direction on that second keyframe.
Sounds familiar, right? Here comes the difference.

2. Select Motion from the Tween property in the Property inspector. There it is! Drag
the playhead back and forth to see a nice, clean rotation of the pepper. As you saw
with shape tweens, the span of frames between the two keyframes changes color—
this time, as shown in Figure 7-17, to purple—and a solid arrow appears within the
span to indicate a successful tween.

Figure 7-17. Motion tweens, indicated by an arrow between
the keyframes, make rotations a snap.

Be aware that primitives and drawing objects blur the lines somewhat between what
constitutes a shape and what constitutes a symbol. It is possible to apply both shape
tweens and motion tweens to primitives and drawing objects, but many properties
such as color, alpha, and the like—and in primitives, shape—are only properly ani-
mated with shape tweens. These “gotchas” tend to steer the authors toward a path of
least resistance: use shapes for shape tweens and symbols for motion tweens. Within
those symbols, use whatever elements you like.

One fundamental point: When it comes to motion tweens, always put each tweened
symbol on its own layer. If you apply a motion tween to keyframes that contain more
than one symbol, Flash will try to oblige—but will fail. It’s a simple rule, so abide by it
and you’ll be happy.

FOUNDATION FLASH CS3 FOR DESIGNERS

298

861XCh07.qxp 6/25/07 1:24 PM Page 298

3. Change the Tween property to Shape and the span of frames turns green, the color
of shape tweens—but the solid arrow becomes a dashed line, indicating a failed
tween. Change the Tween back to Motion and everything’s right with the world.

4. Now, let’s think about real rotation; topsy-turvy; a full 360 degree spin.
How would you do it? (Hint: This is something of a trick question.) In a
full spin, the pepper ends up in the same position at frame 10 as it
starts with in frame 1, so there’s not really a transformation to tween.
Enter the Rotate drop-down menu in the Property inspector.

Notice that the Rotate setting is currently Auto. This is because you have
already rotated the pepper somewhat by hand. Click the pepper in
frame 10 and select Modify ä Transform ä Remove Transform to reset
the symbol’s rotation. In the Rotate drop-down menu, change the set-
ting to CW (clockwise), as shown in Figure 7-18, and drag the playhead
back and forth. Pretty neat! CCW (counterclockwise) rotates the tweened symbol
in the opposite direction, and the text field immediately to the right specifies how
many times to perform the rotation.

Motion tween properties

While we’re looking at the Property inspector, let’s go through the other settings. Here’s a
quick overview of motion tween properties:

Tween: This one should already be familiar. The choices are None, Motion, and Shape.

Scale: If a check mark is present, tweening for the current span of frames will
include a transformation in scale (size), if such a transformation exists. If you
haven’t scaled anything, it doesn’t matter what state the check mark is in. If scaling
and other transformations are combined in a given tween, only the other transfor-
mations will show if the check mark is vacant.

Ease and Edit: These settings apply a range of easing to the tween. The Edit button
allows for advanced, custom easing. More on this in the “Easing” section of this
chapter.

Rotate, [number of] times, and Orient to path: These settings control the type of
rotation and the number of times the rotation occurs. Only CW and CCW support
the [number of] times setting. The Orient to path setting only applies to tweens
along a motion guide (discussed later in the chapter).

Sync: In our experience, most people don’t even realize this property exists, but it can
be a real time saver when you’re dealing with graphic symbols. Unlike movie clips,
which have their own independent timelines, graphic symbols are synchronized with
the timeline in which they reside. Even so, there is a bit of flexibility: graphics can be
looped, played through once, or instructed to rest on a specified frame of their own
timeline. If a particular graphic symbol has been tweened numerous times in a layer,
the presence of the Sync check mark means you can update these timeline options
for all keyframes in that layer simply by making changes to the first graphic symbol in
the sequence. In addition, Sync allows you to swap one graphic symbol for another
and have that change ripple through all the synced keyframes in that layer.

Snap: This option helps position a symbol along its motion guide (motion guides
are discussed later in the chapter).

ANIMATION IN FLASH CS3

299

7

Figure 7-18. The Rotate property
makes quick work of rotations.

861XCh07.qxp 6/25/07 1:24 PM Page 299

Scaling, stretching, and deforming

We visited this topic in the “Shape tweening” section, and honestly, there’s not a whole lot
different for motion tweens. The key thing to realize is that scaling, stretching, and
deforming a symbol is like doing the same to a T-shirt with artwork printed on it. Even if
the artwork looks different after all the tugging and twisting, it hasn’t actually changed.
Shake it out, and it’s still the same picture. Shape tweening, in contrast, is like rearranging
the tiles in a mosaic. For this reason, the Free Transform tool disables the Distort and
Envelope options for symbols. These can’t be performed on symbols and therefore can’t
be motion-tweened. Let’s take a quick look at the other options:

1. Return to the PepperSymbol.fla file and
set the Rotation setting for the tween to
None. Use the Free Transform tool to per-
form a shear transformation at frame 10.
Shear? What’s that? Something you do
with sheep, right? Well, yes, but in Flash,
shearing is also called skewing, which can
be described as tilting. With the Free
Transform tool active, click the Rotate and
Skew option, and then hover over one of
the side transform handles (not the cor-
ners) until the cursor becomes an oppos-
ing double-arrow icon. Click and drag to
transform the pepper (see Figure 7-19).

The outline preview gives you an idea what the symbol will look like before you let
go of the mouse. Note that the skew occurs in relation to the transformation point,
indicated by the small white circle. Drag this white circle around inside or even out-
side the bounding box of the pepper and skew again to see how its placement
affects the transformation. Hold down Alt while skewing to temporarily ignore the
transformation point and skew in relation to the symbol’s opposite edge.

2. We’ve been using the Free Transform tool quite a bit, so let’s try something differ-
ent. Open the Transform panel (Window ä Transform) and note its current settings.
You’ll see the skew summarized near the bottom and, interestingly, the change in
scale summarized near the top (see Figure 7-20).

From this, it becomes clear that skewing affects scale when applied with the Free
Transform tool. To see the difference, select Modify ä Transform ä Remove
Transform to reset the symbol. The scale area of the Transform panel returns to
100% horizontal and 100% vertical. Click the Skew radio button and type 38 into
either one (but only one) of the skew input fields. Press Enter/Return to apply the
change. Now enter 200 into the scale input fields at the top (the Constrain check
mark means you only have to enter this number into one of them), and again press
Enter/Return to apply the change. Slide the playhead back and forth to see two
transformations tweened at once.

FOUNDATION FLASH CS3 FOR DESIGNERS

300

Figure 7-19. Motion tweening a symbol
transformation

861XCh07.qxp 6/25/07 1:24 PM Page 300

Figure 7-20. The Transform panel provides access to precision measurements.

Easing

Here’s where motion tweening begins to pull ahead of shape tweening. Easing is much
more powerful for motion tweens, thanks to the Custom Ease In/Ease Out editor. Before
we delve into that, though, let’s look at a sample use of the standard easing controls for a
motion tween, so you can see how much easier things are with the custom variety.

1. Open the MalletNoEasing.fla file. You’ll see a hammer graphic symbol in the
library and an instance of that symbol on the stage. Select the hammer and note
that the transformation point—the white dot in the handle—is located in the center
of the symbol.

We’re going to make this hammer swing to the left, so select the Free Transform
tool. Selecting this tool makes the transformation point selectable. Click and drag
that point to the bottom center of the mallet (see Figure 7-21).

Figure 7-21. You’ll have to move that transformation
point to make the movement realistic.

ANIMATION IN FLASH CS3

301

7

861XCh07.qxp 6/25/07 1:24 PM Page 301

2. Insert a keyframe at frame 10 (Insert ä Timeline ä Keyframe), and rotate the mallet
at frame 10 to the left by 90 degrees. Apply a motion tween to the span of frames
between 1 and 10, and scrub the timeline to see the effect. Not bad, but not espe-
cially realistic. How about some easing and bounce-back?

3. Drag the Ease slider all the way down to supply an ease of –100 (full ease in) to the
tween, as shown in Figure 7-22.

Figure 7-22. The Ease slider determines how the hammer falls.

This means that the hammer falls slowly as it begins to tip and increases speed as it
continues to fall (see Figure 7-23).

Figure 7-23. Ease in (left) vs. no easing (right). On the left, the hammer falls in a more
natural manner.

FOUNDATION FLASH CS3 FOR DESIGNERS

302

861XCh07.qxp 6/25/07 1:24 PM Page 302

4. This is a good start. To push the realism further, let’s embellish the animation. Add
new keyframes at frames 15, 20, 23, and 25. We’re going to provide some tweening
that makes the hammer rebound on impact and bounce a few times. At frame 15,
use the Free Transform tool or the Transform panel to rotate the hammer to approx-
imately northeast; in the Transform panel, this could be something like –55 in the
Rotate area. At frame 23, set the rotation to roughly east-northeast (something like
–80 in the Transform panel). A storyboard version of the sequence might look like
Figure 7-24.

Figure 7-24. Using several keyframes to make the hammer bounce.

5. Now that the mallet has been positioned, it just needs to be tweened and eased.
You can either click separately into each span of frames and apply a motion tween,
or click and drag across as many spans as you need (as shown in Figure 7-25). That
way you can apply the tweens all in one swoop.

Figure 7-25. Tweens can be applied to more than one frame span at a time.

6. Finally, click into each span of frames to apply easing, for the final touch. Span 1 to
10 already has –100. Apply the following easing to the remaining spans:

Span 10 to 15: 100 (full ease out)

Span 15 to 20: –100 (full ease in)

Span 20 to 23: 100

Span 23 to 25: –100

Drag the playhead back and forth to preview the action, and then test the movie to
see the final presentation. If you like, compare your work with MalletNormalEase.
fla. This exercise wasn’t especially hard, but wouldn’t it be even cooler if you could
perform all of the above with a single motion tween?

The fading image trails—visual echoes of the mallet—are the result of something
called onion skinning—very helpful in animation work. It’s used here for illustrative
purposes and is covered later in the chapter.

ANIMATION IN FLASH CS3

303

7

861XCh07.qxp 6/25/07 1:24 PM Page 303

Custom easing

Introduced in Flash 8, the Custom Ease In/Ease Out dialog box unleashes considerably more
power than traditional easing. Not only does it provide a combined ease in/out—where
animation gradually speeds up and gradually slows down, or vice versa—it supports multi-
ple varied settings for various kinds of easing, all within the same tween. Let’s take a look.

To perform custom easing, you have to first open the Custom Ease In/East Out dialog box.
To get to the dialog box, select a span of motion-tweened frames, and then click the Edit
button in the Property inspector. The result is a graph with time in frames along the hori-
zontal axis and percentage of change along the vertical axis (shown in Figure 7-26).

Figure 7-26. The Custom Ease In/Ease Out dialog box

Here’s a quick rundown of the various areas of the dialog box:

Property: By default, this is disabled until you deselect the check mark next to it. If
the check mark is present, custom easing—as specified by you on the grid—applies
to all aspects of the tween symbol. If the check mark is absent, this drop-down
menu lets you distinguish among Position, Rotation, Scale, Color, and Filters.

Use one setting for all properties: When checked, this allows multiple properties to be
eased individually.

Grid: The Bezier curves on this grid determine the visual result of the custom easing
applied.

FOUNDATION FLASH CS3 FOR DESIGNERS

304

861XCh07.qxp 6/25/07 1:24 PM Page 304

Preview: Click the two buttons in this area to play and stop a preview of the custom
easing.

OK, Cancel, and Reset: The OK and Cancel buttons apply and discard any custom
easing. Reset reverts the Bezier curves to a straight line (no easing) between the
grid’s opposite corners.

So, how does the grid work? Let’s look at a traditional ease in to see how the Custom Ease
In/Ease Out dialog box interprets it.

1. Open CustomEasingComparison.fla and set the Ease property to –100 (a normal
full ease in) for the tween in the top layer. Scrub the timeline to confirm that the
upper symbol starts its tween more slowly than the lower one, but speeds up near
the end. The lower symbol, in contrast, should advance the same distance each
frame (see Figure 7-27).

Figure 7-27. An ease in causes the upper symbol to start slower and speed up.

2. Click the Edit button to see what an ease out looks like on the grid. The curve
climbs the vertical axis (percentage of change) rather slowly, and then speeds its
ascent near the end of the horizontal axis (time in frames). Hey, that makes sense!
Click Cancel, apply a full ease out (100), and then check the grid again . . . bingo,
the opposite curve.

3. It follows that a combination of these would produce either a custom ease in/out
(slow, fast, slow) or a custom ease out/in (fast, slow, fast). Let’s do the first of those
two. Click the upper-right black square in the grid to make its control handle
appear. Drag it up to the top of the grid and about two-thirds across to the left, as
shown in Figure 7-28.

Figure 7-28. Dragging a control handle to create a custom ease

ANIMATION IN FLASH CS3

305

7

861XCh07.qxp 6/25/07 1:24 PM Page 305

4. Click the bottom-left black square and drag its control handle two-thirds across to
the right. The resulting curve—vaguely an S shape—effectively combines the
curves you saw for ease in and ease out (see Figure 7-29).

Figure 7-29. An S shape produces an ease in/out (slow-fast-slow) tween.

5. Click OK to accept this setting, and scrub the timeline or test the movie to see the
results.

6. Let’s inverse this easing for the lower symbol. Select the lower span of frames and
click the Edit button. This time, drag the lower-left control handle two-thirds up the
left side. Drag the upper-right control handle two-thirds down the right side to cre-
ate the inverted S curve shown in Figure 7-30. Click OK and compare the two
tweens.

FOUNDATION FLASH CS3 FOR DESIGNERS

306

861XCh07.qxp 6/25/07 1:24 PM Page 306

Figure 7-30. An inverted S shape produces an ease out/in (fast-slow-fast) tween.

Think this is cool? We’re just getting started! By clicking anywhere along the Bezier curve,
you can add new anchor points. This is where you can actually save yourself a bit of work.

1. Open MalletNoEasing.fla again. If you saved your work earlier, remove the tween
and delete all frames except for frame 1. Use the mouse to click and drag from
frame 2 to the right until you’ve selected them all, and then use Edit ä Timeline ä
Remove Frames. Confirm that the mallet’s transformation point is positioned at the
bottom center of its wooden handle. Now add a new keyframe at frame 25 and
apply a motion tween to the span of frames between 1 and 25.

2. Using the Free Transform tool at frame 25, rotate the mallet 90 degrees to the left.
This may seem like déjà vu, but things are about to change. Because a tween is
already applied, you can preview the falling mallet by scrubbing the timeline. Click
in the tweened span of frames and click the Edit button in the Property inspector.
We’re going to emulate the same bounce-back tween we did earlier, but this time
we’re going to do it all in one custom ease.

3. When the Custom Ease In/Ease Out dialog box opens,
click the Bezier curve near the middle and you’ll see a
new anchor point with control handles. Hold down
Shift and click that new anchor point—it disappears.
Add it again and straighten the control handles so
that they’re horizontal (as shown in Figure 7-31).

4. Repeat this process three more times, up the hill, as
shown in Figure 7-32. This prepares the way for the
sawtooth shape you’ll create in the next step.

ANIMATION IN FLASH CS3

307

7

Figure 7-31. Starting a more complex custom ease

861XCh07.qxp 6/25/07 1:24 PM Page 307

Figure 7-32. Continuing to add anchor points for a sawtooth curve

5. Leave the corner anchor points where they are. Position the four new anchor points
as follows:

100%, 10 100%, 20

60%, 15 85%, 23

6. You’ve probably heard of certain procedures described as more of an art than a sci-
ence . . . well, we’ve come to that point in this step. Here’s the basic idea, but it’s up to
you to tweak these settings until they feel right to you. To achieve the sawtooth curve
we’re after—it looks very much like the series of shark fins shown in Figure 7-33—click
each anchor point in turn and perform the following adjustment:

If it has a left control handle, drag that handle in toward the anchor point.

If it has a right control handle, drag that handle out a couple of squares to the
right.

You should get something like the shape shown in Figure 7-33.

7. Click the Preview play button to test your custom ease. It should look similar to the
original series of mallet bounce-back tweens, only now you’ve saved yourself a
handful of keyframes. How does this work? As depicted in the grid, and following
the horizontal axis, you have an ease-in curve from frames 0 to 10, an ease-out
curve from 10 to 15, an ease-in curve from 15 to 20, and so on—just like your
series of keyframes from earlier in the chapter. The mallet moves from its upright
position to its leaned-over position in the very first curve. From frames 10 to 15,
the vertical axis goes from 100% down to 60%, which means that the mallet actually
rotates clockwise again toward its original orientation, but not all the way. With
each new curve, the hammer falls again to the left, and then raises again, but never
as high. Compare your work with MalletCustomEasing.fla.

You’ll notice that the anchor points gently snap to the grid while you drag. To tem-
porarily suppress this snapping, hold down the X key.

FOUNDATION FLASH CS3 FOR DESIGNERS

308

861XCh07.qxp 6/25/07 1:24 PM Page 308

Figure 7-33. Shark fins produce a bounce-back effect.

On the final leg of our custom easing expedition, let’s pull out all the stops and examine a
tween that updates multiple symbol properties at once. You’ll be familiar with most of
what you’re about to see, and the new parts will be easy to pick up.

1. Open the CustomEasingMultiple.fla file. Select
frame 1 and note that a movieclip symbol appears in
the upper-left corner of the stage. It is solid green.
Select frame 55 and note the changes. At this point,
the apple is positioned in the center of the stage,
much larger, more naturally colored, and has a drop
shadow (see Figure 7-34).

From this, we can surmise that color and filters are
tweenable—that’s the new part—and in fact, they
are. In frame 1, select the apple symbol itself to see
that a Tint has been applied in the Property inspector,
which is replaced by None in the other keyframe.
Likewise, select the Filters tab at frame 55 and click
the apple to see that a drop shadow has been
applied that is not present in frame 1. These proper-
ties are no different from position and scale as far as
tweens are concerned.

2. Click into the span of tweened frames and note that a CW (clockwise) rotation has
been specified for Rotation. The Tween type is Motion, and Scale is enabled (without
it, the apple wouldn’t gradually increase in size). The Ease property reads ---, which
means custom easing has been applied. That’s what we’re after. Click the Edit button.

3. Thanks to the empty Use one setting for all properties check box, the Property drop-
down menu is now available. Use the drop-down menu to look at the grid curve for
each of five properties, all of which are depicted in the tween: Position, Rotation,
Scale, Color, and Filters. Each curve has its own distinct curve, which translates into
five individual custom ease settings for their respective properties (see Figure 7-35).

ANIMATION IN FLASH CS3

309

7

Figure 7-34. You are about to
discover that it isn’t only
rotation that can be tweened.

861XCh07.qxp 6/25/07 1:24 PM Page 309

Click the check box to disable the drop-down menu. Ack! Have you lost your cus-
tom settings? Thankfully, no. Flash remembers them for you, even though they’re
hiding. Click the Preview play button to preview the tween with no easing (the
default lower-left to upper-right curve). Click the check box again to see that the
custom ease settings are still intact. Preview the tween again, if you like.

Using animation
To this point, we’ve shown you a hefty animation toolbox. We’ve opened it up and pulled
out a number of powerful tools to show you how they work. In doing so, we’ve covered
quite a bit of ground, but there are still a handful of useful features and general workflow
practices to help bring it all together. Let’s roll up our sleeves, then, shall we?

A closer look at the Timeline panel

Whether you use shape or motion tweens, the Timeline panel gives you a pint-sized but
important dashboard to take advantage of while you work. Don’t let its small size fool you.
This strip (shown in Figure 7-36) along the bottom of the timeline lets you quickly find
your bearings, gives you at-a-glance detail on where you are, and even lets you time travel
to see where you’ve been—into both the past and the future.

Figure 7-36. The bottom edge of the timeline provides a collection of useful tools.

FOUNDATION FLASH CS3 FOR DESIGNERS

310

Figure 7-35. The Custom Ease In/Ease Out dialog box lets you specify distinct easing for five different tweenable properties.

861XCh07.qxp 6/25/07 1:24 PM Page 310

“OK, guys,” you may be thinking, “Time travel? Explain that one.” We will, but first let’s
take an inventory of this useful, if small, real estate.

Scroll to Playhead: In timelines that are long enough to scroll, this button centers
the timeline on the playhead.

Onion Skin and Onion Skin Outlines: These toggle two different kinds of onion skin-
ning, which give you a “time machine” view of your work.

Modify Onion Markers: Click this and you get a drop-down menu that controls the
functionality of the onion skin buttons.

Edit Multiple Frames: This allows you to select more than one keyframe at the same
time, in order to edit many frames in one swoop.

Current Frame: This indicates the current location of the playhead.

Frame Rate: This indicates the movie’s frame rate. Double-click this setting to
change it.

Elapsed Time: Given the current frame and the movie’s frame rate, this indicates
the duration in seconds of the playhead’s position. For example, in a movie with a
frame rate of 24 fps, this area will say 1.0s at frame 24.

Onion skinning

Traditional animators—the people who brought us the Mickey Mouse and Bugs Bunny car-
toons we all grew up on—often drew their artwork on very thin paper over illuminated sur-
faces called lightboxes. This “onion skin” paper allowed them to see through the current
drawing to what had gone on in the previous frames. In this way, they could make more
informed choices on how far to move someone’s head . . . or the anvil about to fall on it.

Flash offers you the same benefit, but with much more flexibility. In Flash, you can choose
to see through as many frames as you like—backward and even forward—in solids or in
outlines.

1. Open the YawningParrot.fla file that accompanies this chapter. Note that the
movie’s frame rate is 30 fps. Drag the playhead to frame 15, just as the bird begins
to lower its head, and confirm that the Elapsed Time indicator reads 0.5s (see
Figure 7-37). This makes sense: 15 divided by 30 is 0.5. Double-click the Frame Rate
indicator to open the Document Properties dialog box. Change the movie’s frame
rate to 60 fps and click OK. Note that the elapsed time is 0.2 seconds (still good: 15
divided by 60 is 0.2—if you don’t round up). One last observation: Change the
frame rate to 15 fps and check the Elapsed Time indicator. You were probably
expecting 1.0s, but the answer is a very close 0.9s. Why the discrepancy? We aren’t
sure, but it is close enough to the original value to satisfy us. Change back to the
original 30 fps.

ANIMATION IN FLASH CS3

311

7

861XCh07.qxp 6/25/07 1:24 PM Page 311

Figure 7-37. Another really good reason this is called the timeline

2. Drag the playhead to the right far enough that the timeline starts to scroll a bit,
and then leave the playhead where it is. Use the timeline’s scrollbar to scroll back
to the left, which hides the playhead. To quickly bring it back, click the Scroll to
Playhead button, which centers the timeline on the current frame. This is a good
“you are here” panic button that’s useful for especially long timelines.

3. Position the playhead at frame 125 and click the Modify Onion Markers button.
Choose Onion 5 from the drop-down menu. This positions two new markers on
either side of the playhead, as shown in Figure 7-38.

These markers extend five frames back and forward from the current position,
which explains the name of the Onion 5 setting. What they show are semitranspar-
ent views of those frames fading as they get farther from the playhead—just like
artwork on thin paper! Not only do they let you see back in time at previous
frames, they also show artwork on future frames, which provides practical sequen-
tial context for any moment in time. In this case, you’re seeing 11 “sheets”; the one
under the playhead (which is the darkest), and then five ahead and behind.

FOUNDATION FLASH CS3 FOR DESIGNERS

312

Figure 7-38.
Onion skinning
adds two markers
on either side of
the playhead.

861XCh07.qxp 6/25/07 1:24 PM Page 312

4. Click Modify Onion Markers again and choose Onion 2, as shown in Figure 7-39. This
reduces your view to five “sheets.” Drag the playhead slowly to frame 170 and
back. Notice that the onion markers move with you.

Figure 7-39. Various onion skin settings

5. What are the other onion modifiers? Onion All spreads the onion markers along the
whole timeline. Try it with this file—the result is overwhelming (and also makes it
hard to drag the playhead around), but with timelines of little movement, it prob-
ably has its place. If you want some setting besides 2, 5, or All, drag the markers
along the timeline yourself. If you like, you can look eight frames back and two
frames forward—or any combination that suits your animation.

The top two choices work like this: Always Show Markers keeps the onion markers
visible, even if you toggle the Onion Skin button off; and Anchor Onion keeps the
onion markers from following the playhead.

6. Choose Onion 5 and drag the playhead to frame 15. Click the Onion Skin Outlines
button. Note that the same sort of onion skinning occurs, but that the tweened
areas are shown in wireframe format (see Figure 7-40). This makes it even clearer
to see what’s moving and what isn’t.

ANIMATION IN FLASH CS3

313

7

861XCh07.qxp 6/25/07 1:24 PM Page 313

Figure 7-40. Onion skin outlines show tweened artwork in a wireframe format.

Editing multiple frames

Timeline animation can be painstaking work, no doubt about it. Even if you’re using onion
skinning, chances are good that you’re focused on only a handful of frames at a time.
There’s nothing wrong with that—as long as you remember to keep your eye on the big
picture, too. Sooner or later, it happens to everyone: artwork is replaced, your manager
changes her mind, or you find that you’ve simply painted yourself into a corner and need
to revise multiple keyframes—maybe hundreds—in as few moves as possible.

Fortunately, the timeline has a button called Edit Multiple Frames, which allows you to do just
what it describes. That’s the obvious answer, of course, and we’ll cover that in just a moment,
but it’s worth noting that the concept of mass editing in Flash extends into other avenues.

Due to the nature of symbols, for example, you can edit a library asset and benefit from an
immediate change throughout the movie, even if individual instances of that symbol have
been stretched, scaled, rotated, and manipulated in other ways. If an imported graphic file,
such as a BMP, has been revised outside of Flash, right-click (PC) or Ctrl-click (Mac) the
asset in the library and, from the context menu, select either Update (if the location of the
external image hasn’t changed) or Properties, and then click the Import button to reimport
the image or import another one.

Sometimes it’s not that easy. Sometimes you will have finished three days of meticulous
keyframing only to learn that the symbol you’ve tweened isn’t supposed to be that symbol

Remember, onion skinning is just as relevant to shape tweens as it is to motion tweens.

FOUNDATION FLASH CS3 FOR DESIGNERS

314

861XCh07.qxp 6/25/07 1:24 PM Page 314

at all. Time to throw in the towel? Well, maybe time to roll the towel into a whip. But even
here, there’s hope . . . if you’re using graphic symbols. It’s easy enough to swap out sym-
bols of any type for any other type at a given keyframe, but the swap only applies to the
frames leading up to the next keyframe. With graphic symbols, it’s possible to apply a swap
across keyframes, but you have to know the secret handshake.

1. Open SyncPropertyGraphic.fla and note that a cube has been motion-tweened
for you along a clockwise rectangular path. Use your imagination to picture the rec-
tangular path as something more spectacular. Now, revel in that moment, because
in this hypothetical world, you did that—and it’s really cool. Here comes the drama:
the boss eases into your cubical, apologetic at first, but steadily annoyed at having
to elbow past your high-fiving buddies. Something is wrong, says the boss.
Something is dreadfully wrong. The client wanted the pyramid, not the cube.

2. Select the cube at frame 1 and press the Swap button. (Remember, the boss is watch-
ing.) Select the pyramid symbol and press OK. Scrub the playhead a bit to confirm
that the tween movement has picked up the new symbol. Smile as the boss leaves.

3. Now scrub to frame 80 and beyond. Look quickly over your shoulder. Good, the
boss is still walking away. Why didn’t the swap (shown in Figure 7-41) take? The
answer rests on a tween property called Sync, which you can see in the Property
inspector when you click anywhere in the span of frames that comprises a motion
tween. The Sync property sets up a relationship between keyframes that locks their
symbol in an unbreakable chain—well, unbreakable until you choose to remove
the check mark from the Sync setting.

Figure 7-41. Swapping symbols can sometimes produce unexpected results.

4. Select the span of frames between each pair of keyframes, and click Sync to enable
it (see Figure 7-42). As you do this, note that the small vertical line to the left of
each keyframe disappears. This indicates the synchronized relationship. Note also
that the pyramid swap occurs.

ANIMATION IN FLASH CS3

315

7

861XCh07.qxp 6/25/07 1:24 PM Page 315

Figure 7-42. Tweens that are absent of Sync are “segregated” by a vertical line to the left of
each keyframe in the timeline.

5. Now that all of the keyframes are synchronized, select any keyframe after frame 1
and use the Swap button to change the symbol back to the cube. You’ll find that you
can’t. The Sync option prevents changes to any keyframe but the first in the chain.

6. Select the first keyframe and use the Swap button to change the symbol back to the
cube. Scrub the timeline and verify that the swap has occurred across the board.

So much for updating content by swapping out symbols. You may be perfectly happy with
the artwork as is—it may be the placement of content that’s out of whack. This is where
the Edit Multiple Frames button makes its entrance. Using this button requires a bit of prep
work, so let’s step through that:

There are actually two ways to apply a motion tween, and we’ve purposefully been
steering you toward one of them so far in this chapter. Why? Because the other way has
an interesting, but not at all obvious, side effect that is omitted by the Property inspec-
tor approach. As with shape tweens, you can right-click (PC) or Ctrl-click (Mac) between
any two keyframes and select Create Motion Tween from the context menu. Applying the
tween from this location automatically puts check marks in the Sync and Snap proper-
ties every time. This does not happen when a motion tween is applied via the Property
inspector. With the Property inspector approach, Flash remembers whether Sync and
Snap have already been chosen, and sets their check marks accordingly.

In addition to this, Create Motion Tween has the potential to create new library assets
on your behalf, which you may not want. This happens when you use this approach to
apply a motion tween to non-symbols, such as a shape, a primitive, or grouped ele-
ments. Try it and you’ll see: Flash will attempt to make the motion tween work even
though you’ve applied it to the wrong sort of object. You’ll find two new symbols,
Tween 1 and Tween 2, in the library—more, if you do it repeatedly—and Flash will
apply motion tweens to those symbols instead.

FOUNDATION FLASH CS3 FOR DESIGNERS

316

861XCh07.qxp 6/25/07 1:24 PM Page 316

1. First, you’ve got to decide on a range of possibly editable frames. This range extends
both horizontally and vertically. Do you want to edit one layer only, multiple layers,
or all layers? The easiest way to keep from editing the wrong layer is to temporarily
lock it. Open EditMultipleFrames.fla and click the Lock icon in the Pyramid layer.
This makes the Cube layer the exclusive focus of your attention. Next, make your
horizontal decision. The extent of your onion skin markers determines the lateral
range. Use the Modify Onion Markers drop-down menu to select Onion All.

2. Click the Edit Multiple Frames button. At this point, you’ve chosen a valid range of
editable frames and have activated the possibility to select them.

3. Now . . . to do it. Select Edit ä Select All and drag the upper-left cube down so that
it rests on the pyramid’s peak, as shown in Figure 7-43. Thanks to the Edit Multiple
Frames button, all four keyframes of this animation are moved at the same time in
relation to each other.

Figure 7-43. The Edit Multiple Frames button lets you adjust many keyframes
at the same time.

Test your movie to confirm that the cube now rests on the pyramid for the full
duration of the animation. By following this procedure, you can edit not only the
position, but also the scale, rotation, and any other property available to the ele-
ment at hand, whether shape or symbol.

In complex movies, you may find it tedious to temporarily lock a great number of
layers. Instead of using Select All, you can simply select the desired layer by single-
clicking its name. Hold Shift while clicking to select multiple adjacent layers and
Ctrl/Cmd while clicking to select multiple non-adjacent layers.

ANIMATION IN FLASH CS3

317

7

861XCh07.qxp 6/25/07 1:24 PM Page 317

Combining timelines

Pat your head. Good! Now rub your tummy. Excellent. Now . . . do those both at the same
time. Until the undertaking snaps into place, it might seem an impossible feat, but once
you manage to pull it off, you know you’ve done something pretty snazzy. Flash animations
get interesting in the same way when you combine techniques and timelines. This is where
the distinction between graphic symbols and movieclip symbols really comes into play.
Both types of symbols have timelines, but each behaves in a different way. Understanding
this paves the way toward good decision-making in your animations.

Movieclips operate independently of the timelines they sit in. You can create a 500-frame
animation on the main timeline, and then transfer all those frames into a movieclip sym-
bol, and everything will run the same—even if that movieclip only occupies a single frame
on the main timeline. Not so with graphic symbols. Graphic symbols are synchronized with
the timelines that contain them, so if you transfer all those frames into a graphic symbol,
that symbol will have to span out a length of 500 frames in the main timeline in order for
its own timeline to fully play.

While movieclips can be instructed with ActionScript to stop, play, and jump to various
frames, graphics can only be told to hold their current position, play through once, or
loop. This instruction comes not from ActionScript, but by Property inspector settings.
ActionScript within the timelines of graphic symbols is not performed by a containing
timeline. Sound in graphic symbols is also ignored by parent timelines.

1. Open TimelineCombine.fla and select the symbol at frame 1. Look in the Property
inspector and you’ll see that the Options for graphics drop-down menu, next to the
Swap button, is set to Single Frame, and that the single frame shown is frame 1. The
frame in question belongs to the timeline of this graphic symbol. Change this num-
ber to 5 and press Enter/Return. Depending how you left things in an earlier exer-
cise, you’ll either see a cube or a pyramid—but in both cases, you’ll see the graphic’s
text content, a lowercase a, become a lowercase b, as shown in Figure 7-44.

Figure 7-44. Changing the displayed frame of a graphic symbol

2. Double-click the cube or pyramid asset in the library and you’ll see why. Both sym-
bols have a timeline, and the text layer in each changes every five frames.

FOUNDATION FLASH CS3 FOR DESIGNERS

318

861XCh07.qxp 6/25/07 1:24 PM Page 318

3. Select the symbol again in the main timeline. Change the Single Frame setting to
Play Once, and change the First input field to 10. This updates the displayed letter
to c and instructs the graphic symbol to play through the end of its timeline once.
Drag the playhead slowly to the right to see the letters d, e, and so on, displayed
through j while the symbol moves across the stage. At j, the symbol continues to
move, but no longer updates its text. The reason for this is that the symbol’s time-
line has reached its end, but does not repeat.

4. Change the Play Once setting to Loop, and change First to 1. Scrub again and you’ll
see the letters start from a and repeat again from a after j is reached.

Designer and animator Chris Georgenes (www.mudbubble.com) has lent his talents to
numerous cartoons on television and the Web, including Dr. Katz, Professional Therapist,
Adult Swim’s Home Movies, and, well, more online animation than either of us could
shake a stick at. One of the giants in the field, Chris uses combined timelines to great
effect in practically all of this Flash work. From walk cycles to lip-synching, Chris builds up
elaborate animated sequences by organizing relatively simple movement into symbols
nested within symbols. The orchestrated result often leaves viewers thinking, “Wow, how
did he do that?!” Luckily for us, Chris was kind enough to share one of his character
sketches, which provides a simplified example.

1. Open the Grotto.fla file from the examples folder for this chapter. Note that the
main timeline only has one frame and only one symbol in that frame (see Figure 7-45).
This base symbol is a movieclip, because Chris wanted a slight drop shadow effect on
the friendly monster, and graphic symbols don’t support filters.

Figure 7-45. Nested symbols allow you to take the most useful
features of each symbol type.

ANIMATION IN FLASH CS3

319

7

861XCh07.qxp 6/25/07 1:24 PM Page 319

http://www.mudbubble.com

2. Double-click this movieclip to enter its timeline.

Even with a basic example like this one, you may be surprised by the number of lay-
ers inside. Try not to feel overwhelmed! The layers, as shown in Figure 7-46, are
neatly labeled. (Now that you see how a pro does it, start labeling your layers as
well.) Also, although there are many of them, they all have a purpose. If you like,
hide a number of layers by clicking in the eye column of each to see how each adds
to the complete picture. What we’re interested in is the mouth.

Figure 7-46. Complex images and animations are built up from simple pieces.

3. Double-click the mouth symbol to enter its timeline. Here too there is a handful of
layers, comprising the lips, teeth, and a few shadows of this monster. There are 115
frames of animation here—mostly motion tweens, but also a shape tween at the
bottom—and if you scrub the timeline, you’ll see the mouth gently move up and
down . . . this is Grotto breathing (see Figure 7-47).

FOUNDATION FLASH CS3 FOR DESIGNERS

320

861XCh07.qxp 6/25/07 1:24 PM Page 320

Figure 7-47. Nesting timelines is a way to compartmentalize complexity.

Because the mouth symbol itself is a graphic symbol, its movement can be made to
scrub along with the timeline of its parent.

4. Return to the grotto timeline by clicking the grotto movieclip icon in the bread-
crumbs area at the bottom of the Timeline panel.

Drag the playhead to a keyframe, such as 11, and click the mouth symbol. Note
that it’s set to Loop in the Property inspector and starts at frame 11. Because the
mouth symbol loops, the mouth itself can be tweened to various locations and
rotations during the course of the grotto symbol’s timeline. The complexity of the
mouth’s inner movement is neatly tucked away into the mouth symbol.

At any point, you can pause this breathing movement by adding a keyframe in the
grotto symbol’s timeline and changing the mouth symbol’s behavior setting from
Loop to Single Frame.

The phenomenon you’ve just seen can be nested as deeply as you like. Even limited nest-
ing, like that in Grotto.fla, can, for example, be used to animate a bicycle—the wheels
rotate in their own timeline while traveling along the parent timeline—or twinkling stars.
Just keep in mind, if a given graphic symbol’s timeline is, say, 100 frames long, and you
want all of those frames to show, the symbol will have to span that many frames in the
timeline that contains it. Of course, you may purposefully want to show only a few frames.
Let’s look at that parrot again for an example:

1. Open YawningParrot.fla and drag the playhead slowly back and forth between
frames 60 and 65. As the head turns, the beak moves from left to right. A bit of
motion tweening squashes the beak as it nears the crossover, and the shape
changes completely in the middle at frame 62.

2. Select the upper beak at frame 61. Open the Transform panel (Window ä Transform)
and note that the width of this symbol has been reduced to half. In the Property
inspector, note that this symbol is an instance of the beak top asset in the library. It
is set to Single Frame at frame 1.

ANIMATION IN FLASH CS3

321

7

861XCh07.qxp 6/25/07 1:24 PM Page 321

3. Select the upper beak at frame 62. This symbol is still the beak top asset and is still
set to Single Frame, but this time its First property is set to 2 (see Figure 7-48). All it
takes is one quick frame to complete the illusion of a head turn!

Figure 7-48. Graphic symbols can be used as mini-libraries
to keep the real library from overcrowding.

This is a perfect example of how a graphic symbol’s timeline can be used to reduce clutter
in the library. It’s not hard to imagine how handy this would be for swapping out mouth
shapes in the case of an animated character that speaks. Sure, you can use the Swap but-
ton to replace any symbol with another at any keyframe, but it is much less hassle to
update the First field in the Property inspector for graphic symbols. This technique is one
of those hidden gems that becomes a favorite once you realize it, and we thank Chris for
sharing such a useful trick.

Motion tween effects

A common question on the Adobe support forums is how to fade in an imported photo,
and then fade it out again. People are comfortable enough importing a BMP or PNG, but
when they drag it to the stage, there doesn’t seem to be a way to adjust its transparency at
all, much less over time. The trick here is to convert the photo into a symbol. The type of
symbol depends on what effects you want to apply. Both graphics and movieclips support
color effects such as Brightness, Tint, Alpha, and Advanced, but only movieclips support fil-
ters. Let’s try it:

For more information on character design, advanced tweening, and lip-synching
techniques, search “Chris Georgenes” on the Adobe website (www.adobe.com/)
to see a number of Chris’s articles and Macrochats (Flash-based recordings of
live tutorial presentations).

FOUNDATION FLASH CS3 FOR DESIGNERS

322

861XCh07.qxp 6/25/07 1:24 PM Page 322

http://www.adobe.com

1. Create a new Flash document and save it as TronGuy.fla. Using the Property inspec-
tor, set the document’s dimensions to 550 5 400 and its background color to black.

2. Select File ä Import to Stage to import the tronguy.png graphic file from the exercises
folder for this chapter. Use the Align panel (Window ä Align) to center the image.

There is doubtless no better way to demonstrate a tweened Glow filter than to
apply it to Tron Guy—but first, let’s tween an alpha transition.

3. Select the imported PNG and note the absence of color styling properties. With the
PNG selected, go to Modify ä Convert to Symbol and choose Graphic, as shown in
Figure 7-49. Name the symbol tron guy and click OK. Select the symbol and note
the Color drop-down menu.

Figure 7-49. Converting an imported image to a symbol allows for color and alpha tweens.

4. Insert a keyframe at frame 10. Select frame 1 and choose Alpha from the Color
drop-down menu. A slider will appear. Drag this down to zero, and then apply a
motion tween between the two keyframes. Suddenly Tron Guy’s entrance is visually
more interesting.

5. To make it even more dramatic, choose the Advanced option, which makes a
Settings button appear. Select the symbol at frame 10 and click the Settings button.
In the Advanced Effect dialog box, drag the right-hand red and green sliders down to
–225, and then click OK. Select the symbol at frame 1 and click the Settings button
again. Drag the left-hand Alpha slider up to 100%. Drag the right-hand red, green,
and blue sliders down to –225. Click OK and scrub the timeline to see the results.

Who is this debonair futuristic fellow? Ladies and gentleman, we present to you Jay
Maynard, better known on the Internet as Tron Guy (www.tronguy.net/). Jay has
made numerous appearances on “Jimmy Kimmel Live” in his homemade costume
inspired by the 1982 Disney film Tron and was good enough to let us use his likeness
for this book.

ANIMATION IN FLASH CS3

323

7

861XCh07.qxp 6/25/07 1:24 PM Page 323

http://www.tronguy.net

6. For the final touch, let’s add some glow to Tron Guy’s costume. Open the
TronGuyGlow.fla file for this one, because we’ve outlined some of his circuits for
you. Insert a keyframe in the costume layer at frame 20. Select the costume symbol
at this frame and flip the Property inspector to the Filters tab. Add a Glow filter with
the following settings:

Color: #0099FF

Blur X: 8

Blur Y: 8

Strength: 330%

7. Insert a keyframe in the circuits layer at frame 20 and add a Glow filter to the sym-
bol on that layer. Use the same settings, except make the color #FFFFFF (white).
Apply a motion tween between the keyframes in both layers. A single line of
ActionScript in the scripts layer—gotoAndPlay(10)—loops the movie between
frames 10 and 20. Test the movie to see your handiwork (see Figure 7-50).

Figure 7-50. Say, that looks just like the movie!

If you motion tween the alpha property of nested vector art, you may be in for a surprise.
Semitransparent graphic and movieclip symbols that are made up of other symbols don’t
fade out cleanly as a whole. Instead, each piece fades individually, as shown in Figure 7-51.

The reason the costume layer’s glow follows the contours of the costume is because
this image is a PNG with a transparent background. If the photo had a solid back-
ground, the glow would outline a rectangle around the photo itself.

FOUNDATION FLASH CS3 FOR DESIGNERS

324

861XCh07.qxp 6/25/07 1:24 PM Page 324

Figure 7-51. Unintentional X-ray effect caused by alpha reduction to nested symbol

There are two ways to avoid this phenomenon. On solid backgrounds, replace the alpha
tween with a tint tween set to the same color as the background. In the case of movieclips,
you may alternatively leave the alpha tween as is, but set the blend mode to Layer. These
solutions are demonstrated in the FadingParrot.fla file.

Motion guides

Tweening in a straight line is effortless, and we’ve shown how easing can make such move-
ment more realistic. But what if you want to tween along a curve? Wouldn’t it be great if
we could tell you that’s only marginally more difficult? Well, we can, and we’ll even show
you. The trick is to use something called a motion guide.

1. Open the MotionGuide.fla file that accompanies this chapter. You’ll see a butter-
fly graphic symbol in one layer and a curvy squiggle in another. If you scrub the
timeline at this point, you’ll see the butterfly tween in a straight line with a slight
rotation between frames 240 and 275. Butterflies don’t really fly like that, so let’s
fix the flight pattern.

2. Right-click (PC) or Ctrl-click (Mac) the flutter by layer and choose Guide
from the context menu, as shown in Figure 7-52. Its icon turns from a
folded page to a hammer.

This changes that layer into a guide layer, which means anything you
put into it can be used as a visual reference to help position objects
in other layers. Depending on your snap settings (View ä Snapping),
you can even snap objects to drawings in a guide layer. Artwork in
guide layers is not included in the published SWF and does not add
to the SWF’s file size. In this exercise, the squiggle is your guide—
but setting its layer as a guide layer isn’t enough. It must be a
motion guide, as shown in Figure 7-53. To make this happen, gently
drag the butterfly layer up and to the right. The hammer icon will change back to
the folded paper icon, and when you let go, it will change again into what looks like
a shooting comet.

ANIMATION IN FLASH CS3

325

7

Figure 7-52. Changing a normal layer
into a guide layer

861XCh07.qxp 6/25/07 1:24 PM Page 325

Figure 7-53. Changing a guide layer into a motion guide layer

The other way to create a motion guide layer is make it from scratch by selecting
the layer you want to guide, and then pressing the Add Motion Guide button on
lower left of the timeline.

3. Thanks to the Snap setting in the tweened frames (see the Property inspector while
clicking anywhere inside the tween), the butterfly should already be snapped to the
closer end point at the last keyframe. Scrub to make sure. The butterfly should fol-
low the squiggle along its tween (as shown in Figure 7-54). If it doesn’t, make sure
to snap the butterfly to the squiggle’s left end in frame 1 and right end in frame
240. Imagine tweening that by hand!

Figure 7-54. A motion guide affects the tweened path of a symbol.

Motion guides must have a clear beginning and end point, as does the squiggle shown.
Guides that cross over each other may cause unexpected results, so take care not to
confuse Flash. Also, make sure your motion guide line extends the full length between
two keyframes.

FOUNDATION FLASH CS3 FOR DESIGNERS

326

861XCh07.qxp 6/25/07 1:24 PM Page 326

4. Click anywhere inside the tween and put a check mark in the Orient to Path check
box in the Property inspector. Scrub the timeline to see how this affects the but-
terfly’s movement. The butterfly now points in the direction described by the
squiggle.

5. To add even more realism, let’s add some complexity, as described earlier in the
“Combining timelines” section. Double-click the butterfly asset in the library to
enter the Symbol Editor. Add a keyframe to the upper wings and lower wings layers
in frames 5 and 10. In the body layer, click in frame 10 and extend the frames to
that point (Insert ä Timeline ä Frame). Select both wings symbols at frame 5, and
use the Free Transform tool to reduce their width by about two-thirds. Use the
Alt/Option key to keep the transformation centered.

6. Motion tween the wings layers as shown in Figure 7-55, and test your movie to see
the combined effect.

Figure 7-55. Tweening a timeline inside the butterfly graphic symbol

Tweening a mask

In Chapter 3, you used text to create a mask. In this chapter, you’ll use a shape, and you’ll
apply a shape tween to it to produce an iris wipe transition, like in the old movies.
Animating masks is no more difficult than animating normal shapes or symbols. In fact, the
only difference is the status of the layer that contains the mask itself.

ANIMATION IN FLASH CS3

327

7

861XCh07.qxp 6/25/07 1:24 PM Page 327

1. Open the TweenMask.fla file that accompanies this chapter. You’ll see three layers:
a photo of one of the authors as a young boy, a text layer to provide some back-
ground texture, and a small yellow dot. Insert a keyframe at frame 30 in the dot
layer. Use the Transform panel (Window ä Transform) to increase the size of the dot
in frame 30 to 800%. This makes the dot much easier to manipulate.

2. Use the Free Transform tool to increase the size of the dot yet further, so that it
matches the width and height of the photo. Because the dot is a shape, apply a
shape tween between the keyframes in the dot layer. Scrub the timeline to see the
result (shown in Figure 7-56). Easy as pie!

Figure 7-56. Masks can be tweened just as easily as regular
shapes or symbols.

Often, once new designers get comfortable with motion guides and masks, they come to
the realization that a layer can either be converted to a guide or mask layer, but not both.
Naturally, the question arises, “Is it possible to tween a mask along a motion guide?” The
answer is yes, and yet again, combined timelines come to the rescue.

1. Open the TweenMaskMotionGuide.fla file. The setup is very similar to the
TweenMask.fla file, except that the dot layer is now named guide mask. Double-
click the guide mask symbol to enter its timeline.

2. Confirm that a dot symbol is motion tweened in association with a motion guide.
Return to the main timeline.

3. Right-click (PC) or Cmd-click (Mac) the guide mask layer and select Mask from the
context menu. This nested combination gives you a motion-guided mask!

Your turn: Making an animated button
By now, you should get the idea that combined timelines are useful things. Here’s a quick
look at a very popular effect for the over state of a button symbol. Even a little bit of
motion can add just the right touch to liven up an otherwise simple button.

FOUNDATION FLASH CS3 FOR DESIGNERS

328

861XCh07.qxp 6/25/07 1:24 PM Page 328

1. Open the AnimatedButton.fla file that accompanies this chapter. Test the movie
to see how the buttons currently work. It’s certainly not bad looking, but plain
vanilla nonetheless. We’re going to add some animated glint to the Over frame.

2. Double-click the glint asset in the library to enter its timeline. There are three things
to notice here:

A scripts layer tells the timeline to only play once (stop() in frame 5).

A mask layer constrains the animation to the shape of the button only.

A shape-tweened layer, named glint, moves a rounded rectangle from above to
below the mask.

3. Double-click the button symbol to enter its timeline. Add a new layer above the bg
(background) layer. Name the new layer glint. Insert a keyframe in the glint layer at
the Over frame.

4. Drag the glint movieclip to the stage in the Over keyframe. Use the Property inspec-
tor to position the glint symbol at x: 0 and y: –30. Insert a blank keyframe (Insert ä
Timeline ä Blank Keyframe) in the Down frame of the glint layer. This keeps the ani-
mation from occurring while the mouse clicks the button; it will only show when
the mouse hovers over the button and when the mouse releases from a clicked
state, both of which lead to an over state.

An even cooler animated button

This technique goes right back to the roots of Flash and the first efforts aimed at getting
video to play in Flash. You will be dealing with it in greater depth in the next chapter, but
here is a rather interesting technique that doesn’t put objects in motion, but instead treats
motion as a sort of flip book. Here’s how:

1. Open a new Flash document, change the stage dimensions to 94 pixels wide by 44
pixels high, and set the frame rate to 24 fps. Name the Flash file Circuit and save it
to the Circuit folder in your Exercise folder.

Inside the Circuit folder are a QuickTime movie named Circuits and a folder named
Images, which contains 50 sequentially numbered JPG images. These images were created
by opening the QuickTime movie in QuickTime Pro—you can do this with any video editor
that has QuickTime output capability—and exporting the movie as an image sequence (as
shown in Figure 7-57). This technique, called rotoscoping, breaks a video into a series of
images (which in this case, we then saved to the Images folder).

2. Create a movieclip named Circuit, and when the Symbol Editor opens, select File ä
Import ä Import to Stage.

ANIMATION IN FLASH CS3

329

7

861XCh07.qxp 6/25/07 1:24 PM Page 329

Figure 7-57. We start with a rotoscoped video.

3. When the Import dialog box opens, navigate to the Images folder and select the first
image in the sequence (Image01), and click Open. Flash will grab the image, notice
that there is a number after it, and think, “Hmmm, this seems to be part of a
sequence.” This is why Flash asks you, as shown in Figure 7-58, if you want to import
the entire sequence. Click Yes. You will see a progress bar appear; when it is finished,
each image will appear in the timeline. The neat thing about this is that all the images
are in exactly the same position in each frame, and they are also placed in the library.

Figure 7-58. Flash, seeing a sequence of images, asks if it can import the
entire sequence.

4. Import the Zap.mp3 file into the library.

5. Create a new button symbol named btnCircuit. Drag the Image01 file from the library
to the stage and, using the Property inspector, set its x and y coordinates to (0, 0).

6. Add a keyframe to the Over frame of the button symbol, and drag the Circuit
movieclip to the stage. Set its x and y position to (0, 0) using the Property inspector.

7. Insert a blank keyframe in the Down frame.

FOUNDATION FLASH CS3 FOR DESIGNERS

330

861XCh07.qxp 6/25/07 1:24 PM Page 330

8. Insert a keyframe in the Hit frame, draw a box that is 94 pixels wide by 44 pixels
high, and position it at (0, 0). The content in the Hit frame won’t be visible. Hit
frames are used by Flash to determine the hotspot for a button.

9. Add a new layer named Audio to the button timeline, and insert a keyframe in the
Over frame of the Audio layer. Drag the Zap file from the library to the stage. Click
the sound in the Over frame and set its property to Event. When the button is
rolled over, sound in the Over frame will play, and the sequence of images in the
movieclip will also start to play (see Figure 7-59).

10. Click the Scene 1 link to return to the main timeline and test the file.

Copy motion as ActionScript 3.0

You may have noticed a distinct lack of ActionScript in this chapter. The reason is that the
subject of programmatic motion simply can’t be covered with any degree of thoroughness
in one chapter. If you are really interested in the subject, then Foundation ActionScript 3.0
Animation: Making Things Move! by Keith Peters or Foundation ActionScript 3.0 with Flash
CS3 and Flex 2, by Steve Webster and Sean McSharry (the companion volume to this book)
are two excellent starting points. Still, we’d like to mention a really neat addition to Flash
Professional CS3 that fits this chapter like a glove.

The feature is copy motion as ActionScript 3.0. Here’s how it works:

1. Open the CreateMotionAS3.fla file. When the file opens, you will see we have
added an animated ball and a parrot to the stage, as well as an Actions layer (see
Figure 7-60).

Figure 7-60. We start with a ball and one slightly worried parrot on the stage.

Figure 7-59. Couple audio with
rotoscoping to add a bit of zing
to an animated button.

ANIMATION IN FLASH CS3

331

7

861XCh07.qxp 6/25/07 1:24 PM Page 331

2. Scrub the playback head across the timeline. You will see the ball fall to the bottom
of the stage, squash, stretch, and bounce back up to the top of the stage. Let’s apply
that animation to the slightly worried parrot.

3. Select the parrot on the stage and, in the Property inspector, give it the instance
name of Parrot.

4. Select the first frame of the Ball layer, press the Shift key, and select the last frame
of the layer. This selects all of the frames.

5. With the frames selected, either select Edit ä Timeline ä Copy Motion as
ActionScript 3.0, as shown in Figure 7-61, or right-click (PC) or Ctrl-click (Mac) and
select Copy Motion as ActionScript 3.0 from the context menu.

Figure 7-61. You can access the command through the Edit menu item or the context menu.

6. When you select that menu item, a dialog box will open asking you for the name of
the symbol to which the motion will be applied (see Figure 7-62). Enter Parrot and
click OK.

What you have done is ask Flash to translate the motion of the ball into ActionScript and
apply that same motion to the parrot. This all happens in the background, and when the
motion is translated into ActionScript, the code is placed on the clipboard.

FOUNDATION FLASH CS3 FOR DESIGNERS

332

861XCh07.qxp 6/25/07 1:24 PM Page 332

Figure 7-62. You must identify the instance to which the
ActionScript will be applied.

7. Select the first frame of the Actions layer and open the ActionScript Editor. Click in
the Script pane and select Edit ä Paste. The code will be pasted into the Script pane.

8. Close the ActionScript Editor to return to the main timeline. Save and test the
movie. The parrot takes on the animation and distortion of the ball in the SWF (see
Figure 7-63).

Figure 7-63. Being squashed sort of explains why the parrot looks worried.

Now that you know how this works, there are obviously some rules. The first one is that
the motion must be a motion tween using a symbol, and the second is the code can only
be applied to a movieclip on the stage. The great thing about this new feature is that the
motion tween can contain the following properties (many of which we’ve talked about in
this chapter):

Position Orientation to path

Scale Cache as bitmap

Skew Frame labels

Rotation Motion guides

Transformation points Custom easing

Color Filters

Blend modes

The bottom line is that you can create some pretty amazing animation effects without
writing a single line of ActionScript.

ANIMATION IN FLASH CS3

333

7

861XCh07.qxp 6/25/07 1:24 PM Page 333

Noggin nuggets of gold from a visionary rascal

Back in high school, one of the authors fancied himself a poet. As often happens in
those formative years, the subject was introduced in terms of rhyme schemes. To be
sure, there’s nothing essentially wrong with that. The usual Romantic role models—
Byron, Wordsworth, Keats, Longfellow, Emerson—wallowed in rhyme. It’s a long-
standing custom in many artistic disciplines to “study the masters” first, and for good
reason. The masters figured out where all the pebbles were, which toughened their
feet. Walk in their shoes, and you benefit in the same way.

Of course, once traditions are in place, the path is cleared for visionaries: inventive
weirdos who see things differently, who dash off into the brush and break the rules.
People who find new pebbles. Think e.e. cummings. What we’ve shown you in this
chapter are a number of well-worn trails. Shape tweening and shape hints, motion
tweening and easing . . . these are familiar corridors for many a Flash master. We
encourage you to tramp along these paths until your shoes are good and comfortable
(and then be at the ready to kick off your shoes and sprint with the visionaries).

If you can keep up with him, you’ll want to chase the flapping longfellows of John
Kricfalusi (http://johnkstuff.blogspot.com/), creator of the “The Ren & Stimpy
Show” and pioneer of the Flash-animated cartoon series. A full decade ago, John broke
new ground with the “The Goddamn George Liquor Program,” which had cartoon fans
laughing until . . . well, until milk spurted from their noses. For Flash cartooning, that
was an Internet first. What’s John’s rhyme scheme? Enjoy Flash for the useful tool it is,
but pile up most of your eggs in that basket called your brain.

“David asked me to write up some tips about how to creatively use Flash. I guess
my best advice is to lean on it as little as possible, to not use it as a creative crutch.
Flash isn’t inherently a creative tool. It’s not like a pencil or a brush or talent.

I use it mainly as an exposure sheet to quickly test my drawings and animation
to see if they work. Your best Flash tool is your drawing skill. You will always
creatively be limited by your ability to make interesting drawings and move-
ment. I see many animators using Flash mainly for its in-betweens, or “tweens”
as they are now called. This little tool makes every movement look smooth. But
if you want to compete against the best animators, whether in Flash or in tradi-
tional animation, you will be competing with drawings, acting, and real motion
(see the following illustration). Real motion has non-mathematical in-between-
ing. Every in-between looks different and conveys information that mere
tweening can’t. Tweening just moves the same drawing from one place to
another, and it’s completely obvious when you watch most Flash cartoons that
you are watching tricks, not animation.

FOUNDATION FLASH CS3 FOR DESIGNERS

334

861XCh07.qxp 6/25/07 1:24 PM Page 334

http://johnkstuff.blogspot.com

Since I started using Flash back in caveman times, I’ve been trying to find ways
to make it not look like Flash, to try to undermine all its computery tricks. I’ve
tried different approaches. It’s hard for me to draw my key poses directly on the
computer, so I usually draw them in pencil and scan them in. Once they are in, I
time them in the timeline to musical beats. When I’m satisfied with the rough
timing, I then draw breakdown poses directly on a Cintiq (www.wacom.com/
cintiq/) in the timeline. I constantly roll across the animation to see if the
motion is smooth. If I’m animating to a dialogue track, I draw the mouth posi-
tions in Flash and, again, roll back and forth to see if the animation is working.

I am always trying new ways to beat Flash’s limitations and don’t have a perfect
solution. The best thing about Flash, to me, is that you can instantly see if your
animation works, because you can play it back right after you do it. But Flash
isn’t doing the creative part. The drawings are. My best advice for how to be
good at Flash is to learn as much about drawing and traditional animation as
you can. That’ll put you ahead of every Flash animator who just drags around
some simple primitive pictures. More and more real animators are starting to
use Flash, so the competition is going to get tougher for those who are lacking
in drawing skills.”

ANIMATION IN FLASH CS3

335

7

No amount of tweening can accomplish such joyous hand clapping: those are frame-by-
frame drawings.

861XCh07.qxp 6/25/07 1:24 PM Page 335

http://www.wacom.com/cintiq
http://www.wacom.com/cintiq

What you’ve learned
The difference between a shape tween and a motion tween

Various methods of using easing to add reality to your animations

How to use the timeline and the Property inspector to manage animations

The creation and use of motion guides in animation

How to translate an animation into ActionScript

This has been a busy chapter. The path led from tweening shapes to turning animations
into ActionScript that can be used to animate movieclips on the stage. In many respects,
this is an important chapter, because whether you care to admit it or not, Flash is quite
widely regarded as an animation program first—all that other cool stuff it does is second-
ary. Many of the techniques and principles presented in this chapter are the fundamentals
of animation in Flash. If there is one message you should get from this chapter, it is pay
attention to how things move.

It is the attention to detail that separates the pros like Chris Georgenes (and now you)
from the rest of the crowd. Whether it is a ball landing on the floor, a parrot turning its
head, or a mallet striking a nail, a passion for detail will be the difference between a great
animation and one that is so-so.

Now that you know how to move stuff around the stage, let’s look at one of the rising stars
of Flash: Flash video. Things have really changed in Flash CS3, and to find out how, all you
have to do is to turn the page.

FOUNDATION FLASH CS3 FOR DESIGNERS

336

861XCh07.qxp 6/25/07 1:24 PM Page 336

861XCh07.qxp 6/25/07 1:24 PM Page 337

861XCh08.qxp 6/25/07 1:33 PM Page 338

8 VIDEO IN FLASH

861XCh08.qxp 6/25/07 1:33 PM Page 339

When Macromedia, now Adobe, launched Flash 8 Professional and included the Flash
Video (FLV) Encoder and the FLVPlayback component with the application, a valid argu-
ment could be made that this marked the final acceptance of Flash as a viable web video
medium. As more and more sites started featuring Flash video, there was a corresponding
decline in sites that used the web video solutions provided by QuickTime, Windows Media,
and Real Player.

The reason has more to do with cunning than market acceptance. Flash Player by that
point in time could be found on well over 90% of all computers on the planet. The thing is,
most people didn’t see Flash as a media player. They thought of it as being this “cute
thing” that played animations. When they suddenly realized they could stream audio
(Chapter 5) and video through Flash Player without excessive wait times or downloading a
plug-in, it was basically “game-set-match” for the others.

What we’ll cover in this chapter:

Streaming video

Encoding an FLV

Using the FLVPlayback component and a video object to play video

Using the FLVPlayback control components

Playing full-screen video

Adding captions to Flash video

Adding filters and blend effects to video

Files used in this chapter:

DisgruntledDan.mov (Chapter08/ExerciseFiles_CH08/
Exercise/DisgruntledDan.mov)

DisgruntledDan.flv (Chapter08/ExerciseFiles_CH08/
Exercise/DisgruntledDan.flv)

ThroughAdoor.flv (Chapter08/ExerciseFiles_CH08/Exercise/ThroughAdoor.flv)

Control.fla (Chapter08/ExerciseFiles_CH08/Exercise/Control.fla)

Captions.flv (Chapter08/ExerciseFiles_CH08/Exercise/
CaptioningVideo/Captions.flv)

captionsFLV.xml (Chapter08/ExerciseFiles_CH08/Exercise/
CaptioningVideo/captionsFLV.xml)

Alpha.mov (Chapter08/ExerciseFiles_CH08/Exercise/Alpha.mov)

DisgruntledDan.flv (Chapter08/ExerciseFiles_CH08/Exercise/
FullScreenSkin/DisgruntledDan.flv)

Apparition.flv (Chapter08/ExerciseFiles_CH08/Exercise/Apparition.flv)

RainFall.fla (Chapter08/ExerciseFiles_CH08/Exercise/Rain.fla)

FOUNDATION FLASH CS3 FOR DESIGNERS

340

861XCh08.qxp 6/25/07 1:33 PM Page 340

Rain.flv (Chapter08/ExerciseFiles_CH08/Exercise/Rain.flv)

BlobEffect.fla (Chapter08/ExerciseFiles_CH08/Exercise/BlobEffect.fla)

CuePoints.xml (Chapter08/ExerciseFiles_CH08/Exercise/
YourTurn/CuePoints.xml)

VideoJam.fla (Chapter08/ExerciseFiles_CH08/Exercise/
YourTurn/VideoJam.fla)

The authors would like to take this time to thank William Hanna, Dean of the School of
Media Studies, at the Humber Institute of Technology and Advanced Learning in Toronto,
and Robert O’Meara, a faculty member with the Film and Television Arts program at
Humber, for permission to use the videos in this chapter. The videos were produced by
students of the Interactive Multimedia and Film and Television programs at Humber.

Video on the Web
Before we turn you loose with creating and playing Flash video, it is critically important
that you understand how it gets from the server to the user’s machine.

The Flash video format uses the .flv extension. It can’t be played anywhere else other than
in Flash or through the use of a third-party Flash video player such as Riva FLV Player (www.
rivavx.com/index.php?id=422&L=3), Fluffy (www.nothing.ch/research/applications/43),
or one offered by long-time Flash developer Martijn de Visser (www.download.com/
FLV-Player/3000-2139_4-10467081.html) that will play FLV files on your desktop. The key
thing about this format is that the data is sent to the user’s computer from the server where
it is played by Flash Player. To help you understand this process, let’s go visit the Hoover Dam
in the United States.

The Hoover Dam was built in the 1930s to control the Colorado River. When the dam was
completed, the water behind it backed up to form Lake Mead. This means the water flows
along the Colorado River into Lake Mead, and the dam releases the water in the small lake
directly behind it, in a controlled manner, back into the Colorado River. The thing is, if the
water rushes to the dam and overwhelms it or the dam operator releases too much water,
the people downstream from the dam are in for a really bad day.

Streaming video is no different from the water flow to the Hoover Dam and beyond.

The data in the FLV is sent, at a data rate established when the video was encoded, from
the server to Flash Player, where it is held in a buffer and released, in a controlled manner,
by Flash Player to the browser. If the flow is too fast—the data rate is too high for the con-
nection—the browser is overwhelmed, and the result is video that jerkily stops and starts.
This is due to the buffer constantly emptying and having to be refilled. In many respects,
your job is no different from that of the crew that manages the flow of water from the
buffer behind the Hoover Dam back into the Colorado River. When you create the FLV, the
decisions you make will determine whether or not your users are in for a really bad expe-
rience (see Figure 8-1).

VIDEO IN FLASH

341

8

861XCh08.qxp 6/25/07 1:33 PM Page 341

http://www.rivavx.com/index.php?id=422&L=3
http://www.rivavx.com/index.php?id=422&L=3
http://www.nothing.ch/research/applications/43
http://www.download.com/FLV-Player/3000-2139_4-10467081.html
http://www.download.com/FLV-Player/3000-2139_4-10467081.html

Figure 8-1. When it comes to Flash video, you control the Hoover Dam.

Encoding an FLV
The first step in the process of creating the FLV file that will be used in the Flash movie is
to convert an existing video to the FLV format. This means you will be working with digital
videos that use the following formats:

AVI (Audio Video Interleave): A Windows format that supports a number of com-
pression schemes but also allows for no compression

DV: The format used when video moves directly from a video camera to the
computer

MPG/MPEG (Motion Pictures Experts Group): A lossy standard for video that is
quite similar to the lossy JPG/JPEG standard for images

MOV: The QuickTime format

Do yourself and your user a favor and check out the compression used to create the video.
If a lossy compressor was used, you are going to have a serious quality issue. The
compressors used to create FLV files are also lossy, meaning you will be compressing an
already-compressed video. You can check to see which compressor was used in either
Windows Media or QuickTime by selecting File ä Properties in the Windows Media Player
or Window ä Show Info in the QuickTime player. The resulting dialog box, shown in
Figure 8-2, will indicate the compressor used.

FOUNDATION FLASH CS3 FOR DESIGNERS

342

861XCh08.qxp 6/25/07 1:33 PM Page 342

Figure 8-2. Apple Lossless animation compressor
is used.

Surprisingly, the first step in the conversion process has absolutely nothing to do with
Flash. Instead, open the video in your player of choice and watch the video twice. The first
time is to get the entertainment/coolness factor out of your system. The second time you
watch it, ask yourself a few questions:

Is there a lot of movement in this video?

Is the audio of major importance?

Is there a lot of color in the piece?

Is the video in focus, or are there areas where the image becomes pixelated?

The answers to these questions will determine your approach to encoding the video. The
file you will be encoding is DisgruntledDan.mov. Go ahead, open it up in QuickTime and
watch it twice.

VIDEO IN FLASH

343

8

861XCh08.qxp 6/25/07 1:33 PM Page 343

Yes, the file is huge—277 MB. There is a reason. When creating Flash video, you need every
bit of information contained in the video when you do the conversion. Uncompressed
video is about as big as it gets. When you finish converting the video into an FLV, you will
be in for a rather pleasant surprise.

1. Open the Adobe Flash Video Encoder found in C:\Program Files\Adobe\Adobe
Flash Video Encoder on a PC or Macintosh HD\Applications\Adobe Flash Video
Encoder on a Mac. When the Encoder opens, as shown in Figure 8-3, drag a copy of
the DisgruntledDan.mov file into the render queue. Alternatively, you could click
the Add button or select File ä Add and, using the Open dialog box, navigate to
your Exercise folder, select the video, and click the Open button to add the video
to the FLV Encoder.

Figure 8-3. A file is in the render queue waiting to be encoded.

2. Click the Settings button to open the Encoding Settings window shown in Figure 8-3.
As you can see, this window is broken into two areas. At the top is a Preview area.
Under this window is the current time indicator. It displays time in the format
hours:minutes:seconds:milliseconds. The triangle at the top of the line is the jog
controller. If you drag it back and forth, the video will follow along. Underneath the
jog controller are two other triangles. The one on the left is the in point, and the
one on the right is the out point. You can use these to trim the video. For example,
assume there are 2 seconds of black screen and no audio at the end of the video.
If you drag the out point to the start of the stuff you don’t need, it will be removed
when you create the FLV.

FOUNDATION FLASH CS3 FOR DESIGNERS

344

861XCh08.qxp 6/25/07 1:33 PM Page 344

Here’s a neat little trick: the preview controls are very precise, and reaching a precise point
in time can be an exercise in tediousness. Assume you want the current video to last 3
minutes and 27 seconds instead of 03:27:266. Select the out point and press and hold the
left arrow key. When the key is down, the milliseconds measure will reduce. When you are
close to the 000 milliseconds point, release the key and then press it in slow succession.
The millisecond number will reduce in 1-millisecond increments.

As shown in Figure 8-4, the bottom half of the window consists of a series of tabs that
allow you to choose a preset encoding profile (not a good idea, and more on that later
on), set the video compression and the audio compression, add cue points that can be
accessed by ActionScript, and crop and resize the video.

Figure 8-4. The Encoding Settings dialog box allows you to choose a preset encoding profile and to
set the in and out points for the video.

3. Click in the Output filename input box and enter DisgruntledDan.

If you have used the Flash Video Encoder prior to this release, you may notice the addition
of a couple of buttons above the Encoding Profile drop-down menu. New to Flash CS3 is

VIDEO IN FLASH

345

8

861XCh08.qxp 6/25/07 1:33 PM Page 345

the ability to save your custom settings as a profile and also to load that custom profile
and use it. The other major change is the video and audio portion of the FLV Encoder have
been given separate panels.

4. Click the Video tab to open the Encode Video panel shown in Figure 8-5. This is
where you set the all-important video data rate. The various areas of the panel are
as follows:

Video codec: You have two choices: On2 VP6 and Sorenson Spark. If your target
Flash Player is Flash Player 7 or lower, your only choice is the Sorenson Spark
codec.

Encode alpha channel: If your video contains an alpha channel, select this. Alpha
channel video can only be encoded using the On2 VP6 codec.

Deinterlace: If your source video was prepared for television broadcast, the odds
are almost 100% it was interlaced. Select this option to remove it.

Frame rate: This determines how often the video updates. The measurement is
frames per second (fps). If you are unsure of which frame rate to use, a good rule
of thumb is to choose a rate that is half that of the original file. If the original was
prepared using the NTSC standard of 30 fps, select 15 fps. If the PAL standard
was used, rates of 12 or 15 fps are acceptable.

Quality: Choose a preset from this drop-down to set the data rate for the video
track. You can also select Custom to enter your own value.

Max data rate: You can choose the rate to be used. If you change the value, the
Quality setting will change to Custom.

Be very, very careful when choosing a quality setting. For example, don’t think
you can “super size” the quality and set the data rate to, say, 1000 kilobits per
second. Do that, and you can guarantee that residents downstream from the
Hoover Dam are in for a really, really bad day. Also, you need to know the Max
data rate setting is a bit misleading. That rate is for the video portion only. The
data rate for an FLV is the sum of the audio and the video data rates. So what to
choose? Until you become comfortable with creating FLV files, consider a com-
bined audio and video data rate of around 350 kilobits per second as being a
fair target.

Interlacing? Huh? Your TV screen shows alternate lines of the signal when it is
playing. They appear so fast, the human eye is tricked into seeing them as a solid
screen. The technique of splitting a video into alternating lines for TV broadcast
is called interlacing. In many respects, the Encoder is not the place to do this. If
you are receiving a file prepared for TV broadcast, ask the supplier to provide
you with a deinterlaced, uncompressed version of the video.

FOUNDATION FLASH CS3 FOR DESIGNERS

346

861XCh08.qxp 6/25/07 1:33 PM Page 346

Key frame placement: This is one of those areas where, unless you have mastered
video, it is best to let the software do the work.

Key frame interval: Enter a value here, and the Key frame placement selection will
change to Custom.

Figure 8-5. Setting the encoding values for the video portion of the movie

Remember that first question you were to ask—Is there a lot of movement?—at the start
of the chapter? The answer determines key frame placement. If you are recording paint
drying, having a keyframe every 300 frames of the video would work. If you are encoding
a video of a Formula One race from trackside, you will want the keyframes to be a lot
closer to each other, such as every 30 frames or so.

5. Specify the following values in the Video pane. When you finish, click the Audio tab,
not the OK button, to open the Audio settings pane.

Video codec: On2 VP6

Quality: Custom

Max data rate: 300

Key frame placement: Automatic

Frame rate: 15

6. The Audio pane, shown in Figure 8-6, is where you manage the audio quality. You
have to make two decisions:

Stereo or mono?

What will be the data rate?

Select 64 kbps (mono) from the Data rate drop-down menu. In fact, your two
choices should be 48 kbps or 64 kbps. Anything lower results in an increasing
degradation of audio quality. Still, 32 kbps is a good choice if the soundtrack is
nothing more than a voiceover, and 16 kbps is ideal if the soundtrack is com-
posed of intermittent sounds such as the frogs and wolves used in the Lake
Nanagook project that started this book.

VIDEO IN FLASH

347

8

861XCh08.qxp 6/25/07 1:33 PM Page 347

Figure 8-6. Setting the data rate for the audio portion of the movie

Unless there is a compelling reason—you are encoding a band’s video, for instance—staying
with a mono setting should be your first choice. Outputting stereo will only serve to increase
the final file size of the FLV.

Don’t think you can improve the audio track by outputting it as a stereo track if it was
originally recorded in mono. Sure, you can change mono to stereo in these settings, but all
you get are two identical mono tracks. It’s wasted bandwidth. Also, as we pointed out in
Chapter 5, the default format for all audio in Flash is MP3. This explains why you only have
that one choice in the Audio pane.

7. Click the Crop and Resize tab. You aren’t going to do anything here, but there is an
aspect of this pane that you need to know about. When you click the tab, the Crop
and Resize pane opens, and you can see the pane is split into three areas: Crop,
Resize, and Trim. We aren’t concerned with the Crop and Trim areas. The Resize
area, shown in Figure 8-7, is critical to your survival.

When digital video is created for your television, it is created at a 4:3 ratio. This
ratio is called the video’s aspect ratio and fits most computer monitors. Other com-
mon examples would be widescreen TV video, which has an aspect ratio of 6:5, and
HDTV, which uses a 16:9 aspect ratio.

For example, the video you are encoding has a physical size of 320 pixels wide by
240 pixels high. The width is easily divisible by 4, and the height is divisible by 3. If
you need to resize a video, be sure to select Maintain aspect ratio. This way you
avoid introducing artifacts (blocky shapes and other nastiness) into the video when
it is resized.

While we are on the subject of resizing video, never increase the physical size of
the video. If you need to change the size, use this area to reduce, not increase, the
width and height values. Increasing the physical dimensions of the video from 320
by 240 to 640 by 480 will only make the pixels larger, just as it does in Photoshop
and Fireworks. The result is pixelated video, and it will also place an increasing
strain on the bandwidth.

FOUNDATION FLASH CS3 FOR DESIGNERS

348

861XCh08.qxp 6/25/07 1:33 PM Page 348

Figure 8-7. Setting the Data rate for the audio portion of the movie

In spite of our having said to never increase the size of a video, Flash Player 9 now permits
full-screen video playback. We’ll review this feature later on in the chapter.

8. Click OK to return to the render queue. Click the Start Queue button to start the
process.

You will see the progress bar move across the screen as the video is being ren-
dered, and you will also see the video being rendered in the Preview area shown in
Figure 8-8. If you click the Stop Queue button, you will see a dialog box asking you
whether you wish to stop the process or finish the render. If you have a number of
videos in the queue, clicking the No button in the dialog box will stop the process,
and an Errors dialog box will appear telling you that you stopped the render
process. If you want to make changes to the settings or restart the render process,
select the video—its status will be set to Skip in the Status area—and select Edit ä
Reset Status.

V IDEO IN FLASH

349

8

861XCh08.qxp 6/25/07 1:33 PM Page 349

Figure 8-8. Rendering an FLV

Here’s an unknown technique that will make your life much less stressful. Selecting a video
in the render queue and clicking the Remove button will remove it from the render queue.
What if you have a made a mistake and need to make a simple change to the video or
audio settings? If the video is still in the render queue and its status is set to either Skip or
Completed, you can select the video and select Edit ä Reset Status to put it back into the
render queue, and clicking the Settings button will return you to the original video and
audio settings. This is really handy in situations where you have messed up a cue point or
two. For this to work, though, you can’t move the video from its original folder.

9. When the encoding is complete, a green check mark will appear in the Status area.
Close the FLV Encoder and open the Chapter 8 Exercise folder. If this is the first
time you have used the FLV Encoder, you had better sit down. You will notice the
FLV and the QuickTime movie are in the same folder. Check out the file size of the
FLV. The size, as you see in Figure 8-9, has plummeted from 277 MB to 9.7 MB.
Don’t panic, this is common with the FLV Encoder. Remember, the On2 VP6 codec
is lossy, and it really spreads out the keyframes. Both of these combine to create
significant file-size reductions. This also explains why it is so important that the
source video not be encoded using a lossy codec.

FOUNDATION FLASH CS3 FOR DESIGNERS

350

861XCh08.qxp 6/25/07 1:33 PM Page 350

Playing an FLV in Flash CS3
Having encoded the video, the time has arrived to have it play in Flash. There are three
ways to accomplish this task, listed here, and we are going to show you each method:

Let the Import Video wizard do it for you.

Use the FLVPlayback component.

Use a video object.

The first two are actually variations on the same theme. Both will result in the use of the
FLVPlayback component. The difference is the workflow. They each approach the task
from opposite angles. The final method is the most versatile but involves the use of
ActionScript. Regardless of which method you may choose, the end result is the same: you
are in the video game.

Using the Import Video wizard

This example covers the steps involved in actually adding video to Flash. If you have never
used Flash video, this is a great place to start. Let’s get going:

1. Open a new Flash document and select File ä Import ä Import Video. This will open
the Import Video wizard.

2. The first step in the process is to tell the wizard where your file is located. Click the
Browse button and navigate to the folder where you placed the FLV created in the
last exercise, or use the DisgruntledDan.flv file in your Chapter 8 Exercise folder.
When the path is established, click the Next button to open the Deployment screen.

There are only two possible locations for a video: your computer or a web server. If
the file is located on your computer, the Browse button allows you to navigate to the
file, and when you select it, the path to the file will appear, as shown in Figure 8-10,
in the File Path area. This rather long path will be trimmed, by Flash, to a relative
path when you create the SWF that plays the video. The second choice requires you
to add an absolute path to the file. If you have a lot of videos, you may have them
located in a folder on your website. In this case, the path to DisgruntledDan.flv
would be http://www.mySite.com/FLVfile/DisgruntledDan.flv. The path to the
Flash Video Streaming Service or Flash Media Server would be a bit different. You
would add a path that looks something like this: rtmp://myHost.com/Dan.

Figure 8-9. It is not uncommon
to have an FLV shrink to 10% or
less of the original file size.

VIDEO IN FLASH

351

8

861XCh08.qxp 6/25/07 1:33 PM Page 351

http://www.mySite.com/FLVfile/DisgruntledDan.flv
rtmp://myHost.com/Dan

We won’t be getting into the use of Flash Video Streaming Service or Flash Media Server
in this book. All videos will be played back either locally or through an HTTP site.

Figure 8-10. Setting the path to an FLV using the Import Video wizard

3. The Deployment screen, shown in Figure 8-11, tells Flash how the video will be
streamed into Flash Player and ultimately through the browser. Select Progressive
download and click the Next button to open the Skinning pane.

As you can see, there are six deployment options. Here’s what they mean:

Progressive download from a web server: This option is one of the most common
video delivery methods on the Web. In fact, it is the method used by YouTube
to deliver video. A progressive download means Flash Player is constantly check-
ing how much of the video has arrived, and if there is enough to start playing
the video, the video starts to play. Though you might have inferred from this
that there will be an inordinate wait time, this is simply not true. Usually only
about one-half second of the video has to load before the video starts to play.

Although this is the most common option out there, it is also the least secure.
The FLV file is downloaded into the browser cache, and if you are smart, you can
copy it and use elsewhere. This is why such companies as recording studios, tel-
evision networks, and movie studios have some sort of jihad against this format,
because once the FLV arrives in the user’s cache, they potentially lose control of
the file’s usage. If your client is adamant that the content rights must be pro-
tected, this option is not the one for you.

FOUNDATION FLASH CS3 FOR DESIGNERS

352

861XCh08.qxp 6/25/07 1:33 PM Page 352

Stream from Flash Video Streaming Service: There are a number of companies
that will host and stream your video for you using Flash Media Server technol-
ogy. It is quite secure—nothing arrives in the browser cache—and the network
of servers used by these companies ensures your content is played on demand.
You can find out more about this solution at www.adobe.com/products/
flashmediaserver/fvss/.

Stream from Flash Media Server: You either own your own server or use the services
of an ISP to set up a media server account. Two companies that we have been
exposed to are NI Solutions in Toronto (www.nisolutions.ca) and Influxis located
in Los Angeles (www.influxis.com). You can also try this out for yourself and
learn how to use it by visiting the Flash Media Server Development Center on the
Adobe site (www.adobe.com/devnet/flashmediaserver/).

As mobile device video bundled in SWF: This option essentially embeds the entire
video into the Flash timeline in Flash Lite 2.0 and 2.1 Players used by cell phones
and other mobile devices. This option is grayed out because you are targeting
Flash 9 Player. We’ll deal with mobile features in greater depth in Chapter 12.

Embed video in SWF and play in the timeline: Not a good idea with this video, but
a great idea if you have clips that are 1 or 2 seconds in duration.

Figure 8-11. How will the video be deployed?

VIDEO IN FLASH

353

8

861XCh08.qxp 6/25/07 1:33 PM Page 353

http://www.adobe.com/products
http://www.nisolutions.ca
http://www.influxis.com
http://www.adobe.com/devnet/flashmediaserver

4. Click the Skin drop-down menu to see the choices available to you. Click a skin style
and the Preview area, shown in Figure 8-12, will change to show you the skin chosen.
Click the color chip to open the Color Picker, choose a color, and the skin will
change to that color. Select SkinUnderAllNoCaption.swf and pick a color.

Figure 8-12. What skin or control style will be used?

Skin? Think of it as a techie word for video controls.

Selecting None in the Skin drop-down means there will be no skin associated with the
video. Choose this option if you are going to create your own custom controls or use the
components in the Video area of the Components panel.

Pay close attention to the minimum width for each skin. For example, selecting
SkinUnderAll.swf requires a video that is at least 330 pixels wide. Considering our video
is 320 pixels wide, the skin is going to hang off of the sides of the video. You can see this
in the preview.

This is a big change from the previous versions of Flash. You are essentially presented with
two major skin groupings: Over and Under. Controls containing the word Over will place
the control over the video, and the controls will be visible, if this option is chosen, when
the user places the cursor over the video. Controls containing the word Under place the
controls below the video, and they are always visible.

FOUNDATION FLASH CS3 FOR DESIGNERS

354

861XCh08.qxp 6/25/07 1:33 PM Page 354

The URL input area lights up if you select Custom Skin URL in the Skin drop-down menu. If
you have created a custom skin such as one containing a client’s branding, you would
enter the path or the HTTP address to the skin’s location.

The ability to add a custom color to a skin is also a major improvement. This way you can,
for example, use a client’s corporate color in the controls . . . something unavailable to you
without a lot of work in previous versions of Flash. You can even make the color semi-
transparent—extremely useful in an Over skin—by setting the alpha to less than 100%.

5. Click the Next button to be taken to the Finish Video Import screen. This screen simply
tells what will happen when you click the Finish button at the bottom of the pane.

The most important thing that will happen is you will be prompted to save the FLA
file to the same folder as the FLV you linked to. The FLVPlayback component needs
this path to ensure playback of the video. When the Save As dialog box opens,
make sure you navigate to the folder containing your FLV. Name the file, and click
the Save button to return to the Finish Import pane. Click the Finish button.

You will see a progress bar showing you the progress of the video being added to
the Flash stage. When it finishes, the FLVPlayback component, shown in Figure 8-13,
will be placed on the Flash stage.

Figure 8-13. The video is “good to go.”

6. Click the video on the stage, and in the Property inspector, set its x and y coordi-
nates to 0. Save the movie and test it. The video will start playing, as you see in
Figure 8-14, in Flash Player. Feel free to try out the controls. Congratulations, you
are in the video game.

VIDEO IN FLASH

355

8

861XCh08.qxp 6/25/07 1:33 PM Page 355

Figure 8-14. Welcome to the video game.

7. Close the video in the SWF to return to the Flash movie. Select Modify ä Document
and, when the Document Properties dialog box opens, click the contents radio but-
ton to shrink the stage to the video and click OK to close the dialog box. Select the
component on the stage and press the left or right arrow key a few times. Holy
smokes! The controls, shown in Figure 8-15, are hanging off the stage. If the con-
trols are hanging off of the stage, the odds are good, depending upon the embed-
ding options in the HTML, they won’t be visible on the web page. What’s with that?

The simple answer is This is a “gotcha,” applicable only to the Under skins, that you
need to be aware of. When you use the FLVPlayback component, only the compo-
nent is seen when you shrink the stage. The controls, which are a separate SWF
added at runtime, aren’t. If you are shrinking the stage and the only content on the
stage is the FLVPlayback component, do yourself and your sanity a favor and man-
ually change the stage dimensions. The width can be set to the width of the FLV,
but add about 45 pixels to the height of the stage to accommodate the skin.

Figure 8-15. The two SWF files and the FLA must be
in the same directory if you are uploading to a web page.

8. Change the stage dimensions to 320 by 285. Save the movie and test it.

9. There is one last thing you need to know before we move on. Open the Chapter 8
Exercise folder, which contains the FLV. As you see in Figure 8-15, it contains a
number of files: the FLA, the SWF, another SWF containing the name of the skin, and
the FLV. If you are going to be embedding this particular project into a web page,
you must move the two SWFs and the FLV to the same directory on your website. If
they are not in the same folder, the video will either not play or the controls won’t
be available. Why? Because we haven’t concerned ourselves with the complexities of
file paths in this exercise. Putting these files in the same folder equates to the least
amount of hassle.

FOUNDATION FLASH CS3 FOR DESIGNERS

356

861XCh08.qxp 6/25/07 1:33 PM Page 356

Using the FLVPlayback component

In the previous exercise, you used the Import Video wizard to connect an FLV to the
FLVPlayback component. In this exercise, you’ll be doing the process manually. Once you
are comfortable with it, you will discover this method to be a lot quicker than the previ-
ous one. Follow these steps:

1. Open a new Flash document and save it to your Chapter 8 Exercise folder.
Remember, the FLA needs to be in the same folder as the FLV.

2. If it isn’t open, open the Components panel by selecting Window ä Components.
When the panel opens, click the Video category. Drag a copy of the FLVPlayback
component, shown in Figure 8-16, onto the stage. When you do this, the first thing
you will notice is the component has the same skin color from the previous exer-
cise. This is normal. Also, if you open the library, you will see a copy of the compo-
nent has been added to the library. This is a handy feature because you can use the
library, not the Components panel, to add subsequent copies of the FLVPlayback
component to the movie.

Figure 8-16. The FLVPlayback component is found in the Video section of the
Components panel.

VIDEO IN FLASH

357

8

861XCh08.qxp 6/25/07 1:33 PM Page 357

3. Click the component on the stage and click the Parameters tab of the Property
inspector. The parameters, listed here, allow you to determine how the component
will function:

align: The choices in this drop-down menu have nothing to do with the physical
placement of the component on the Flash stage. The choices you make here will
determine the position of the FLV in the playback area of the component if the
component is resized.

autoPlay: Choose true, the default, and the video plays automatically. Select false,
and the user will have to click the Play button in the component to start the
video. In either case, the FLV file itself starts downloading to the user’s com-
puter, so keep this in mind if you put several FLV-enhanced SWFs in a single
HTML document.

cuePoints: If cue points are embedded in the FLV, they will appear in this area.

preview: This feature is new to the component. If you select this, and an FLV is
connected to the component, you can see the video without having to test the
movie.

scaleMode: Leave this at the default value—maintainAspectRatio—if video is to
be scaled.

skin: Select this, and the Select Skin dialog box will appear.

skinAutoHide: Choose true, and the user will have to place the mouse over the
video for the skin to appear. This only applies to skins that appear over the video.

skinBackgroundAlpha: Your choices are any two-place decimal number from 0 to
1. 0 means the background is totally transparent and 1 means there is no trans-
parency. 0.5 is semitransparent by 50%.

skinBackgroundAlpha: Select this, and the Flash color chips appear.

source: Click the Magnifying Glass icon, and the Content Path dialog box opens.
From here you can either set a relative path to the FLV or enter an HTTP or
RTMP address path to the FLV.

volume: The number you enter—any two-place decimal number between 0 and
1—will be the starting volume for the video.

There is another place to see these parameters. Select Window ä Component Inspector and
the Component Inspector panel, shown in Figure 8-17, will appear. Click the Parameters
tab to bring up the FLVPlayback component parameters. We will be using this panel to
show you the parameters for the component. The reason is that this panel, unlike the
Parameters area of the Property inspector, shows you all of the parameters without scroll-
ing. This makes things easier for you to follow.

FOUNDATION FLASH CS3 FOR DESIGNERS

358

861XCh08.qxp 6/25/07 1:33 PM Page 358

Figure 8-17. The FLVPlayback component uses parameters that can be set either in the Property
inspector or the Component Inspector panel to determine its look and functionality.

4. With the component selected on the stage, use the following parameter values:

autoPlay: false

skinBackgroundColor: #999999 (medium gray)

source: ThroughAdoor.flv

When you click the source parameter, be sure to click the Magnifying Glass icon to open
the Content Path dialog box shown in Figure 8-18. Click the Navigate button—the File
Folder icon—which opens the Browse for FLV file dialog box. Navigate to the Chapter 8
Exercise folder, select the video, and click the Open button to close the dialog box. The
relative path to the FLV will appear in the Content Path dialog box. Also be sure to select
the Match source FLV dimensions check box. Selecting this will size the component to the
exact dimensions of the FLV file.

5. Save and test the movie in Flash Player. Click the Play button to start playing the
video. When you have finished, close the SWF to return to the Flash stage.

VIDEO IN FLASH

359

8

861XCh08.qxp 6/25/07 1:33 PM Page 359

Figure 8-18. Setting the content path to the FLV to be played in the component

6. Select the component on the stage and click the Parameters tab in the Property
inspector.

7. Click the preview parameter and click the Magnifying Glass icon to open the Select
Preview Frame dialog box (see Figure 8-19). Here you can watch a live preview of
the video. Click Cancel to close the dialog box.

Figure 8-19. Live preview is new to Flash CS3.

FOUNDATION FLASH CS3 FOR DESIGNERS

360

861XCh08.qxp 6/25/07 1:33 PM Page 360

This isn’t the only purpose of the preview. The FLV controls in the dialog box are live,
meaning you can scrub to a frame of the video. If you click OK, the frame will appear in
the component, and the time of the frame will appear beside the preview parameter. This
image is there only to show you how the video will appear in the component. This preview
is only used at authoring time—think of it as a position-only graphic—and won’t appear in
the final SWF. To use the image as a poster frame or a graphic, click the Export button.The
Export Image dialog box will appear, and you can save the image as a Fireworks PNG file
and use it with ActionScript or import it into the library.

Why would you want to export a frame of the video? Frames can be used as movieclips or
buttons to launch a video or as navigation elements to move the timeline, or even the web
page, to where the video is located.

Playing video using ActionScript

In the previous two exercises, you have seen different ways of getting an FLV file to play
through the FLVPlayback component. In this exercise, you won’t be using the component;
instead, you’ll let ActionScript handle the duties. It is a lot like connecting your new TV to
the cable in an empty room. There are essentially three steps involved:

Connect

Stream

Play

When you walk into the room where you are about to hook up the TV to the cable, the TV
is sitting on a shelf, and there is a spool of coaxial cable sitting on the floor. When you screw
the cable into the wall outlet, you are establishing a connection between the cable com-
pany and your home. When you screw the other end of the cable into the TV, the TV is now
connected to the cable company. When you turn on the TV, the show that is flowing from
the cable company to your TV starts to play. Let’s connect our TV to an FLV. Here’s how:

1. Open a new Flash document, and then open the Flash library. If you don’t have the
library in your panel group, select Window ä Library to open the library.

2. Click the library drop-down menu in the upper-right corner of the panel and select
New Video. The Video Properties dialog box will open (see Figure 8-20). Make sure
the Video (ActionScript-controlled) radio button is selected, and click OK to close the
dialog box. If you open the library, you will see there is a little video camera named
Video 1 sitting in your library. This camera is called a video object, and it will be
your TV.

VIDEO IN FLASH

361

8

861XCh08.qxp 6/25/07 1:33 PM Page 361

Figure 8-20. Creating a video object that will play an FLV

3. Drag your video object from the library to the stage. When you release the mouse,
it will look like a box with a big X through it. After a bit of ActionScript, it will dis-
play video, as shown in Figure 8-21. Click the video object and specify these values
in the Property inspector:

Instance name: myVideo

Width: 320

Height: 240

X: 0

Y: 0

When you have finished, save this file to the Chapter 8 Exercise folder.

Figure 8-21. Eight simple lines of ActionScript code drive the playback of this video.

FOUNDATION FLASH CS3 FOR DESIGNERS

362

861XCh08.qxp 6/25/07 1:33 PM Page 362

4. Add a new layer named Actions. Select the first frame of the Actions layer, open the
Actions panel, and enter the following code:

var nc:NetConnection = new NetConnection();
nc.connect(null);

var ns:NetStream = new NetStream(nc);
myVideo.attachNetStream(ns);

The first line establishes the NetConnection between the player and the server. The second
line tells the player it is an HTTP connection, not an RTMP connection. The third line estab-
lishes the stream and, finally, the fourth line connects the video object named myVideo to
the stream that is connected to the server.

5. Press Enter (PC) or Return (Mac) twice and enter the following code:

var listener:Object = new Object();
listener.onMetaData = function(md:Object):void {};

ns.client = listener;

If you don’t have this listener in the code, you are going to have very mysterious compiler
errors coming out of your ears. The reason is that most FLV files have metadata contained
in them. For example, the duration or length of the file is often contained in the FLV meta-
data. ActionScript 3.0, and for that matter Flash Player 9, are trained to look for that
metadata, and if they don’t find it, they get a little frantic and fill your output panel with
this sort of error message:

Error #2044: Unhandled AsyncErrorEvent:. text=Error #2095:
flash.net.NetStream was unable to invoke callback onMetaData.

error=ReferenceError: Error #1069: Property onMetaData not found å

on flash.net.NetStream and there is no default value.
at DanCode_fla::MainTimeline/ThroughAdoorfla::frame1()

The listener object and the onMetaData handler function team up to “chill out”
ActionScript because you don’t need to actually “do” anything with the event handler. You
can if you want, but all you have to do to avoid errors is handle the event.

By setting the client property of the NetStream instance to the listener object, you have
effectively told Flash CS3 to ignore the metadata in the FLV. This is the purpose of the last line.

6. Press Enter (PC) or Return (Mac) twice and enter the following code:

ns.play("ThroughAdoor.flv");

This line uses the NetStream.play() method to actually stream the FLV file into the video
object on the stage. The important thing to note here is that the name of the video is a
string because it is between quotation marks and the .flv extension is added to the name
of the video.

To recap:

VIDEO IN FLASH

363

8

861XCh08.qxp 6/25/07 1:33 PM Page 363

If you want to play video using ActionScript, here is all of the code you will need to get
yourself started:

var nc:NetConnection = new NetConnection();
nc.connect(null);
var ns:NetStream = new NetStream(nc);
myVideo.attachNetStream(ns);

var listener:Object = new Object();
listener.onMetaData = function(md:Object):void {};
ns.client = listener;

ns.play("ThroughAdoor.flv");

The only thing you will ever need to do to reuse this code is to make sure the video object’s
instance name matches the one in line 4 and change the name of the FLV file in the last line.

7. Save and test the movie. When Flash Player opens, the video, as shown in Figure 8-21,
starts to play.

You are probably thinking, “Hey, I have the FLVPlayback component. Why do I need code?
The answer can be summed up in one word: size. The size of a code-driven SWF is about
1 KB, and its FLVPlayback counterpart weighs in at over 30 KB. The difference is due to the
various control components—take a look in your library—that are added into the SWF. The
increasing use of video in banner advertising is forcing developers to think small, because
the maximum size of a Flash SWF that can be used in a banner ad is often no more than
30 KB. Obviously, the component is simply too “heavy” for use in banner ads. The other rea-
son, which we won’t be getting into in this book, is that there is going to come a point in
your life when the FLVPlayback component simply isn’t going to “cut it” any longer. When
you reach this point, you will be creating your own ActionScript-driven controllers, and this
will require the use of a video object. The real payback for you will come when you discover
you can create your own custom controllers that weigh in under 10 KB.

Using the FLVPlayback control components

In the Video components area of the Components panel, there are a bunch of individual
buttons and bars. They are there for those situations when you look at the skin options
available to you and think, “That’s overkill. All I want to give the user is a play button and
maybe another one to turn off the sound.” This is not as far-fetched at it may seem. There
are a lot of websites out there that use custom players that are nothing more than a series
of the individual controls. In this exercise you will build a custom video controller using
these controls. Let’s get started:

1. Open the Control.fla document. When it opens, you will see that the only thing
on the stage is a beveled box with a bit of branding on it. If you wish, feel to change
the text in the Text layer to your name.

2. Select the Video layer and drag an FLVPlayback component to the stage. Click the
Parameters tab in the Property inspector and set skin to none and source to
ThroughAdoor.flv.

FOUNDATION FLASH CS3 FOR DESIGNERS

364

861XCh08.qxp 6/25/07 1:33 PM Page 364

3. In the Property inspector, set the X and Y locations of the FLVPlayback component
to 0.

4. Select the Controls layer and drag the following components to the stage:

BackButton SeekBar

PlayPauseButton VolumeBar

5. Hold down the Shift key and select each of the controls on the stage. Open the
Align panel, and, being sure To stage is not selected, click the Center Align button.
When you finish, your stage should resemble that shown in Figure 8-22.

If you open the library, you won’t see the PlayPauseButton. You will see separate Play and
Pause buttons. Don’t panic. The PlayPauseButton is actually a combination of both of them.

Figure 8-22. The video control components, when added to the stage, are also added to the library.

This is the point in this exercise where what you have done is
about to shift from “interesting” to “way too cool.” With all of
those components on the stage, you are probably preparing your-
self, especially if you used them in Flash 8, to start writing a whack
of code. Not any more. As long as the components are in the
same frame as the FLVPlayback component, they become fully
functional. Think about it . . . you have just created a custom
video controller in a “code-free zone.” Don’t believe us? Check it
out yourself:

6. Save and test the movie. Drag the Seek control, shown in
Figure 8-23, to the right and left. See . . . we told you.

VIDEO IN FLASH

365

8

Figure 8-23. A custom video control
created in a code-free zone

861XCh08.qxp 6/25/07 1:33 PM Page 365

Using the FLVPlaybackCaptioning component

A couple of years ago, one of the authors had written a piece about Flash video and how
easy it was to get video onto a website. The thrust of the article was that this was a won-
drous technology and that video was about to sweep the Web. The reaction to the article
was strongly positive, and the author was feeling pretty good about himself—that is, until
he received the following e-mail:

‘Love your books and tutorials! They are very well explained. I have a question.
Have you done any tutorials on how to add captions to videos? For example, there
is a CC button in your “Talking Head” video box. I would love to learn how to write
CC for that. I am deaf and would strongly advocate for all websites that have
videos to have captions, but that won’t happen right away due to $ and timing. I
will be making a small “Talking Head” video introducing myself in sign language,
but I want to have captions for hearing people to know what I am saying :-)’

In our zeal to get video out there, we tend to forget that accessibility is a major factor in
our business. As well, accessibility is now the law around the world, and up until Flash CS3,
video was somewhat or totally inaccessible to those with hearing impairments.

This isn’t to say captions couldn’t be added to video in Flash 8. They could, but it required
quite a bit of work on the designer’s or developer’s part to get them to work properly. It
usually involved XML, cue points in the FLV, and an understanding of how to use XML in
Flash and to write the proper ActionScript to make it all work. Flash CS3 streamlines this
process with the inclusion of the FLVPlaybackCaptioning component.

Before we get going, it is important you understand this is not a point-and-click workflow.
Entering cue points by hand into the Video Import dialog box in Flash is tedious business.
For all but the shortest of video clips, it makes best sense to use a special XML document
to make it all work—easier to edit later, too—and then you need to “connect” that docu-
ment to the FLVPlaybackCaptioning component.

Timed text XML for captions
The FLVPlaybackCaptioning component allows for the display of captions in the
FLVPlayback component through the use of a Timed Text (TT) XML document. If you open
the captions.xml document you will see, as shown here, the Timed Text XML code used
in this exercise:

<?xml version="1.0" encoding="UTF-8"?>
<tt xml:lang="en" xmlns=http://www.w3.org/2006/04/ttaf1 å

xmlns:tts="http://www.w3.org/2006/04/ttaf1#styling">

<head>
<styling>
<style id="1" tts:textAlign="right"/>
<style id="2" tts:color="transparent"/>
<style id="3" style="2" tts:backgroundColor="white"/>
<style id="4" style="2 3" tts:fontSize="20"/>

</styling>
</head>

FOUNDATION FLASH CS3 FOR DESIGNERS

366

861XCh08.qxp 6/25/07 1:33 PM Page 366

http://www.w3.org/2006/04/ttaf1
http://www.w3.org/2006/04/ttaf1#styling

<body>
<div xml:lang="en">

<p begin="00:00:00.25" dur="00:00:03.25">Dreamweaver users å

now have access to Flash Video. Didn't have it before.</p>

<p begin="00:00:04.20"dur="00:00:03.07">And if you were to å

talk to a Dreamweaver user about three or four years ago</p>

<p begin="00:00:08.03" dur="00:00:01.04">and ask, "You want å

to put video on a web page?"</p>

<p begin="00:00:09.11" dur="00:00:04.00">They would look at å

you and go "Yeah.Dude.Yeah.Right.Uh Huh. Next."</p>

</div>
</body>

</tt>

You may notice the format is a bit different from that you may be used to when writing an
XML document. This is because Timed Text is a specification used for captioning set by the
World Wide Web Consortium, and the XML document prepared for use with the
FLVPlaybackCaptioning component must follow that standard.

If you really want to dig into the specification, it can be found at www.w3.org/
AudioVideo/TT/.

You will notice that you can set the styling for the text, and that each caption needs to
have a start and an end point. This means each caption must have a begin attribute, which
determines when the caption should appear. If the caption does not have a dur or end
attribute, the caption disappears when the next caption appears or when the FLV file ends.
The begin attribute means “This is where the caption becomes visible.” The dur attribute
means “This is how long the caption remains visible.” Alternatively—and this is really a
matter of taste—you can omit dur and replace it with end, which means “This is where the
caption stops being visible.”

Where do you get those numbers? You can use the time code in the FLV Encoder to find
them, or you can use the time code displayed in the QuickTime or Windows Media Player
interfaces. Another place would be in the video editing software used to create the video
in the first place.

Follow these steps to apply the captions in the preceding XML example to a video:

1. Open a new Flash document and save it to the CaptioningVideo folder in your
Chapter 8 Exercise folder.

2. Drag an FLVPlayback component to the stage and set its source to Captions.flv
and the skin parameter to SkinUnderPlayCaption.swf. Name the layer video.

3. Add a new layer named Captions. Drag a copy of the FLVPlaybackCaptioning com-
ponent to this new layer.

VIDEO IN FLASH

367

8

861XCh08.qxp 6/25/07 1:33 PM Page 367

http://www.w3.org

4. Select the FLVPlaybackCaptioning component and click the Parameters tab. As
shown in Figure 8-24, the parameters you see are

autoLayout: A value of true lets the FLVPlayback component determine the size
of the captioning area.

captionTargetName: This parameter identifies the movieclip or text field instance
where the captions can be placed. The default is auto, which means the compo-
nent will make that decision.

flvPlaybackname: This is the instance name for the FLVPlayback component,
which is set in the Property inspector. If there is only one instance of the com-
ponent, leave the value at the default of auto.

showCaptions: If set to false, the captions will not display.

simpleFormatting: If you have no formatting instructions in the XML document,
set this to true. Otherwise, leave it at the default value of false.

source: The location of the Timed Text XML document used to supply the captions.

Figure 8-24. The FLVPlaybackCaptioning component and its parameters

5. Click the source parameter and enter captionsFLV.xml as the value for the parame-
ter, and change the showCaptions setting to true.

6. Save and play the video. The captions, as shown in Figure 8-25, will appear.

FOUNDATION FLASH CS3 FOR DESIGNERS

368

861XCh08.qxp 6/25/07 1:33 PM Page 368

Figure 8-25. The captions will appear over the video.

Be careful with this feature. The example shown assumes the controls will appear under
the video. If your controls or skins are to appear over the video, they will hide the cap-
tions. To nix this, add a dynamic text field to the stage under the video, give it an instance
name, and link the captions to it using the captionTargetName parameter for the
FLVPlaybackCaptioning component. Finally, set the autoLayout parameter to false; other-
wise, Flash puts the new text field right back inside the video.

Preparing and using alpha channel video

There will be times when you need a talking head video or you want to artificially move
the subject of the video from the studio to another location. These are the instances
where an alpha channel video fits the bill.

If you watch the weather on your local TV station, you are seeing this in action. The weath-
erman stands in front of a green wall and starts pointing to fronts and cloud formations.
The thing is, the stuff he is pointing at isn’t on the wall. The weatherman is pulled out of
the green background and superimposed on the radar image or whatever else he is point-
ing at. The type of video where a green or blue background is removed, or “keyed,” is
called alpha channel video. If you are a Photoshop CS3 user, you are quite familiar with the
concept of an alpha channel or masking channel. The only difference between those cre-
ated in Photoshop CS3 and those created in a video editing application such as After
Effects is the channel or mask is in motion.

The ability to use this type of video was introduced in Flash 8 Professional. To use this fea-
ture in Flash CS3, you need to use the On2 VP6 codec in the Flash Video Encoder. This
means that if your target Flash Player is Flash Player 7 or lower, you can’t use alpha channel
video.

In this exercise, you are going to encode a small clip of a young adult who has just been
informed by his friend that he is dead as the result of being hit by a bus. You are going to
encode the video and place it over an image in Flash. Let’s get started:

VIDEO IN FLASH

369

8

861XCh08.qxp 6/25/07 1:33 PM Page 369

1. Open the Flash Video Encoder and import the Alpha.mov file into the render
queue.

2. Click the Settings button and name the file Alpha in the Output filename area. Click
the Video tab.

3. Select the On2 VP6 codec from the Video codec drop-down menu and select the
Encode alpha channel option shown in Figure 8-26. If you fail to select this check
box option, you will lose all transparency in the background.

Figure 8-26. Make sure you select the Encode alpha channel option.

How do you know you have been handed a video containing an alpha channel? Open it in
the QuickTime player and check the movie information. If the codec used to prepare the
video is Animation and the number of colors is Millions +, the channel is there.

4. Reduce the Max data rate setting to 300 kilobits per second and change the frame
rate to 15 fps. Click OK to return to the render queue. Click the Start Queue button.
When the render process is finished, quit the Flash Video Encoder.

FOUNDATION FLASH CS3 FOR DESIGNERS

370

861XCh08.qxp 6/25/07 1:33 PM Page 370

5. Open the AlphaEx.fla file in Flash. When it opens, you will see we have tossed an
image of a store into the Background layer.

6. Select the Video layer and drag an FLVPlayback component to the stage. Click the
Parameters tab in the Property inspector and set source parameter to your alpha
channel video, and set the skin parameter to None. With the component selected,
set its X and Y location in the Property inspector to 0.

7. Save and test the movie. The video, as shown in Figure 8-27, appears over the back-
ground image.

Figure 8-27. Alpha channel video in action

Going full screen with video

In the autumn of 2006, Adobe quietly announced that full-screen Flash video was no
longer a dream. They released it as a part of the Adobe Flash Player 9 beta, and even
though it was well received, many felt the process was a bit too convoluted. Guess what
happened on the way to Flash CS3? Depending on how you wish to approach the applica-
tion of full-screen video, it can be either dead simple to achieve or require a bit of poking
around with ActionScript and in the web page’s HTML. In this exercise, you are going to
explore both methods. Here’s how:

1. Open a new Flash movie and save it to the FullScreenSkin folder in your Chapter 8
Exercise folder.

2. Set the stage size to 400 by 300 pixels and set the stage color to #006633 (dark
green).

3. Drag an FLVPlayback component to the stage and specify the following parameters:

skin: SkinOverAllNoCaption.swf

skinAutoHide: true

skinBackGroundColor: #999999 (medium gray)

source: DisgruntledDan.flv

VIDEO IN FLASH

371

8

861XCh08.qxp 6/25/07 1:33 PM Page 371

4. Save the file as FullScreenSkin.fla.

5. Select File ä Publish Settings to open the Publish Settings dialog box shown in
Figure 8-28.

Figure 8-28. The Publish Settings dialog box

6. Make sure the Flash and HTML options are selected. Click the Use Default Names
button to trim off the path, if there is one, and click the Publish button. When the
progress bar finishes and closes, click the OK button to close the dialog box. When
you return to Flash, save the file.

You have completed the first part of the process. The skin chosen contains a Full Screen
button in the bottom-right corner. The next step is to let the browser know that the video
is to be played full screen.

To start, minimize Flash and navigate to the folder where you saved the SWF and the HTML
files. When you published the HTML file you actually created two files: the first is the
HTML file that contains the SWF, and the second is a file named AC_OETags.js which,
as shown in Figure 8-29, is a JavaScript file. This file is what allows the SWF to play in

FOUNDATION FLASH CS3 FOR DESIGNERS

372

861XCh08.qxp 6/25/07 1:33 PM Page 372

Internet Explorer 7 or later without alerting the user to “Click to activate and use this con-
trol.” That browser by default blocks active content, such as a SWF file, in a web page, and
this JavaScript file does the “unblocking” chores.

Figure 8-29. The only file that doesn’t get uploaded is the FLA file.

All of these files must be in the same root directory if you plan to upload the project to a
web server.

If you are a Dreamweaver CS3 user, you can skip the HTML step in the Publish Settings dia-
log box. When you place a SWF into a Dreamweaver page, Dreamweaver will handle the
active content unblocking chore automatically.

7. Open the HTML file in either your favorite HTML editor such as Dreamweaver CS3
or in a word processing application.

8. Locate the <script language = "javascript"> tag inside the <body> tag (not the
<head> tag). Click at the end of the line 'salign', '' and add a comma. The line
now looks like this:

'salign', '',

Now press Enter (PC) or Return (Mac). Enter the following code:

'allowFullScreen','true'

What you have just done is to make the Full Screen button functional. This tells the browser
it really is OK to allow for full-screen playback of the video.

9. Scroll down to the <noscript> area of the HTML where the <object> and <embed>
tags can be found. Click at the end of the <object classid...> tag and enter the
following line (see Figure 8-30):

<param name="allowFullScreen" value="true" />

10. Scroll down to the <embed src...> area and click once between align="middle"
and allowScriptAccess = "sameDomain". Enter the following:

allowFullScreen="true"

11. Save the HTML file and open it in a browser. When the video starts, click the Full
Screen button in the bottom-right corner of the controller. The video fills the
screen. You can either press the Esc key or click the Full Screen button in the con-
troller, as shown in Figure 8-31, to reduce the video to actual size.

VIDEO IN FLASH

373

8

861XCh08.qxp 6/25/07 1:33 PM Page 373

Figure 8-30. Add a line to the JavaScript parameters and to the object and embed tags in the HTML
to get the full-screen playback working.

Figure 8-31. Full-screen video is a reality with Flash CS3.

The choice of an OverAll controller is deliberate. This controller becomes visible when the
user rolls over the video. If the user clicks the Full Screen button, the video will expand to
full screen without the controller interfering in the screen area.

FOUNDATION FLASH CS3 FOR DESIGNERS

374

861XCh08.qxp 6/25/07 1:33 PM Page 374

When video is not video

To this point in the chapter, we have treated video as video content. This is great, but there
are going to be occasions where video becomes content and does not require a player,
captions, or even full-screen capability. In this case, video can be imported directly into a
Flash movieclip and becomes fully accessible to Flash as content on the stage.

Before we start, we want you to be real clear on a fact of “video life:” video files are large,
and importing any of the files you have worked with to this point in the chapter directly
onto the Flash timeline would be a major error. When considering working with video con-
tent on the Flash timeline, think short—loops of about 2 seconds—and think small—the
physical size of the video should match precisely the area of the stage where it will be used.

The FLV files used in this exercise were all created in Adobe After Effects 7 Professional.
The creation of the videos used is beyond the scope of this book but is covered in some
depth in From After Effects to Flash: Poetry in Motion Graphics by Tom Green and Tiago
Dias (friends of ED, 2006).

Try a couple of exercises to see what we are talking about:

1. Open a new Flash document and change the stage size to 468 pixels wide by
60 pixels high, which is a common banner ad size.

2. Select File ä Import ä Import Video. When the Select Video dialog box opens,
navigate to the Apparition.flv file in your Chapter 8 Exercise folder. Click the
Next button to open the Deployment window.

3. In the Deployment window, select Embed video in SWF and play in timeline. Though
you are going to see a missive on the right side of the dialog box warning you of
the evils of this technique, the file isn’t that big. Click the Next button to open the
Embedding window.

4. In the Embedding window, select Embedded video from the Symbol type drop-down
menu. Also be sure the check boxes for Place instance on stage, Expand timeline if
needed, and Embed the entire video are selected as shown in Figure 8-32. Click the
Next button to open the Finish Video Import window. Click the Finish button to
return to the Flash stage.

Figure 8-32. Embedding an FLV file in the Flash timeline

VIDEO IN FLASH

375

8

861XCh08.qxp 6/25/07 1:33 PM Page 375

5. You will see a progress bar, and when it finishes, the video will be on the stage, and
the timeline will expand to accommodate the number of frames in the video.
Select the video, and in the Property inspector, set its X and Y coordinates to 0. If
you open the library, you will also see the video is in a video object.

6. Add a new layer to the timeline and enter your name. Save and test the movie. The
weird ghostlike apparitions, shown in Figure 8-33, move around behind your name.

Figure 8-33. Embedded video can be used as content.

In this next exercise, you are going to create a rainy day in the mountains of Southern
California. In this technique, you will discover the power of matching Flash’s blend modes
with video. Here’s how:

1. Open the Rainfall.fla file in your Chapter 8 Exercise folder. When it opens, you
will see we have placed an image of the mountains on the stage.

2. Click the first frame of the Video layer. Select File ä Import to stage. When the
Import dialog box opens, select the Rain.flv file and click Open.

3. This will launch the Import Video wizard. Embed the video in the timeline, but this
time, when you reach the Embedding window shown in Figure 8-34, select Movie
clip as the symbol type. This is a good way to go, because it routes all the necessary
timeline frames into a movieclip timeline, rather than expanding the main timeline
off a mile to the right.

Figure 8-34. Embedded video can be turned into a Flash movieclip.

4. Drag the movieclip from the library to the first frame of the Video layer, and using
the Property inspector, set its X and Y coordinates to 0. Obviously a big, black
movieclip that hides the mountains isn’t doing the job. Let’s fix that.

5. Select the movieclip on the stage, and in the Property inspector, set the movieclip’s
blend mode to Add. The rain, as shown in Figure 8-35, becomes visible.

FOUNDATION FLASH CS3 FOR DESIGNERS

376

861XCh08.qxp 6/25/07 1:33 PM Page 376

Figure 8-35. Use the Add blend mode to remove the black background in the FLV.

6. Save and test the movie.

So far you have discovered how video content can interact with Flash content. In this final
exercise, you are going in the opposite direction: Flash content interacting with video content.

1. Open the BlobEffect.fla file. You will see we have already placed an embedded
video on the timeline. The video is a blobs effect. To see it, open the Blobs movieclip
in the library, and when the Symbol Editor opens press Enter (PC) or Return (Mac).
As you can see in Figure 8-36, green blobs ooze from the top of the window and
coalesce into a giant blob, which then splits apart into smaller blobs.

Figure 8-36. We start with some green blobs, which is an FLV
file embedded into a movieclip.

2. Click in the Text layer, select the Text tool (or press T), and enter your name. Use a
font and size of your choosing, but change the color of the text in the Property
inspector to #FFFF00 (bright yellow).

3. With the text selected, convert the text to a movieclip symbol named Name.

4. With the Name movieclip symbol selected, select Overlay from the Blend drop-down
menu. The text will disappear. This is because the overlay mode either multiplies or
screens the colors, depending on the destination color, which is the color immedi-
ately under the text. In this case, the yellow text is against a black background,
meaning you can’t see the effect.

5. Save and play the movie. Notice how the text, as shown in Figure 8-37, changes and
becomes visble as the blobs pass under it.

Figure 8-37. A classic example of Flash content interacting with
video content

VIDEO IN FLASH

377

8

861XCh08.qxp 6/25/07 1:33 PM Page 377

Your turn: XML captions for video

In the exercise in the section “Timed text XML for captions,” you used the Timed Text XML
standard for adding captions to a video. In this exercise, you will be adding captions using
a completely different “flavor” of XML and method of getting the captions and their
respective cue points into the FLV file.

There are four ways of adding cue points to an FLV file:

Add them when you create the FLV file in the Flash Video Encoder.

Add them using the FLVPlayback component’s parameters.

Add them using the addASCuePoint() method in ActionScript.

Add them using an XML document.

The first two methods are what we call “destructive.” Once you add a cue point using
those two methods, it can’t be removed. This means if your timing is off, the video will
have to be reencoded and new cue points added.

Here’s some self-defense if you go this route. Don’t remove the video from the render
queue until the video is approved for play. In this circumstance, and it only works for cue
points added in the Flash Video Encoder, you select the video in the render queue and
select Reset Status in the Edit menu. When you return to the Cue Points tab, they will all be
there and can be removed and changed.

The last two ways are the most flexible because, if the timing is off, you simply open the
code and change a number.

This exercise concentrates on using an XML document to insert the cue points. Before we dig
into the XML, it is important you understand that in Flash video, there are two flavors of cue
points. The first type of cue point is called a navigation cue point. Navigation cue points do
exactly what the name implies: they are used to navigate, or seek, to keyframes in the video
itself. If you create a navigation cue point, Flash will actually insert a keyframe at that point
in the video. Event cue points are the most common. They tell Flash and/or ActionScript to
do something when they are encountered. This is why the cue points you will create are
event cue points. They will be used to tell Flash to display a caption.

Though we think Timed Text XML is the way to go when using XML to insert captions, you
may just decide to use “plain old” XML to do it. If you do, there is a very specific format
you must follow. Let’s look at it:

1. Open the CuePoints.xml document in your YourTurn folder. You can use
Dreamweaver CS3 or even a word processor for this purpose. When the document
opens, the first “chunk” of code you will encounter is the following:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<FLVCoreCuePoints>
<CuePoint>

<Time>9000</Time>
<Type>event</Type>
<Name>fl.video.caption.2.0.0</Name>

FOUNDATION FLASH CS3 FOR DESIGNERS

378

861XCh08.qxp 6/25/07 1:33 PM Page 378

<Parameters>
<Parameter>
<Name>text</Name>
<Value><![CDATA[<font face="Arial, Helvetica, _sans" å

size="12">Look ... up in the sky ... look...]]></Value>
</Parameter>
<Parameter>
<Name>endTime</Name>
<Value>11.0</Value>
</Parameter>
</Parameters>

</CuePoint>
</FLVCoreCuePoints>

This is the syntax that must be used. Deviate from it at your own peril. The first line
declares the doctype, and the second line tells Flash that anything between the
FLVCoreCuePoints tags is to be used within a cue point.

Each cue point you will add must be enclosed between <CuePoint> and </CuePoint> tags.
The <Time> tag is the start of the cue point, and this number must be expressed in mil-
liseconds. The next tag, <Type>, tells Flash that the cue point is to be an event cue point,
and the tag following it, <Name>, is the name of the cue point.

The rules regarding naming are rigid. The <Name> tag must be fl.video.caption.2.0 fol-
lowed by a series of sequential numbers to guarantee uniqueness. In our sample XML, it
goes fl.video.caption.2.0.0, fl.video.caption.2.0.1, and so on.

The parameters contain the styling data for the text that will appear in the caption and an
end time for the caption. Notice how we used the <i> tag to identify who is speaking by
setting the person’s name in italics. HTML tags may be used only if they’re supported by
Flash; a list of these may be found in the “HTML formatting” section of Chapter 6. The
endTime property, which must be expressed in seconds, will be the time when the caption
disappears from the screen. This number can either be an integer (no decimals) or can
contain up to three decimal places.

Finally, you may optionally contend with using color in captions, and there are a couple of
rules involving this as well. If you scroll down to caption 2.0.7, you will see the text in the
caption uses #FF0000, which is a bright red. A couple of lines later the backgroundColor
parameter changes the background color of the caption to 0x01016D, which is a dark blue.

The key here is how the colors are identified. Colors are specified by hexadecimal values,
but the indication that the color is in hex—# or 0x—depends on where it’s being stated.
The first change to the red uses the pound sign, #, as traditionally used in HTML. Why?
Because it appears within HTML-formatted content. The second change—to the dark
blue—uses the format for specifying hexadecimal notation in ActionScript, 0x. If you do
change the background color of a caption, that color will “stick.” This means all subsequent
captions will use this background color. If you only need a single change, like our example,
change the backgroundColor parameter back in the next cue point. In our case, we
changed it to black again (0x000000), as seen in caption 2.0.8.

V IDEO IN FLASH

379

8

861XCh08.qxp 6/25/07 1:33 PM Page 379

Do your sanity a favor and separate each caption with an empty line or two in the XML.
This makes them easier to read and locate. The space, called whitespace, will be ignored
by Flash.

So what does all of this have to do with cue points and FLV files? You are about to find out.
First, though, you need to download a cartoon.

In the 1940s, the original Superman cartoons were produced by a gentleman named Max
Fleischer. Though we aren’t going to get into the details, a small number of these cartoons
have entered the public domain—that means they are free for you to download and use.
One of them, “Superman: the Mechanical Monsters,” is the cartoon you will be captioning.
In order to remain purer than pure, we aren’t including the cartoon in the Exercise down-
loads. We would respectfully ask that you head over to www.archive.org/details/
superman_the_mechanical_monsters. The file on the left side of the page can be down-
loaded. In theory, it doesn’t matter which file you download—many exist, at different
compressions and file sizes—but we used the 256 KB MPEG4 (27MB) version.

As an aside, we find it rather fascinating that the copy of the video that plays on the page
is Flash Video. A low quality one . . . but Flash Video all the same.

2. Now that you have downloaded the movie, open the Flash Video Encoder and drag
the video from its location into the render queue.

3. In the Encoding Profiles window, enter Superman as the Output filename. Click the
Video tab.

4. When the Video settings open, ensure you are using the On2 VP6 codec, change the
Max data rate value to 275 and specify a frame rate of 15 fps. Click the Audio tab.

5. When the Audio settings open, change the Data rate setting to 64 kbps(mono). Click
the Cue Points tab.

6. As shown in Figure 8-38, this is where all of the pain, sweat, and aggravation that
went into creating the XML document comes into play. The care and diligence you
put into ensuring all of the tags in the XML document are correct are about to pay
off. How so? Manually add the first cue point to give you a taste of manually adding
cue points. Scrub the playback head of the FLV to the 00:00:09.500 mark of the
video.

7. Click the + sign, which is the Add Cue Point button. Enter fl.video.caption.2.0.0 as the
name of the cue point. Notice how the default value for Type is Event.

FOUNDATION FLASH CS3 FOR DESIGNERS

380

861XCh08.qxp 6/25/07 1:33 PM Page 380

http://www.archive.org/details

Figure 8-38. Manually adding cue points to an FLV

8. Click the Add Parameter button and enter Text into the name area. Click in the Value
area and enter Up in the sky, look!.

9. Click the Add Parameter button and enter endTime as the name and 10.9 as the value.

Now repeat steps 7 and 8 about 30 more times to add the remaining cue points.
(Yeah, we are kidding.)

Obviously, going the manual route is tedious at best. Surely there must be an easier
method. There is: embed the CuePoints.xml document right into the FLV file. If you have
used Flash 8, this method might seem a bit unfamiliar. It is. The ability to embed an XML
document into an FLV file is new to Flash CS3. Here’s how:

VIDEO IN FLASH

381

8

861XCh08.qxp 6/25/07 1:33 PM Page 381

1. Select the cue point and click the Remove Cue Point button (the – sign) to remove
the cue point just added.

2. Click the Navigate button—it looks like a file folder—in the Cue Points window. This
will open the Load Cue Points File dialog box. Navigate to the YourTurn folder,
select the CuePoints.xml file, and click the Open button.

3. When you return to the Cue Points window, you will notice all of the cue points in the
XML document have been added. If you select the first one, as shown in Figure 8-39,
you will also see that the parameters have also been added.

Figure 8-39. Load the XML, and the cue points are added in less than one second.

4. Click the OK button to return to the render queue, and click the Start Queue button
to encode the cartoon.

5. Open Flash CS3 and create a new document. Save this document to the YourTurn
folder.

6. Drag an FLVPlayback component to the stage, add a skin (we used
SkinUnderAllNoFullScreen.swf), and set the source to the FLV file just created.

FOUNDATION FLASH CS3 FOR DESIGNERS

382

861XCh08.qxp 6/25/07 1:33 PM Page 382

7. Drag a copy of the FLVPlaybackCaptioning component onto the pasteboard. This
component only needs to be in the SWF (not necessarily the stage) for it to work.
If you put it on the pasteboard, it won’t be mistaken as a piece of content.

You will notice you don’t have to add the CuePoints.xml document as a parameter
in the FLVPlaybackCaptioning component. You only need to do this when using
Timed Text captions.

8. Save and test the movie. Notice how the captions automatically appear (see
Figure 8-40).

Figure 8-40. The FLVPlaybackCaptioning component only need to be in the SWF. . . not on the stage.

If you think this exercise is nothing more than mildly interesting, you would be making a pro-
found error in judgment. One of the reasons Flash video rarely appears on government or
other publicly funded/subsidized websites is because video was, for all intents and purposes,
inaccessible. The ability to easily add captioned video and to turn the captions on and off has
opened up a market that was otherwise closed to Flash designers and developers.

Playing with alpha channel video
In this final exercise in this chapter, we introduce you to a couple of new concepts. The
first is that video doesn’t necessarily have to use the FLVPlayback component and reside
on the main timeline for it to work. The second concept is that just because it is video is
no reason for not having fun with it. Let’s start jamming with video:

1. Open the VideoJam.fla file in the Chapter 8 Exercise folder. You will notice we
have provided the background image.

2. Create a new movieclip symbol and name it Video.

3. In the Symbol Editor, open the library and select New Video from the library drop-
down menu. Just click OK when the Video Properties dialog box opens.

4. Drag the video object from the library onto the stage, and in the Property inspec-
tor, give it the instance name of myVideo, set its X and Y position to 0, and change
its width and height values to 320 and 214.

V IDEO IN FLASH

383

8

861XCh08.qxp 6/25/07 1:33 PM Page 383

5. Add a new layer to the movieclip and name it Actions. Select the first frame of the
Actions layer, open the ActionScript Editor, and enter the following code:

var nc:NetConnection = new NetConnection();
nc.connect(null);
var ns:NetStream = new NetStream(nc);
myVideo.attachNetStream(ns);

var listener:Object = new Object();
listener.onMetaData = function(md:Object):void {};
ns.client = listener;

ns.play("Alpha.flv");

6. Return to the main timeline, select the Video layer, and drag your new movieclip
symbol to the stage. Save and test the movie.

What you have just discovered is video can be put into a movieclip and will still play on the
main timeline. This is an important concept for two reasons:

The resulting SWF is under 30 KB, meaning you can use it in banner ads. In fact, if
you want it to be even smaller, remove the image, and the file size drops to 1 KB.

Objects contained in movieclips are open to creative manipulation

Let’s check that last point out:

1. Select the movieclip on the stage and click the Filters tab. Click the + sign to open
the Filters drop-down menu and select Drop Shadow.

2. In the Drop Shadow filter options of the Filters panel, apply these values:

BlurX: 15

BlurY: 15

Strength: 75%

Quality: High

Distance: 10

3. Test the movie. The people in the video, as shown in Figure 8-41, have all developed
shadows. This is because the video, like a box drawn in a Flash file, a Fireworks CS3
PNG, or a Photoshop CS3 image, contains an alpha channel. In the case of video, this
channel moves, and Flash applies the drop shadow to the channel.

4. This looks OK, but how about we give the subjects a bit of depth? Select the
movieclip on the stage, click the Filters tab, and add a Bevel filter to the video.

FOUNDATION FLASH CS3 FOR DESIGNERS

384

861XCh08.qxp 6/25/07 1:33 PM Page 384

Figure 8-41. Filters can be applied to video contained in a movieclip.

5. In the Bevel filter options of the Filters panel, specify these values:

BlurX: 6 Quality: High

BlurY: 6 Distance: 3

6. Save and test the movie. The subjects, shown in Figure 8-42, take on a bit of depth,
and you have also added a hint of backlighting. Don’t get aggressive with filters;
subtlety counts.

Figure 8-42. Multiple filters can be applied to video.

VIDEO IN FLASH

385

8

861XCh08.qxp 6/25/07 1:33 PM Page 385

Hang on, these guys are ghosts. Can you turn them into ghosts? You bet.

1. In the Filters panel, select the Drop Shadow filter and select Knockout, Inner Shadow
and Hide Object.

2. Test the movie. You have a 3D ghost.

Interesting, but can you do better. Of course.

3. In the Filters panel, select the Drop Shadow filter and deselect Knockout, Inner
Shadow and Hide Object.

4. Click the Properties tab in the Property inspector.

5. Select the video on the stage and select Overlay from the Blend drop-down menu. Test
the video. The subjects take on a “ghost-like” appearance, as shown in Figure 8-43.

Figure 8-43. Don’t be afraid to use the blend modes to create some interesting effects.

What you’ve learned
How video can be streamed from your web server

How to use the Flash Video Encoder

How to encode video containing an alpha channel

Several methods of embedding and streaming video without the use of the
FLVPlayback component

FOUNDATION FLASH CS3 FOR DESIGNERS

386

861XCh08.qxp 6/25/07 1:33 PM Page 386

How to add Timed Text captions to a video and how to use the FLVPlaybackCaptioning
component

A method of creating captioned video through the technique of embedding a video
into the FLV file

The power of the creative use of filters and blend effects that can be applied to video

This has been quite the chapter, and we suspect you are just as excited about the possibil-
ities of Flash video as we are. The key to the use of Flash video is really quite simple: keep
an eye on the pipe. The Flash Video Encoder is one of the most powerful tools in the Flash
Video arsenal, and mastering it is the key to Flash video success. From there, as we showed
you in several exercises, the only limit to what you can do with Flash video is the one you
put on your creativity.

As you started working with the Flash video components, we just know you were wondering,
“How do those UI components work?” Great question, and we answer it in the next chapter.

VIDEO IN FLASH

387

8

861XCh08.qxp 6/25/07 1:33 PM Page 387

861XCh09.qxp 6/25/07 1:30 PM Page 388

9 USING THE FLASH UI COMPONENTS
TO BUILD INTERFACES

861XCh09.qxp 6/25/07 1:30 PM Page 389

Since early in its life, Flash has proven itself the leader in web animation. In recent years,
that dominance has nudged into the realm of online applications as well. For user-facing
applications, you need user interface (UI) elements, plain and simple—something to
receive input from the person viewing your content or to display information in a specific
way, such as in a grid or selection box. Sure, you’ve already seen how button symbols
work, and you’re aware that input text fields accept hand-typed content. Those make a
good start, but they’re also nothing more than the tip of the iceberg.

The UI components that ship with Flash CS3 are an improvement over the Flash 8 set in a
number of ways: size (much smaller), performance (faster, better) and ease of customization.

What we’ll cover in this chapter:

Using the Flash CS3 UI components

Using ActionScript 3.0 to control components

Changing component skins

Files used in this chapter:

Button01.fla (Chapter02/ExerciseFiles_CH09/Exercise/Button01.fla)

Button02.fla (Chapter02/ExerciseFiles_CH09/Exercise/Button02.fla)

Button03.fla (Chapter02/ExerciseFiles_CH09/Exercise/Button03.fla)

Button04.fla (Chapter02/ExerciseFiles_CH09/Exercise/Button04.fla)

CheckBox.fla (Chapter02/ExerciseFiles_CH09/Exercise/CheckBox.fla)

ColorPicker.fla (Chapter02/ExerciseFiles_CH09/Exercise/ColorPicker.fla)

ComboBox.fla (Chapter02/ExerciseFiles_CH09/Exercise/ComboBox.fla)

DataGrid.fla (Chapter02/ExerciseFiles_CH09/Exercise/DataGrid.fla)

Label.fla (Chapter02/ExerciseFiles_CH09/Exercise/Label.fla)

List.fla (Chapter02/ExerciseFiles_CH09/Exercise/List.fla)

Mug01.jpg (Chapter02/ExerciseFiles_CH09/Exercise/Mug01.jpg)

Mug02.jpg (Chapter02/ExerciseFiles_CH09/Exercise/Mug02.jpg)

Mug03.jpg (Chapter02/ExerciseFiles_CH09/Exercise/Mug03.jpg)

Mug04.jpg (Chapter02/ExerciseFiles_CH09/Exercise/Mug04.jpg)

Mug05.jpg (Chapter02/ExerciseFiles_CH09/Exercise/Mug05.jpg)

As a bonus, Flash CS3 even gives you the previous set, known as the v2 components,
but those only work with ActionScript 2.0. That’s an important point! They’re for pub-
lishing older movies if you have to. Choosing the Flash document type or changing
your publish settings between ActionScript 3.0 and 2.0 automatically updates the
Components panel to offer the correct set. You cannot mix and match components
designed for different versions of ActionScript. In ActionScript 1, you lose the UI com-
ponents altogether.

FOUNDATION FLASH CS3 FOR DESIGNERS

390

861XCh09.qxp 6/25/07 1:30 PM Page 390

Mug06.jpg (Chapter02/ExerciseFiles_CH09/Exercise/Mug06.jpg)

Mug07.jpg (Chapter02/ExerciseFiles_CH09/Exercise/Mug07.jpg)

Mug08.jpg (Chapter02/ExerciseFiles_CH09/Exercise/Mug08.jpg)

NumericStepper.fla (Chapter02/ExerciseFiles_CH09/
Exercise/NumericStepper.fla)

Onion.jpg (Chapter02/ExerciseFiles_CH09/Exercise/Onion.jpg)

ProgressBar.fla (Chapter02/ExerciseFiles_CH09/Exercise/ProgressBar.fla)

RadioButton.fla (Chapter02/ExerciseFiles_CH09/Exercise/RadioButton.fla)

ScrollPane.fla (Chapter02/ExerciseFiles_CH09/Exercise/ScrollPane.fla)

Slider.fla (Chapter02/ExerciseFiles_CH09/Exercise/Slider.fla)

TextArea.fla (Chapter02/ExerciseFiles_CH09/Exercise/TextArea.fla)

TextInput.fla (Chapter02/ExerciseFiles_CH09/Exercise/TextInput.fla)

TileList.fla (Chapter02/ExerciseFiles_CH09/Exercise/TileList.fla)

UILoader.fla (Chapter02/ExerciseFiles_CH09/Exercise/UILoader.fla)

Anyone familiar with HTML development knows how easy it is to add a check box, radio
button, or other form element into a document. These are usually used in “contact us”
pages, online surveys, and other application scenarios. Flash components provide you the
same set of “widgets,” but you also get a whole lot more, including components not pos-
sible in a browser alone. A smidgen of ActionScript is required to wire them together, but
for the most part, these are drag-and-drop convenient. In any case, this chapter will help
you make sense of it all.

Out of the box, the Flash UI components are styled in a modest, attractive manner that
comfortably fits a broad range of designs. Of course, Flash being what it is—free from the
relative constraints of HTML—you may want to customize their appearance, and you can.
Designers and developers familiar with Flash 8 might warn you with a shudder that you’re
in for a barrel of headaches. Tell the old-timers they can breathe easy. Things have
improved considerably in Flash CS3.

We’ll start our exploration with the Button component and spend a bit more time with it
than the others, simply because once you “get it,” you get it. To be sure, certain components
are more complex than others, and we certainly won’t skimp as we visit each one—but if
you’re a complete newcomer, you may want to read through the “Button component” sec-
tion first, and then breeze the other headings until you find components of interest to you.

Button component
At first glance, the Button component is just another button symbol, but the two shouldn’t
be confused. As discussed in Chapter 3, button symbols have a specialized timeline, made
of Up, Over, Down, and Hit frames. As such, button symbols are very malleable: Over art-
work can be made to spill over the button’s Up shape, paving the way for quick-and-dirty
tooltips and other tricks. Hit artwork can make the button invisible—but still clickable—if

USING THE FLASH UI COMPONENTS TO BUILD INTERFACES

391

9

861XCh09.qxp 6/25/07 1:30 PM Page 391

it is the only frame with content. In contrast, the Button component has no discernible
timeline. It’s a self-contained component (as shown in Figure 9-1) and is much more con-
servative (at first glance) than its wild, partying cousin.

Figure 9-1. The Button component. Pretty conservative, even without the tie.

Using the Button component

What makes the Button component so special? In two words, consistency and toggleability.
The first of those, consistency, will be evident in each of the components we visit. If you
accept the default skin for every component, you’ll get a reliable uniformity among your
UI widgets. The second word—well, we admit it, toggleability isn’t a word—but what it
means is that you get a button that optionally stays pressed after you click it, and releases
again when you click it a second time. This useful feature is possible without a lick of
ActionScript knowledge. Let’s see how:

1. Start a new Flash document and open the Components panel (Window ä

Components). In the Components panel, open the User Interface branch by clicking
the + button or double-clicking the words User Interface. When this branch is open,
the + button becomes a -, and you’ll see the list of available UI components. Drag
an instance of the Button component to the stage, as shown in Figure 9-2.

Figure 9-2. Adding a UI component to the stage
is as easy as dragging and dropping.

Doing this drops a copy of the Button component and a folder named Component
Assets into your library. You can ignore the Component Assets folder for the time
being. Any time you want additional Button instances, drag them from your library.

Using one or more instances of the Button component in your movie will add 15 KB
to the SWF if no other components share the load.

FOUNDATION FLASH CS3 FOR DESIGNERS

392

861XCh09.qxp 6/25/07 1:30 PM Page 392

2. The first thing to do is give your button an instance name. Select the button by
clicking it once, and then type button into the Instance Name field of the Property
inspector, as shown in Figure 9-3.

Figure 9-3. Always give your component instances an instance name.

Under normal circumstances, you should make your instance name something
more meaningful than the generic button, but for now, this will do. If you like, use
the Free Transform tool to change the dimensions of the button. Note that it resizes
much like any symbol, but its text label stays the same size.

3. By default, the button’s label is the self-descriptive term Label. Let’s change that.
Click the Parameters tab (shown in Figure 9-4), and double-click the right column
in the label row. Change the word Label to Activate. When this button becomes a
toggle, you’ll make it actually activate something. For now, leave the toggle param-
eter at its default setting of false.

Another useful tool for changing a component’s parameters is the aptly named
Component Inspector panel, found in the Window menu. Open this and all of a com-
ponent’s parameters are available in one screen, meaning you don’t have to scroll
tediously through parameters in the Property inspector. Which method is best?
Whatever works for you.

Skewing or rotating the button makes its label disappear because font outlines are not
embedded on their own.

It is also possible to provide the instance name via the Parameters tab.

USING THE FLASH UI COMPONENTS TO BUILD INTERFACES

393

9

861XCh09.qxp 6/25/07 1:30 PM Page 393

Figure 9-4. The label parameter determines the text used in the button.

4. Rename your button’s layer from Layer 1 to button, and create a new layer. Name
the new layer scripts and click inside frame 1 of the scripts layer. Open the Actions
panel and enter the following ActionScript:

button.addEventListener(
MouseEvent.CLICK,
function(evt:MouseEvent):void {
trace("By George, I've been clicked!");

}
);

5. Test your movie (Control ä Test Movie) to verify that a button click sends the mes-
sage “By George, I’ve been clicked!” to the Output panel.

6. To make this button a toggle, return to the Parameters tab and change the toggle
parameter to true. Test the movie again, if you like, to confirm that the button now
stays in when you click it and pops out again when you click it a second time.
Compare your work with Button01.fla in the Exercise folder for this chapter.

For an explanation of how this ActionScript works, be sure to read Chapter 4.

FOUNDATION FLASH CS3 FOR DESIGNERS

394

861XCh09.qxp 6/25/07 1:30 PM Page 394

To actually make use of this toggled/untoggled state, you will need to use the
BaseButton.selected property of the Button component instance on the stage. Many but-
ton-like components, including Button, CheckBox, and RadioButton, inherit from the
BaseButton class family tree, which means that they support a selected property like
their ancestor does. The button’s instance name lets you access this property easily.

1. Open the Button02.fla file that accompanies this chapter. This file picks up where
we left off in the previous exercise. The only difference is a movieclip containing a
PNG image has been added to the library. You’re going to make this movieclip
draggable, but only when the button is pressed. Create a new layer and name it
mystical dude. Select the new layer and drag an instance of the movieclip dude to
the stage. Give this movieclip the instance name dude.

2. In the scripts layer, select frame 1 and add the following new ActionScript beneath
the existing code:

dude.addEventListener(
MouseEvent.MOUSE_DOWN,
function(evt:MouseEvent):void {
if (button.selected == true) {
dude.startDrag();

}
}

);
dude.addEventListener(
MouseEvent.MOUSE_UP,
function(evt:MouseEvent):void {
dude.stopDrag();

}
);

The key here is the if statement in the MouseEvent.MOUSE_DOWN handler. The if
evaluates the button’s selected property as described previously. When it’s set to
true, dragging commences, as shown in Figure 9-5; otherwise, dragging is ignored.

Figure 9-5. Checking the button’s selected property
allows you to perform actions only when the button is clicked.

USING THE FLASH UI COMPONENTS TO BUILD INTERFACES

395

9

861XCh09.qxp 6/25/07 1:30 PM Page 395

One final note before we start playing with the looks of this component. Unlike normal
library assets, UI components add to the weight of your movie whether or not they’re used
in the timeline. This is why seasoned Flash developers regard these things in much the
same way Dracula regards garlic. The reason for this is that components are set to export
for ActionScript. Right-click (PC) or Ctrl-click (Mac) any component in your library and
choose Linkage to see for yourself.

The first UI component in your movie usually adds the most weight, proportionately
speaking, to the SWF. Some components weigh more than others, but all of them rely on
a base framework that provides functionality for the whole set. For this reason, your first
instance of Button will add 15 KB. The second and third instances won’t add anything. Your
first CheckBox instance, on its own, will add 15 KB, and additional CheckBox instances will
add nothing. However, if you already have a Button instance in the movie and then add a
CheckBox, the combined total of both components is only 16 KB.

Changing the Button component’s appearance
What you’re about to see can be achieved with most of the UI components, not just Button.
(Some components have few or no visual elements, so there are exceptions.) This is good
news, because it means you’ll get the basic gist right off the bat. There are two ways to alter
a UI component’s appearance: skinning and styling. The first generally deals with the mate-
rial substance of the component—the shape of the clickable surface of a button, the drag
handle of a scrollbar—and the second generally deals with text, dressing, and padding.

Skinning

Before Flash CS3, the practice of skinning UI components was an exercise in alchemy. Only
the wisest and purest of wizards would trust themselves to toss mysterious ingredients into
the frothing cauldron. All of that has changed. In fact, it couldn’t get much easier.

To remove the weight of these components, in case you change your mind and decide
to omit them from your design, delete the component(s) and Component Assets
folder from the library.

To see the full list of events available to the Button component, look up the Button
class in the ActionScript 3.0 Language and Components Reference. Don’t forget to
select the Show Inherited Styles hyperlink beneath the Events heading!

FOUNDATION FLASH CS3 FOR DESIGNERS

396

861XCh09.qxp 6/25/07 1:30 PM Page 396

1. Create a new Flash document and drag an instance of the Button component to the
stage. Double-click the button and you’ll see a convenient “buffet table” of the var-
ious visual states available to the button, as shown in Figure 9-6.

Figure 9-6. Skinning UI components is just way easy.

2. The up skin is the button’s default appearance. Double-click that and you’ll come
to the symbol that represents the up skin for this component, complete with 9-slice
scaling (as shown in Figure 9-7).

Figure 9-7. A mere two levels in, and you’re ready to change the apperance of the button.

3. This skin happens to be made of three layers, but it really doesn’t matter. Other
skins may be different, in this component or another. Select an area in one of these
layers and change the button’s appearance, perhaps like Figure 9-8—but the
choice is yours.

Make sure that the existing shapes, or any new ones, align to the upper left (0, 0)
of the symbol’s registration point. Adjust the 9-slice guides as necessary. See
Button03.fla for an example with minor changes to the up and over skins.

USING THE FLASH UI COMPONENTS TO BUILD INTERFACES

397

9

861XCh09.qxp 6/25/07 1:30 PM Page 397

Figure 9-8. Adjust the existing shapes or create new ones.

4. Select Edit ä Edit Document to return to the main timeline. What the . . . ? In the
authoring environment, your button hasn’t changed. Folks, this is a fact of life with
skins in Flash: there is no preview mode for skinning. Test your movie to see that
your alteration appears as the new up skin in the published SWF. Hover over the
button to verify that the other skins function as before.

Styling components

As you’ve seen, components are easy enough to customize, even if a complete job takes a
while. You may have noticed an important omission, however, while poking around the
skin symbols. Even though the Button component features a text label, none of the skins
contains a text field. What if you want a different font in there, or at least a different
color? ActionScript to the rescue.

Each component has its own list of styled elements. Many overlap, but you can see the
definitive list for each in the class entry for that component. For example, filter the Help
panel for ActionScript 3.0 (as shown in Figure 9-9), search the word Button to find the
Button class entry, and then browse the Styles heading. Don’t forget to click the Show
Inherited Styles hyperlink to see the full listing.

Components that include text elements, such as the Button component, support the inher-
ited UIComponent.textFormat style, which lets you make changes to the button’s label.
Other button styles include the inherited LabelButton.icon, which lets you specify an
optional image for the button in addition to text.

To reskin a component completely, every skin symbol must be edited or replaced.

FOUNDATION FLASH CS3 FOR DESIGNERS

398

861XCh09.qxp 6/25/07 1:30 PM Page 398

Figure 9-9. UI component styles are listed under the class entry for each component in the Help
panel.

For this sort of styling, ActionScript allows you to affect the following:

All components in a document

All components of a certain type (for example, all Button components)

Individual component instances

Let’s see it in action:

1. Open the Button04.fla file that accompanies this chapter. You’ll see three
instances of the Button component and one of the CheckBox component (as shown
in Figure 9-10). Note that each has its own label.

Figure 9-10. Styling is about to change these components.

2. Open the Actions panel (Window ä Actions) and type the following ActionScript
into frame 1 of the scripts layer:

import fl.managers.StyleManager;
import fl.controls.Button;

USING THE FLASH UI COMPONENTS TO BUILD INTERFACES

399

9

861XCh09.qxp 6/25/07 1:30 PM Page 399

this.stop();

var fmt1:TextFormat = new TextFormat();
fmt1.bold = true;
fmt1.color = 0xFF0000;

var fmt2:TextFormat = new TextFormat();
fmt2.color = 0x0000FF;
fmt2.bold = false;

StyleManager.setStyle("textFormat", fmt1);
StyleManager.setComponentStyle(Button, "textFormat", fmt2);

btn2.setStyle("icon", "star");

Test the movie and note the following changes:

The check box’s label is red and bold.

The buttons’ labels are blue and not bold.

The second button contains an icon.

Chapter 6 discusses the TextFormat class in detail, but there are a few twists here that
deserve some clarification.

First up are the opening two lines, which make use of the import statement. We’ve been
sidestepping this one so far because the import statement isn’t often necessary in timeline
code. In ActionScript 3.0 class files—that is, code written outside of Flash altogether—the
import statement is not only more prevalent, it’s actually required at the opening of each
class to let the compiler know which other classes you intend to use. In contrast, Flash
takes care of this for you—for the most part—with keyframe scripts. This just happens to
be an exception. Without those first two lines, Flash will get confused about what you
mean later when you mention StyleManager and Button directly.

Two variables, fmt1 and fmt2, are declared and set to instances of the TextFormat class,
each with its own styling. Here’s where it gets interesting. The StyleManager class has two
methods you can use to apply styling to components. Both methods are static, which means
they’re invoked on the class itself, rather than an instance. The first of these,
StyleManager.setStyle(), applies formatting to all components. In this case, we’re setting
the textFormat style of all components that have a textFormat property to the fmt1
TextFormat instance. We programmed this style to make text red (0xFF0000) and bold, and
it is indeed applied to all three buttons and the check box. You can specify any style you
like, but the textFormat style is common to many.

These hierarchical class arrangements are called packages. To find the package
for other components so that you can carry the preceding styling knowledge
to other scenarios, look up the component’s class in the ActionScript 3.0
Language and Components Reference. The package is always listed first.

FOUNDATION FLASH CS3 FOR DESIGNERS

400

861XCh09.qxp 6/25/07 1:30 PM Page 400

“Wait a minute, guys,” you may be saying. “Only the check box is red!” This is true. The rea-
son for this is the other method, StyleManager.setComponentStyle(). That one applies
styling to all components of a certain type, which explains the fact that it accepts three
parameters. Here, we’ve specified Button, and then set the textFormat style of all Button
instances to fmt2. This overrides the red, bold formatting of fmt1 applied in the previous
line. Comment out the second StyleManager line and test your movie again to prove it.

A good way to tell which style will take effect is to remember this: the more specific the
style—for example, Button components vs. all components—the higher priority it has.

Finally, the UIComponent.setStyle() method is invoked specifically on the Button instance
whose instance name is btn. It works just like StyleManager.setStyle() in that it accepts
two parameters: the style to change and the setting to change it to. Here, the
LabelButton.icon style, which Button inherits, is set to "star", which is the linkage class
of the star asset in the library. Right-click (PC) or Ctrl-click (Mac) the star asset and choose
Linkage to verify.

And now you’ve had a quick tour of the lobby and one of the rooms here at the UI
Component Hotel. There are other rooms, of course, some more elaborate than others,
but the layout for each is basically the same.

CheckBox component
You met CheckBox briefly in the “Button component” section, but let’s take a closer look.
This component is essentially a toggle button with its label on the side. Click the box or its
label, and the box gets a check mark (as shown in Figure 9-11); click again, and the check
mark goes away.

Figure 9-11. The CheckBox component
is essentially a toggle button with its
label on the side.

We’re pleased in a big way about the current UI component set, but even Paradise has
its trouble. Some components—specifically List, ComboBox, TileList, and DataGrid—only
obey certain styles, such as textFormat, when they’re set for all components by way of
StyleManager.setStyle(). For component-specific and per-instance formatting, these
four culprits require something called a custom cell renderer, which gets into the sort of
programming not covered by this book. You have two workarounds: either set
textFormat for all, then tweak other components’ styles individually, or—for List,
TileList, and DataGrid only—specify the instance name and use setRendererStyle()
instead.

USING THE FLASH UI COMPONENTS TO BUILD INTERFACES

401

9

861XCh09.qxp 6/25/07 1:30 PM Page 401

The Parameters tab of the Property inspector is fairly light for CheckBox: label sets the text
label (left, right, top, or bottom), labelPlacement determines the position of the label,
and selected lets you show an instance with the check mark by default. Double-click any
CheckBox instance to change the skinning for all. Styling works as described in the “Button
component” section.

Let’s take a look at how to interact with check boxes via ActionScript:

1. Open the CheckBox.fla file that accompanies this chapter. Note that each
CheckBox instance has its own label and instance name.

2. Open the Actions panel (Window ä Actions) and enter the following ActionScript
into frame 1 of the scripts layer:

addEventListener(Event.CHANGE, changeHandler);

function changeHandler(evt:Event):void {
var str:String = "";
if (cb1.selected == true) {
str += cb1.label + "\n";

}
if (cb2.selected == true) {
str += cb2.label + "\n";

}
if (cb3.selected == true) {
str += cb3.label;

}
output.text = str;

}

This assigns an event handler to the main timeline, listening for Event.CHANGE events. This
event handler could have been attached to each CheckBox instance individually, but by
doing it this way, the events of all three can be handled at the same time. When any of the
three CheckBox instances is changed by clicking, each member of the group is checked in
turn to see if it is selected. If so, the value of its label is added to a string that is ultimately
sent to a text field beneath the check boxes.

ColorPicker component
ColorPicker is a fun component, because nothing like it exists in the realm of HTML—at
least, not without a swarm of complicated JavaScript!—but it’s common enough in appli-
cations like Microsoft Word, Adobe Photoshop, and even Flash itself. In a nutshell, the
ColorPicker component is a clickable color chip that reveals an assortment of colors when

Using one or more instances of the CheckBox component in your movie will add 15
KB to the SWF if no other components share the load.

FOUNDATION FLASH CS3 FOR DESIGNERS

402

861XCh09.qxp 6/25/07 1:30 PM Page 402

pressed (as shown in Figure 9-12). It allows the user to choose one of the presented colors
or optionally to type in a hex value, at which point the chosen color is available for use.

Double-clicking a ColorPicker instance inside the authoring environment makes its skins
editable, and styling works the same as it does for the Button component. The palette of
colors displayed by this component is also editable, but requires just a bit of ActionScript,
as shown in the following code.

The ColorPicker.fla file that accompanies this chapter shows this component in action.

1. Open the ColorPicker.fla file and note that the component itself has the
instance name cp. The dynamic text field next to it has the instance name poem.
Click into frame 1 of the scripts layer and open the Actions panel (Window ä

Actions) to see the following ActionScript:

var fmt:TextFormat = new TextFormat();

cp.addEventListener(
Event.CHANGE,
function changeHandler(evt:Event):void {
fmt.color = cp.selectedColor;
poem.setTextFormat(fmt);

}
);

Here, a variable, fmt, is declared and set to an instance of the TextFormat class. An
Event.CHANGE event listener is assigned to the ColorPicker instance, cp—it does two
things. First, it sets the TextFormat.color property of the fmt instance to the
selected color of the cp instance. Second, it applies that format to the poem text
field.

See Chapter 6 for more information on the TextFormat class.

Using one or more instances of the ColorPicker component in your movie will
add 19 KB to the SWF if no other components share the load.

Figure 9-12. The ColorPicker
component lets users choose from a
range of colors.

USING THE FLASH UI COMPONENTS TO BUILD INTERFACES

403

9

861XCh09.qxp 6/25/07 1:30 PM Page 403

2. Now let’s determine what colors to display. Update the existing ActionScript to
look like this:

var fmt:TextFormat = new TextFormat();

cp.colors = new Array(
0x6E1E46,
0xA12F1C,
0xD47565,
0x557A40,
0x79A11C

);
cp.selectedColor = cp.colors[0];

cp.addEventListener(
Event.CHANGE,
function changeHandler(evt:Event):void {
fmt.color = cp.selectedColor;
poem.setTextFormat(fmt);

}
);

Specifying your own color palette couldn’t be easier. Just provide the desired hexa-
decimal values (up to 1,024 individual colors!) as array elements to the ColorPicker.
colors property of your component instance. To configure the color chip’s initial dis-
play color, set the ColorPicker.selectedColor property. (Here, it’s set to the first
element in the colors array.)

3. Drag the ColorPicker instance to the lower-right corner of the stage. Test the movie
to see that the pop-up color palette is smart enough to position itself to the upper
left of the color chip. Note that in the Parameters tab of the Property inspector, the
color palette’s text field can be hidden by setting the showTextField parameter to
false. You’ll also see an alternate way to set the component’s selectedColor.

ComboBox component
The ComboBox component is very much like the <select> element in HTML; specifically, the
<select> element without its optional size and multiple attributes. It gives users the abil-
ity to make one selection at a time from a drop-down list (see Figure 9-13). In addition, the
component can be made editable, which lets the user manually type in a custom selection.

Figure 9-13. ComboBox allows users to make
one selection at a time from a drop-down list.

FOUNDATION FLASH CS3 FOR DESIGNERS

404

861XCh09.qxp 6/25/07 1:30 PM Page 404

ComboBox skinning is a little more complicated than Button component skinning, but the
basic approach is the same. The reason for the complexity is the ComboBox combines two
other components, List and TextInput, which are described later in this chapter. Adding a
ComboBox instance to your movie puts three components into your library—ComboBox,
List, and TextInput—plus the Component Assets folder used by all UI components. Double-
clicking a ComboBox instance in the authoring environment opens the first tier of skins
(see the left image in Figure 9-14). Double-clicking the List element in this tier opens up
the skins for the embedded List component (the right image in Figure 9-14).

Figure 9-14. ComboBox skins (left) include nested elements, such as List skins (right).

In turn, the skins for List include a third tier for scrollbars. In spite of this nesting, individual
skins are nothing more than symbols, usually with 9-slice guides, such as the up and over
skins for the Button component. Styling works the same as it does for the Button compo-
nent. The textFormat style, in particular, can only be set for all instances of the ComboBox
component by way of the StyleManager.setStyle() method.

Using one or more instances of the ComboBox component in your movie will add
35 KB to the SWF if no other components, other than the automatically included
List and TextInput, share the load.

USING THE FLASH UI COMPONENTS TO BUILD INTERFACES

405

9

861XCh09.qxp 6/25/07 1:30 PM Page 405

1. Open the ComboBox.fla file that accompanies this chapter and select the ComboBox
instance on the stage by clicking it once. Note that in the Parameters tab of the
Property inspector some information has already been entered into the
dataProvider parameter shown in Figure 9-15. This is an array of objects, each of
which represents the visible portion of a drop-down choice (label) and the hidden
value each label contains (data).

Figure 9-15. An array of objects defines the labels and data that populate
a ComboBox.

2. Double-click the right column of the dataProvider
row to open the Values dialog box shown in
Figure 9-16.

3. Click the + button in the Values dialog box to
create a new entry, which will appear below the
existing Circle entry. Double-click the right col-
umn of the label row and change the existing
stand-in label to Square. Double-click the right
column of the data row and enter the value
square. Pay attention to the capitalization. Test
your movie to verify that the combo box now
includes a Square choice that changes the shape
to its right.

How does this work? Let’s take a look. The
shapes symbol in the library contains a series of
shapes drawn every few frames of its own time-
line. Frame labels are provided for each shape,
and it is these frame labels that are represented by the data row in the Values dialog
box. Click into frame 1 of the scripts layer to see the ActionScript that pulls this off:

cbx.addEventListener(
Event.CHANGE,
function(evt:Event):void {
shapes.gotoAndStop(cbx.selectedItem.data);

}
);

The combo box is referenced by its instance name, cbx. An Event.CHANGE event
triggers a function that tells the shapes instance to stop at the frame label deter-
mined by the selected item’s data property of the cbx instance.

FOUNDATION FLASH CS3 FOR DESIGNERS

406

Figure 9-16. The Values dialog
box lets you specify the content
and order of a ComboBox
instance.

861XCh09.qxp 6/25/07 1:30 PM Page 406

4. To populate the combo box by way of ActionScript, add the following line before
or after the existing code:

cbx.addItem({label:"Triangle", data:"triangle"});

Pretty straightforward! The other parameters in the Parameters tab are just as intuitive:
editable determines whether the user can type in a custom selection (if so, check for this
value by referencing the combo box’s instance name, and then the text property), prompt
determines the default text (in this example, the phrase “Select a shape”), and rowCount
determines how many selections to show in the drop-down list (if there are 15 selections and
the value of rowCount is 5, only five will show, but the rest will be available via scrollbar).

DataGrid component
The DataGrid is the most complex component in the UI arsenal. Its purpose falls almost
entirely in the realm of übergeek interface programmers, but we’re going to give you a
cursory look, including a basic sample file. In short, the DataGrid component gives you a
spreadsheet-like, sortable display for tabular data, as shown in Figure 9-17.

Figure 9-17. DataGrid displays scrollable, sortable tabular data.

See the DataGrid.fla file that accompanies this chapter for a working demonstration.
Click into frame 1 of the scripts layer to see the ActionScript. Here’s a bird’s eye view of
that code:

dg.addColumn("num");
dg.addColumn("eng");
dg.addColumn("ger");
dg.addColumn("fre");

These first lines reference the DataGrid component’s instance name, dg, and instructs the
component to add four columns. These column names are arbitrary and, here, represent a
column for numbers, and then their English, German, and French equivalents.

dg.addItem({num:1, eng:"one", fre:"un", ger:"eins"});
dg.addItem({num:2, eng:"two", fre:"deux", ger:"zwei"});
dg.addItem({num:3, eng:"three", fre:"trois", ger:"drei"});

Using one or more instances of the DataGrid component in your movie will add 40 KB
to the SWF if no other components share the load.

USING THE FLASH UI COMPONENTS TO BUILD INTERFACES

407

9

861XCh09.qxp 6/25/07 1:30 PM Page 407

dg.addItem({num:4, eng:"four", fre:"quatre", ger:"vier"});
dg.addItem({num:5, eng:"five", fre:"cinq", ger:"fünf"});
dg.addItem({num:6, eng:"six", fre:"six", ger:"sechs"});
dg.addItem({num:7, eng:"seven", fre:"sept", ger:"sieben"});
dg.addItem({num:8, eng:"eight", fre:"huit", ger:"acht"});
dg.addItem({num:9, eng:"nine", fre:"neuf", ger:"neun"});
dg.addItem({num:10, eng:"ten", fre:"dix", ger:"zehn"});

There is not a way to populate DataGrid instances from the Parameters tab of the Property
inspector, and we’re sure you can see why. It’s much easier to type in the data in the rela-
tively spacious environs of the Actions panel.

dg.getColumnAt(0).headerText = "Numeric";
dg.getColumnAt(1).headerText = "English";
dg.getColumnAt(2).headerText = "German";
dg.getColumnAt(3).headerText = "French";

These lines make the header text a bit more “friendly” to the eye. Test the movie at this
point to see how it all comes together. Click the headers to sort each column. When you
sort the Numeric column, you’ll see something odd. By default, sorting is alphabetical,
which puts the numbers 1 and 10 right next to each other. To fix that for columns that
contain numerical data, remove the comment (//) from the final line of ActionScript so
that it looks like this:

dg.getColumnAt(0).sortOptions = Array.NUMERIC;

This is great for displaying data, but what about retrieving what cell has been selected?
Yeah, we thought that was a good question, too. The selectedItem property for this com-
ponent returns the contents of the whole row you click, not just the clicked cell. It is pos-
sible to return the selected cell, but it requires something called the CellRenderer class
and more ActionScript, and frankly, it rockets way out of the atmosphere that makes this
book breathable.

Label component
Label is something of an oddball in the UI components collection. Unless you’re an avid
programmer, we’re almost certain you’ll want to forego Label in favor of a simple dynamic
text field. Why? Practically speaking, from a designer’s point of view, Label doesn’t really
do anything that a text field can’t—and besides, by using a text field, you’ll save the 14 KB
that an instance of Label would have brought to the table.

Labels don’t really have skins, and double-clicking an instance will tell you as much. Styling
works the same as for Button, but again, trust us on this one . . . just use a dynamic text field.
If you still want to see a Label component in action, check out Label.fla in the exercise files.

See Chapter 6 for a full discussion on text fields in Flash.

FOUNDATION FLASH CS3 FOR DESIGNERS

408

861XCh09.qxp 6/25/07 1:30 PM Page 408

List component
The List component is akin to the <select> element in HTML when its optional size and
multiple attributes are specified. This component is basically a combo box without the
drop-down aspect—it’s always dropped down—and it allows multiple selections, as shown
in Figure 9-18.

Like ComboBox, the List component has nested skins, so when you double-click an instance
in the authoring environment, the skins become available for editing in tiers. Styling is han-
dled the same way as described in the “Button component” section; however, the
textFormat style must be set using the SelectableList.setRendererStyle() method, as
in myList.setRendererStyle("textFormat", fmt).

The Parameters tab in the Property inspector is relatively hefty for the List component, and
the Component Inspector panel comes in handy for looking over this component’s settings.
Most of the choices pertain to scrolling (the distance to scroll horizontally and vertically,
whether scrolling should be automatic or constant, etc.), but the important parameters are
allowMultipleSelection and dataProvider (see Figure 9-19).

Figure 9-19. The important parameters for the List component are allowMultipleSelection and
dataProvider.

To populate your user’s choices in a given List instance, double-click the right column of the
dataProvider row and use the Values dialog box as described in the “ComboBox component”
section. Setting showMultipleSelection to true (the default is false) lets your users hold
down Ctrl (PC) or Cmd (Mac) while they click in order to select more than one of the listed
choices. (just like the multiple option in HTML).

1. Open the List.fla file that accompanies this chapter. Note that the instance name
for the List instance is list, which only works because ActionScript is a case-sensitive
language—you couldn’t call it List, because that’s the name of the class that defines
this object. In your own work, you’ll want to use an instance name that describes the
list’s use (in this case, that might be the word ingredients). Note that the dynamic text
field, next to the List instance, has the instance name output.

Using one or more instances of the List component in your movie will add 29 KB to
the SWF if no other components share the load.

USING THE FLASH UI COMPONENTS TO BUILD INTERFACES

409

9

Figure 9-18. The
List component
optionally allows
multiple selections.

861XCh09.qxp 6/25/07 1:30 PM Page 409

2. Click into frame 1 of the scripts layer and type the following ActionScript:

list.addEventListener(
Event.CHANGE,
function(evt:Event):void {
var str:String = "The secret ingredient(s): ";
for (var i:uint = 0; i < list.selectedItems.length; i++) {
str += list.selectedItems[i].data;
if (i < list.selectedItems.length - 1) {
str += ", ";

} else {
str += ".";

}
}
output.text = str;

}
);

This one may look more complicated than it actually is, so let’s break it down. As always,
we’re using addEventListener() to associate a function with an event. In this case, the
event is Event.CHANGE and the function does three things.

First, the variable str holds the phrase "The secret ingredient(s): ".

var str:String = "The secret ingredient(s): ";

Next, a for loop repeats a particular set of actions. The duration of the loop depends on
the number of selected items, based on the Array.length property of the selectedItems
property, which is an array. The variable i starts at zero and increments at each “lap”
around the loop, so that the line

str += list.selectedItems[i].data;

refers to the first selected item (item 0), and then the second selected item (item 1), and
so on, of the List instance. The reason there’s a .data tacked onto the end is because List
items are made up of two parts: label and data, which are—bingo!—the elements that
comprise the dataProvider parameter described previously.

An if statement adds a comma between items in the middle and a period after the item
at the end. Finally, the str variable, which has continuously been updated by this process,
is set to the TextField.text property of the output instance.

The net result is that List selections populate a dynamic text field with the ingredients of
Kraft Cucumber Ranch dressing.

For extra credit, add the line list.addItem({label:"Ingredient 11",
data:"natural flavor"}); after the existing ActionScript to show that
it’s also possible to populate a List instance programmatically.

FOUNDATION FLASH CS3 FOR DESIGNERS

410

861XCh09.qxp 6/25/07 1:30 PM Page 410

NumericStepper component
NumericStepper is a compact little gadget that lets the user specify a numeric value, either by
typing it in or by clicking up and down arrow buttons (see Figure 9-20). You, as a designer,
can specify your own desired minimum and maximum values, as well as the size of each
increment (count by ones, by twos, by tens, etc.), which can be set via the Parameters tab of
the Property inspector.

NumericStepper’s skins can be edited by double-clicking an instance, and styling can be
applied as described in the “Button component” section. This component carries with it
the TextInput component, so you’ll see both in your library if you add NumericStepper to
your movie.

1. Open the NumericStepper.fla file that accompanies this chapter. Note that the
NumericStepper instance has the instance name ns and that the thermometer
movieclip has the instance name thermometer. Double-click that movieclip to enter
its timeline, and you’ll see a red rectangle (masked by a green shape) with the
instance name mercury (see Figure 9-21). You’re going to set the height of this
nested movieclip based on the value property of the NumericStepper instance.

2. Select Edit ä Edit Document to return to the main timeline. Click into frame 1 of
the scripts layer and type the following ActionScript:

ns.addEventListener(
Event.CHANGE,
function(evt:Event):void {
thermometer.mercury.height = ns.value;

}
);

3. Test your movie and click the up and down arrow buttons to see it in action.

Figure 9-21. The mercury will
rise and fall in response to
NumericStepper clicks.

Using one or more instances of the NumericStepper component in your movie will add
18 KB to the SWF if no other components (other than the automatically included
TextInput) share the load.

USING THE FLASH UI COMPONENTS TO BUILD INTERFACES

411

9

Figure 9-20. The
NumericStepper
component

861XCh09.qxp 6/25/07 1:30 PM Page 411

ProgressBar component
Used often for preloading, the ProgressBar component (shown in
Figure 9-22) gives you a rising thermometer–style animation to
display load progress when loading files of known size, and a bar-
ber pole–style animation to indicate that the user must wait (e.g.,
for files of unknown size to load or for processes to finish).

This component doesn’t have a whole lot to skin, but you can
access what’s there by double-clicking a ProgressBar instance.
Styling works as it does for the Button component, but
ProgressBar doesn’t even have text, so your styling choices are
fairly slim. (Yes, Figure 9-22 shows text, but that’s an example of the Label component.)

1. Open the ProgressBar.fla file that accompanies this chapter. Note that a
ProgressBar instance exists in frame 1 with the instance name pb, as well as a text
field with the instance name output. In frame 5, you’ll find a fairly heavy image of
a homegrown onion, snapped years ago by one of the authors. In the scripts layer,
there’s a stop() action in frames 1 and 5.

2. Click into frame 1 of the scripts layer and type the following ActionScript:

root.loaderInfo.addEventListener(
Event.COMPLETE,
function(evt:Event):void {
play();

}
);

pb.source = root.loaderInfo;

So far, here’s what’s going on. An Event.COMPLETE event kicks the playhead back
into gear. In other words, when the root (the movie itself) has completed loading,
the playhead will play until frame 5 stops it again, revealing the onion.

The ProgressBar part is practically magic. Simply set the ProgressBar.source prop-
erty to the root’s loaderInfo property. It couldn’t be simpler. In Chapter 13, you’ll
see additional loading examples, including one that uses the Loader class. In a case
like that, you would set the source property of your ProgressBar instance to the
Loader.contentLoaderInfo property of the Loader instance. Later in this chapter,
you’ll see an example using the UILoader component, in which case it is sufficient
merely to point to the UILoader instance itself.

Using one or more instances of the ProgressBar component in your movie will add
16 KB to the SWF if no other components share the load—that means 16 KB of
non-preloadable content (the preloader itself!), so don’t put much else into the
frame that contains the ProgressBar instance.

FOUNDATION FLASH CS3 FOR DESIGNERS

412

Figure 9-22. The
ProgressBar component
indicates load progress
(top), and also presents
a “waiting” animation
(bottom).

861XCh09.qxp 6/25/07 1:30 PM Page 412

3. Now, if you also want to display a text message indicating a percent loaded, you
could do something like the following. Add a few more lines below the existing code:

pb.addEventListener(
ProgressEvent.PROGRESS,
function(evt:ProgressEvent):void {
output.text = Math.floor(pb.percentComplete).toString() + "%";

}
);

The ProgressBar component features a percentComplete property, which we’re
using here. The addEventListener() method is invoked against the pb instance,
and the function it performs sets the output text field’s text property to a
rounded-down string version of the progress percentage—with the percent sign
tacked onto the end for good measure.

RadioButton component
Radio buttons are social creatures. They belong in groups, and courteously defer to each
other as each takes the spotlight. What are we talking about? We’re talking about a com-
ponent identical in functionality to radio buttons in HTML. Groups of these are used to let
the user make a single selection from a multiple-choice set (see Figure 9-23).

Double-clicking a RadioButton instance provides access to its skins, which you can edit as
described in the “Button component” section. Styling works the same way.

1. Open the RadioButton.fla file that accompanies this chapter. Because radio but-
tons work in groups, the Parameters tab of the Property inspector has a “group
think” parameter we haven’t seen with other components: groupName. Select each
of the three radio buttons in turn and verify that each belongs to the same group,
stooges, even though each has its own distinct label: Moe, Curly, and Larry (see
Figure 9-24). Note also the empty dynamic text field whose instance name it output.
You’re about to wire up the radio buttons to that text field.

Using one or more instances of the RadioButton component in your movie will add
16 KB to the SWF if no other components share the load.

Figure 9-23. The RadioButton
component lets the user make a
single selection from a multiple-
choice set.

USING THE FLASH UI COMPONENTS TO BUILD INTERFACES

413

9

861XCh09.qxp 6/25/07 1:30 PM Page 413

Figure 9-24. RadioButton instances must be associated with a group name.

2. Click into frame 1 of the scripts layer and type the following very condensed but
interesting ActionScript:

rb1.group.addEventListener(
Event.CHANGE,
function(evt:Event):void {
output.text = rb1.group.selection.label;

}
);

What makes this interesting? In most of the event-handling samples in this book,
you’ve invoked the addEventListener() method on an object that you personally
gave an instance name. Here, that might have been rb1—but that’s not the focal
point in this case. You’re not adding an event listener to a particular radio button,
but rather to the group these buttons belong to. The RadioButton class provides a
group property, which means that each instance knows what group it belongs to.
It’s the group dispatching the Event.CHANGE event, which occurs when any one of
these radio buttons is clicked.

It doesn’t matter which radio button’s group property you use, because all of them
point to the same RadioButtonGroup instance. The associated function updates the
output text field by sending it the selected button in this group—in particular, that
button’s label property, which is either Moe, Curly, or Larry.

Note that the Parameters tab gives you the option to supply a value for each radio but-
ton. This allows you to say one thing and do another, just as in the List example—except
that the List choices were label and data; here, they’re label and value, and the data
type of value is Object (not String). The text field wants a string, so you would change
that line of ActionScript to output.text = rb1.group.selection.value.toString();.

FOUNDATION FLASH CS3 FOR DESIGNERS

414

861XCh09.qxp 6/25/07 1:30 PM Page 414

ScrollPane component
The ScrollPane component lets you have eyes bigger than your stomach. If you want to dis-
play a super-large image—so large that you’ll need scrollbars—ScrollPane is your compo-
nent; Figure 9-25 shows it in action.

Figure 9-25. ScrollPane provides optional scrollbars to
accommodate oversized content.

ScrollPane has nested skins because of its scrollbars, so double-clicking an instance during
authoring will open up its skin elements in tiers. Styling works the same as described in the
“Button component” section, though with no text elements, most of your customization
work will probably center around skins.

1. In this example, there’s no need for ActionScript. Open the ScrollPane.fla file
that accompanies this chapter. Select the ScrollPane instance and click the
Parameters tab of the Property inspector.

2. In the Parameters tab, double-click the right column of the source row. Type Onion.jpg
and test the movie. Pretty slick! The source parameter can be pointed to any file for-
mat that Flash can load dynamically, including GIFs, PNGs, and other SWFs.

Using one or more instances of the ScrollPane component in your movie will add 21
KB to the SWF if no other components share the load.

USING THE FLASH UI COMPONENTS TO BUILD INTERFACES

415

9

861XCh09.qxp 6/25/07 1:30 PM Page 415

Slider component
The Slider component is conceptually the same thing as NumericStepper, except that
instead of clicking buttons to advance from one number to the next, the user drags a knob
along a slider, as shown in Figure 9-26. You, as designer, are responsible for setting the
minimum and maximum values, and this component lets you specify whether sliding is
smooth or snaps to increments specified by you.

Slider has no text elements, so styling is fairly light. What’s there works as it does for the
Button component. Skinning also works as it does for Button: double-click a Slider instance
in the authoring environment to change the knob and track skins.

1. Open the Slider.fla file that accompanies this chapter. Note that the instance
name for the Slider instance is slider, which only works because ActionScript is a
case-sensitive language—you couldn’t call it Slider, because that’s the name of the
class that defines this object. Note, also, the instance names circle1 and circle2
on the two circles. You’re about to wire up the Slider component to adjust their
width and height.

2. Click into frame 1 of the scripts layer and type the following ActionScript:

slider.addEventListener(
Event.CHANGE,
function(evt:Event):void {
circle1.scaleX = slider.value / 100;
circle2.scaleY = slider.value / 100;

}
);

When the Event.CHANGE event is dispatched—this happens as the knob moves
along the track—the slider’s value property is used to update scaling properties of
the circle movieclips. Why divide by 100? In movieclip scaling, 0% is 0 and 100% is 1.
Because the Slider instance happens to have its maximum parameter set to 100, the
division puts value into the desired range, as shown in Figure 9-27.

Be sure to experiment with the parameters in the Property inspector’s Parameters tab.
Most of them are intuitive, but liveDragging probably isn’t. The liveDragging parameter
tells Slider how often to update its value property. Change it to false and test again to see
the circles resize less smoothly.

Using one or more instances of the Slider component in your movie will add 17 KB to
the SWF if no other components share the load.

Figure 9-26. Slider lets the user
drag a handle back and forth to
specify a value.

FOUNDATION FLASH CS3 FOR DESIGNERS

416

861XCh09.qxp 6/25/07 1:30 PM Page 416

sliderClip.slider.addEventListener(
Event.CHANGE,
function(evt:Event):void {
circle1.scaleX = sliderClip.slider.value / 100;
circle2.scaleY = sliderClip.slider.value / 100;

}
);

TextArea component
Chapter 6 introduced you to text fields. Consider the TextArea component a text field in a
tux. It has an attractive, slightly beveled border, lets you limit how many characters can be
typed into it (like input text fields), and is optionally scrollable (see Figure 9-28). This com-
ponent is akin to the <textarea> element in HTML.

Figure 9-28. TextArea is the James Bond of text fields.

You may be surprised to find a direction parameter (its values are horizontal and
vertical). Why not just use the Free Transform tool to rotate this slider? Well, try it.
We’ll wait . . . Kinda weird, right? It doesn’t work. Components are a sophisticated phe-
nomenon, even though they look so simple. What if you want a slanted slider, not hor-
izontal or vertical? Here’s a trick: select the Slider instance, convert it to a movieclip
(Modify ä Convert to Symbol), and give that movieclip an instance name. When both
the movieclip (here, sliderClip) and its nested Slider have instance names, you’re set.

Figure 9-27. A single Slider
instance can adjust many objects.
Hey, that looks like a face!

USING THE FLASH UI COMPONENTS TO BUILD INTERFACES

417

9

861XCh09.qxp 6/25/07 1:30 PM Page 417

TextArea is skinnable, but its parts are few. You’ll see a nested skin for the scrollbars when
you double-click an instance in the authoring environment. More likely, you’ll want to style
its text contents, which works as described in the “Button component” section.

See the TextArea.fla file that accompanies this chapter for an example of populating a
TextArea instance with text. (We figured it would be cruel to make you type in a lengthy bit
of sample text on your own.) Note that the TextArea component can display HTML text, as
shown in the sample file, or plain text. Use the htmlText or text property accordingly.
Note that the Parameters tab of the Property inspector only shows a text parameter for
supplying text. We can’t imagine anyone using that tiny space to enter more than a sen-
tence.

TextInput component
The TextInput component is the single-line kid brother to TextArea. For this reason, to
trump it up, we’ll show it displaying one of the shortest short stories in the world, attrib-
uted to Ernest Hemingway (see Figure 9-29).

Figure 9-29. TextInput features
a slightly beveled look.

TextInput is primarily used to collect typed user input, such as happens in HTML-based
“contact us” forms, and can even be set to display password characters as asterisks. The
component is skinnable—just double-click an instance in the authoring environment—but
there’s not much to skin. Styling works as described in the “Button component” section.

1. Open the TextInput.fla file that accompanies this chapter. Note the two TextInput
instances, with instance names input (top) and output (bottom). Select each com-
ponent in turn and look at the Parameters tab as you do. For the top TextInput
instance, the displayAsPassword and editable parameters are set to true. For the
bottom, both of those parameters are set to false. You’re about to make the
upper component reveal its password to the lower one.

Using one or more instances of the TextInput component in your movie will add 15 KB
to the SWF if no other components share the load.

Using one or more instances of the TextArea component in your movie will add
21 KB to the SWF if no other components (other than the automatically
included UIScrollBar) share the load.

FOUNDATION FLASH CS3 FOR DESIGNERS

418

861XCh09.qxp 6/25/07 1:30 PM Page 418

2. Click into frame 1 of the scripts layer and type the following ActionScript:

input.addEventListener(
Event.CHANGE,
function(evt:Event):void {
output.text = input.text;

}
);

As text is typed into the upper TextInput instance, the Event.CHANGE event updates
the lower instance’s text content with that of the other. Because of the parameter
settings, the text content is hidden above, but clearly displayed below.

TileList component
TileList is not unlike the ScrollPane component. Both load files for display, optionally with
scollbars, but TileList displays numerous files—JPGs, SWFs, and so on—in the tiled arrange-
ment shown in Figure 9-30.

Figure 9-30. TileList displays a tiled arrangement of content, optionally scrolling as necessary.

Double-click a TileList instance to edit its skins. You’ll see a second tier of skins for the
scrollbars. Styling may be accomplished as described in the “Button component” section;
however, the textFormat style must be set using the SelectableList.setRendererStyle()
method, as in myTileList.setRendererStyle("textFormat", fmt).

There are quite a few parameters listed in the Parameters tab of the Property inspector for
this component, but they’re all easy to grasp. For example, there are settings for the width
and number of columns, height and number of rows, direction or orientation (horizontal

Using one or more instances of the TileList component in your movie will add 32 KB to
the SWF if no other components share the load.

USING THE FLASH UI COMPONENTS TO BUILD INTERFACES

419

9

861XCh09.qxp 6/25/07 1:30 PM Page 419

or vertical), and scrolling settings (on, off, and auto, which makes scrollbars show as
necessary). The dataProvider parameter is the most important, because that’s where you
define the content to show. It works the same as the dataProvider for ComboBox, except
that instead of label and data properties, TileList expects label and source.

If you find the Parameters tab a bit confining, you can always use ActionScript to add items
to TileList instances.

1. Open the TileList.fla file that accompanies this chapter. Note that the TileList
instance has the instance name tl, and the dynamic text field below it has the
instance name output.

2. Click into frame 1 of the scripts layer and type the following ActionScript:

tl.addItem({label:"Mug 6", source:"Mug06.jpg"});
tl.addItem({label:"Mug 7", source:"Mug07.jpg"});
tl.addItem({label:"Mug 8", source:"Mug08.jpg"});

tl.addEventListener(
Event.CHANGE,
function(evt:Event):void {
output.text = tl.selectedItem.label;

}
);

The first three lines use practically the same approach we used in adding an addi-
tional item to the ComboBox instance in that section of the chapter. Here, they give
us a few more mug shots (heh, mug shots—we love that joke). In the event han-
dler, the function updates the output text field’s text property with the label
value of the tile list’s selected item.

UILoader component
If the Flash CS3 UI components all went to a Halloween party, UILoader would show up as
the Invisible Man (see Figure 9-31).

TileList also supports multiple selections, like the List component. The sample code in
the “List component” section provides the same basic mechanism you would use here,
except instead of targeting the data property, you’ll probably want to target label, as
shown in the preceding single-selection sample.

FOUNDATION FLASH CS3 FOR DESIGNERS

420

861XCh09.qxp 6/25/07 1:30 PM Page 420

Figure 9-31. Practically speaking, UILoader has no visual elements (and yes, this figure is empty; it
tickled us to include it).

So what’s the point? Ah, but UILoader is such a selfless, giving component! Its purpose is to
load and display content other than itself. This keeps you from having to use the Loader
class (described in Chapter 13)—in case the thought of ActionScript makes you feel like
you just found half a worm in your apple. Simply enter a file name into the source param-
eter of the Property inspector’s Parameters tab, and you’re set (see Figure 9-32).

Figure 9-32. Just enter in the name of a supported file format, and Flash will load it.

1. Open the UILoader.fla file that accompanies this chapter. Double-click the
UILoader instance if you like; you’ll see message that no skins are available. Since
we aren’t speaking to this component with ActionScript—yet—it doesn’t need an
instance name. In the Parameters tab of the Property inspector, enter the file name
Onion.jpg into the right column of the source row. This references a JPG file in the
same folder as your FLA. Test your movie, and you’ll see the onion load into its
UILoader container.

2. In the Parameters tab, change the maintainAspectRatio parameter to false and
test again. This time, the onion loads a bit squished. Our personal preference is
usually to maintain aspect ratio. The scaleContent parameter determines whether
the loaded content is scaled or cropped in its container.

Using one or more instances of the UILoader component in your movie will add 15 KB
to the SWF if no other components share the load.

USING THE FLASH UI COMPONENTS TO BUILD INTERFACES

421

9

861XCh09.qxp 6/25/07 1:30 PM Page 421

3. Our friend ProgressBar is about to make a cameo appearance. Drag an instance of
the ProgessBar component to the stage below the UILoader instance, and give the
UILoader instance the instance name loader (see Figure 9-33).

Figure 9-33. It’s very easy to show the load progess of a UILoader instance.

4. Select the progress bar, and in the Parameters tab, set its source parameter to
loader—that’s the instance name you just gave the UILoader instance. You’re asso-
ciating the two. Test your movie, and then in the SWF window that opens, select
View ä Simulate Download to see some super-easy preloading action.

5. To wrap up, let’s add a teensy bit of ActionScript. (Don’t worry, that half a worm we
mentioned earlier was just a centipede—half a centipede.) To make sure ActionScript
talks to the ProgressBar instance, give it an instance name. We’re using pb. Click into
frame 1 of the scripts layer and type the following ActionScript:

pb.addEventListener(
Event.COMPLETE,
function(evt:Event):void {
removeChild(pb);

}
);

What does that do? That makes the progress bar disappear when loading is complete.

UIScroller component
If you read any other sections of this chapter, you’ve probably already been introduced to
the UIScroller component. This component is a humble but useful member of the team, as
it allows things to have scrollbars. UIScroller is skinnable when you double-click any
instance of it in the authoring environment. Styling doesn’t make much sense, but it is pos-
sible as described in the “Button component” section.

FOUNDATION FLASH CS3 FOR DESIGNERS

422

861XCh09.qxp 6/25/07 1:30 PM Page 422

So as to avoid repeating ourselves, we’ll direct your attention to Chapter 6’s “Scrolling
Text” section to see this component in action.

What you’ve learned
How to use the various Flash CS3 UI components

How to write the ActionScript that controls components

How to skin a component

How to manage components in a Flash movie

In the next chapter, we’ll show you how to use CSS to format text in a Flash movie. It isn’t
as dry as it sounds because you can do some pretty interesting things with CSS-formatted
text in Flash CS3. What are they? Turn the page to find out.

Using one or more instances of the UIScroller component in your movie will add 18 KB
to the SWF if no other components share the load.

USING THE FLASH UI COMPONENTS TO BUILD INTERFACES

423

9

861XCh09.qxp 6/25/07 1:30 PM Page 423

861XCh10.qxp 6/25/07 1:31 PM Page 424

10 CSS AND FLASH

861XCh10.qxp 6/25/07 1:31 PM Page 425

Cascading Style Sheets (CSS) refers to a W3C (World Wide Web Consortium) specification
that, in the W3C’s own words, provides “a simple mechanism for adding style (e.g., fonts,
colors, spacing) to Web documents (www.w3.org/Style/CSS/).” Simple concept, sure—but,
as any web developer will tell you, CSS can be a Marlboro-smokin’, tumbleweed-kickin’
maverick cowboy when it comes to corralling HTML. In other words, CSS is rugged, power-
ful, and does a great job at making HTML behave. Obviously, this is a good thing. But CSS
can also be a bit hard to work with, which makes sense when you’re dealing with a stubbly,
saddle-sore buckaroo.

In the world of HTML, this trouble is due to the wide variety of browsers (and versions of
browsers) in use by the general public. Each browser supports CSS to a varying, and often
buggy, degree. In Flash, you have a lot less to worry about, even though the use of CSS
requires ActionScript. Why are things easier in a SWF? The answer is mainly that Flash sup-
ports only a very small subset of the full CSS specification. This means that there are only a
few cows to wrangle. As a Flash designer, you’re not worried about half a dozen browsers,
but merely a single Flash Player plug-in. As an extra plus, the supported CSS subset hasn’t
really changed since the feature was introduced in Flash MX 2004 (Flash Player 7).

What we’ll cover in this chapter

A brief overview of CSS, including what makes it so useful

Some of the limitations of CSS in Flash

How to generate and apply CSS in ActionScript

The difference between element selectors and class selectors

Custom HTML tags

Inheritance basics

How to style anchor tag hyperlinks

How to embed fonts for CSS

How to load styles from an external CSS file

Files used in this chapter:

Styling01.fla (Chapter10/ExerciseFiles_CH10/Exercise/Styling01.fla)

Styling02.fla (Chapter10/ExerciseFiles_CH10/Exercise/Styling02.fla)

Styling03.fla (Chapter10/ExerciseFiles_CH10/Exercise/Styling03.fla)

Styling04.fla (Chapter10/ExerciseFiles_CH10/Exercise/Styling04.fla)

“Wait a minute, varmints,” you might be saying, “If CSS has been available since Flash
Player 7, what you’re really talking about are three Flash Players, versions 7 through 9.
Don’t try to pull a fast one on us!” Well, if we opened it up to ActionScript 2.0, you’d
have a good point. Even so, the supported styles are pretty much the same; it’s only
the ActionScript nitty-gritty that’s been updated. In any case, three plug-ins are noth-
ing compared to a herd of browsers—and since we’re only dealing with ActionScript
3.0 in this book, Flash Player 9 is the only one that counts. Yippee-ki-yay!

FOUNDATION FLASH CS3 FOR DESIGNERS

426

861XCh10.qxp 6/25/07 1:31 PM Page 426

http://www.w3.org/Style/CSS/).%E2%80%9D

ClassSelectors.fla (Chapter10/ExerciseFiles_CH10/
Exercise/ClassSelectors.fla)

ElementSelectors.fla (Chapter10/ExerciseFiles_CH10/
Exercise/ElementSelectors.fla)

Hyperlinks.fla (Chapter10/ExerciseFiles_CH10/
Exercise/Hyperlinks.fla)

HyperlinksVaried.fla (Chapter10/ExerciseFiles_CH10/
Exercise/HyperlinksVaried.fla)

Inheritance.fla (Chapter10/ExerciseFiles_CH10/Exercise/Inheritance.fla)

styles.css (Chapter10/ExerciseFiles_CH10/Exercise/styles.css)

StylingEmbeddedFonts01.fla (Chapter10/ExerciseFiles_CH10/
Exercise/StylingEmbeddedFonts01.fla)

StylingEmbeddedFonts02.fla (Chapter10/ExerciseFiles_CH10/
Exercise/StylingEmbeddedFonts02.fla)

StylingExternal.fla (Chapter10/ExerciseFiles_CH10/
Exercise/StylingExternal.fla)

The power of CSS
In a nutshell, the power of CSS is that it allows you to separate styling from informational
content. In Flash, we’re essentially talking about text. You’ll wrap text content in HTML
tags—that’s one side of the coin—and you’ll style those HTML tags with CSS—that’s the
other side. Flip that coin as you see fit: if you change your mind about how the text should
look—regarding font, color, indentation, spacing, and the like—you can change the CSS
without upsetting the text. The reverse is also true. Not only that, but styling can be
applied to numerous text fields at once, and even managed from a convenient external
file. As if that wasn’t enough, this external style sheet can update a movie’s styles without
your having to recompile the SWF! Have we got your interest yet?

Here are the available style properties:

color: This property determines the color of text, specified as a hexadecimal value
preceded by the # sign, as in #FFFFFF, rather than the 0xFFFFF you would use in
ActionScript.

display: This property determines how the styled object is displayed. Values
include inline (displayed without a built-in line break), block (includes a built-in
line break), and none (not displayed at all).

fontFamly: This property allows you to specify fonts for text content—either a sin-
gle font or comma-separated collection of fonts listed in order of desirability.

fontSize: This property is used for specifying font size in pixels. Only number val-
ues are accepted (units such as pt or px are ignored).

fontStyle: This property optionally displays text content in italics, if the font in use
supports it. Values include normal and italic.

CSS AND FLASH

427

10

861XCh10.qxp 6/25/07 1:31 PM Page 427

fontWeight: This property optionally displays text content in bold, if the font in use
supports it. Values include normal and bold.

kerning: This property, if specified as true, allows embedded fonts to be rendered
with kerning, if the fonts support it. Kerning, the removal of a bit of space between
letters, is only applied in SWF files generated in the Windows version of Flash. Once
the SWF is published, the kerning is visible both in Windows and Mac.

leading: This property determines the amount of space between lines of text.
Negative values, which are allowed, condense lines. Only number values are
accepted (units such as pt or px are ignored).

letterSpacing: Not to be confused with kerning, this property determines the
amount of space distributed evenly between characters. Only number values are
accepted (units such as pt or px are ignored).

marginLeft and marginRight: These properties add marginal padding by the spec-
ified amount in pixels to the left and right. Only number values are accepted (units
such as pt or px are ignored).

textAlign: This property aligns text. Values include left, center, right, and justify.

textDecoration: This property adds or removes underscoring by way of the under-
line and none values.

textIndent: This property indents a text field by the specified amount in pixels—
only number values are accepted (units such as pt or px are ignored).

Now let’s roll up our sleeves and use some of these properties:

1. Open the Styling01.fla file that accompanies this chapter. There are a few things
already in place for you. Note the two dynamic text fields, side by side, with
instance names unstyled and styled. There’s also a bit of ActionScript in frame 1
of the scripts layer, which does nothing more than build a string of HTML tags and
apply that string to the TextField.htmlText property of the two text fields.

2. Test the movie to see two identical copies of the wasabi salmon recipe shown
Figure 10-1 (yup, it’s a real recipe).

FOUNDATION FLASH CS3 FOR DESIGNERS

428

861XCh10.qxp 6/25/07 1:31 PM Page 428

Figure 10-1. CSS is about to save you a lot of effort.

3. Click into frame 1 of the scripts layer and open the Actions panel. The first thing
you need to do is import the StyleSheet class, otherwise none of this is going to
work. Put your cursor in line 1, in front of the word var, and then press the
Enter/Return key a couple times to make room. Type the following code in line 1
(see Figure 10-2):

import flash.text.StyleSheet;

Figure 10-2. The StyleSheet class must be imported.

CSS AND FLASH

429

10

861XCh10.qxp 6/25/07 1:31 PM Page 429

4. The thing about CSS in Flash is that styling must be applied to a text field before
any text is added to it. We’re going to leave the unstyled text field as is, in order
to have a running comparison. The CSS that formats the styled text field will have
to appear before the last line of ActionScript, because the last line actually pro-
vides the HTML text. Put your cursor in front of the last line of code and press
Enter/Return three times. This is where the new ActionScript will go. Now, hold that
thought.

How is this CSS thing going to work? That’s a good question, and thankfully, the answer
isn’t especially hard, even though the process takes a few steps. First, you’re going to cre-
ate an instance of the StyleSheet class. Next, you’ll decide on a handful of style proper-
ties. You’ll repeatedly use the StyleSheet.setStyle() method to associate those
properties with an HTML tag. Finally, you’ll associate the StyleSheet instance itself with a
given text field and add HTML content to that text field.

The crafty thing is that there are a number of ways to handle the setStyle() part. We’re
going to step you through a wordy approach first, because we think it best summarizes, on
a conceptual level, what’s going on. When you’ve seen that, we’ll steer you toward a more
compact approach, which will eventually lead toward an external CSS file, which is the
most versatile way to handle styling in Flash.

5. OK, still holding the thought? Good. Put your cursor into the second of the three
blank lines that precede the last line of code. Type the following ActionScript:

var css:StyleSheet = new StyleSheet();
var condensed:Object = new Object();

condensed.fontStyle = "italic";
condensed.color = "#A2A2A2";
condensed.leading = "-2";

css.setStyle("li", condensed);
styled.styleSheet = css;

Let’s review what you’ve done so far. The first line declares a variable, css, that
points to an instance of the StyleSheet class. The second line declares another vari-
able, condensed, that points to an instance of the generic Object class—that’s right,
this is an Object object—and the next three lines set arbitrary properties of this new
object; namely, fontStyle, color, and leading, each of which is set to a string
value. The second-to-last line refers again to the css instance, using that instance to
invoke StyleSheet.setStyle() with two parameters: an HTML tag to style and the
object to style it with. Quite simply, this line says, “Any tags in the house? If so,
you’re about to get comfy with the condensed object, whose instructions are to ren-
der you in italics, in the color #A2A2A2, and at a leading of -2.” Finally, a text field
whose instance name is styled has its styleSheet property set to the css instance.

6. Test the movie so far to see a change to all the content, as shown in Figure 10-3.
You can save and close the movie if you wish.

FOUNDATION FLASH CS3 FOR DESIGNERS

430

861XCh10.qxp 6/25/07 1:31 PM Page 430

Figure 10-3. CSS styling applied to a series of tags.

Pretty nifty! Now, in case you thought that ActionScript was a lot to type, keep in mind
that what you’ve seen is the gabbiest of the styling approaches. It’s possible to collapse five
of those lines into one, which we’ll do in just a moment. First, let’s take a look at how this
might have happened without CSS—because once you see that catastrophe, even this ver-
sion will seem a welcome relief.

Taking just the first tag’s content, how would you apply italics? Easy enough; you’ll
remember from Chapter 6 that this happens with the <i> tag. So far, then, we’ve got one
nested pair of tags:

<i>2 salmon filets</i>

What about the coloring? That’s the tag. Combined, that makes

<i>2 salmon filets</i>

Almost done! The final style property is leading (the spacing between lines). In the HTML-
only realm, that requires the Flash-specific <textformat> tag. This brings the combined
total to the following example of spaghetti code:

<i><textformat leading="-2">2 salmon å

filets</textformat></i>

Multiply that by the nine bullet points in this recipe, and you’ve got carpal tunnel syn-
drome just waiting to happen! If you decide later to change the text color, you’ll have to
revisit all nine nested tags and either edit or remove them. It’s a mess. Definitely,
the CSS styling mechanism is the nicer pick. All the more so if we can reduce the lines of
ActionScript.

CSS AND FLASH

431

10

861XCh10.qxp 6/25/07 1:31 PM Page 431

In order to accomplish that, we’re going to rely on a shortcut in creating our Object
instance, involving the use of the {} characters. Our setStyle() line will continue to use
"li" as the first parameter, but the second parameter will be composed of a single short-
cut object that holds all three styling properties at once, as shown in Figure 10-4.

Figure 10-4. These lines can be folded into a single
object reference.

The actual ActionScript looks like this:

css.setStyle("li", {fontStyle: "italic", color: "#A2A2A2",å

leading: "-2"});

This brings the full ActionScript styling portion to a mere three lines:

var css:StyleSheet = new StyleSheet();
css.setStyle("li", {fontStyle: "italic", color: "#A2A2A2",å

leading: "-2"});
styled.styleSheet = css;

Following suit, let’s style up a few more HTML tags:

1. Open the Styling02.fla file that accompanies this chapter. This file picks up
where we left off. The same text fields are in place and some styling has already
been applied (see the scripts layer). What’s there uses the shortened code version
we just looked at.

2. Next, you’ll style all the <p> tags. Position your cursor after the setStyle() line and
press Enter/Return to make room for the new code. Update your ActionScript so
that it includes the following new code (shown in bold):

var css:StyleSheet = new StyleSheet();
css.setStyle("li", {fontStyle: "italic", color: "#A2A2A2",å

leading: "-2"});
css.setStyle("p", {textAlign: "justify", leading: "6"});
styled.styleSheet = css;

FOUNDATION FLASH CS3 FOR DESIGNERS

432

861XCh10.qxp 6/25/07 1:31 PM Page 432

3. Test your movie to see the new formatting—justified and with a taller line height—
below the bullet points at the bottom right (see Figure 10-5).

Figure 10-5. After the first style is in place, additional styles are a snap.

Say, this is encouraging! Let’s keep right on going. There really isn’t enough space
between the bullet points and the text below them, so let’s pad the bottom of the
 tag a bit. We’ll also want the recipe’s title to stand out more.

4. Enter the scripts layer again and update the styling ActionScript so that it includes
the following new code (shown in bold):

var css:StyleSheet = new StyleSheet();
css.setStyle("li", {fontStyle: "italic", color: "#A2A2A2", å

leading: "-2"});
css.setStyle("p", {textAlign: "justify", leading: "6"});
css.setStyle("ul", {leading: "6"});
css.setStyle("b", {fontFamily: "Impact", fontSize: "14", å

color: "#339966"});
styled.styleSheet = css;

5. Test the movie to see the new styling . . . or part of it. Whoops. There’s now space
after the bullets—that’s the additional 6 pixels of leading we wanted—but the title
(the content) hasn’t changed at all! What’s going on? It is a matter of selectors,
which we’ll deal with in the next section.

6. Feel free to save the file or close it without saving the changes.

We’re going to go off on a sizable tangent here, but don’t worry. It all eventually leads
back to the salmon.

CSS AND FLASH

433

10

861XCh10.qxp 6/25/07 1:31 PM Page 433

Element selectors vs. class selectors

To this point, we’ve limited our view to something called element selectors. These refer to
HTML tags—also called HTML elements—and they apply their styling, in one swoop, to all
tags of a specified kind. Want to format all <p> content? Write a p element selector. Need
to style a bunch of list items ()? Write an li element selector. Pretty easy procedure.
At the end of the previous section, though, we saw that it doesn’t always work. This is one
of the limitations of Flash CSS, and it’s an important one to note.

In HTML documents, practically all HTML elements can be styled by way of an element
selector. In Flash, the list is vastly reduced. According to the Flash CS3 documentation, the
following tags comprise the meager list: <body>, <p>, , and <a>. The interesting thing
about this list is that <body> doesn’t appear as one of the supported tags noted in the
ActionScript 3.0 Language and Components Reference entry for TextField.htmlText.
Then again, doesn’t appear in that list either, and yet we saw that tag implement a
leading style. So . . . is there a method to this madness? Is there some easy way to keep
track of which tags can be styled with element selectors and which can’t?

The authors spent a bit of time studying the tea leaves, and this is what we discovered:
officially documented or not, the tags that support element selectors are all block ele-
ments, with the exception of the anchor tag (<a>). In other words, the rule of thumb is
this: if the tag carries with it a built-in line break, then an element selector will do the trick.
The special case is hyperlinks, which we’ll cover in detail later in the chapter (hyperlinks
are a special case in several ways).

For your reference, let’s take a quick look at a “proof is in the pudding” sample file:

1. Open the ElementSelectors.fla file
that accompanies this chapter. You’ll find
a text field with the instance name out-
put. The ActionScript in the scripts layer
shouldn’t be any trouble for you by now:
the StyleSheet class is imported, a
string of HTML is created, element selec-
tors are defined and then assigned to the
StyleSheet instance, and finally, the
HTML is supplied to the text field. Test
the movie to see the result shown in
Figure 10-6.

The output may not look all that inter-
esting, but it is, because it spells out a
few additional “gotchas” while verifying
the block element principle.

2. Click into frame 1 of the scripts layer and
take a look at the ActionScript in the
Actions panel. Each line of HTML ends in
a break tag (
), just to keep things
visually neat. The <a> tag is not a block
element, so it does not display an additional, built-in line break as with later tags; but

FOUNDATION FLASH CS3 FOR DESIGNERS

434

Figure 10-6. Only block elements—and
one exception, anchor tags—support
element selectors.

861XCh10.qxp 6/25/07 1:31 PM Page 434

as the exception to the rule in question, it does pick up the blue color from its ele-
ment selector. The <body> and <p> tag contents carry their own additional line
breaks—these are block elements—and both display the expected element selector
color styling. The and tags’ content is combined. These are also block ele-
ments and therefore display a combined pair of extra line breaks—and the expected
element selector styling.

Comment out the body and li element selectors in the ActionScript by preceding
those lines with double slashes (//), as shown in Figure 10-7.

Figure 10-7. Commenting out the body and li selectors leads to
a line-spacing quirk and the idea of inheritance.

3. Test the movie again. It should come as no surprise that the <body> tag content is
no longer styled. What may raise your eyebrows is that the extra line break is miss-
ing. This is a quirk involving only the <body> tag, and will raise its head again in the
“Custom tags” section of this chapter, which follows. The other thing to notice is
that the / content has changed color. The reason for this is that a distinct
color style was applied to each tag (green for and blue for), and the blue
won the wrestling match earlier because of a CSS concept called inheritance (cov-
ered in the “Style inheritance” section later in the chapter).

4. As a final test, uncomment the body element selector by removing the double
slashes from that line. Instead, comment out the p element selector. Test the
movie, and you’ll see that the <p> content is still blue. Why? Again, this is an exam-
ple of inheritance, but in a really twisted way. Under normal circumstances, HTML
documents feature most of their content inside a <body> tag. If a style is applied to
the body, it will “trickle down” to tags inside that body if those inner tags happen
to support the style properties at hand. Here in this Flash file, the <p> content is
clearly not inside the <body> content, and yet some phantom inheritance seems to
still hold sway. Comment out the body element selector one last time, and the <p>
content finally turns black.

5. Close the file without saving the changes.

Every development platform has its quirks, and these are a few of the ones that
belong to Flash. Being aware of these, even if they aren’t burned into your neurons,
might just save your hide when something about CSS styling surprises you.

CSS AND FLASH

435

10

861XCh10.qxp 6/25/07 1:31 PM Page 435

Now you’ve had some experience with block elements and the anchor tag, with the under-
standing that anchor tags still hold a bit of mystery, yet to be unfolded. Meanwhile, what
remains of the other supported HTML tags? What’s the opposite of a block element, and
how can one be styled?

In Flash, if it is not a block HTML element, it is an inline element. All that means is that you
don’t carry your own line break with you. Examples include the and <i> tags, which
apply their own innate formatting—bold and italic, respectively—without otherwise inter-
rupting the flow of text. As you’ve seen, inline elements in Flash do not support element
selectors. Is there another option, then? You bet your spurs, podner. But it only goes so far.

Not to be confused with the classes discussed in Chapter 4, CSS features class selectors,
which differ from element selectors in a significant way. Rather than apply their style to all
tags of a specified type, class selectors only look for tags that have a class attribute whose
value is set to the name of the class in question. We’ll see an example of this in just a
moment. In HTML documents, just about any tag can be given a class attribute, but this
isn’t the case in Flash. Actually, nothing stops you from giving an HTML tag such an attrib-
ute in Flash, but Flash only applies class selector styling to a few tags—and only one of
those as an inline element.

Here’s another “proof is in the pudding” sample file, which should make everything clear:

1. Open the ClassSelectors.fla file that accompanies this chapter. At first glance,
this file may look identical to ElementSelectors.fla, but click into frame 1 of the
scripts layer to lay eyes on a different hunk of code. To wit, every HTML tag now
has a class attribute, set either to blue or green, and the number of selectors has
been reduced to two—the selfsame blue and green styles. Now, how can you tell
that these are class selectors and not element selectors? The giveaway, which is
easy to miss if you aren’t looking for it, is the dot (.) in front of the style names
(see Figure 10-8).

Figure 10-8. Class selectors are much more selective than element selectors.
You can spot them by their dot prefixes.

Those dots change everything, because at this point, CSS doesn’t care what tag it’s
dealing with—it only cares if that tag has a class attribute set to blue, green, or
whatever the style’s name is.

FOUNDATION FLASH CS3 FOR DESIGNERS

436

861XCh10.qxp 6/25/07 1:31 PM Page 436

2. Test the movie to see the result. Remember, in the “real world” outside of Flash,
every one of these tags would be affected by the relevant style. In the SWF, only
the following tags do anything: <a>, , <p>, and . Unfortunately, we
haven’t found as neat a way to memorize this list as the other, but if you can
remember the block elements that go with element selectors, you need only swap
the <body> tag for the tag and drop to know the block and inline ele-
ments that go with class selectors. (Yeah, we agree, it’s not especially intuitive.)

3. For the sake of completeness, comment out the .green class selector and test the
movie to verify. The / content turns black because class selectors don’t
apply to tags in Flash.

4. Close the movie without saving the changes.

Custom tags

Ready to head back to the wasabi salmon? When we abandoned it to venture out on our
educational tangent, most of our styling had taken—all of it had, in fact, except the
 content, and now we know why. The tag is not a block element, which means it
simply doesn’t support element selectors. In any case, element selectors affect all tags of a
given type, and for the sake of illustration, let’s say we only want this recipe’s title to stand
out, not all content that happens to be set in bold. An obvious solution, then, based on
your current knowledge, would be to swap the tag for something that supports class
selectors.

1. Open the Styling03.fla file to see an example of just that approach. The key
changes in the ActionScript from Styling01.fla are shown in bold in the follow-
ing code:

var str:String = "";
str += "<p class='heading'>Savory Wasabi Salmon</p>";
str += "";
...
css.setStyle("ul", {leading: "6"});
css.setStyle(".heading", {fontFamily: "Impact", fontSize: "14",å

color: "#339966"});
styled.styleSheet = css;

This mix-and-match approach is perfectly valid. In fact, it’s a good basic methodol-
ogy: use element selectors to sweep through the styling for most tags, and then
cover the exceptions with class selectors. Or, you can use custom tags, which pro-
vide a kind of hybrid mechanism. They save you from having to type
class='someStyleName' throughout your HTML content, and the best part is, you
can use familiar, genuine HTML tags from the “real world,” if you like (think along
the lines of <h1>, <h2>, , etc.). Flash happily accepts these as “custom”
tags, because in its skimpy repertoire, they are.

Be careful where you put your dots! They only belong in the setStyle() method,
never in the class attribute of any tag.

CSS AND FLASH

437

10

861XCh10.qxp 6/25/07 1:31 PM Page 437

2. Open the Styling04.fla file to see a custom tag in action. Once again, this file is
virtually identical to the previous one, except for the parts shown in bold:

var str:String = "";
str += "Savory Wasabi Salmon";
str += "";
...
css.setStyle("ul", {leading: "6"});
css.setStyle("strong", {fontFamily: "Impact", fontSize: "14",å

color: "#339966"});
styled.styleSheet = css;

Note the absence of a dot preceding the strong element selector: this is not a class
selector! If you put 50 tags full of content in your SWF, all 50 occurrences
will pick up the style from this setStyle() method. That said—and we can’t stress
this enough—please understand that this is not a magical, undocumented way to
squeeze additional tags out of Flash’s limited HTML support. Flash has no idea what
a tag is, much less that most browsers treat it like a tag. This is noth-
ing more than a convenient hook for CSS, an excuse to dodge class selectors if you
happen not to like them. In fact, to prove it, and to reveal a limitation of the cus-
tom tag approach, proceed to step 3.

3. Replace the tag in the highlighted ActionScript with the completely
made-up <citrus> tag. There is no such tag in any of the W3C specifications (we
looked). Your code will only change in three places:

var str:String = "";
str += "<citrus>Savory Wasabi Salmon</citrus>";
str += "";
...
css.setStyle("ul", {leading: "6"});
css.setStyle("citrus", {fontFamily: "Impact", fontSize: "14",å

color: "#339966"});
styled.styleSheet = css;

4. In addition, find the word “lime” in the bulleted list and wrap it with this new
<citrus> tag:

str += "powered ginger";
str += "dash <citrus>lime</citrus> juice";
str += "";

5. Now test the movie and take a look. You should see the styling shown in Figure 10-9.

Danger, Will Robinson! What do we learn from the broken dash lime juice line? A
valuable lesson, that’s what. The recipe’s title is fine, but that’s because it stands on
its own. The lime line breaks because custom tags become block elements when
styled. In this case, the word juice has even been pushed past the extra line height
given earlier to the tag.

FOUNDATION FLASH CS3 FOR DESIGNERS

438

861XCh10.qxp 6/25/07 1:31 PM Page 438

Figure 10-9. Whoops, something isn’t right with the lime.

We’ve spent the last several miles mulling over some pretty arcane rules and even hazier
exceptions to them. CSS was supposed to be easier in Flash, right? If your head is spinning,
take a sip from the canteen and rest for a spell. While we wait, one of the authors will hum
an old, lonely cowboy tune. The lyrics go something like this: “To get the biggest bang for
your buck, use element selectors first, then custom tags for headings and other short or
specific blocks, and finally class selectors for special cases.” (Hey, no one said it had to
rhyme, and the melody really is pretty.)

Style inheritance

In moving from Object instances to the object shortcut characters ({}) earlier in the
chapter, we saw one way to trim CSS into a more compact form. There’s another way to
compact things even further, but it’s more conceptual than syntactical. The concept is
called inheritance, and it basically means that styles applied “up the creek” tend to even-
tually flow down to lower waters. A concrete example will spell this out quicker than an
explanation.

1. Open the Inheritance.fla file that accompanies this chapter. You’ll see a text
field with the instance name output.

2. Click into frame 1 of the scripts layer to view the ActionScript. As with the other
samples in this chapter, the code begins by building an HTML string. In this case,
the structure of the HTML tags is important. Stripping out the text content, the tag
hierarchy looks structurally like this:

<body>
<p></p>
<outer>
<mid>
<inner></inner>

</mid>
</outer>

</body>

Styling is applied to the <body> tag, which sets its font to Courier. The tags nested inside
this tag, <p> through <mid>, gain the same font thanks to inheritance. The custom <inner>
tag would also inherit Courier, except that this particular tag bucks the trend by specifying

CSS AND FLASH

439

10

861XCh10.qxp 6/25/07 1:31 PM Page 439

its own font, Arial, which overrides the inherited Courier and sets up its own new inheri-
tance. Note that the tag within <inner> displays Arial, like its parent, as shown in
Figure 10-10.

Figure 10-10. CSS inheritance at work

This sort of procedure can get fairly sophisticated. For example, the custom <outer> tag
adds italics to the mix.

css.setStyle("outer", {fontStyle: "italic"});

Because the flow goes downhill, <mid>, <inner>, and inherit not only the font of
<outer>’s parent, but also its italics, while sibling tags (<p>) and parent tags (<body>) do
not. And honestly, that makes good sense.

In the same vein, the custom <mid> tag introduces bold:

css.setStyle("mid", {fontWeight: "bold"});

Now, unopposed, <inner> and would inherit that bold styling as well, but <inner>
purposefully overrides that by setting fontWeight to normal in its own element selector:

css.setStyle("inner", {fontFamily: "Arial", fontWeight: "normal"});

In turn, this causes to inherit the override, as it too ignores the bold. Note, how-
ever, that does inherit the italics, which were not overridden by a parent tag.

Use this inheritance phenomenon to your advantage. It saves you keystrokes, for one—
there’s absolutely no need to specify font families for whole groups of related tags, for
example—and in addition, it gives you the opportunity to make sweeping changes from
relatively few locations.

Styling hyperlinks

Anchor tags are fun to style because of something called pseudo-classes. In CSS talk, a
pseudo-class corresponds to various possible states of an HTML element and is indicated by
a colon (:) prefix. In Flash, the only supported pseudo-classes are associated with the anchor
tag (<a>) and correspond to the following states: :link (an anchor tag that specifically

FOUNDATION FLASH CS3 FOR DESIGNERS

440

861XCh10.qxp 6/25/07 1:31 PM Page 440

contains an href attribute), :hover (triggered by a mouse rollover), and :active (triggered
by a mouse click). The long and short of this is that you have the tools you need to create
different anchor tag styles that update as the mouse moves and clicks your hyperlinks. Note
that Flash does not support the :visited pseudo-class, which in normal CSS indicates that a
hyperlink has already been clicked.

Think of pseudo-classes as a second tier of styles, not separated by hierarchy, as shown in
the “Style inheritance” section, but separated by time or events.

1. Open the Hyperlinks.fla file to see an example in action. The ActionScript begins,
as always, by establishing an HTML string:

var str:String = "";
str += "";
str += "Hyperlink 1";
str += "Hyperlink 2";
str += "å

Hyperlink 3";
str += "";

These anchor tags happen to be nested within list items, but they needn’t be. The important
part is that anchor tags exist that have href attributes actively in use. In these next three
lines, the element selectors provide a style of anchor tags in any state—that’s the first high-
lighted line—followed by distinct styles for the :hover and :active pseudo-classes.

var css:StyleSheet = new StyleSheet();
css.setStyle("li", {leading: "12"});
css.setStyle("a", {textDecoration: "none"});
css.setStyle("a:hover", {fontStyle: "italic"});
css.setStyle("a:active", {fontStyle: "italic",å

text-decoration: "underline", color: "#FF0000"});
output.styleSheet = css;

2. Test this movie to verify that hovering over hyperlinks puts them temporarily in
italics, and that clicking additionally displays an underline and new color. Note that
the italic style isn’t inherited by :active because :active is not a child of :hover;
they have a sibling relationship.

What if you’d like more than one style for your hyperlinks? Answer: Use a class selector.

3. Open HyperlinksVaried.fla for an example. First, here’s the new HTML:

var str:String = "";
str += "";
str += "Hyperlink 1";
str += "Hyperlink 2";
str += "å

Hyperlink 3";
str += "";
str += "";
str += "å

Hyperlink 4";

CSS AND FLASH

441

10

861XCh10.qxp 6/25/07 1:31 PM Page 441

http://www.apress.com
http://www.friendsofed.com
http://www.apress.com
http://www.friendsofed.com
http://www.apress.com

str += "å

Hyperlink 5";
str += "å

Hyperlink 6";
str += "";

Unfortunately, it isn’t possible to create unique pseudo-classes for the oddball-specific
anchor tags, but the following new class selector at least separates the new batch of
hyperlinks in their default state:

var css:StyleSheet = new StyleSheet();
css.setStyle("li", {leading: "12"});
css.setStyle("a", {textDecoration: "none"});
css.setStyle("a:hover", {fontStyle: "italic"});
css.setStyle("a:active", {fontStyle: "italic",å

textDecoration: "underline", color: "#FF0000"});
css.setStyle(".oddball", {color: "#00FF00"});
output.styleSheet = css;

4. Close the open files, and let’s now look at embedding fonts.

Embedded fonts

Before we take what we’ve learned and nudge it all toward
an external CSS file, let’s make a quick stop at the Last
Chance Saloon to talk about embedded fonts. CSS in Flash
requires HTML, which in turn requires a dynamic text field.
As you learned in Chapter 6, only static text fields embed
font outlines by default. What this means is that unless you
purposefully embed your fonts—and the choice is yours—
CSS-enhanced SWFs tend to have that jagged, non-font-
embedded look (shown in Figure 10-11).

Font symbols were introduced in Chapter 6, but there’s a new twist in how they’re used
with CSS. To recap, the font embedding process is as follows:

1. Add a font symbol to the library and associate it with the desired font on your system.

2. Enable the font symbol’s linkage by exporting the symbol for ActionScript.

3. Set the text field’s embedFonts property to true.

4. Reference the font symbol’s linkage class name—this has nothing to do with CSS
class selectors; it’s just coincidentally the same term—in place of the font’s actual
name in any relevant styles.

The trouble is that the process doesn’t work as advertised. Here’s how to fix it.

FOUNDATION FLASH CS3 FOR DESIGNERS

442

Figure 10-11. Text can look
a bit choppy if fonts aren’t
embedded.

861XCh10.qxp 6/25/07 1:31 PM Page 442

http://www.friendsofed.com

1. Open the StylingEmbeddedFonts01.fla file that accompanies this chapter. Test
the movie and you’ll see a blank SWF. This is odd because with the inclusion of the
ActionScript, this movie should presumably work just fine.

2. Click into frame 1 of the scripts layer and note the following pertinent lines of code:

css.setStyle("strong", {fontFamily: "ImpactNormal", fontSize:å

"14", color: "#339966"});

output.embedFonts = true;

In the first line, notice the reference to a font named ImpactNormal. This name refers
to the linkage class name of a font symbol in the library, which we’ll see in just a
moment. The second line turns on font embedding for the output text field instance.

3. Right-click (PC) or Ctrl-click (Mac) the ImpactNormal font symbol in the library.
Choose Linkage from the context menu and verify that the font is exported for
ActionScript (see Figure 10-12), and has a Class name of ImpactNormal.

Figure 10-12. The font symbol has been given what at first glance
appears to be valid linkage properties.

Flash simply doesn’t like something in this file as it stands. The trouble—and this is
a bona fide bug—is due to the arbitrary class name given to the font symbol. In the
Chapter 6 sample file, this didn’t matter because the text field’s font was specified
via the Property inspector rather than ActionScript. In an ideal world, the linkage
class name provides the necessary “link” to this library asset, but in this case, we’ll
have to roll with Flash’s whim.

4. Update the ActionScript to reference the font’s actual name, as shown in the font
list of the Property inspector:

css.setStyle("strong", {fontFamily: "Impact", fontSize: "14",å

color: "#339966"});

Note that it makes no difference what the font symbol’s library name or linkage
class is. In this case, the library name is still ImpactNormal. Test your movie, and the
text shown in Figure 10-13 magically appears. Hey, that’s an improvement! Not only
does the recipe’s title show up, but the lettering is smooth. Now for the rest of the
text.

CSS AND FLASH

443

10

861XCh10.qxp 6/25/07 1:31 PM Page 443

Figure 10-13. The ImpactNormal font is now showing, without the jaggies.

5. Even though it isn’t explicitly done, this text field is being asked to display more
than one font. Sure, the only font mentioned in the css instance is Impact, but the
Property inspector happens to show Arial for the text field, which means the default
font is Arial. The text field’s embedFonts property has been set to true, which
means only embedded fonts can be displayed. Two fonts are being summoned, so
two fonts need to be embedded.

6. Using the technique described in Chapter 6, add an Arial font symbol to your library
and name the symbol whatever you like. Make sure to export it for ActionScript. To
prove that neither the library name nor linkage class name matters—because
ActionScript does not reference this second font directly—compare your work with
StylingEmbeddedFonts02.fla, whose embedded Arial is named HornyToads in the
library. Test your movie (see Figure 10-14). Bingo! All of the text content shows.

Figure 10-14. All the text is accounted for, and none of it suffers from the jaggies.

FOUNDATION FLASH CS3 FOR DESIGNERS

444

861XCh10.qxp 6/25/07 1:31 PM Page 444

Loading external CSS
If we had to pick our favorite aspect of CSS in Flash, it would undoubtedly be the fact that
CSS styling can be loaded from an external file. The existence of this feature brings the
concept of separating style from informational content to its logical conclusion. Given all
you’ve learned so far in this chapter, you’ll be happy to find that loading external CSS is a
piece of cake. There’s really only one snare to be aware of: some of the style properties we
showed you in the beginning of the chapter are spelled just a tad differently when they
appear in an external file. Single-word properties, such as color or display, are identical.
Multi-word properties, such as fontFamily or fontSize, are split into hyphenated parts:
font-family, font-size, and so on.

1. Open the StylingExternal.fla file that accompanies this chapter. You’ll see a sin-
gle text file with the instance name output. Click into frame 1 of the scripts layer
and take a quick look at the ActionScript. By now, the HTML portion will be old
hat—it’s a resurrection of the salmon recipe one last time, with a token hyperlink
at the bottom. The new stuff is just below:

var css:StyleSheet = new StyleSheet();
var loader:URLLoader = new URLLoader();
loader.load(new URLRequest("styles.css"));
loader.addEventListener(
Event.COMPLETE,
function(evt:Event):void {
css.parseCSS(URLLoader(evt.target).data);
output.styleSheet = css;
output.htmlText = str;

}
);

The first line creates our familiar StyleSheet instance. The next . . . aha, that’s the
nifty one! A variable, loader, is declared and set to an instance of the URLLoader
class. This differs from the Loader class (which you’ll see in Chapter 13), which loads
images or SWFs. What makes URLLoader different is that it not only loads files, but
actually reads them, which is essential when the goal is to sift through external CSS.

The URLLoader.load() method is invoked on the loader instance with the expres-
sion new URLRequest("styles.css") as the parameter. This is a shortcut way of
converting the raw string "styles.css" into the format needed. Finally, the
Event.COMPLETE event is handled with a function that performs three straightfor-
ward tasks: parse the loaded CSS, set the text field’s styleSheet property to the
css instance, and set its htmlText property to the prepared HTML string. You
already know how the last two work, so let’s pick apart the first line of this func-
tion. The StyleSheet.parseCSS() method takes a single parameter, which in this
case is the expression URLLoader(evt.target).data. That may look like a mouth-
ful, but it’s nothing more than a compact way of getting at the CSS styles them-
selves. The evt.target part refers to the file loaded by loader, and is wrapped in
a URLLoader() function to make it presentable. Consider that its calling card, or
that URLLoader() has run a comb through evt.target’s hair. The data part refers
to the data inside said file.

CSS AND FLASH

445

10

861XCh10.qxp 6/25/07 1:31 PM Page 445

2. Open the styles.css file in Dreamweaver CS3 or any simple text editor such as
NotePad on the PC or TextEdit on the Mac.

The contents should be easily recognizable to you:

li {
font-style: italic; color: #A2A2A2; leading: -2;

}

p {
text-align: justify; leading: 6;

}

ul {
leading: 6;

}

strong {
font-family: Impact; font-size: 14; color: #339966;

}

a {
font-family: Courier; font-weight: bold;

}

a:hover {
color: #FF00FF;

}

Besides the hyphenated style properties and a few minor syntactical differences,
these selectors represent the same styling approach you’ve seen throughout this
chapter. The syntax differences to look out for are as follows: in this version, nei-
ther property names nor values are wrapped in quotation marks, as they are in
ActionScript (e.g., font-style: italic instead of fontStyle: "italic"); and
properties are separated by semicolons rather than commas, like this:

li { fontStyle: italic; color: #A2A2A2; leading: -2; }

instead of this:

css.setStyle("li", { fontStyle: "italic", color: "#A2A2A2", å

leading: "-2" });

By the way, thanks to this punctuation, you have some leeway in how you arrange
the properties, both in ActionScript and the CSS file; single-line or spread over sev-
eral lines—it doesn’t matter. As long as the required parts are present, Flash can
figure out what you mean. So go ahead and suit your fancy. For example, this

CSS files, though they serve a special styling purpose, are really
just text files with a .css file extension).

FOUNDATION FLASH CS3 FOR DESIGNERS

446

861XCh10.qxp 6/25/07 1:31 PM Page 446

li { fontStyle: italic, color: #A2A2A2, leading: -2 }

is the same as

li {
fontStyle: italic;
color: #A2A2A2;
leading: -2;

}

3. And now we’ve arrived at the punch line. Test the movie to generate a SWF file,
which should look something like Figure 10-15. Now close Flash. That’s right, shut
down the application. The rest is a matter between you, a SWF, and a CSS file.

Figure 10-15. CSS styles pulled from an external CSS file

4. Double-click your newly created StylingExternal.swf file to give it one last look.
This is a bit like making sure the magician has nothing up either sleeve. Now
change a few of the style properties in styles.css. As a suggestion, update the p
and strong styles as follows:

p {
margin-left: 100; leading: 12;

}

strong {
font-family: Impact; font-size: 40; color: #339966;

}

5. When you make your changes, save the document.

6. Close StylingExternal.swf and double-click it again to launch the SWF. Notice
how you can change the look of a movie without having to change the code (see
Figure 10-16).

CSS AND FLASH

447

10

861XCh10.qxp 6/25/07 1:31 PM Page 447

Figure 10-16. Look, Ma—style changes without re-creating the SWF!

Without republishing the SWF, you’ve updated its formatting! That’s no small feat.

Hey, did you catch something missing? What happened to that hyperlink? The
increased leading in the p style has pushed it off the stage! In fact, the phrase Broil
to taste has also been shoved aside. No problem. Just readjust the leading property
or decrease the strong style’s font-size property until everything fits. This sort of
tweaking is what CSS was made for.

What you’ve learned

Apart from learning what to serve the authors at your next barbecue, you have discovered
that the CSS techniques widely employed in the HTML universe are just as applicable to
your Flash efforts. As you moved through this chapter, you learned the following:

How to apply CSS styling through ActionScript

The difference between an element selector and a class selector

That you can create your own custom tags

At the time this chapter was written, one of the authors had
recently completed a Flash-based training presentation for a
U.S. government agency that featured over 250 slides. At
one point, the author needed to change the color of one of
the heading styles to a slightly different orange. Guess who
was happy that day because he had used CSS in his SWFs?

FOUNDATION FLASH CS3 FOR DESIGNERS

448

861XCh10.qxp 6/25/07 1:31 PM Page 448

How to use the concept of inheritance to your advantage

That there is a pesky bug—and a workaround—when it comes to using embedded
fonts in the library

How to use an external CSS style sheet in Flash

If there is one major theme running through this chapter, it is this: your CSS skills put a
powerful tool in your arsenal. Speaking of powerful tools, XML’s relationship with Flash
just got a. power boost. Turn the page to find out.

CSS AND FLASH

449

10

861XCh10.qxp 6/25/07 1:31 PM Page 449

861XCh11.qxp 6/25/07 1:33 PM Page 450

11 DYNAMIC DATA (XML) AND FLASH

861XCh11.qxp 6/25/07 1:33 PM Page 451

Flash is a social creature. Not only does it rub elbows with HTML, coexisting happily with
text, JavaScript, images, audio, video, Cascading Style Sheets (CSS), and more, but it can also
reach out past its own SWF boundaries to collaborate with data hosted on a server.

In the hands of an experienced programmer, Flash can interact with database applications
by way of the URLLoader and URLVariables classes, perform web service and Flash remot-
ing calls, and even slap a secret handshake with Ajax, thanks to the ExternalInterface
class. All this from a browser plug-in that began its life as a way to improve on animated
GIFs! It’s easy to see why Flash has become a widespread phenomenon, and its versatility
makes equally social creatures of the countless designers and developers who end up
warming their diverse mitts around the same campfire because of it.

This book isn’t here to make programmers out of artists. We don’t have the page count to
delve into most of the concepts just mentioned, but we are going to introduce you to a
markup language called XML that, with a bit of help from ActionScript, can make your
SWFs dynamic.

What we’ll cover in this chapter:

An overview of XML

How to retrieve and filter XML data using E4X syntax

How to build a dynamic slideshow driven by XML

Files used in this chapter:

LoadXML.fla (Chapter11/ExerciseFiles_CH01/Exercise/LoadXML.fla)

LoadXML-E4XFiltering.fla (Chapter11/ExerciseFiles_CH01/
Exercise/LoadXML-E4XFiltering.fla)

LoadXML-E4XBonusRound.fla (Chapter11/ExerciseFiles_CH01/
Exercise/LoadXML-E4XBonusRound.fla)

popeye.xml (Chapter11/ExerciseFiles_CH01/Exercise/popeye.xml)

slideshow.xml (Chapter11/ExerciseFiles_CH01/Exercise/slideshow.xml)

Slideshow.fla (Chapter11/ExerciseFiles_CH01/Exercise/Slideshow.fla)

SlideshowXML.fla (Chapter11/ExerciseFiles_CH01/
Exercise/SlideshowXML.fla)

geocache01.jpg (Chapter11/ExerciseFiles_CH01/Exercise/geocache01.jpg)

geocache02.jpg (Chapter11/ExerciseFiles_CH01/Exercise/geocache02.jpg)

geocache03.jpg (Chapter11/ExerciseFiles_CH01/Exercise/geocache03.jpg)

geocache04.jpg (Chapter11/ExerciseFiles_CH01/Exercise/geocache04.jpg)

geocache05.jpg (Chapter11/ExerciseFiles_CH01/Exercise/geocache05.jpg)

geocache06.jpg (Chapter11/ExerciseFiles_CH01/Exercise/geocache06.jpg)

FOUNDATION FLASH CS3 FOR DESIGNERS

452

861XCh11.qxp 6/25/07 1:33 PM Page 452

The power of XML
To start, let’s take a quick survey of what XML is. If you haven’t already worked with XML,
well . . . we bet our next single malt Scotch you’ve at least heard of it. The letters stand for
eXtensible Markup Language, and extensibility is almost certainly the reason XML has
become a towering champ in data communication. Countless markup languages and file
formats are based on XML, including SMIL, RSS, XAML, MXML, RDF, WAP, SVG, SOAP,
WSDL, OpenDocument, XHTML, and truly more than would fit on this page. We’ll leave the
letter combinations to a Scrabble master.

“That’s fine and dandy,” you might be saying, “But guys—what is XML?” Fair enough. The
remarkable thing about this language is that it can basically be whatever you want it to,
provided you stick by its rules. The main purpose of XML is to expedite the sharing of data.
In fact, XML is so flexible that newcomers are often baffled on where to even begin. On
paper—or rather, on the screen—XML looks a lot like HTML, except instead of predeter-
mined tags and attributes, you organize your content into descriptive tags of your own
design. HTML formats data, and XML describes data. The combination of familiar, hierar-
chical format and completely custom tags generally makes XML content easy to read, both
to computers and humans. By separating your data from the movie, you give yourself the
opportunity to change content from the outside, affecting SWFs without having to repub-
lish them.

Writing XML

Let’s say you’ve been tasked with organizing a collection of vintage Popeye cartoons.
You’ve got five short films on your list: I Yam What I Yam; Strong to the Finich; Beware of
Barnacle Bill; Vim, Vigor, and Vitaliky; and Little Swee’ Pea. Each cartoon has its own
release date, running time, and cast of characters. Where to begin? Let’s take a look.

Every XML document must have at least one tag, which constitutes its root element. The
root element should describe the document’s contents. In this case, we’re dealing with
cartoons, so let’s make that our root:

<cartoons></cartoons>

The rest of our elements will layer themselves inside this first one. Every cartoon is its own
film, so we’ll add five <film> elements:

Looks kinda crazy, doesn’t it? Almost like you’re getting away with something. After
all, a technology that facilitates stock market transactions and configures user prefer-
ences should be . . . somehow . . . serious—right? Hey, if you don’t think Popeye is seri-
ously funny, you haven’t spent enough time with Descartes. I think, therefore I yam.
(Thank you! We’ll be here all week.)

DYNAMIC DATA (XML) AND FLASH

453

11

861XCh11.qxp 6/25/07 1:33 PM Page 453

<cartoons>
<film></film>
<film></film>
<film></film>
<film></film>
<film></film>

</cartoons>

Each film has a title, so the next step seems obvious enough:

<cartoons>
<film>
<title>I Yam What I Yam</title>

</film>
<film>
<title>Strong to the Finich</title>

</film>
<film>
<title>Beware of Barnacle Bill</title>

</film>
<film>
<title>Vim, Vigor, and Vitaliky</title>

</film>
<film>
<title>Little Swee' Pea</title>

</film>
</cartoons>

You get the idea. It doesn’t take much effort to connect the rest of the dots. An excerpt of
the completed document might look something like this:

<cartoons>
<film>
<title>I Yam What I Yam</title>
<releaseDate>September 29, 1933</releaseDate>
<runningTime>6 min</runningTime>

</film>
. . .

</cartoons>

Actually, that’s isn’t complete after all, is it? The cast of characters is missing. For that,
another tier of elements is in order:

<cartoons>
<film>
<title>I Yam What I Yam</title>
<releaseDate>September 29, 1933</releaseDate>
<runningTime>6 min</runningTime>

FOUNDATION FLASH CS3 FOR DESIGNERS

454

861XCh11.qxp 6/25/07 1:33 PM Page 454

<cast>
<character>Popeye</character>
<character>Olive Oyl</character>
<character>Wimpy</character>
<character>Big Chief</character>

</cast>
</film>
. . .

</cartoons>

That would certainly do it. The tag names are meaningful, which is handy when it comes
time to retrieve the data. The nested structure organizes each concept into a hierarchy
that makes sense: characters belong to a cast, which is one aspect, along with title, release
date, and running time, of a film. Nicely done—though in a sizable collection, this particu-
lar arrangement might come across as bulky. Is there a way to trim it down? Sure thing.
Remember, XML allows you to create your own attributes, so you have the option of rear-
ranging the furniture along these lines:

<cartoons>
<film title="I Yam What I Yam" releaseDate="September 29, 1933" å

runningTime="6 min">
<cast>
<character name="Popeye" />
<character name="Olive Oyl" />
<character name="Wimpy" />
<character name="Big Chief" />

</cast>
</film>
. . .

</cartoons>

The exact same information is conveyed. The only difference now is how it would be
retrieved, which you’ll see in the “E4X” section of this chapter. Which approach is better?
Honestly, the choice is yours. It’s not so much a question of better as it is what best
matches your sense of orderliness. Ironically, this open-ended quality, which is one of
XML’s strongest assets, is the very thing that seems to scare off so many XML freshmen.

Folks, this is a bit like an artistic ceramics class. As long as you’re careful around the kiln,
nobody can tell you whose vase is art and whose isn’t. Just work the clay between your fin-
gers, let a number of shapes mull around your noggin, and then form what you’ve got into
a structure that appeals to you. While you’re at it, keep a few rules in mind:

Working with and structuring an XML document follows the first principle of web
development: “Nobody cares how you did it. They just care that it works.” Find what
works best for you, because in the final analysis, your client will never pick up the
phone and say, “Dude, that was one sweetly structured XML document you put
together.”

DYNAMIC DATA (XML) AND FLASH

455

11

861XCh11.qxp 6/25/07 1:33 PM Page 455

If you open a tag, close it (<tag></tag>).

If a tag doesn’t come in two parts—that is, if it only contains attributes, or nothing at
all—make sure it closes itself (<tag />).

Close nested tags in reciprocating order (<a><c /> is correct;
<a><c /> lights your pants on fire).

Wrap attribute values in quotation marks (<tag done="right" />, <tag
done=wrong />).

The Popeye example just shown would be saved as a simple text file with the .xml file
extension—for example, popeye.xml—and that’s that.

Now that our introductions have been made, let’s get social.

Loading an XML file

The ActionScript required for loading an XML document isn’t especially involved. You’ll
need an instance of the XML and URLLoader classes, and then, of course, an XML docu-
ment. In our case, the document will always be an actual XML file, although XML docu-
ments can be built from scratch with ActionScript.

Open the LoadXML.fla file that accompanies this chapter. Click into frame 1 of the scripts
layer and open the Actions panel to see the following code:

var xml:XML = new XML();
var loader:URLLoader = new URLLoader();
loader.load(new URLRequest("popeye.xml"));
loader.addEventListener(
Event.COMPLETE,
function(evt:Event):void {
xml = XML(evt.target.data);
trace(xml);

}
);

Let’s break it down. The first two lines declare a pair of variables, xml and loader, that
point to instances of the XML and URLLoader classes, respectively.

Line 3 then invokes the URLLoader.load() method on the loader instance, specifying the
expression new URLRequest("popeye.xml") as the parameter. In your own projects, you
will of course replace popeye.xml with the name of your own XML files. This procedure

Feel free to use a text editor such as NotePad on the PC or TextEdit on the Mac. Just
be sure you add the .xml extension to the file’s name. If you have Dreamweaver CS3,
that’s even better, because it will offer code completion suggestions to speed up your
workflow.

FOUNDATION FLASH CS3 FOR DESIGNERS

456

861XCh11.qxp 6/25/07 1:33 PM Page 456

starts the load process, but the data isn’t available until the XML document has fully
arrived from the server. For this reason, the final block attaches an Event.COMPLETE han-
dler to the loader instance.

In response, the handler function sets the xml instance to the data property of the target
of the evt parameter passed into the function. That’s a mouthful, but it basically means
that the xml instance is associated with the actual text content of the popeye.xml file. At
this point, the text file’s XML tags become a “living XML object” in the SWF, accessible via
that xml variable. To prove it with this sample, a trace() function sends the full set of
Popeye elements to the Output panel. Test the movie and compare the Output panel’s con-
tent to the popeye.xml file itself, which you can open with Dreamweaver CS3 or any sim-
ple text editor.

The preceding sample code will serve as the basis for all loading for the rest of the chap-
ter. It’s really that simple. Even better, ActionScript 3.0 makes it just as easy to actually use
XML, so let’s jump right in.

E4X
In ActionScript 2.0, interacting with an XML class instance was a bit like groping in the dark
for matching socks (and it’s hard enough to sort laundry with the lights on!). The reason for
this is because of the way XML elements used to be accessed once loaded, which wasn’t by
the practical tag names we supplied earlier in the chapter.

Until Flash CS3 arrived on the scene, XML in Flash was not up there on the list of “cool
things I really need to do.” In fact, many designers and developers (one of the authors
among them) regarded the use of XML as being similar to the long walk to the principal’s
office in grade school. The walk was so painful because you just knew your parents were
about to be involved and a world of grief was to be opened on you. Readers familiar with
Flash XML prior to CS3 will doubtless groan to remember obtuse expressions such as, for
example, xmlInstance.firstChild.firstChild.childNodes[2]. Flash developers used
properties like firstChild and childNodes because they had to, not because it was fun.
Then there was the “now defunct” XMLConnector component, which complicated our
lives more than simplifying the process. ActionScript 3.0 does away with this groping,
thanks to something called E4X. Hey, hear that whooshing noise? That’s the sound of
everyone dashing to meet this new kid in the neighborhood with the really cool bike.

What is E4X, and what makes it so good? Seemingly named after an extra from a George
Lucas feature, those three characters form a cutesy abbreviation of ECMAScript for XML, a
specification that provides a completely new, simplified way to access data in an XML
instance. In E4X, elements are referenced by the name you give them. Paths to nested ele-
ments and attributes are easily expressed by a neatly compact syntax of dots (.) and at
symbols (@), which closely matches the dot-notation pathing you’re already familiar with
from the Twinkie example in Chapter 4.

Here’s how it works:

DYNAMIC DATA (XML) AND FLASH

457

11

861XCh11.qxp 6/25/07 1:33 PM Page 457

1. If you haven’t already, open the LoadXML.fla file that accompanies this chapter.
Click into frame 1 of the scripts layer and open the Actions panel to reveal the
ActionScript. The trace() function at line 8 is about to illustrate a number of dyna-
mite E4X features.

2. Testing the movie as it stands puts the full XML document’s contents into the Output
panel. So far, so good; but if you don’t care about the root element, <cartoons>,
and simply want to see the <film> elements, update the trace() line to read
trace(xml.film);. Once you do that, test the movie again. This time, the <cartoons>
tag doesn’t show, because you’re only accessing its children.

To view <film> elements individually, use the array access operator, [], and specify
the desired element, starting your count with 0 (zero):

trace(xml.film[0]);
// displays the first <film> element (I Yam What I Yam)
// and its children

trace(xml.film[1]);
// displays the second <film> element (Strong to the Finich)
// and its children

3. Now, what about attributes? To see those, just precede an attribute’s name with the
@ symbol as part of your dot-notation path reference. For example, if you want to
see the title attribute of the first <film> element, type the following:

trace(xml.film[0].@title);

To see the second <film> element’s title, substitute 0 with 1; to see the third, sub-
stitute 1 with 2; and so on. Based on this pattern, the last element’s title attribute
would be xml.film[4].@title—but we only know to use the number 4 because
we’re aware how many <film> elements there are. What if we don’t know?

In this case, it helps to understand exactly what you’re getting back from these E4X
results. What you’re getting are instances of the XMLList class, which means you
can invoke any of the methods that class provides on these expressions.

For example, we’ve already seen that the expression xml.film returns a list of all
the <film> elements. That expression is a bona fide XMLList instance, so by
appending an XMLList method—say, length()—to the expression, you get some-
thing useful (in this case, the length of the list, which is 5). We know that in this
context, counting starts with 0, so to see the title attribute of the last <film> ele-
ment, put the following somewhat complex expression inside the array access
operator ([]):

trace(xml.film[xml.film.length() - 1].@title);

It may look a little scary, but it isn’t when you reduce it to its parts. The expression
xml.film.length() - 1 evaluates to the number 4, so what you’re seeing is as
good as actually using the number 4.

To see the title attribute of all <film> elements, drop the array access operator
altogether:

trace(xml.film.@title);

FOUNDATION FLASH CS3 FOR DESIGNERS

458

861XCh11.qxp 6/25/07 1:33 PM Page 458

mailto:0].@title
mailto:4%5D.@title%E2%80%94butweonlyknowtousethenumber4becausewe%E2%80%99reawarehowmany
mailto:4%5D.@title%E2%80%94butweonlyknowtousethenumber4becausewe%E2%80%99reawarehowmany
mailto:1].@title
mailto:film.@title

In the Output panel, you’ll see that the combined results run together (as shown in
Figure 11-1). The reason is because these attributes don’t have any innate formatting;
they aren’t elements in a nested hierarchy, they are just individual strings. Let’s fix that.

Figure 11-1. Unless they have their own line breaks, attributes will run together.

4. In this situation, another XMLList method can help you out. To make each title
appear on its own line, append toXMLString() to the existing expression:

trace(xml.film.@title.toXMLString());

5. Swap title for releaseDate to see release dates instead, as shown in Figure 11-2:

trace(xml.film.@releaseDate.toXMLString());

Figure 11-2. Any element’s attributes can be retrieved.

6. What about looking at a list of the cast members? Viewing individual cast members
is just as easy. Update the trace() function to look like this:

trace(xml.film[0].cast.character[1]);

That instructs Flash to look at the first <film> element’s cast element and pull out
the second of its character elements, which happens to be Olive Oyl. For fun,
and to see how easy E4X makes things for you, contrast the preceding intuitive ref-
erence with its ActionScript 2.0 equivalent: xml.firstChild.firstChild.
firstChild.childNodes[1]. Which would you rather use?

Moving back to the kinder, gentler world of ActionScript 3.0, update the trace()
function as follows to see the whole cast of the third film:

trace(xml.film[2].cast.character);

Interesting—this time you get actual elements, complete with their tags, as shown
in Figure 11-3.

DYNAMIC DATA (XML) AND FLASH

459

11

861XCh11.qxp 6/25/07 1:33 PM Page 459

mailto:film.@title.toXMLString
mailto:film.@releaseDate.toXMLString

Figure 11-3. Accessing elements selects the elements
themselves, as well as their children.

This happens because of a characteristic of XML that isn’t especially obvious. Once
you know it, though, you’re set. The characteristic goes like this: in the expression
<character>Popeye</character>, you’re not just looking at one element, you’re
really looking at two.

Both the tag (<character>) and its content (Popeye, in this case) are considered
elements. In XML proper, these are also known as nodes, and there are a dozen
node types. Flash only supports two of them, ELEMENT_NODE and TEXT_NODE, which
is a relief—and knowing those two lets you easily pull out a tag’s content. As
before, an XMLList method, descendants(), comes to the rescue:

trace(xml.film[2].cast.character.descendants());

This gives you run-on results, because, like attributes, these text elements don’t
have any inherent formatting. All you need to do is just slap the toXMLString()
method onto the end of the code line:

trace(xml.film[2].cast.character.descendants().toXMLString());

The result is exactly the sort of thing you might use to populate a text field (as
shown in Figure 11-4).

Figure 11-4. Like attributes, text-only elements are
nothing more than strings.

Remember, we are dealing with text in this example, so although the results may look
rather plain, you can format and manipulate them in a number of ways, as outlined in
Chapters 6 and 10.

FOUNDATION FLASH CS3 FOR DESIGNERS

460

861XCh11.qxp 6/25/07 1:33 PM Page 460

7. All right, we’ll give you one more illustration of E4X (we’ve saved the best for last).
The popeye.xml file included with this chapter has slightly different runningTime
attributes from those shown earlier in the chapter. Instead of a whole phrase, such
as “6 min,” these attributes show only numbers. Why? Because E4X allows you to
make comparisons, which lets you filter content based on specific criteria.

Let’s say you want to know which films have a running time longer than 6 minutes.
Return again to our humble trace() function and update its parameter to the
following:

trace(xml.film.(@runningTime > 6));

The result is a list of the <film> elements, and all their children whose runningTime
attribute is greater than 6 (see Figure 11-5).

Figure 11-5. E4X allows filtering by way of comparison operators.

The parentheses tell Flash you’re intending to filter the XMLList instance you get back.
Inside the parentheses, the expression is a simple comparison, @runningTime > 6,
which in plain English would be, “If you would be so kind, please tell us which <film>
elements’ runningTime attributes match this criterion.” The reason Flash searches
every <film> element in the bunch is because nothing appears between the word
film and the dot that begins the next expression.

What if you want only the title of these films? Try this:

trace(xml.film.(@runningTime > 6).@title.toXMLString());

The trick, as always, is to break each expression into its parts. On its own, each con-
cept is usually easy enough to understand. Concepts—expressions—are separated
by dots. A blow-by-blow account of the preceding trace() goes like this:

trace(xml.film traces all <film> elements in the xml instance whose runningTime
attribute is greater than the value 6—.(@runningTime > 6). This returns an XMLList
instance that comprises a list of <film> elements, which the remaining expressions
now reference. .@title shows the title attribute of <film> elements in the fil-
tered XMLList instance, and .toXMLString() invokes the XMLList.toXMLString()
method to clean up the results. Finally,); closes the trace() function.

DYNAMIC DATA (XML) AND FLASH

461

11

861XCh11.qxp 6/25/07 1:33 PM Page 461

mailto:film.(@runningTime
mailto:film.(@runningTime
mailto:6).@title.toXMLString
mailto:6%E2%80%94.(@runningTime
mailto:.@title

E4X bonus round

True, we already said “one more illustration of E4X,” and that’s the preceding one. If you’re
in a hurry to dispense with all this theory and jump head-first into a practical application,
we doff our hats and invite you to make a beeline for the next section—but we figure at
least a handful of you are wondering if it’s possible to return film titles based on who
appears in the cartoon. Let’s pop open a can of spinach and take a gulp.

Open the LoadXML-E4XBonusRound.fla file that accompanies this chapter, and click into
frame 1 of the scripts layer. Most of the ActionScript should look familiar. The important
part appears in lines 9 through 11:

for each (var node:XML in xml.film.cast.character.å

(descendants() == "Bluto")) {
trace(node.parent().parent().@title);

}

Yup, this is new. The for each..in statement was introduced to ActionScript 3.0 thanks to
the E4X specification. There has been a similar statement in ActionScript for quite some
time, for..in, that works almost the same way, which is this: you point for..in at an
object, and it loops through that object’s properties, however many properties there hap-
pen to be. What it loops on, however, are the properties’ names, rather than the proper-
ties themselves. This is either nifty or frustrating, depending on your needs. In contrast, the
new for each..in statement loops on an object’s actual properties, which is great for the
need we have in this particular endeavor.

To understand the mechanism of this E4X filtering, let’s start with a skeleton and slowly
build up to the skin.

for each (someProperty in someObject) {
// do something

}

The someObject in question is the hardest part of this equation, but based on what you’ve
seen, it shouldn’t be impenetrable. The object is an XMLList instance determined by the
expression xml.film.cast.character.(descendants() == "Bluto"). Stepping through
the subexpressions dot by dot, we get the following:

xml.film: All <film> elements in the xml instance.

.cast: All <cast> elements of those films (each <film> element happens to only
have one).

See the LoadXML-E4XFiltering.fla file for a working example of the preceding
E4X filtering.

FOUNDATION FLASH CS3 FOR DESIGNERS

462

861XCh11.qxp 6/25/07 1:33 PM Page 462

mailto:parent().@title

.character: All <character> elements of those cast elements (each film’s cast
happens to have its own particular number).

.(descendants() == "Bluto"): A comparison of the TEXT_NODE descendants of
each <character> element—these could arguably be called the value of each
<character> element—against the string "Bluto", which returns the XMLList
instance. It’s this XMLList instance that is the “someObject” of our skeleton.

That gives us the following:

for each (someProperty in xml.film.cast.character.å

(descendants() == "Bluto")) {
// do something

}

The replacement for our stand-in “someProperty” is an XML instance, stored in an arbitrar-
ily named variable, node.

for each (var node:XML in xml.film.cast.character.å

(descendants() == "Bluto")) {
// do something

}

All this means is that for each..in is going to update the value of node to the latest XML
object it finds in the XMLList instance as it steps through that list. The node variable effec-
tively is the XML object in question, which means that you can apply your recently
acquired E4X magic to it. Remember, at this point you’re dealing with a text element,
Bluto, inside the <character> element of a <cast> element of some <film> element. The
text element’s parent is <character>, whose parent is <cast>, which puts our point of
view inside a <film> element. This outermost element has a title attribute, and we ref-
erence that with the @ symbol:

for each (var node:XML in xml.film.cast.character.å

(descendants() == "Bluto")) {
trace(node.parent().parent().@title);

}

Your turn: Using XML to build a slideshow
The popularity of websites like Flickr and Photobucket prove that people like to share pho-
tos. Of course, this was true even before the Internet, but modern technology makes it eas-
ier than ever to whip out that tumbling, unfolding wallet and proudly show off all the kids,
aunts, uncles, cousin Eds, and Fidos, not only to friends, but to every continent on the planet.
At the rate most people take pictures, if you were to make a photo slideshow in Flash, you’d
want to be sure it was easy to update. With XML, that goal is closer than you may think.

DYNAMIC DATA (XML) AND FLASH

463

11

861XCh11.qxp 6/25/07 1:33 PM Page 463

mailto:parent().@title

To start, we’re going to walk you through a self-contained, “hard-wired” movie that dis-
plays a small collection of external JPGs and their captions. The number of JPGs, and the
order in which they appear, are “baked into” the SWF, which means that the movie must
be edited and republished to accommodate new images. This slideshow features a
ComboBox and Button component to let people choose which JPGs they want to see, and
it even uses the UILoader and ProgressBar components to load the images, so this will be
something of a cumulative exercise.

Once the test model is complete, we’ll free the photo-specific data from its dungeon and
move it to an XML file, where it can leap free in the fields like a shorn sheep. Here we go!

1. Start a new Flash document and save it as Slideshow.fla in the Slides folder that
contains the six JPGs accompanying this chapter. Set the movie’s dimensions to
3205480 and set the background color to whatever you like (we chose #336699,
which is light blue).

2. Create the following five layers: scripts, progress bar, loader, caption, and nav. Now
it’s time to populate this framework.

3. Open the Components panel (Window ä Components) and drag an instance of the
ProgressBar component to the progress bar layer. Use the Property inspector to set
its width to 150, height to 22, x position to 85, and y position to 200. Give it the
instance name pb.

4. Drag an instance of the UILoader component to the loader layer. In the Property
inspector, set its width to 300, height to 400, x position to 10, and y position to 10.
Give it the instance name loader.

5. Captions will be displayed with a text field. Use the Text tool to create a dynamic
text field in the caption layer. Switch to the Selection tool and set the text field’s
width to 300, height to 28, x position to 10, and y position to 416. Give this text
field the instance name caption. Using the Property inspector, set the following val-
ues for the text box:

Font: _sans

Size: 18pt

Color: #FFFFFF (white), so that it shows over the blue background

6. Drag an instance of the ComboBox and Button components to the nav layer.

7. In the Property inspector, set the combo box’s width to 220, height to 22, x posi-
tion to 10, and y position to 450. Give it the instance name images. For the button,
set its width to 70, height to 22, x position 240, and y position to 450. Give it the
instance name next.

8. With the button selected, click the Parameters tab and set the button’s Label
parameter to Next. At this point, you have something like the scaffolding shown in
Figure 11-6.

FOUNDATION FLASH CS3 FOR DESIGNERS

464

861XCh11.qxp 6/25/07 1:33 PM Page 464

Now it’s time to bring these parts to life. For the most part, it’s a matter of handling events
for the components and populating the combo box. We only have a handful of steps, here,
and we’ll have something to test.

1. Click into frame 1 of the scripts layer and open the Actions panel (Window ä

Actions). Here’s the first chunk of code:

import fl.data.DataProvider;

// Set up image file info and captions
var imageData:Array = new Array(
{label:"Geocaching Photo 1", data:"geocache01.jpg", caption:å

"I have the GPS; you follow me."},
{label:"Geocaching Photo 2", data:"geocache02.jpg", caption:å

"This says three paces ahead."},
{label:"Geocaching Photo 3", data:"geocache03.jpg", caption:å

"Cool! Fingerpuppet treasure!"},
{label:"Geocaching Photo 4", data:"geocache04.jpg", caption:å

"I found a pretty pony!"},
{label:"Geocaching Photo 5", data:"geocache05.jpg", caption:å

"Treasure hunting with my cousins."},
{label:"Geocaching Photo 6", data:"geocache06.jpg", caption:å

"May I have the stickers?"}
);

Figure 11-6. The parts are in
place; time for the ActionScript.

DYNAMIC DATA (XML) AND FLASH

465

11

861XCh11.qxp 6/25/07 1:33 PM Page 465

The first line imports the DataProvider class, which is needed later when it’s time
to populate the combo box. After that, an arbitrarily named variable, imageData, is
set to an instance of the Array class. Arrays are lists of whatever you put in them.
You can use the Array.push() method on an instance to add elements to that
instance, but you can also pass in the whole collection at once, which we’ve done
here. This array has six items, and each item is an instance of the generic Object
class with three properties. What, no new Object() statement? How are these
objects being created? The curly braces ({}) take care of that. It’s a shortcut, and
we’re taking it. You’ll remember from Chapter 9 that ComboBox instances can be
supplied with label and data information, so that explains what those properties
are. The caption property is a custom addition.

2. Press the Enter/Return key a couple times and type in the following:

// Keep track of current image
var currentImage:Number = 0;

// Picture changing function
function changePicture(pict:Number):void {
pb.visible = true;
caption.text = imageData[pict].caption;
loader.load(new URLRequest(imageData[pict].data));

}
changePicture(0);

The first line after the comment declares a variable, currentImage, and sets it to 0.
This number will keep track of which image is being looked at. The next several
lines declare a custom function, changePicture(), that accepts a single parameter,
pict. This function does the following three things:

Makes the ProgressBar instance visible (yes, it’s already visible at this point, but
later code turns off its visibility when an image finishes loading).

Makes the text field display the current caption. The incoming pict parameter
determines which element to retrieve from the imageData array, and that ele-
ment’s caption property is consulted.

Makes the UILoader instance load the current image. Here, again, the imageData
array is consulted, but this time from the relevant item’s data property.

Immediately after its declaration, the changePicture() function is called, with 0 as
its parameter. Why start at 0? Because that’s where arrays start counting. We’re dis-
playing the first image and its caption.

Now we just have to hook up the components.

3. Press Enter/Return a couple times, and type in the following:

// Wire up progress bar
pb.source = loader;

// Handle progress bar loading completion

FOUNDATION FLASH CS3 FOR DESIGNERS

466

861XCh11.qxp 6/25/07 1:33 PM Page 466

pb.addEventListener(
Event.COMPLETE,
function(evt:Event):void {
pb.visible = false;

}
);

The first line after the comment associates the ProgressBar instance with the
UILoader instance. As the UILoader component loads images, the progress bar will
automagically know what to do. The next little block makes the progress bar invis-
ible when loading is complete.

4. Press Enter/Return a couple times, and type in the following:

// Wire up combo box data provider
images.dataProvider = new DataProvider(imageData);

// Handle combo box changes
images.addEventListener(
Event.CHANGE,
function(evt:Event):void {
changePicture(images.selectedIndex);

}
);

The first line after the comment populates the combo box by setting its dataProvider
property to a new DataProvider instance (this is why we need the import statement
at the top). All the DataProvider instance needs is an array whose elements have
label and data properties, which is exactly what we have. The caption properties are
extra, but they don’t hurt anything. This one line—images.dataProvider = new
DataProvider(imageData);—shoves the whole imageData array’s content into the
combo box in one swoop. Next, the Event.CHANGE event is handled for the combo
box. The handler function calls the custom changePicture() function and feeds it a
number determined by the combo box’s current selection.

5. There’s just one thing left—the button. Press Enter/Return a couple times and type
in the following:

// Handle button clicks
next.addEventListener(
MouseEvent.CLICK,
function(evt:MouseEvent):void {
currentImage++;
if (currentImage == imageData.length) {
currentImage = 0;

}
images.selectedIndex = currentImage;
changePicture(currentImage);

}
);

DYNAMIC DATA (XML) AND FLASH

467

11

861XCh11.qxp 6/25/07 1:33 PM Page 467

Here, the MouseEvent.CLICK event is handled for the button. The handler function
does the following:

Increments the currentImage variable by one.

Checks to see if currentImage shares the same value as the expression imageData.
length (the number of items in the imageData array). If so, it sets currentImage
back to 0.

Sets the combo box’s current selection to currentImage.

Calls the custom changePicture() function and passes it currrentImage as its
parameter.

6. Test the movie. You’ll be treated to a mini-geocaching excursion, led by a young
enthusiast, as shown in Figure 11-7. Click the Next button to flip through the pic-
tures in sequence, or use the combo box to skip around. To simulate image down-
loads, so you can see the progress bar in action, select View ä Simulate Download
from the SWF window.

Figure 11-7. A few quick components and a
bit of ActionScript, and you’re off!

As it turns out, geocaching photos make a decent metaphor for this chapter, because after
all this careful, plodding double-checking of coordinates, we’re about to uncover some
treasure—only a few more paces in a westerly direction.

FOUNDATION FLASH CS3 FOR DESIGNERS

468

861XCh11.qxp 6/25/07 1:33 PM Page 468

1. Save your file to keep everything safe, and then select File ä Save As and save a
copy as SlideshowXML.fla into the same folder.

2. Click back into frame 1 of the scripts layer to make a few changes. Here’s the first
chunk of code, with the revisions shown in bold:

import fl.data.DataProvider;

// Pull in image information from XML
var xml:XML = new XML();
var xmlLoader:URLLoader = new URLLoader();
xmlLoader.load(new URLRequest("slideshow.xml"));
xmlLoader.addEventListener(
Event.COMPLETE,
function(evt:Event):void {
xml = XML(evt.target.data);
images.dataProvider = new DataProvider(xml);
changePicture(0);

}
);

// Keep track of current image
var currentImage:Number = 0;

The imageData array is gone completely. In its place stands our trusty XML loading for-
mula. The only difference here is that the instance name for the URLLoader instance has
been changed to xmlLoader, because loader is already in use as the instance name for the
UILoader component. This time, we’re loading the file slideshow.xml, and that’s where the
former imageData content now resides. Translated into XML, it looks like this:

<slideshow>
<slide label="Geocaching Photo 1" data="geocache01.jpg" å

caption="I have the GPS; you follow me." />
<slide label="Geocaching Photo 2" data="geocache02.jpg" å

caption="This says three paces ahead." />
<slide label="Geocaching Photo 3" data="geocache03.jpg" å

caption="Cool! Fingerpuppet treasure!" />
<slide label="Geocaching Photo 4" data="geocache04.jpg" å

caption="I found a pretty pony!" />
<slide label="Geocaching Photo 5" data="geocache05.jpg" å

caption="Treasure hunting with my cousins." />
<slide label="Geocaching Photo 6" data="geocache06.jpg" å

caption="May I have the stickers?" />
</slideshow>

As you can see, this XML document closely mirrors the original imageData array.

DYNAMIC DATA (XML) AND FLASH

469

11

861XCh11.qxp 6/25/07 1:33 PM Page 469

Let’s take another look at the Event.COMPLETE event handler for the xmlLoader instance.
The function runs as follows:

function(evt:Event):void {
xml = XML(evt.target.data);
images.dataProvider = new DataProvider(xml);
changePicture(0);

}

There are a couple of important things to note. First, the DataProvider goings-on have
been moved here from their former position next to the combo box Event.CHANGE han-
dler. Why? Because under the circumstances, the combo box can’t be populated until the
XML has loaded. Next, the changePicture() call has been removed from its original place
and relocated here. Why? Same reason—until the XML loads, the changePicture() func-
tion has no reference for what image to summon.

Two more paces!

3. At or near line 20, you’ll find the changeFunction() declaration. You’ll need to
tweak two lines (the changed portions are shown in bold in the following code):

// Picture changing function
function changePicture(pict:Number):void {
pb.visible = true;
caption.text = xml.slide[pict].@caption;
loader.load(new URLRequest(xml.slide[pict].@data));

}

Treasure’s in sight!

4. Here are the last touch-ups. First, delete the data provider line:

images.dataProvider = new DataProvider(imageData);

which has since been moved to the Event.COMPLETE handler. Finally, change one
reference in the button’s event handler:

// Handle button clicks
next.addEventListener(
MouseEvent.CLICK,
function(evt:MouseEvent):void {
currentImage++;

Note that the changePicture(0) line after this function has been removed. Instead of
pulling from the old imageData array, the text field and UILoader component now draw
their information from the xml instance, using the E4X syntax to specify the relevant
<slide> element attributes. Here, the function’s incoming pict parameter serves the
same purpose it did before: it specifies which <slide> element to consult. Don’t forget
to delete what used to be the last line in this chunk—that changePicture(0); call is
now inside the Event.COMPLETE event handler for the xmlLoader instance.

FOUNDATION FLASH CS3 FOR DESIGNERS

470

861XCh11.qxp 6/25/07 1:33 PM Page 470

mailto:pict].@caption
mailto:pict].@data

if (currentImage == xml.slide.length()) {
currentImage = 0;

}
images.selectedIndex = currentImage;
changePicture(currentImage);

}
);

Since imageData is no more, the if() statement needs to look to the number of
<slide> elements, instead.

5. Test the movie and watch the show again.

If you think you missed a step, compare your work to the SlideshowXML.fla file in the
Complete folder. Now that the movie has become XML-ified, you can have some fun edit-
ing slideshow.xml and running the SWF to see the changes.

For example, delete the first three <slide> elements and test the movie again. Like magic,
only the three remaining slides and captions display. Change the wording of one of the
captions and run the SWF again. Change the order of the <slide> elements. Every time,
the SWF takes these changes effortlessly in stride.

What you’ve learned
In this chapter, we gave you the absolute basics of XML use in Flash. Though on the surface
it may not seem like much, what we have presented in this chapter forms the foundation
for complex Flash projects ranging from video pickers, MP3 players, and portfolio sites to
e-commerce applications. In this chapter, you have discovered

The relationship between an XML document and Flash CS3

How to retrieve and filter XML data using E4X syntax

How to build a dynamic slideshow driven by XML

The most important point you need to take away from this chapter is the sheer flexibility
of XML in your Flash design and development efforts. You can make your movies expand
or contract effortlessly by simply adding to or subtracting from the XML document being
used by the movie. This is the true meaning of dynamic.

Speaking of dynamic, one of the hottest and most dynamic aspects of our industry is the
recent emergence of cell phones as yet another medium for our work. Turn the page to
discover how we can pull our Flash work off of the computer and make it mobile.

DYNAMIC DATA (XML) AND FLASH

471

11

861XCh11.qxp 6/25/07 1:33 PM Page 471

861XCh12.qxp 6/25/07 1:27 PM Page 472

12 GOING MOBILE IN FLASH

861XCh12.qxp 6/25/07 1:27 PM Page 473

The first thing you need to know about mobile is this: the question to be asked is not if
you will develop a mobile Flash application but when you will develop a Flash mobile
application. In this chapter, our intention is not to turn you into a mobile developer.
Instead, it is to introduce you the tools you will use: Device Central and Flash CS3.

As you are reading this, Flash is rapidly becoming the de facto standard for content deliv-
ery through cell phones in Asia and Europe. Recent announcements regarding the North
American market indicate this geographic region is also “getting in the game.” In fact,
things are happening so quickly in North America that the question we asked in the previ-
ous paragraph—When will you start developing mobile applications?—is one you will have
to answer much sooner than you may think.

What we’ll cover in this chapter:

Navigating around Device Central

Creating device sets

Creating mobile Flash documents using Device Central

Using Flash Lite 2, Flash, and Device Central to test a simple movie

Using ActionScript 2.0 to control a mobile application

Files used in this chapter:

OjaiAdventure.fla (Chapter12/ExerciseFiles_CH12/OjaiAdventure.fla)

Flash and devices
It should not be news to discover that Flash has gone mobile. The sheer number of wireless
handsets and other wireless devices is driving a demand for rich content that makes the
text-based solutions for cell phones and PDAs that were all the rage a couple of years ago
look like charcoal scrawls on a cave wall. The reason is the mobile market discovered what
Flash developers have known for years: Flash content results in small, fast-loading files.

It isn’t only corporations that are driving the demand for mobile content. Educational
institutions ranging from K-12 to postsecondary across North America are seriously exam-
ining how these devices can be used to deliver educational content and are developing
courses that teach their students how to produce applications for these devices. Whether
it is a Flash developer friend of ours using his cell phone to track his progress along the
Pacific Coast Highway in California or pedestrians hooking into the traffic cameras in New
York City, it is difficult for most to understand this technology is still in its infancy. To get a
real sense of what you can do, start with this chapter, and then point your browser to the
Adobe Mobile & Devices Developer Center at www.adobe.com/devnet/devices/.

FOUNDATION FLASH CS3 FOR DESIGNERS

474

861XCh12.qxp 6/25/07 1:27 PM Page 474

http://www.adobe.com/devnet/devices

The first thing you need to know about developing Flash applications for mobile devices is:
Not one thing you have learned about Flash CS3 and ActionScript 3.0 in this book applies
to devices. Everything you have done to this point in the book has relied on Flash Player 9.
Flash mobile uses Flash Lite 2.0, which is roughly equivalent to Flash Player 7. This means
that every scrap of ActionScript 3.0 code and every component, filter, or blend effect
added to a new ActionScript 3.0 document simply can’t be used in a device.

We tell you this not to scare you off but to make sure you enter this fascinating and emerg-
ing field with your eyes wide open. Other things you need to know include the following:

The phone is not a computer: There is no mouse for user input. You are limited to
the up, down, and select keys on a handset along with the number keys and * and
keys on the phone’s keypad.

Forget about fonts: You are dealing with a screen that could be around 170 pixels
square. This means text must be both legible and readable. Though you can embed
fonts, they add to file size.

Small is a very good thing: If something has no purpose other than to add weight . . .
throw it overboard. Flash content in devices is the only content you will deliver that
people have to pay for. Data downloads are charged on the user’s cell bill by hav-
ing the user “pay by the K.” For example, one of the authors has a plan that charges
3 cents per kilobyte downloaded. This can quickly add up. Keep the code to a min-
imum, and, if you must use bitmaps, use them at their final size and use com-
pressed bitmaps. Avoid vectors if you can, and substitute them with JPG images.
(Yes, this isn’t what you would expect to hear while authoring Flash content—
devices are different!)

Be aware of the device: No two handsets are the same, and this includes screen real
estate. Device Central will become your most important resource for this aspect of
Flash development.

Test, test, test, test, test . . . : Did we mention test everything? That includes testing
both in the emulator in Device Central and on the actual handset.

We would be remiss in not mentioning that one of the best Flash mobile books out
there is Foundation Flash Applications for Mobile Devices by Richard Leggett et al.
(friends of ED, 2006).

GOING MOBILE IN FLASH

475

12

861XCh12.qxp 6/25/07 1:27 PM Page 475

Device Central CS3
New to the CS3 Studio is Device Central. Though aimed primarily at Flash designers and
developers, direct access to Device Central is also available in Dreamweaver CS3,
Illustrator CS3, and Photoshop CS3. In fact, when you launch the application, the Start
page, shown in Figure 12-1, gives you the option of creating Illustrator, Photoshop, or Flash
documents. Let’s go wander around Device Central and get comfortable with it.

Figure 12-1. Welcome to Device Central.

1. Launch Device Central, and in the Start page, under Create New Mobile, select Flash
File.

2. When Device Central opens, click the Flash Lite 2.0 32 240X320 device in the Device
Sets area. If it isn’t selected, click the Device Profiles tab. The Device Profile screen
that opens will present you with a view of a generic phone (see Figure 12-2). Along
with the phone you will be given a lot of information, ranging from generic prop-
erties such as Dimensions and Weight to the languages available in phones that use
Flash Lite Player. Selecting the Flash, Bitmap, Video, and Web links will also give you
extra information regarding what types of FSCommands can be used in Flash, the
types of images you can prepare, the video formats that work on the device, and
the coding languages you can use when developing web pages for the device. Now
let’s get more specific and actually choose a device.

FOUNDATION FLASH CS3 FOR DESIGNERS

476

861XCh12.qxp 6/25/07 1:27 PM Page 476

Figure 12-2. You can start with generic information regarding a particular player.

3. Along the bottom-left side of Device Central is a listing of all the phones for which
profiles are currently available in Device Central. As the next few months and years
pass, we suspect this will become a rather crowded list. For now, click the + sign
beside the Motorola link and select the Motorola RAZR V3m device. As soon as you
do this, the image in the Device Profiles panel will change, as you see in Figure 12-3,
as will the general information for the selected device.

FSCommands? These were quite common and quite mysterious in ActionScript 1.0 and
Flash Player 3. These commands are used to allow Flash Lite Player to communicate
with the device’s operating system.

GOING MOBILE IN FLASH

477

12

861XCh12.qxp 6/25/07 1:27 PM Page 477

Figure 12-3. You can select a specific device.

4. There will also be occasions when you can’t remember the name of a device, but
you know who made it and you know what it looks like. To see all of the Nokia
devices, for example, click Nokia. All of the Nokia phones in the category will
appear along the top of the Device Profiles panel, and the various features of the
phone will be listed under the phone’s image. Twirl down the various sections, as
shown in Figure 12-4, to obtain even more specific information regarding a specific
model of handset.

5. What if you know the name or the model number but can’t remember the manu-
facturer? Click the Search Devices icon on the Available Devices bar—it is the
Magnifying Glass—to open the Search dialog box. Enter the number 6 in the Search
For text input box, and all of the devices with that number in the model name will
appear. Add a 0 to the search criteria, and the list is winnowed even further to all
devices with 60 in the model name.

FOUNDATION FLASH CS3 FOR DESIGNERS

478

861XCh12.qxp 6/25/07 1:27 PM Page 478

Figure 12-4. You can view an entire collection of devices and compare feature sets.

6. You can also do very specific searches. For example, say you are curious which
devices use only Flash Lite 2.0 Player. Open the Search dialog box. Leave the Search
For area empty, but click the Add Search Criteria button to the right of the Search
For input box. When the menu expands, select Flash Lite Version from the drop-
down menu on the left, select Exactly from the middle drop-down menu, and enter
2.0 into the input box as shown in Figure 12-5. You will see a list of the devices that
use this player.

Figure 12-5. Device Central contains a blazingly fast search engine.

GOING MOBILE IN FLASH

479

12

861XCh12.qxp 6/25/07 1:27 PM Page 479

7. You don’t always have to use the search engine to group the devices. Click the
Group By button (the icon to the left of the Magnifying Glass) and select Flash Lite
Version from the drop-down menu. The devices will all be grouped by version. If
you open the Flash Lite 2.0 grouping, all of the devices that use this player will be
listed.

8. Another scenario you might encounter is your constantly having to develop for the
same various handsets. In this instance, click the + sign (New Device Sets button) in
the Device Sets bar. Name the folder that appears as Test Set. Select the Nokia
phones listed in the 2.0 listing of the Available Devices area and drag them to the
folder. If you expand the Test Set folder, as in Figure 12-6, you will see you have
created a test set of all the Nokia phones that use Flash Lite 2.0.

Creating a new Flash document using Device
Central

When you launch Flash CS3, you will notice one of the new document options in the Start
page is Flash File (Mobile). Clicking this will launch Device Central, and the New Document
tab will be selected. This is how you start creating Flash movies for mobile devices.

An interesting aspect of this path to Device Central is contained on the right side of the
Flash Start page in the Create from Template area. If you click the Global Handsets selection,
the New from Template dialog box opens and a preselected list of Flash Lite 2.0 templates
will appear (see Figure 12-7). Click one of those choices, and Device Central will launch.
The bottom line is it is irrelevant whether you start in Flash or start in Device Central
because you are going to wind up in Device Central no matter which route you take. Now
that you know how to get there, let’s look at how to create a mobile document.

To remove a set, select its name in the Device Sets panel and press the Delete key.

FOUNDATION FLASH CS3 FOR DESIGNERS

480

Figure 12-6. You can create custom
groupings, called “sets,” of the
devices you will design for.

861XCh12.qxp 6/25/07 1:27 PM Page 480

Figure 12-7. How to get to Device Central from Flash

1. Launch Device Central and select the Nokia 6300 device in your set or in the
Available Devices area.

2. Click the New Document tab, and the phone and a Flash document icon will appear
in the New Document panel.

A lesser-known path to Device Central is through Adobe Bridge. With Bridge open,
you can either select an item and select File ä Test in Device Central, or right-click (PC)
or Ctrl-click (Mac) an item and select Test in Device Central from the context menu.

GOING MOBILE IN FLASH

481

12

861XCh12.qxp 6/25/07 1:27 PM Page 481

3. Click the Test Set folder created in the previous section, and all of the devices and
Flash page sizes will appear (see Figure 12-8). This is how you can select multiple
devices. From this you can instantly determine that you may need to create two
presentations, because the devices in the set have differing screen sizes. Let’s not
get complicated. Reselect the Nokia 6300 device.

Figure 12-8. You can create content for a single device or for a device set.

4. In the New Document panel, select Flash Lite 2.0 in the Player Version drop-down
menu and ActionScript 2.0 from the ActionScript Version drop-down menu. In the
Content Type drop-down menu, shown in Figure 12-9, select Standalone Player.

Figure 12-9. Choosing a content type

FOUNDATION FLASH CS3 FOR DESIGNERS

482

861XCh12.qxp 6/25/07 1:27 PM Page 482

You are probably looking at that list in the Content Type drop-down menu and wondering
“What the . . . ?” The good news is not all devices support everything in the list. If you were
to select Calling Screen from the list, the device would disappear. This is a visual clue the
Nokia 6300 doesn’t support this content type.

Still, it is important that you at least have a vague understanding of the content types.
Here’s a brief description of each one:

Browser: Uses the player to render Flash content embedded in a mobile web page
and viewed in the device’s browser.

Screen Saver: Uses Flash Lite to show the device’s screen saver.

Standalone Player: Turns Flash Lite into a stand-alone application. This means the
user can open the SWF anytime and view the movie without having to launch a
browser.

Wallpaper: Turns the Flash movie into the screen’s wallpaper.

Application: Defines the movie as a stand-alone Flash application.

Calling Screen: Uses Flash Lite to play an animation when the user receives or makes
a call.

Chaku Flash: Uses the SWF as the ring tone.

EZ Menu: Uses the SWF as the device’s menu.

OpenEMIRO: Plays the SWF while the device is waking up from standby mode.

Receiving Mail: Plays the SWF animation when an e-mail is received.

Sending Mail: Plays the SWF animation while the e-mail message is being sent.

UI Launcher: Defines Flash Lite as the device’s application launcher and to display
the device’s launcher application.

Wake Up Screen: Plays the SWF as the phone is starting.

5. Click the Create button in the bottom-right corner of the New Document panel. This
will launch Flash CS3 and, when the document opens, note the Flash Player chosen
in Device Central—Flash Lite 2.0—appears in the Property inspector.

6. Add a new layer, and name Layer 1 as Text and Layer 2 as Ball.

7. Click the Ball layer to select and draw a circle on the stage. Convert the shape to a
movieclip named Ball.

8. Move the movieclip to the bottom of the stage and add a keyframe in frame 20 of
the Ball layer. Move the ball to the top of the stage and insert a motion tween.

9. Add a keyframe in frame 10 of the Text layer. Select the Text tool, click the stage,
and enter Hello World. Use _sans as the font and set the size to 24 pixels.

10. Add a frame to frame 20 of the Text layer, as shown in Figure 12-10, and save the
movie to your Exercise folder.

GOING MOBILE IN FLASH

483

12

861XCh12.qxp 6/25/07 1:27 PM Page 483

Figure 12-10. The Flash movie is ready to go mobile.

Testing a mobile movie

Normally your final instruction would be to test the movie. Not just yet. We want to save
the best for last. Unlike what you have done to this point in the book, when you test a
movie, you don’t play the movie in Flash Player. When it comes to mobile, you test your
movie in the device chosen. Here’s how:

1. Test the movie. What happens next is Device Central opens and sprouts a new
Emulator tab, and the movie starts playing in the device chosen as shown in
Figure 12-11.

FOUNDATION FLASH CS3 FOR DESIGNERS

484

861XCh12.qxp 6/25/07 1:27 PM Page 484

Figure 12-11. Welcome to the world of mobile Flash content.

There are some aspects of the emulator of which you need to be aware.

The first item you should notice is your Flash movie is now at the top of the device list, and
you see the device being used to test the movie. The next thing to notice is a change to the
icon beside Nokia 6300 under Test Set. This icon is telling you this is the device being used in
the emulator. The Emulator panel, where the movie is actually playing, gives you some infor-
mation regarding the phone, the screen size, and the player version being used. The three
buttons allow you to play, stop, and rewind the movie. You can also zoom in or zoom out on
the device. The button on the right is the Toggle Detached View button. This mode is designed
for devices such as clamshell devices that don’t allow you to view the content at 100% view.

The panels on the right side of the emulator are the “jewels” of Device Central. These are
called the testing panels and, in many respects, can be regarded as the “Flash Bandwidth
Profiler on Steroids.” For example, many devices allow you to control screen brightness.
What would be the effect of reducing the brightness on how the movie looks while it is
playing? Let’s find out:

2. Twirl down the Display panel and drag the Backlight, Gamma, and Contrast sliders to
the right or left. Notice how the changes affect the “look” of the screen in the
emulator.

GOING MOBILE IN FLASH

485

12

861XCh12.qxp 6/25/07 1:27 PM Page 485

3. What would the movie look like in the Nokia 7390? Double-click the device in the
Test Set. The emulator will change, as shown in Figure 12-12, to the device chosen.

Figure 12-12. Switch devices by double-clicking the name of the new device.

Here’s a little-known trick regarding Device Central. If you were to move the
HelloWorld.fla file to a Mac and open it in Flash CS3, you will see it is a Flash
Lite 2.0 device. If you test the movie, Device Central will open, and the movie
will start playing in a Nokia 6300 emulator.

FOUNDATION FLASH CS3 FOR DESIGNERS

486

861XCh12.qxp 6/25/07 1:27 PM Page 486

Publishing a mobile movie

You have done all of the emulator stuff and are happy with the movie. The final step in the
process is actually publishing the SWF file for the Nokia 6300. Here’s how you do that:

1. In Device Central, select File ä Return to Flash. Alternatively, you could press
Ctrl+Shift+O (PC) or, as shown in Figure 12-13, press Cmd+Shift+O (Mac).

Figure 12-13. From Device Central back to Flash to publish the SWF

GOING MOBILE IN FLASH

487

12

861XCh12.qxp 6/25/07 1:27 PM Page 487

2. When you return to Flash, select File ä Publish Settings to open the Publish Settings
dialog box. As this is a stand-alone player, HTML is not necessary. Deselect HTML in
the Formats panel.

3. Click the Flash tab to open the Publish Settings dialog box. Notice, as you see in
Figure 12-14, that Flash Lite 2.0 is the player version selected. Click the Publish
button.

Figure 12-14. Publishing the SWF for device playback

If you open a new Flash document in Device Central, the Return to Flash menu item
will change to Jump to Flash. Select this, and Flash CS3 will launch.

FOUNDATION FLASH CS3 FOR DESIGNERS

488

861XCh12.qxp 6/25/07 1:27 PM Page 488

At this point in the process, we step aside because how content moves from the PC to the
device is dependent upon the software provided by the handset manufacturer. In the case
of our test device, it would be the Nokia PC Suite software. Getting the SWF file from the
desktop to the phone is as easy as dragging the file from the Chapter 12 Completed folder
into the folder targeted in the Nokia software (see Figure 12-15). From this point on, you
would test the software and make any changes needed.

Figure 12-15. It is as simple as a drag-and-drop operation to get the
SWF from the computer into the phone.

Constructing a mobile application
In this exercise, you are going to construct a small application that presents a series of
images from a recent trip to California. The purpose here is to get you sensitized to the
fact that constructing mobile presentations is a lot different from building a web page in
Dreamweaver CS3 or a Flash presentation in Flash Professional CS3.

The first thing you must understand is simply moving an HTML site onto a mobile site is
somewhat similar to trying to stuff 10 pounds of leaves into a bag that only holds 5 pounds
of leaves. You can put a lot of information into a space that has a resolution of 14405900
pixels or more of screen real estate. When you try to present the same amount of infor-
mation in a screen that is 3205240, the information hierarchy becomes paramount, and
design, in many cases, takes a back seat. To understand what we are talking about, let’s
look at the entry to David Stiller’s blog shown in Figure 12-16.

GOING MOBILE IN FLASH

489

12

861XCh12.qxp 6/25/07 1:27 PM Page 489

There is a lot of information on the page. There is the banner at the top, the text block,
the search box, and links to all of David’s postings on the right side of the page. For all of
this information to move into the mobile space, David would have to redesign the page
and actually make it a series of screens on a mobile device. For example, the banner at the
top could be common to each screen, but the post would need to be scrolling text, as
shown in Figure 12-17, and the right and left soft keys—they are the ones to the right and
left of the navigation buttons in the center—would need to be coded to allow the user to
press the keys to either go to the main blog screen or navigate to the links screen.

Figure 12-16. You can’t simply “port” a site from the web space to the mobile space.

FOUNDATION FLASH CS3 FOR DESIGNERS

490

861XCh12.qxp 6/25/07 1:27 PM Page 490

Figure 12-17. There is no mouse in the mobile space. There are only soft keys.

As well, the up and down keys found in the four-directional pad would need to be coded
to allow the user to scroll through the post.

Now that you are aware that developing for mobile requires you to “think differently,”
let’s create an application:

1. Open the OjaiAdventure.fla file in the Chapter 12 Exercise folder. The bits and
pieces needed to construct this application can be found in the library. Other than
that, you are going to pull this project together and test it on the Nokia 6300 we
have been using throughout this chapter.

What’s with the fixation on the Nokia 6300? Nothing really. We want to be able to use
ActionScript 2.0, which many of you are familiar with, and Flash Lite 2.0 Player. The
device we are using simply looks “sexy” and makes for great screen shots.

GOING MOBILE IN FLASH

491

12

861XCh12.qxp 6/25/07 1:27 PM Page 491

2. Add seven layers to the movie and name them, from the top down, as follows:

Labels Open

Actions NavButtons

Images SoftKeyID

Thumbs Head

3. Add a frame at frame 25 for all of your layers.

4. Select the Head layer. Select the Text tool, click the stage, and enter Excellent Ojai
Adventure. In the Property inspector, apply the following formatting:

Text Type: Static Text

Width: 205

X: 18.9

H: 9.4

Font: Times or _serif

Size: 30 pixels

Color: #E6E1AF (yellow)

Alignment: Centered

Aliasing: Use device fonts

5. Select the keyframe in the Labels layer, and in the Property inspector, change the
Frame label to Main.

6. Select the SoftKeyID layer. Select the Text tool, click the stage, and enter the word
Main. Use the following settings:

Text Type: Static Text

X: 5

Y: 300

Font: _sans

Size: 12

Color: #E6E1AF (yellow)

7. Repeat Step 5 and enter the word Exit. The only difference will be the text will be
placed at the X and Y coordinates of 198 and 300.

The text created is a major job to do. It will be used to inform the user which keys need to
be pressed to get out of the presentation and to return to the main screen. In fact, you are
going to have the Home button do double duty later on in the movie.

By the time this project is finished, you will look at the timeline and think, “Shoot, I
could have done this in three frames.” You would be quite correct with this statement,
but we are using the extra frames to give you an opportunity to “see” how the various
features of this presentation are constructed on the timeline.

FOUNDATION FLASH CS3 FOR DESIGNERS

492

861XCh12.qxp 6/25/07 1:27 PM Page 492

8. Select the NavButtons layer and open the InterfaceElements folder in the library.

9. Drag the Call movieclip to the stage and place it on the horizontal guide on the stage
and between the two vertical guides. In the Property inspector, give it the instance
name of Call_btn. As you may have guessed, this button will be a “speed-dial” button.

10. Drag the Photos movieclip to the stage and place it directly above the Call button
on the NavButtons layer. Give this button the instance name of Photos_btn.

11. Select the Open layer and drag the OpenImage symbol from the library to the stage.
Using the Property inspector, set its X and Y coordinates to 16.4 and 91. Save the
project. As shown in Figure 12-18, you have created the opening screen of this movie.

Figure 12-18. The main screen has been assembled.

You could also test the app at this point to see how the interface looks in the
device.

Yeah, yeah. We know. Why is one button a button symbol and the other a movieclip?
Either symbol type can be used, so we decided to use one of each in this exercise. In fact,
avoiding button symbols in mobile interfaces is a good thing in certain cases. Button sym-
bols change when they are used, but that assumes a mouse action. In the mobile space, a
button, if you decide it is necessary, will put a border around the object to give the user
a visual clue that it is live. This explains why the button only has an up state.

GOING MOBILE IN FLASH

493

12

861XCh12.qxp 6/25/07 1:27 PM Page 493

Adding the gallery

With the main screen in place, we can turn our attention to the gallery of images that will
display. Follow these steps to put it in place:

1. Add a keyframe in frame 10 of the Labels layer. Name the label Gallery and insert a
keyframe in frame 10 of the Thumbs layer.

2. You aren’t going to need to see the buttons or the start image. To remove the
image, add a blank keyframe to frame 2 of the Open layer and another blank
keyframe to frame 9 of the NavButtons layer.

3. Open the InterfaceElements folder in the library and drag a copy of the Thumbs
movieclip to frame 10 of the Thumbs layer.

If you open the Thumbs movieclip in the Symbol Editor, as shown in Figure 12-19,
you will see that each image is, in fact, a movieclip. Each movieclip is also given an
instance name because the instance will be used to show a larger version of the
image. The individual images can be found in the ThumbImages folder in the library.

Figure 12-19. The primary navigation tool will be a series of movieclips.

4. Add a blank keyframe to frame 11 of the Thumbs layer.

5. Add a keyframe to frame 20 of the Labels layer and name the label Images.

6. Add a keyframe to frame 20 of the Images layer and drag a copy of the ImageStrip
movieclip to the stage. Line up this movieclip with the top of the stage and against
the left guide. Give the movieclip the instance name of mcImages.

7. Finally, add a blank keyframe to frame 20 of the Head layer. Save the project.

FOUNDATION FLASH CS3 FOR DESIGNERS

494

861XCh12.qxp 6/25/07 1:27 PM Page 494

Now would be a good time to review the rules regarding the use of bitmaps and vectors
on mobile devices. The thing to keep in mind is you are dealing with a small screen area
and a device whose computing power and memory are a fraction of those of a laptop
computer. Though Flash Lite can render both types of graphics, there are a number of fac-
tors to consider when adding graphics to a movie destined for mobile playback.

Though Flash adores vectors and their use will reduce file size, they have their problems.
Compared to bitmaps, vector graphics require more processing power to render, espe-
cially vector graphics that have many complex shapes and fills. Consequently, heavy use of
vector shapes could slow things down. On the other hand, bitmap graphics do not require
as much processing time to render as vector graphics and just might be a better choice for
such things as a route map meant to be animated and scrolled on a mobile phone.

When authoring mobile presentations that use graphics, keep the following in the back of
your mind:

Avoid using outlines or strokes on vector shapes. Outlines have an inner and outer
edge (fills have only one) and are twice the work to render.

Corners are simpler to render than curves. When possible, use flat edges, especially
with very small vector shapes.

Optimization is especially helpful with small vector shapes such as icons. Complex
icons may lose their details upon rendering, and the work of rendering the details
is wasted.

Import bitmap graphics at the correct size; don’t import large graphics and scale
them down in Flash, because this wastes file size and runtime memory. All of the
graphics used in this exercise were created using the batch processing feature of
Fireworks CS3 to allow us to import them into Flash size rather than scaling them.

Flash Lite Player does not support bitmap smoothing. If a bitmap is scaled or
rotated, it will pixelate. If it is necessary to scale or rotate a bitmap, consider using
a vector graphic instead.

Text is essentially just a shape. When text is needed, avoid animating it or placing it
over an animation. Consider using text as a bitmap.

Minimize, if not avoid altogether, the use of transparency in PNG files; Flash must
calculate redraws even for the transparent portions of the bitmap. This will slow
things down big time.

“Wiring it up” with ActionScript
With the assets in place, you can now turn your attention to writing the ActionScript that
brings this presentation to life. As we said at the start of this exercise, you can only use
ActionScript 2.0 with the Flash Lite Player version we are using. As well, we are going to
need to use some specific code to ensure the soft keys return us to the main screen or
quit the presentation.

GOING MOBILE IN FLASH

495

12

861XCh12.qxp 6/25/07 1:27 PM Page 495

1. Add a keyframe to frame 1 of the Actions layer. Open the ActionScript editor and
enter the following code:

stop();

_focusrect = true;

fscommand2("SetSoftKeys", "Options", "Exit");
fscommand2("SetQuality", "high");
fscommand2("Fullscreen", "true");

There is a lot of new stuff here, so we’ll explain it so you understand what you are doing. The
first line stops the playback head on frame 1, and the remaining lines do some housekeeping.

When an object is selected on a device, a yellow border appears around it. This border is
called the focus rectangle and is moved around the screen using the up or down keys on
the four-directional pad on the device. The _focusrect property turns this rectangle on
(true) or off (false). The default value is true.

The three fscommand2() functions are how your movie communicates with the device’s
operating system. The first function relabels the two soft keys to Options and Exit. This
means when the key is pressed, the function associated with that key is executed. You
added the two labels at the bottom because this movie will be displayed in full-screen
mode. When you do this, you have to manually add the labels.

The next two functions set the rendering quality of Flash Player to high and forces the
player to display the movie in the full screen.

2. Press Enter (PC) or Return (Mac) and add the following code:

if (selectedItem == null) {
Selection.setFocus(Photos_btn);

}
else {
Selection.setFocus(selectedItem)

}

This conditional statement makes sure something—the Photos_btn—is always selected on
the stage. It is always a good idea to give your user a visual clue that something is selected
on the stage.

FOUNDATION FLASH CS3 FOR DESIGNERS

496

861XCh12.qxp 6/25/07 1:27 PM Page 496

3. Press Enter (PC) or Return (Mac) twice and enter the following:

Photos_btn.onPress = function() :Void {
selectedItem = this;
gotoAndStop("Gallery");

};

Call_btn.onPress = function():Void{
selectedItem = this;
getURL("tel: 4165552365");

};

These are the button functions. The first one scoots the playback head to the frame
labeled “Gallery.” The second one uses a getURL method to actually dial the phone. You
can’t just toss in a number. You must use the tel: protocol. Now you know how to add a
speed-dial function to a mobile movie.

4. Press Enter (PC) or Return (Mac) and enter the following code, which creates the
listeners for the soft key events:

Key.removeListener(myListener);

var myListener:Object = new Object();

myListener.onKeyDown = function() :Void {
var keyCode = Key.getCode();
if(keyCode == ExtendedKey.SOFT1) {
gotoAndStop("Main");

}
else if(keyCode == ExtendedKey.SOFT2) {
fscommand2("Quit");

}
};

Key.addListener(myListener);

You first remove any listeners that may be in place and create the Listener object. When
the user presses the left soft key, the playback head is sent to the frame labeled “main,”
and if the right soft key is pressed, the application is closed.

GOING MOBILE IN FLASH

497

12

861XCh12.qxp 6/25/07 1:27 PM Page 497

5. Check your syntax, and then save and test the movie. When Device Central opens,
the Photos button is surrounded by a focus rectangle, and if you mouse over the
keys, they will change color to show you they are active (see Figure 12-20).

Figure 12-20. The focus rectangle is visible, and the keys are “hot.”

6. The next bit of code makes the buttons in the Thumbs movieclip active. Add a
keyframe in frame 10 of the Actions layer and open the ActionScript Editor. Enter
the following code:

stop();

_focusrect = true;

fscommand2("SetSoftKeys", "Options", "Exit");
fscommand2("setquality", "high");
fscommand2("fullscreen", "true");

FOUNDATION FLASH CS3 FOR DESIGNERS

498

861XCh12.qxp 6/25/07 1:27 PM Page 498

if (selectedItem == null) {
Selection.setFocus(Photos_btn);
}
else {

Selection.setFocus(selectedItem)
}

Photos_btn.onPress = function():Void {
selectedItem = this;
gotoAndStop("Gallery");

};

Call_btn.onPress = function() :Void {
selectedItem = this;
getURL("tel: 4165552365");

};

// remove any previously assigned listeners
Key.removeListener(myListener);

// create key listener object and assign onKeyDown handlers to it
var myListener:Object = new Object();

// listener actions
myListener.onKeyDown = function() :Void {
var keyCode = Key.getCode();
if(keyCode == ExtendedKey.SOFT1) {
gotoAndStop("Main");

}
else if(keyCode == ExtendedKey.SOFT2) {
fscommand2("Quit");

}
};

Key.addListener(myListener);

function showImage(num:Number):Void {
selectedItem = this;
gotoAndStop("Images");
mcImages.gotoAndStop(num);

}

for (var i:Number = 0; i < 10; i++) {
mcImageSet["Button0" + i].onPress = function():Void {
showImage(this._name.substr(7, 1));
}

}

GOING MOBILE IN FLASH

499

12

861XCh12.qxp 6/25/07 1:27 PM Page 499

We know that was a lot of typing. In fact, you could have copied and pasted the code from
frame 1 into this frame, and then entered the function at the end. It checks to see which
movieclip has been selected and uses an array for the instance names of the clips that are
the buttons to be clicked. The array access operator ([]) converts that string into an actual
object reference.

The next code block makes use of the String.substr() method, which takes a given
string and lets you give it a haircut. In this case, the this._name expression refers to the
MovieClip._name property of the thumbnail movieclip “buttons.” In a case-by-case basis,
inside the for loop, this._name returns "Button01", "Button02", and so on, and these
values are the actual instance names of the buttons. Applying the substr() method to
that string, you’re basically saying, “Go seven characters in and give me one character from
that point.” That snips out the final character, which is a number—and that number gets
passed to the showImage() function.

The beauty of this approach is that instead of writing nine separate button functions, you
bundle the button functions into one function.

Each button function tosses the focus rectangle around the selected button—
selectedItem = this—and the rest of the function scoots the playback head to the
Images frame and then to the frame where the image is located in the mcImages
movieclip.

7. Check your syntax to be sure there are no errors. If there are no errors, copy all of
the code to line 41—Key.addListener(myListener);—to the clipboard.

8. Save and test the movie in Device Central. You will start in the main Screen, and the
Photos button will be highlighted. Click the center button in the four-directional
pad, and you will be taken to the Gallery frame. Press the right and left buttons on
the four-directional pad, and each button in the interface will be given a focus rec-
tangle as shown in Figure 12-21. Click the left soft key—Main—and you are
returned to the main screen.

If you are “old school,” then be our guest and write nine separate button functions.
The first one would be

mcImageSet.Button01.onPress = function():Void {
selectedItem = this;
gotoAndStop("Images");
mcImages.gotoAndStop(1);
}

All you need to do for the remaining eight buttons is to copy and paste this code into
the Script pane and change the button number and the frame number in the last line.

FOUNDATION FLASH CS3 FOR DESIGNERS

500

861XCh12.qxp 6/25/07 1:27 PM Page 500

Figure 12-21. The keys on the keypad allow you to move
around the interface and select the image to be viewed.

There is one last issue to address. Though the movie is fully functional, you may have
noticed that when you pressed the Main soft key, you weren’t taken back to the Gallery
page. You went right back to the start. Obviously, this is not going to result in a good user
experience. Let’s fix that right now:

9. Add a keyframe in frame 20 of the Actions layer and open the ActionScript Editor.
When it opens, paste the code on the clipboard into the Script pane. You are going
to make one small change to the code.

10. Scroll down to the Listener object and change the word Main to Gallery. The
Listener should now look as follows:

myListener.onKeyDown = function() {
var keyCode = Key.getCode();
if(keyCode == ExtendedKey.SOFT1) {
gotoAndStop("Gallery");

}

GOING MOBILE IN FLASH

501

12

861XCh12.qxp 6/25/07 1:27 PM Page 501

else if(keyCode == ExtendedKey.SOFT2) {
fscommand2("Quit");

}

};

11. The last thing to do is to change the key label from Main to Back. Add keyframes in
frames 19 and 20 of the SoftKeyID layer. Select the word Main in frame 20 and
change it to Back.

12. Save and test the movie. Click an image button, and as shown in Figure 12-22, the
image appears and the soft key ID is changed to Back. Click the left soft key, and
you will be returned to the gallery.

Figure 12-22. The project is complete.

FOUNDATION FLASH CS3 FOR DESIGNERS

502

861XCh12.qxp 6/25/07 1:27 PM Page 502

What you’ve learned
How to use Device Central

The process used to create content for a mobile application

The process for testing a mobile application in Flash CS3

How to plan and execute a mobile application

The basic ActionScript to control a mobile application

This chapter only scratched the surface of the mobile market that is rapidly opening up to
Flash developers around the world. Device Central is “Ground Zero” if you are at all seri-
ous about mobile, and we think you can see how important it is to your efforts. Mobile is
a totally different space from that which you use every day, and the one thing to keep in
mind is that mobile content is the only content you will create that the user actually pays
for through network access charges. This is why it is so vitally important that you squeeze
out every extra bit and kilobyte from the application before it goes live.

Speaking of squeezing and small, the next chapter shows you how to turbo charge your
Flash movies. See you there.

GOING MOBILE IN FLASH

503

12

861XCh12.qxp 6/25/07 1:27 PM Page 503

861XCh13.qxp 6/25/07 1:35 PM Page 504

13 OPTIMIZING FLASH MOVIES

861XCh13.qxp 6/25/07 1:35 PM Page 505

One of the most common user experiences, when it comes to Flash on the Web, is sitting
around waiting for the movie to start. From your perspective, as the developer who
designed the site, this is an odd situation to encounter because, when you tested the
movie, it was seriously fast and played flawlessly. What happened? To be succinct: the Web
happened. Your movie may indeed be cool, but you made a fundamental mistake: you fell
in love with the technology, not the user.

What we’ll cover in this chapter:

How Flash movies are streamed to a web page

Using the Bandwidth Profiler to turbo charge movies

Optimizing Flash movies

Creating a simple preloader

Converting a Flash movie to a QuickTime video

Files used in this chapter:

YawningParrot.fla (Chapter13/ExerciseFiles_CH13/
Exercise/YawningParrot.fla)

BandwidthTest.fla (Chapter13/ExerciseFiles_CH13/
Exercise/BandwidthTest.fla)

BandwidthTest1.fla (Chapter13/ExerciseFiles_CH13/
Exercise/BandwidthTest1.fla)

Chill.mp3 (Chapter13/ExerciseFiles_CH13/Exercise/Chill.mp3)

Loading.fla (Chapter13/ExerciseFiles_CH13/Exercise/Loading.fla)

LoadingJPG.fla (Chapter13/ExerciseFiles_CH13/Complete/
Exercise/LoadingJPG.fla)

LoadingSWF.fla (Chapter13/ExerciseFiles_CH13/Complete/
Exercise/LoadingSWF.fla)

PreloadEX.fla (Chapter13/ExerciseFiles_CH13/Exercise/PreloadEX.fla)

YawningParrotPreloader.fla (Chapter13/ExerciseFiles_CH13/
Exercise/YawningParrotPreloader.fla)

BubblingLettersFinal.mov (Chapter13/ExerciseFiles_CH13/
Exercise/BubblingLettersFinal.mov)

Flash’s “love-hate” Internet relationship
Back in the early days of Flash, when we really didn’t know better, Flash designers would
prepare these really “cool” intros to a site, which played while the rest of the site loaded.
The problem was they were overly long, and in many cases the intro seemed to take
almost as long to load as the site. The solution was the infamous Skip Intro button. A cou-
ple of seconds after the intro started playing, the Skip Intro button would appear, and users
would click it only to discover the site hadn’t quite loaded, so they would sit there

FOUNDATION FLASH CS3 FOR DESIGNERS

506

861XCh13.qxp 6/25/07 1:35 PM Page 506

drumming their fingers on their desk. It became so ludicrous, users would see the button
not as a Skip Intro button but as a “Skip Site” warning. This resulted in Flash gaining a
rather nasty reputation for “bloat,” which it still hasn’t shaken.

Figure 13-1. Welcome to “Skip Intro” hell.

To deal with the bloat issue, it is critical that you comprehend the underlying technology
behind your Flash movie. This means you need to understand what the Web really is and
become familiar with many of the terms commonly used in the Flash designer and devel-
oper community.

This “Internet” thing

The Internet’s roots go back to the U.S. Department of Defense’s need to create a bullet-
proof means of maintaining communications between computers. This involved such things
as file transfers, messaging, and so on. At the time, computers were a virtual Tower of Babel,
which meant different computer types and operating systems rarely, if ever, could talk to
each other. As well, in battle conditions, the system needed would have to carry on even if
a piece of it was knocked out, and it had to be accessible to everything from portable com-
puters to the big, honking mainframes in “clean rooms” around the world.

If you are interested, the Flash community does have quite a sense of humor, and one
of the more popular Flash sites of the time was named “Skip Intro” (see Figure 13-1).
You can still visit it at www.skipintro.nl/skipintro/skipintro98.htm.

OPTIMIZING FLASH MOVIES

507

13

861XCh13.qxp 6/25/07 1:35 PM Page 507

http://www.skipintro.nl/skipintro/skipintro98.htm

The solution was an enabling technology called Transmission Control Protocol/Internet
Protocol, though we know it by a far sexier name, TCP/IP. This is how data moves from
your computer to our computers or from your web server to our computers, and, as you
may have guessed, the slash indicates it comes in two parts.

Internet Protocol (IP) is how data gets from here to there by using an address called the IP
address. This address is a unique number used to identify any computer currently on the
Internet. What it does is to create little bundles of information, called packets, that can
then be shot out through the Internet to your computer. Obviously the route is not a
straight line. The packets pass through special computers called routers, and their job is to
point those packets to your computer. Depending on the distance traveled, there could be
any number of routers that check your packets and send them either directly to your com-
puter or the next router along the line.

The Transmission Control Protocol (TCP) part of the process is the technology that verifies
all the data packets got to your computer. The thing is, the IP portion of the trip couldn’t
care less if packet 10 arrives at your computer before packet 1, or that it even got there at
all. This is where TCP comes in. Its job is to ensure that all of the packets get to where they
are supposed to go.

Once all of the kinks got worked out, the military had quite the communications system
on its hands.

Enter the World Wide Web

The Web is a network of networks. It came about because people realized straight data
transmission was interesting, but once the cool factor wore out its welcome, they started
wondering how it would be possible to use this communication network to access files
containing images, audio, and video.

The solution was the World Wide Web, which is commonly seen as web pages and hyper-
links. A web page is a simple text file that uses HTML—a system of tags and text—to define
how a page should look and behave. This is important because your Flash movies are
always found in an HTML wrapper.

An HTML page may only be a text file, but it can contain links to other assets such as your
Flash SWF. These links take the form of a Uniform Resource Locator (URL) and specify the
location of the assets. When Firefox or Internet Explorer translates the page, those
addresses are used to load the assets and display them on the computer screen. Thus the
Web is really composed of two parts: browsers and servers, which are the computers that
hold the assets and shoot them to your computer when the browser asks for them.

If you are a history buff, the concept of hyperlinks and hypertext was around
long before the Internet. The gentleman who managed the atomic bomb project
for the U.S. during World War II, Vannevar Bush, wrote an article for the Atlantic
Monthly in July 1945 that proposed a system of linking all information with all
other information. The article was entitled “As We May Think,” and you can still
read it at www.theatlantic.com/doc/194507/bush.

FOUNDATION FLASH CS3 FOR DESIGNERS

508

861XCh13.qxp 6/25/07 1:35 PM Page 508

http://www.theatlantic.com/doc/194507/bush

As you can see, the movement of your SWF file from here to there is a rather uncompli-
cated process. Where your pain and heartache comes into play is through something called
bandwidth.

Bandwidth

In the early days of Flash, around the year 1999, one of the authors read an article written
by a New York Flash designer—Hillman Curtis—and one phrase leaped out of the article
and has been glued to the front of his cerebral cortex ever since. The phrase? “Keep an
eye on the pipe.”

The “pipe” is bandwidth. Bandwidth is a measure of how much data will move along a
given path at a given time or how much information can be downloaded through a
modem and how fast. One of the authors, when speaking to this topic at conferences or in
classes, uses a rather amusing graphic analogy that will help you to understand this topic.
Imagine trying to push the amount of data contained in your favorite TV show through a
modem that is connected to a phone. Trying to push that amount of data through a dial-
up modem is no different from “trying to push a watermelon through a worm.”

Bandwidth is measured in bits (usually kilobits) per second. A bit is either a 1 or a 0, so
bandwidth is a measure of how many 1s and 0s can be fed through a modem each second.
The higher the number, the greater the bandwidth, and the faster things get from here to
there. The thing is, bandwidth is not constant. It requires more bandwidth to move a video
from here to there than this page of text that you are reading. The issue is not “here to
there.” The issue is the modem’s capacity to move the data. This is the “pipe.” Users with
56K dial-up modems have a pipe that has the diameter of a garden hose. Users with cable
modems have a pipe the diameter of a fire hose. Connect the garden hose to the fire
hydrant in front of your house, and you will get a graphic demonstration of data flow and
the “pipe” when you turn on the hydrant.

As we pointed out earlier, the data packets sent to your computer get there, eventually,
and the route is never a straight line. Over time, the TCP/IP model nudges the transmission
rate toward a relatively predictable rate, but this is technology we’re dealing with here,
and it is the prudent Flash designer who approaches technology with a dose of pragma-
tism and does not assume a constant flow. This has implications behind your design
efforts, and we will get into those shortly.

You need to regard the pipe and data transmission in much the same manner you regard
your local highway. It may have six lanes for traffic and a posted speed limit of 60 mph or
100 kph, but that all becomes irrelevant in rush hour. Traffic moves at the pace of the
slowest car. It is no different with the Internet. Servers can become overloaded.

The best example of that is the infamous tragedy often referred to as 9/11. On that day, the
Internet essentially ground to halt as, it seemed, every computer on the planet was
attempting to get the latest information. What people overlooked on that day was that a
server is only a computer and can only reply to requests for information at a set rate. If the
browser can’t get the information, it will eventually assume the assets are not there, and the
requested page will either not be displayed or will be displayed with information missing. It
got so bad on that day for CNN and the BBC, for example, they were forced to post a mes-
sage that essentially told people “come back later.” People lucky enough to get connected

OPTIMIZING FLASH MOVIES

509

13

861XCh13.qxp 6/25/07 1:35 PM Page 509

experienced pauses in the download and disconnection, which are the hallmarks of an
overloaded server.

What you need to take away from this “horror story” is that the time it takes to download and
play your Flash movie is totally dependent on the contents of your Flash movie and traffic flow
on the Internet. This means you need to concentrate on not only what is “in” your movie, but
also who wants to access it. This is where you fall in love with the user and not the technology.

So who are these folks we call users?

The Flash community is an odd-ball collection of people ranging from those who ride skate-
boards for entertainment to the classic “nerd” working in a corporate cubicle farm. This dis-
parity, which actually is the strength of the Flash community, has resulted in a bit of a split
between those who use supercharged computers to develop their content and take a “sucks
to be you” attitude if you can’t revel in their work and the corporate types who work within
the strict standard set by their IT department. This standard is usually in the form of the fol-
lowing Commandment: Thou shalt develop to a Flash Player 7 standard, and may whatever
god you worship have mercy upon your miserable soul if you step outside of this stricture.

Which begs the question, What do you need to know before putting your work out there?

Here are some general guidelines:

Small means fast. Studies show you have 15 seconds to hook the user. If nothing is
happening or is appealing to the user, that user is gone. Small SWFs mean fast
download. The days of eye candy at the start of a Flash movie are over. If the con-
tent users see within that 15-second window is not relevant to the site or the expe-
rience, they will be gone.

If a bleeding edge Flash site isn’t viewable on a two-year-old computer with a stan-
dard operating system and hardware, it is time to go back to the drawing board.

For a commercial site, give yourself another year and go back three years. Corporations
are relatively slow to upgrade because of the significant cost incurred to do so.

If your target audience is urban and in a developed country, assume they have, at
minimum, a cable connection.

If your audience is the world, develop to the lowest common denominator, which
is a dial-up modem.

Now that we have inundated you with “techie talk,” let’s look at how your Flash file gets
from here to there. How that happens is through a concept we talked about in Chapter 8—
streaming.

Streaming
As you have discovered by this point in the book, simply tossing a bunch of audio, images,
and video into your movie is not a good thing. They take an inordinate amount of time to
download. In fact, toss all of that content into frame 1, and you can kiss your “15-second
window of opportunity” goodbye.

FOUNDATION FLASH CS3 FOR DESIGNERS

510

861XCh13.qxp 6/25/07 1:35 PM Page 510

It is the prudent Flash designer or developer who realizes this and structures a movie in
such a way that it starts playing before the content has finished loading. Like video, your
Flash movie uses a progressive download process. This means when enough data has been
downloaded to start something happening, that 15 seconds is a godsend.

Streaming doesn’t make things faster. What it does is intelligently organize things to start
the movie playing in very short order. Used wisely, streaming can ensure that everything in
the Flash movie is downloaded before it is needed. The result is a Flash movie that seems
to start playing almost immediately and plays “as smooth as the hair on a frog’s back.”

So what happens when a web page requests your movie? Two things are sent to the browser:

The movie’s timeline, including ActionScript and stuff not in the library, such as text
and shapes that haven’t been converted to symbols

Library items, including audio, video, images, and symbols—if they appear in the
timeline or are set to export for ActionScript

You need to clearly understand this: when your Flash movie is shot through the Internet to
the user’s browser, the movie is sent in frame order. If the movie is split into scenes, a rel-
atively rare practice today, the scenes will be sent in the order in which they appear. The
library is also sent, but the library items are not sent in the order in which they appear in
the library. They are sent in the sequence in which they appear on the timeline. To rein-
force what we have just said, let’s take a look at a typical file:

1. Open the YawningParrot.fla file in your Chapter 13 Exercise folder.

The timeline, shown in Figure 13-2, is linear, but you will notice there are a lot of
layers. Your first reaction could be, ”Man that is going to take a while to load.” Not
really.

Figure 13-2. Streaming plays a movie in frame order and loads the content in the library in the order
in which it appears on the timeline.

OPTIMIZING FLASH MOVIES

511

13

861XCh13.qxp 6/25/07 1:35 PM Page 511

2. Open the library. You will notice there is a lot less content in the library than there
are layers. This is because the symbols in the library are reused and repurposed. All
of the feather layers use the feather symbol.

When this movie loads, the parrot is constructed, in frame 1, of all of the objects in
the library. The thing about each of the library objects is they are physically small.
This means they are also relatively small in file size, and the result is not a lot of
bandwidth is required to load them and get the movie playing.

To visualize how this movie will stream, you will need to add an extra, imaginary playhead
to the timeline. When the movie starts, they are both in frame 1, but the imaginary play-
head—let’s call it streamhead—moves ahead of the actual playhead. The streamhead’s
position on the timeline indicates how much of the movie has been downloaded. The play-
head will stay put because its purpose is to indicate the frame currently playing.

Now let’s assume that you toss in a movieclip containing a 3-second FLV file that has been
embedded into its timeline, and this movieclip is added to frame 10. The odds are really
good that the streamhead will stay put on frame 10 and the playhead will “catch up” to
arrive at frame 10 and also stay put. What will happen is the movie will essentially stop
until the movieclip’s inner timeline, including the FLV, is loaded, at which point the stream-
head restarts its journey along the timeline.

To avoid this nastiness, Flash designers and developers give the streamhead a head start by
creating a streaming buffer. This could be in the form of a preloader (we’ll get into this
subject later) or any other technique that keeps the playhead behind in “second place” in
order to let the streamhead do its job and load content.

Though you may be having difficulty visualizing two heads on the timeline, Flash has a tool
that lets you see how these two heads work and how the pipe can affect the delivery of
your Flash movie to the browser. Where is this tool? Let’s go look at the Bandwidth
Profiler.

The Bandwidth Profiler
In many respects, the Bandwidth Profiler is quite similar to what you see in Device Central
when you test a mobile movie. The movie opens up in a device that emulates the per-
formance of your movie in the chosen device. The Bandwidth Profiler emulates how your
movie will behave when it downloads to the user’s machine.

Though the Bandwidth Profiler is an extremely useful tool, keep in mind it is nothing more
than an emulator. It won’t mimic real life completely, mainly because it assumes a steady
transfer rate into the browser, in contrast to an Internet universe that actually ebbs and
pulses based on traffic.

Regardless, the Bandwidth Profiler can give you a good idea of where streaming bottle-
necks are likely to occur. This can be an invaluable aid in relieving “data jam” and solving
a problem before it becomes a major one. Let’s take a look at the Bandwidth Profiler:

FOUNDATION FLASH CS3 FOR DESIGNERS

512

861XCh13.qxp 6/25/07 1:35 PM Page 512

1. Open the BandwidthTest.fla file in Flash. When the movie opens, you will see we
have placed an audio file on the timeline, embedded an FLV into a movieclip, and
placed it in frame 1, and if you scrub over to frame 2, you will see we have added
some text to the stage. If you open the library, you will see the text is actually a graphic
symbol. Just by looking at the timeline, you can see that the movieclip with the FLV
and the audio file will be the first pieces of content to load, and then the text will load.

2. Test the movie. This time when the SWF opens, select View ä Bandwidth Profiler. Take
a look at the graph, shown in Figure 13-3, that suddenly appears above the movie.

Figure 13-3. The Bandwidth Profiler

On the left side are three headings: Movie, Settings, and State. To the right is a frame-by-
frame representation of the data downloading into each frame. Notice the spike in frame
1. This is understandable because the audio file and the FLV need to load in this frame.
Under the settings, you will see something like Bandwidth:4800B/s(400 B/frame). Now look
at where that red line is sitting. The values match. This red line is the bandwidth limit,
which represents the maximum throughput a modem can handle. Bars under the line are
handled quickly. Bars rising above the line indicate potential bottlenecks.

3. Select View ä Download Settings. The drop-down menu that appears (see Figure 13-4)
allows you to choose a particular modem speed.

4. Select DSL (32.6 KB/s) from the drop-down menu and scroll back to the start of the
movie. You will notice the bandwidth limit has increased from 400 bytes to 2.78 KB
and that the markings on the graph have changed to reflect your selection.

5. You are most likely looking at that spike in the first frame and thinking, “Yeah, so?
What’s the deal?” Rather than having us explain it, we are going to let you experi-
ence it. Change back to the 56K modem choice and this time select View ä Simulate
Download.

Let’s guess. You sat around for about 25 seconds waiting for the movie to start?
What you have just experienced is the other, and most important, half of the
Bandwidth Profiler. You just sat through what a person with a 56K modem will
experience. Let’s take a minute and talk about this.

OPTIMIZING FLASH MOVIES

513

13

861XCh13.qxp 6/25/07 1:35 PM Page 513

Figure 13-4. You can change the modem speed.

When you selected Simulate Download, you essentially emulated how the movie will load
into a 56K modem. The other thing that happened is the Bandwidth Profiler developed a
green bar at the top of the graph, which stayed put until the movie started to play (see
Figure 13-5).

Figure 13-5. You can experience the issue with the first frame when you simulate the download.

The green bar is important. At the start of this section, we talked about two imaginary
playheads. What you are seeing is what happens when the streamhead and the playhead
catch up to each other. To visualize what is going on, think of the playhead as the playhead
indicator at the top of the screen and the streamhead is the green bar. How long will they
be stuck there?

On the left side of the Bandwidth Profiler is a value for the Preload setting, which in our
example is 233 fr (frames) or 19.4 s (seconds). When you starting emulating the movie, the
Settings area became active (you may have to increase the size of the Bandwidth Profiler
window by dragging the bottom edge down). The size area will show you the activity, and
you can see that it will take just over 19 seconds to load in all of the content in the first
frame. What you should have seen, when everything loaded, was the green bar suddenly

FOUNDATION FLASH CS3 FOR DESIGNERS

514

861XCh13.qxp 6/25/07 1:35 PM Page 514

roaring off to the right, and the playhead moving across the frames as it follows the
streamhead.

6. Change the download settings to DSL and select Simulate Download. You’ll still
experience a short delay, but there will also be a marked decrease in how long you
have to wait. The Preload setting should show you 33 fr (2.8 s), which is a dramatic
decrease from the almost 20 seconds you had to wait simulating a 56K modem.

As you can see, the Bandwidth Profiler is a rather powerful tool that you need to master.
With it, you can tailor your movie to the bandwidth constraints of your user and ensure
you meet that 15-second window of opportunity that will open to you. With the Download
Settings option, not only do you get to see how bandwidth will affect your movie, you also
actually get to experience it.

At this point, you may be thinking, “Shoot, I can cut back the preload by using ActionScript
to play the sound because the sound is embedded into the library.” Let’s see if that works:

7. Open the BandwidthTest1.fla file. If you open the library, you will see the sound
file is absent, and if you open the code in frame 3 of the Actions layer, you will see
we have added the call to the sound.

8. Test the movie and select Simulate Download. The graph, as you see in Figure 13-6,
has significantly changed, but the spike in frame 1 really hasn’t. As well, the delay is
still there. This tells you the issue really isn’t the sound, but the FLV embedded into
the movieclip. (The sound wasn’t adding a lot up front because its Sync setting was
set to Stream, which distributed its weight across many frames.) You have just dis-
covered another use for the Bandwidth Profiler. Not only can it show you where
the problem is, but it can also be used to isolate the content causing the delay.

Figure 13-6. Use the Bandwidth Profiler to identify the content causing the delay.

How would we fix this? First off, there will always be that spike in frame 1 of any movie
you will create. The goal is to get that spike as close to the red line as possible. To fix
this, one approach would be to reduce the time of the curtains effect from its current
46 frames to 23 frames in the background movieclip. Do this, and the preload time
drops to 1.4 seconds.

OPTIMIZING FLASH MOVIES

515

13

861XCh13.qxp 6/25/07 1:35 PM Page 515

Optimizing and fine-tuning your Flash movies
As you saw in the previous example, a simple thing like reducing the number of frames in
an FLV can have a dramatic impact on how the movie loads. What we plan to do in this
section is to outline a few tips, tricks, and techniques you can use to make your Flash
movies leaner, meaner, and faster. Surprisingly, the first mistake most people make is made
even before a pixel is lit up. They forget to plan the movie.

Structure

That old adage—Plan your work and work your plan—is especially true when working with
Flash. You can’t make it up as you go along. You have to take the time before you start to
think about what the user sees, and in what order, before you start firing content into the
library and then onto the stage. For example, a video site that lets the user choose from a
number of videos would involve the following:

Preloader

Intro screen

The main movie screen where the videos are chosen and viewed

A set of links to other video sites you may have created

This means when the user arrives at the site, he or she would most likely do the following:

The user would see the preloader for a few seconds and then be taken to the intro
frame.

From there, the user would choose to read the information and then move to the
video picker screen by clicking a button.

The video frame would load up, and the user can click a series of buttons to view
the videos associated with the buttons.

The viewer can then choose to return to the intro screen or go to a frame that con-
tains a series of interactive links.

Now that you have an idea of what will happen, you might even want to pull together a
small flowchart that shows the purpose of each frame in the movie, As you can see in
Figure 13-7, having one of these handy allows you to visualize how the user will move
around the movie and provides a broad view of the content of each frame.

FOUNDATION FLASH CS3 FOR DESIGNERS

516

861XCh13.qxp 6/25/07 1:35 PM Page 516

Figure 13-7. Map out your plan.

In fact, if you have arrived at Flash CS3 through the Adobe Web Premium Bundle, you
have an ideal tool for this process at your disposal. Fireworks CS3 has been repositioned as
a rapid prototyping tool. If you open the application and select Window ä Common
Library, you will see a bunch of folders that contain symbols for a variety of rapid proto-
typing tasks. The flow diagram symbols shown in Figure 13-8 are ideal for planning out a
Flash or HTML project.

Figure 13-8. Use Fireworks CS3 as a planning aid.

OPTIMIZING FLASH MOVIES

517

13

861XCh13.qxp 6/25/07 1:35 PM Page 517

By writing out what each frame does or using Fireworks CS3 to create a flow diagram, what
you are doing is ordering the content on the timeline. By “falling in love with the user” and
streaming the content into the movie in that order, your site will meet the needs of your
users. If you randomly place the content on the timeline, you have no way of ensuring it
will load in any meaningful manner. The result is a site that has to download in its entirety
before the user can interact with it. Though many sites do this, it is not considered to be a
best practice within the Flash design community.

Optimizing elements in the movie

Every chapter in this book has directly or indirectly made it clear that Flash loves “small.”
After your experiences with the Bandwidth Profiler, we think you now understand why we
are so adamant on this point. A small file means a fast load. A fast load means short wait
time. A short wait time puts you squarely in that 15-second window of opportunity. We
have shown you several methods of keeping things small when it comes to images, fonts,
sounds, video, and drawing. What about vectors?

We know Flash loves vectors. The thing is, vectors can be both small and large at the same
time. Huh? The reason is every time Flash encounters a vector point, it has to load it into
memory in order to draw the shape. If you create a vector with a large number of vector
points, you may have a small file on your hands, but you have also increased the demand
on memory to redraw the image. The result is the inevitable spike in the Bandwidth
Profiler. Here’s one way of addressing this issue:

1. Create a new Flash document. When Flash opens, add
three more keyframes to Layer 1 in the Layers panel.
You now have four keyframes on the timeline.

2. Select the Pencil tool, and in frame 1, draw a “curvy”
shape like we have done in Figure 13-9.

3. Copy your shape to the clipboard. Select each of the
remaining three keyframes in Layer 1 and select Edit ä
Paste in Place (Ctrl+Shift+V on a PC or Cmd+Shift+V on
a Mac).

4. Select the shape in frame 2 and select Modify ä Shape
ä Smooth. Not a lot seems to happen.

5. Select the shape in frame 3 and select Modify ä Shape ä Straighten. A couple of
the lines straighten out.

6. Select the shape in frame 4 and select Modify ä Shape ä Optimize. This time you
are presented with the Optimize Curves dialog box. Move the slider all the way to
the right and click OK. The dialog box will close and be replaced by an Alert dialog
box, shown in Figure 13-10, telling you how many curves were found, how many
were optimized, and the size of the reduction as a result of the optimization.

FOUNDATION FLASH CS3 FOR DESIGNERS

518

Figure 13-9. Start by
drawing a shape
containing a lot of vector
points.

861XCh13.qxp 6/25/07 1:35 PM Page 518

Figure 13-10. Using shape optimization

7. Test the movie. As you see in Figure 13-11, the graph shows you the file size of the
content in each frame and the effect modifying the shape has in each frame. The
results are quite dramatic.

Figure 13-11. Smoothing, straightening, and
optimizing curves can have a profound
effect upon download times.

You are most likely looking at the graph and thinking, “Wow, I am going to start optimizing
all of my vector shapes.” Not so fast. Each of the three methods presented did a good thing
and a bad thing. The good thing was they did indeed reduce the bandwidth load. The bad
thing was they introduced distortions into the image. If you are happy with the distortions,

The image shown in Figure 13-10 is a composite image. We created it to show you the
Alert dialog box resulting from clicking OK in the Optimize Curves dialog box.

OPTIMIZING FLASH MOVIES

519

13

861XCh13.qxp 6/25/07 1:35 PM Page 519

fine. If you aren’t, you might want to consider doing the optimization, selecting the shape
with the Subselection tool, and manually manipulating the shape and the points.

So why was there such a drop in the graph between the object in frame 1 and its counter-
part in frame 4? Remember, vector nodes require bandwidth. You removed a ton of them,
as shown in Figure 13-12, using the Shape Optimization dialog box, which accounts for the
drop in required bandwidth.

Figure 13-12. Each node on a shape requires a “piece” of bandwidth.

Using the Loader class to display images and SWFs

As you saw in the Bandwidth Profiler exercise, using ActionScript to load content into a
movie can result in a performance boost because the content is not contained in the
library. Instead the data is streamed into the SWF from your HTTP server. This technique
can also be applied to images and SWF files as well. Just keep in mind that content still
needs to be streamed into the SWF that calls the content, meaning there will still be a
slight delay, but the performance boost comes in the form of reduced wait times.

All of this is accomplished through the use of the Loader class in ActionScript 3.0. The
Loader class is used to load SWF files or image (JPEG, PNG, or GIF) files into a SWF through
the use of the load() method. The loaded display object is added as a child of the Loader
object. Here’s how all of this works:

1. Open the Loading.fla file in the Exercise folder. When the file opens, you will see
there is a single movieclip on the stage, and if you open the library, you will see this
movieclip is the only object in the library. If you select the clip in the stage, you will
also see we have given it the instance name of clip.

2. Select the first frame of the scripts layer, open the Actions panel, and add the fol-
lowing code:

var loader:Loader = new Loader();
addChild(loader);
//clip.addChild(loader);

FOUNDATION FLASH CS3 FOR DESIGNERS

520

861XCh13.qxp 6/25/07 1:35 PM Page 520

loader.contentLoaderInfo.addEventListener(
Event.COMPLETE,function(evt:Event):void {
//clip.x = 50;
//clip.y = 50;

}
);
loader.contentLoaderInfo.addEventListener(
ProgressEvent.PROGRESS, function(evt:ProgressEvent):void {
trace(evt.bytesLoaded);

}
);
//loader.load(new URLRequest("toBeLoaded.swf"));
loader.load(new URLRequest("toBeLoaded.png"));

The first line of the code creates the Loader object. The next two lines either load the content
onto the stage—addChild(loader);—or into the movieclip itself. The two EventListeners
tell the loader where to place the content and to let you see the progress by using the
trace() function to display how many bytes have been loaded in the Output panel.

The final two lines are used to tell the SWF what content is to be loaded.

3. Test the movie.

4. Return to the Actions panel and comment out lines 2 and 17 of the code
(//addChild(loader)) and delete the comment in lines 3, 8, 9, and 18.

5. Test the movie. This time the SWF is called in, added to the stand in movieclip, and
placed 50 pixels out and down on the stage, as shown in Figure 13-13.

Figure 13-13. A SWF is loaded into the movieclip on the stage, and the movieclip is moved
to a new location. Note as well the Output panel shows you the bytesLoaded value.

OPTIMIZING FLASH MOVIES

521

13

861XCh13.qxp 6/25/07 1:35 PM Page 521

Your turn: Creating a preloader
We have been talking about preloaders, and the time has arrived to create one of your
own. In this exercise, you will not only create a preloader, but also use the bytesLoaded
values to give the user some feedback regarding the loading of the file. Preloaders can
range from the simple, such as the one you’ll create here, to the incredibly complex,
involving clever animation and even sound effects. Regardless of the approach taken, the
purpose of a preloader is to get something happening within that 15-second window of
opportunity and have the user become engaged in the site almost immediately. To do this,
you will be using assets from the YawningParrot.fla file as the preloader for the file used
in the Bandwidth Profiler exercise. Here’s how:

1. Open the PreloadEX.fla file in your Exercise folder. Scrub through the timeline,
and you will see the familiar yawning parrot and then be taken right into a clone of
the heavy BandwidthTest1.fla file used earlier in this chapter.

2. Open the library and double-click the parrot movieclip to open it in the Symbol
Editor. You will notice that we have added a dynamic text box with the instance
name of percentage under the parrot. This text box, shown in Figure 13-14, will be
used to display the percentage value of how much of the file has loaded.

3. Click the Scene 1 link to return to the main timeline. Add a keyframe to frames 1
and 5 of the scripts layer. Select the keyframe in frame 1 of the scripts layer and
open the Actions panel.

4. Click in the Script pane and add the following code:

root.loaderInfo.addEventListener(
Event.COMPLETE,
function(evt:Event):void {
if (currentFrame == 5) {
play();

} else {
gotoAndPlay(10);

}
}

);

Final copies of these two movies—LoadingJPG.fla and LoadingSWF.fla—can be
found in this chapter’s Completed folder.

You may have noticed throughout this book that the layer where scripts are placed is
either called Actions or scripts. What you are seeing is a clash of naming conventions.
Ultimately, the name of the layer doesn’t matter, as it has no practical effect on the
functionality of the movie. This is not to involve you in a debate, but to make you
aware that layer naming conventions need to be defined right at the start of a project.
We aren’t trying to be difficult by throwing two choices at you; we’re following current
industry best practice of giving layers a meaningful label—it’s just that we didn’t con-
sult beforehand. Using one or the other is an acceptable best practice.

FOUNDATION FLASH CS3 FOR DESIGNERS

522

861XCh13.qxp 6/25/07 1:35 PM Page 522

Figure 13-14. A yawning parrot and a dynamic text box are the key elements used in this preloader.

Let’s take a moment and figure out what is going on. First off, this movie actually preloads
itself. There is no external content being used. The “trick” therefore is to determine where
to target the events used by ActionScript.

The first line of the code targets the loaderInfo property of the main timeline—root.
Where does loaderInfo come from? This property hails from the DisplayObject class,
which is in the inheritance chain for Sprite and ultimately the MovieClip class.

In frame 1, you “wire up” a COMPLETE event. A COMPLETE event is fired when the movie data
has loaded successfully. In this case, you are saying, “If the data hasn’t loaded, keep mov-
ing forward.” If the current frame is 5, that means all of the content hasn’t loaded, and the
parrot is yawning away. Instead of looping back to frame 1, you tell the playhead to keep
going to frame 5 and play() from there. If not, because the user has already visited the
page that contains this movie, it means that the content has loaded after all. In that case,
you use the gotoAndPlay(10) method to bypass the parrot.

5. Click the keyframe in frame 5 of the scripts layer and add the following code:

stop();

root.loaderInfo.addEventListener(
ProgressEvent.PROGRESS,
function(evt:ProgressEvent):void {
var percent:Number = Math.floor(evt.bytesLoaded /å

evt.bytesTotal * 100);
parrot.percentage.text = percent + "%";

}
);

You know what the stop() method does, so let’s concentrate on the listener and the function.

OPTIMIZING FLASH MOVIES

523

13

861XCh13.qxp 6/25/07 1:35 PM Page 523

The first line tells the main timeline to listen for something that just happens to be the
loaderInfo property of the main timeline. The next line uses the ProgressEvent class to
keep an eye on when the load operation has started. A ProgressEvent is usually triggered
when SWF files, images, or data are loaded into Flash Player. In the case of this movie, you
are going to keep an eye on the data part of the equation because all of the stuff in the
movie is in the library. One of the properties of the ProgressEvent class is bytesLoaded.
This is great because Flash knows how many bytes there are in the movie, and as you saw
in the previous exercise, it keeps track of how many bytes have been loaded at any point
in time. Knowing this, you can then do the math to compare how many bytes have been
loaded as a percentage of the total bytes in the movie. These calculations inevitably wind
up with copious numbers after the decimal, so you strip them off using the Math.floor()
method. One of the easiest ways to get a handle on this sort of thing is to actually do the
math. Let’s assume there are 275 bytes in the movie (bytesTotal), and you have loaded in
71 of them (bytesLoaded). Let’s follow the numbers:

var percent:Number = Math.floor(71 / 265 * 100);

The result of 71 / 265 * 100 is 26.792, which you round down (Math.floor()) to a value of
26 for your var percent:Number.

Now that you have a number, you can use it. In this case, you take the number and use it
in the dynamic text box with the instance name of parrot under the yawning parrot. As
more data loads, this number will not only change, but also appear as a percentage to the
user because you told ActionScript to tack a % sign after the number.

6. Close the Actions panel. Save the movie and test it.

7. When the SWF opens, change the download setting to 56K and select Simulate
Download. The parrot fades in and yawns as it waits for the rest of the movie to
load. While the parrot is yawning, you also see the percentage of the content that
has loaded, as shown in Figure 13-15.

Figure 13-15. You are at the 35% percent mark.

FOUNDATION FLASH CS3 FOR DESIGNERS

524

861XCh13.qxp 6/25/07 1:35 PM Page 524

What about those cases where content is loading from an external source? This could be
the loading of a SWF or a JPEG image that is not embedded into a SWF. Here is how you
do that:

1. Open the YawningParrotPreloader.fla file in your Chapter 13 Exercise folder.
You will notice our bored friend is back, but this time in the library there is a blank
movieclip named photo. In this exercise, you are going use the preloader to moni-
tor the progress of a JPEG on another website loading into the photo movieclip. Not
only that, but the photo loading from the other website will fade in.

2. Add keyframes to frames 15 and 30 of the scripts layer.

3. Select the keyframe in frame 15 of the scripts layer, open the Actions panel, and
enter the following code:

stop();

var loader:Loader = new Loader();

loader.contentLoaderInfo.addEventListener(
Event.COMPLETE,
function(evt:Event):void {
play();

}
);

loader.contentLoaderInfo.addEventListener(
ProgressEvent.PROGRESS,
function(evt:ProgressEvent):void {
var percent:Number = Math.floor(evt.bytesLoaded /å

evt.bytesTotal * 100);
parrot.percentage.text = percent + "%";

}
);

loader.load(newå

URLRequest("http://www.FoundationFlashCS3.com/rocket.jpg"));

There are three major differences between this code and the code entered into frame 5 of
the previous example. The first is the playback head is told to stay put and not go any-
where until the image has loaded.

The next change is the use of the contentLoaderInfo() property. This property kicks out
a LoaderInfo object, which is used to supply the loading progress information that is used
in the dynamic text box under the parrot. The neat thing about that LoaderInfo object is
that it comes into play before the content is fully loaded so the eventListener is being
used to monitor the progress of the download.

The final difference is the last line of the code. So far, you have used the load() method
to bring in content that is in the same folder as the SWF. In this case, you are going to an
external URL to grab the image and load it into the photo movieclip. If you have a lot of

OPTIMIZING FLASH MOVIES

525

13

861XCh13.qxp 6/25/07 1:35 PM Page 525

http://www.FoundationFlashCS3.com/rocket.jpg

images or SWFs to be loaded, this is a great way of having them all stay in one folder but
still be accessible to your SWF.

4. Even though the photo of the rocket has been loaded, Flash doesn’t have a clue
where the photo is supposed to go. Let’s deal with that. Add a keyframe in frame
30 of the scripts layer, open the Actions panel, and add this line of code:

photo.addChild(loader);

You used the addChild() method to tell Flash to add the content just loaded to the dis-
play list of the movieclip on the stage whose instance name is photo. The tween between
frames 30 and 35 simply fades the image in from 0% alpha to 100%.

5. Save and test the movie. The parrot will tell you how much of the rocket has loaded,
and then the rocket engine, as shown in Figure 13-16, fades in.

Figure 13-16. Loading external content into a movieclip

FOUNDATION FLASH CS3 FOR DESIGNERS

526

861XCh13.qxp 6/25/07 1:35 PM Page 526

Optimizing Flash content for use in video

As you may have surmised when reading the heading for this exercise, you are not going to
be thinking “outside the box” but thinking outside of the room where the box is located.

This may come as a bit of a surprise, but Flash is often used to create animated cartoons
that are shown on television and animations used in commercials. The process has histor-
ically been, to say the least, convoluted, but it could be done. The problem was, even
though Flash could output to QuickTime, only the main timeline could be exported.
Library content, ActionScript-driven animation, and even nested movieclips were not
exported. When you consider the fact that the maximum length for the Flash timeline is
just over 16,000 frames, the achievement of a short 10-minute cartoon was not possible
unless the movie was broken into pieces and stitched together in a video editing program.

Flash CS3 contains a really cool feature that allows you to not only export the content on
the timeline, but also create animations that are solely driven by ActionScript as QuickTime
movies and then use them as motion graphics in such applications as Adobe After Effects
CS3. In fact, in this exercise, the stage is blank. All of the letters that appear in this anima-
tion will be randomly generated, colored, and put in motion using ActionScript. Follow
these steps to create a QuickTime movie in Flash:

1. Open a new Flash document and set the stage color to black.

2. Rename Layer 1 as scripts.

3. Select the keyframe in the scripts layer and open the ActionScript Editor.

4. Enter the following code:

var t:Timer = new Timer(50, 0);
t.addEventListener(TimerEvent.TIMER, createLetter);
t.start();

function createLetter(evt:Event):void {
var f:TextFormat = new TextFormat();
f.size = randomBetween(80, 120);
f.color = Math.floor(Math.random() * 16777216);
var mc:MovieClip = new MovieClip();
var t:TextField = new TextField();
t.autoSize = "center";
t.text = String.fromCharCode(randomBetween(97, 122));
t.setTextFormat(f);
mc.addChild(t);
mc.x = (Math.random() * stage.stageWidth);
mc.y = stage.stageHeight;
mc.ang = 0;
mc.range = randomBetween(4, 20);
addChild(mc);
mc.addEventListener(Event.ENTER_FRAME, shimmy);

}

OPTIMIZING FLASH MOVIES

527

13

861XCh13.qxp 6/25/07 1:35 PM Page 527

The first line of code creates a timer that tells Flash to create a new Timer object—new
Timer(50, 0)—which will wait 50 milliseconds before adding another letter, and that the
sequence repeats forever. The next line creates the listener that will “listen” for this virtual
“beep” every 50 milliseconds, and when it hears the beep, it will create a random letter. The
third line—t.start();—is the method of the Timer class that starts the clock running.

The createLetter() function is how the letters arrive in the movie. The first variable cre-
ates a TextFormat object, which is used to format text fields.

Now that you have the object, you need to give it the formatting information. The size of
the text is set by using a custom function, randomBetween(), that determines the maxi-
mum and minimum size of the letters. The color is set by picking a random value between
0 and 1 and then multiplying that result by 16,777,216 and rounding the answer down to
the nearest integer. Where did that number come from? That’s how many colors you can
find in the 24-bit color space.

You then create a movieclip and a text field. The text field is centered, the letters are
added to it, and formatting is applied.

The line t.text = String.fromCharCode(randomBetween(97, 122)), which determines
which letter appears in the text field, looks rather complex, but it isn’t really. You needed
random values, so you used the fromCharCode() method of the String class to return a
string derived from integers that represent ASCII values for the desired letters (the lower-
case alphabet, as it happens). To ensure they are all different, you use that custom
randomBetween() function again and tell Flash, in plain English, “You go pick an ASCII value
between 97 and 122. When you have it, add the letter of the alphabet that value repre-
sents to the text field.” The next two lines tell Flash the size and color of the text format-
ting (f) and add the text field to the display list of the movieclip (mc.addChild(t)).

The remainder of the code tells Flash where to put the movieclip, adds the movieclip to
the display list of the stage, and puts the movieclip in motion using a custom shimmy()
function. Now you’ll write that function.

5. Press Enter (PC) or Return (Mac) twice and enter the following code that will put
the letters in motion:

function shimmy(evt:Event):void {
var mc:MovieClip = MovieClip(evt.target);
mc.y -= randomBetween(6, 10);
mc.x += (mc.range * Math.cos(mc.ang += 0.4));
mc.scaleY -= 0.02;
if (mc.scaleY <= 0) {
mc.removeEventListener(Event.ENTER_FRAME, shimmy);
removeChild(mc);

}
}

FOUNDATION FLASH CS3 FOR DESIGNERS

528

861XCh13.qxp 6/25/07 1:35 PM Page 528

Before we start explaining this code, remember, all motion in Flash is either across the
stage on the x axis or up and down the stage on the y axis. Objects moving from the top
to the bottom of the stage have increasing y values, and all objects moving from left to
right have increasing x values . . . and vice versa.

This code block determines the stage movement of the movieclip containing the letter
from the previous code block. Each one is randomly placed on the y axis, and the cosine
method—Math.cos()—of the Math class is used to add a left-to-right shimmy, which really
is the movement along a cosine wave, as the letters move upward.

As the letters move up the stage along the y axis, they are scaled down by 2%—mc.scaleY
-= 0.02;—every time the timer “beeps.” The last three lines essentially tell Flash, “Look,
this thing is going to eventually scale down to a value of 0. When you hear that, get rid of
the movieclip.”

There’s that randomBetween() function again. Next, you’ll write that to finish off this code.

6. Press Enter (PC) or Return (Mac) twice and enter the following:

function randomBetween (min:Number, max:Number):Number {
return (Math.random() * (max - min)) + min;

}

This function picks a random number based on the parameters provided within the paren-
theses. The return statement does a bit of math and spits back a number. Let’s see how
this works in regard to setting the size of the letters. The line that does that is

f.size = randomBetween(80, 120);

This means the calculation would be

return (Math.random() * (120 - 80)) + 80;

Let’s assume the Math.random() value is .35. The calculation would be

return (.35 * (120 - 80)) + 80;

Here, the result of (.35 * (120 – 80)) + 80 is 93.6, so the size of this letter would be 93.6
pixels.

Aren’t pixels integers? You betcha. Then how can Flash display something at a height
of 93.6 pixels? Ultimately, the end result will be 94, but Flash stores an internal repre-
sentation of coordinates down to the 1/20th of a pixel, a unit known as a twip.

OPTIMIZING FLASH MOVIES

529

13

861XCh13.qxp 6/25/07 1:35 PM Page 529

7. Save and test the movie. You should see letters, as shown in Figure 13-17, moving
up the stage in a wavy motion. They get smaller as they move upward and eventu-
ally disappear.

Figure 13-17. Letters randomly generated, formatted, and put into motion
using ActionScript

8. Select File ä Export ä Export Movie. When the Export Movie dialog box opens, nav-
igate to the folder where you want to save the file and select QuickTime (*.mov)
from the Save as type drop-down menu shown in Figure 13-18. Click OK to open
the QuickTime Export Settings dialog box.

Figure 13-18. Exporting a Flash file as a QuickTime movie

9. Select Ignore stage color (generate alpha channel) as shown in Figure 13-19 and
change the After time elapsed value to 10. Click the Export button.

FOUNDATION FLASH CS3 FOR DESIGNERS

530

861XCh13.qxp 6/25/07 1:35 PM Page 530

Figure 13-19. The QuickTime Export Settings dialog box

Let’s quickly review this dialog box. The Render width and Render height values match the
current stage size and will be the physical dimensions of the video. You can change these
values. The Maintain aspect ratio selection, when checked, ensures distortion is not added
to the video if you resize the video. The Ignore stage color (generate alpha channel) selection
essentially turns the stage color invisible, which makes this ideal if you want this animation
to play over content in After Effects CS3 or some other video editor.

The Stop exporting area gives Flash an idea of when to stop the process. The first choice,
When last frame is reached, should be used if you have content on the timeline. The second
one, After time elapsed, is ideal for situations such as this exercise where content is gener-
ated by ActionScript. In this case, you are producing a clip with a duration of 10 seconds.

The Store temp data options come into play during the render process. You can choose to
either store the temp data in memory for short movies or create a temporary file on the
desktop or some other location. The QuickTime Settings button opens the QuickTime
Settings dialog box where you can change the codec and audio settings for the final movie.

When you click the Export button, a progress bar will appear as well as an alert telling you
where the export log can be found.

10. Click OK and quit Flash. Open your new QuickTime movie and check it out—pretty
neat!

As we said earlier, you can export these things as animations for use in other applications.
For example, one of the authors dropped the file into an After Effects CS3 project, as shown
in Figure 13-20, and then created the QuickTime movie named BubblingLettersFinal.mov
that is found in your Chapter 13 Exercise folder.

OPTIMIZING FLASH MOVIES

531

13

861XCh13.qxp 6/25/07 1:35 PM Page 531

Figure 13-20. The video is used in After Effects CS3.

What you’ve learned
How Flash movies are streamed to a web page

A couple of ways of turning the Bandwidth Profiler into your new best friend

Tips and tricks for optimizing content for fast download

One method of creating preloader in Flash

How to convert a Flash movie into a QuickTime video for use in a video editing
application

There wasn’t a lot of “geeky” or cool stuff in this chapter. Instead the focus of this chapter
was on how to optimize your Flash movies for web playback. We examined how the data
in your Flash movie gets from “here to there” and in what order. We reviewed several ways
of using the Bandwidth Profiler from identifying content bottlenecks to actually emulating
the download of a bloated Flash movie into a dial-up modem. It wasn’t pleasant, but we
then showed you a number of ways to fine-tune your Flash movies in order to let you max-
imize that 15-second window of opportunity you get when a user hits your site. The chap-
ter wrapped up by showing you a couple of ways to create preloaders for your site, how to
load remote content into a movieclip, and ended by moving into the “uber-cool” zone as
we showed you how to convert a Flash movie into a QuickTime video.

Now that you know how to prepare files for streaming, let’s look at the end game . . .
preparing the SWF file. Turn the page, and we’ll see you in the next chapter.

FOUNDATION FLASH CS3 FOR DESIGNERS

532

861XCh13.qxp 6/25/07 1:35 PM Page 532

861XCh13.qxp 6/25/07 1:35 PM Page 533

861XCh14.qxp 6/25/07 1:34 PM Page 534

14 PUBLISHING FLASH MOVIES

861XCh14.qxp 6/25/07 1:34 PM Page 535

If there is one fundamental fact regarding publishing your Flash movie to the Web, it is this:
The SWF isn’t a web document. Nothing drives us crazier than somebody telling us, “Dudes,
check out my Flash site,” only to have that individual double-click a SWF on his or her com-
puter’s desktop. Flash SWFs should only appear on the Web if they are embedded into an
HTML page. Thus a “Flash site,” to be precise, is composed of an HTML page that points to
the SWF and any media—audio, video, images, text—that the SWF may need from external
sources.

What we’ll cover in this chapter:

The web formats used by Flash

Publishing a SWF for web playback

Dealing with remote content

Files used in this chapter:

YawningParrot.fla (Chapter14/ExerciseFiles_CH14/Exercise/
YawningParrot.fla)

ParrotFW.gif (Chapter14/ExerciseFiles_CH14/Exercise/ParrotFW.gif)

MoonOverLakeNanagook.fla (Chapter14/ExerciseFiles_CH14/Exercise/
MoonOverLakeNanagook.fla)

MoonOverLakeNanagook.fla (Chapter14/ExerciseFiles_CH14/Exercise/
Nanagook/MoonOverLakeNanagook.fla)

Player.fla (Chapter14/ExerciseFiles_CH14/Exercise/Player.fla)

Web formats
Creating the SWF is a bit more complicated than selecting File ä Publish Preview and mer-
rily clicking away in the Publish panel. As we pointed out in the previous chapter, you need
a grounding in what’s under the hood before you create the car.

If there is one theme have been stressing since page 1 of this book, it is Keep it small! This
is the reason for Flash’s broad acceptance on the Web and where an understanding of the
publishing process is invaluable. Up to this point, we have essentially created a bunch of
FLA files and asked you to test them. The time has arrived to get off of the test track and
put the vehicle on the street. When you publish your movie, Flash compresses the file,
removes the redundant information in the FLA, and what you are left with—especially if
you took the last chapter to heart—is one sleek, mean web presentation. The default out-
put file format—yes, there is more than one—is the SWF (pronounced swiff). The SWF is
wrapped in HTML through the use of <object> and/or <embed> tags, plus extra informa-
tion on how the browser should play the SWF.

Yes, you can link directly to a SWF without that bothersome HTML. Just be aware that the
SWF will expand to the full size of the browser window, meaning all of the content on the
stage will also enlarge. In many respects, linking directly to the SWF is “Rookie Error #1.”

FOUNDATION FLASH CS3 FOR DESIGNERS

536

861XCh14.qxp 6/25/07 1:34 PM Page 536

Before we move into actually publishing a movie, let’s look at some of the more common
file types used on the Web, listed here:

Flash (.swf)

HTML (.htm or .html)

GIFs (.gif)

QuickTime (.mov)

Flash

Before there was Flash, there was Director. Though used primarily for interactive CDs,
DVDs, and kiosks, it was at one time the main method employed to get animations to play
on the Web. The technology developed by Macromedia to accomplish this was named
Shockwave, and the file extension used was .dcr. Flash also made use of this technology,
and in order to differentiate between them, it became known as Shockwave for Flash.
Flash Player is the technology that allows the SWF to play through a user’s browser.
Through a series of clever moves, Flash Player has become ubiquitous on the Web. In fact,
Adobe can rightfully claim that Flash Player, regardless of version, can be found on 98% of
all Internet-enabled computers on the planet. This means, in theory, you can assume your
movies are readily available to anyone who wishes to watch them. But the reality gets a bit
more complicated.

Each new Flash Player brings with it new functionality. Flash Player 8 introduced filter
effects and blend modes, which can’t be played in Flash Player 7. FLV video can’t be played
in Flash Player 5. Any movie you prepare using ActionScript 3.0 can only be played in Flash
Player 9 or higher. Though you may initially regard this as a nonissue, you would be mak-
ing a gross miscalculation. Corporations, through their IT departments, have strict policies
regarding the addition or installation of software to corporate-owned computers. We per-
sonally know of one organization that isn’t budging, and its Flash Player policy is Flash
Player 6 or lower. The upshot is, it is the shrewd Flash designer who actually asks a poten-
tial client to let him or her know what versions of Flash Player are to be targeted for the
project. The last thing you need is to find yourself rewriting every line of code and rework-
ing the project when you assumed the target was Flash Player 9 but corporate policy dic-
tates Flash Player 7 or lower.

For you trivia buffs, the first couple of iterations of Shockwave for Director used
a small application named Afterburner to create the .dcr files. When a Director
developer prepared a presentation for the Web, he or she didn’t create the
.dcr. The movie was “shocked.” One of the authors happened to be around the
night Macromedia quietly released Shockwave and Afterburner to the Director
community, and he still remembers the excitement generated by members of
the group as they posted circles that moved across the page, and the “oohs” and
“aahs” that followed as the circles moved up and down.

PUBLISHING FLASH MOVIES

537

14

861XCh14.qxp 6/25/07 1:34 PM Page 537

HTML

HTML is short for HyperText Markup Language. Where HTML and ActionScript part com-
pany is that HTML is a formatting language, whereas ActionScript is a scripting language.
This means HTML is composed of a set of specific instructions that tell the browser where
content is placed on a web page and what it looks like. ActionScript has nothing to do with
the browser. It tells Flash how the movie is to work.

The HTML instructions, or tags, are both its strength and its weakness. HTML was originally
developed to allow the presentation of text and simple graphics. As the Web matured,
HTML found itself hard pressed to stay current with a community that was becoming
bored with static content on pages.

The real problems with HTML start when you try to drop multimedia or interactive media
into a web page. HTML simply wasn’t designed for this sort of “heavy lifting,” which
explains why JavaScript (a language that shares roots with ActionScript) is now so widely
used.

For a Flash designer, knowledge of how HTML works is critical, because it is the technology
that enables your movies to be played on the Web. Of course, this isn’t as difficult as it
once was. Today, through the use of Dreamweaver CS3 and even Flash, it involves nothing
more than a couple of mouse clicks to create the HTML that makes this possible. You will
still need to play with the HTML—you saw this in Chapter 7 when you had to dig into the
JavaScript code to enable full-screen playback of a Flash video—because your HTML doc-
ument can do things that Flash can’t. This would include such features as ALT attributes for
screen readers and key words used to attract search engines.

The other thing to stick in the back of your mind is that Flash web pages aren’t as common
as they once were. Web pages consisting solely of one SWF are still around, but Flash is
also becoming a medium of choice for the delivery of banner ads, videos, and other inter-
active content that are elements of an HTML web page. To see an example of this, you

Dreamweaver CS3 is what is called a WYSIWYG editor. The acronym is short for “what
you see is what you get.” In many cases this is true, but more often than not, these
pages, when viewed in a browser, don’t look the same way they did in Dreamweaver
CS3. Maybe it should be called a WYSINNWYG editor—what you see is not necessarily
what you get.

Flash Player 9 follows a tradition that each successive version of Flash Player will play
content faster than its predecessors. Adobe is claiming that there is a 75% speed
increase of Flash Player 9 over Flash Player 8. This sort of increase is usually enough
for most users to install the new version. Even so, in many instances, actually down-
loading and installing the plug-in is becoming a thing of the past. Flash Player has the
ability to download and install in the background, but, as one of the authors is quick
to point out: “It takes a programmer to make it work.”

FOUNDATION FLASH CS3 FOR DESIGNERS

538

861XCh14.qxp 6/25/07 1:34 PM Page 538

need look no further than our beloved publisher. If you hit the friends of ED home page at
www.friendsofEd.com (see Figure 14-1), you will see a Flash banner at the top of the home
page, while the rest of the page is composed of HTML.

Figure 14-1. A typical Flash/HTML hybrid page

Animated GIFs

Before there was Shockwave, there was the infamous animated GIF file. These files were the
original web animations, and you can export your Flash movie as an animated GIF. Why
would you want to do this if Flash Player is so ubiquitous? The reason is users don’t need to
install the Flash plug-in to view them. In fact, it is a two-way street: you can import a GIF ani-
mation into a Flash movie, and you can export a Flash movie as an animated GIF. Here’s how:

1. Open the YawningParrot.fla file. This is the file to be exported out as an ani-
mated GIF. How this works is Flash will convert each frame of the movie to a GIF
image. There are 355 frames in this animation, meaning you really should prepare
yourself to create 355 separate GIF images.

2. Select File ä Export ä Export Movie (press Ctrl+Alt+Shift+S on the PC or
Cmd+Option+Shift+S on the Mac) to open the Export dialog box. Navigate to the
Parrot folder in the Chapter 14 Exercise folder and select GIF Sequence (*.gif) in
the Save as type drop-down menu (see Figure 14-2).

OK web heads, settle down. Creating an animated GIF consisting of 355 frames is, as
our editor, Chris Mills, would say, “Simply not done, old chap.” We know that, but if
you understand what happens . . . in a big way . . . you’ll be more cautious in your
efforts. Anyway, the parrot is pretty cool and makes for a rather interesting workout
for Fireworks CS3.

PUBLISHING FLASH MOVIES

539

14

861XCh14.qxp 6/25/07 1:34 PM Page 539

http://www.friendsofEd.com

Figure 14-2. Select GIF Sequence (*.gif) as the image type.

3. Click Save to open the Export GIF dialog box shown in Figure 14-3. Specify these
settings:

Dimensions: 113 5 109

Colors: 256

Smooth: Selected

Figure 14-3. Preparing to export the Flash timeline as a GIF animation

FOUNDATION FLASH CS3 FOR DESIGNERS

540

861XCh14.qxp 6/25/07 1:34 PM Page 540

You should have noticed that when you changed the Dimensions settings, there was a cor-
responding reduction in the Resolution value. If you click the Match Screen button, you will
be returned to the original settings for this image. The physical reduction of each frame
and its corresponding reduction in resolution have the net effect of creating a rather small
GIF image.

4. Click the OK button, and a progress bar will appear showing you the progress of
the export. This is a fairly quick process and should take less than 10 or 15 seconds.
When it finishes, the progress bar will disappear, and you will be returned to the
Flash stage. At this point, you are now the proud owner of the 355 GIF images that
will be used to create the animation.

We aren’t going to get into the nitty-gritty of creating the GIF animation in
Fireworks CS3. The process is fairly simple. Launch Fireworks CS3, click the Open
button on the Start screen, and navigate to the folder containing your GIF images.
Select all of them in the Open dialog box, as shown in Figure 14-4, and select Open
as animation. When you click the Open button, Fireworks will create the animated
GIF by putting each image in a frame. You can then do what you need to do and
export the file out of Fireworks CS3 as an animated GIF.

Figure 14-4. Importing the GIF files into Fireworks. The key is to select Open as animation.

Only the main timeline is considered when Flash content is converted to an animated
GIF. Nested movieclip timelines do not make it through the translation process. The
simple rule of thumb is, if you can see it move while you manually scrub the timeline,
the GIF can too. If you can’t, it won’t show.

PUBLISHING FLASH MOVIES

541

14

861XCh14.qxp 6/25/07 1:34 PM Page 541

Now that you know how to create a GIF animation in Flash, let’s look at the reverse
process: importing a GIF animation into Flash.

1. Open a new Flash CS3 document and select File ä Import ä Import to Library.

2. Navigate to the ParrotFW.gif file in your Chapter 14 Exercise folder and click Open.

3. When the process finishes, you will see that each image in the animation, along
with a movieclip, has been added to the library.

4. Drag the movieclip to the stage and test the movie. You have a low-res version of
the yawning parrot, as shown in Figure 14-5.

Figure 14-5. A yawning parrot in
the GIF format

QuickTime

QuickTime is Apple’s Internet steaming video technology. As we have pointed out
throughout this book, QuickTime is losing its grip as the premiere web video technology.
What you should have learned from the BubblingLetters.fla exercise in the “Optimizing
Flash content for use in video” section of the previous chapter is this: The reports of its
death are premature.

Flash is gaining ground as a broadcast animation technology, and no matter how you slice
it, QuickTime is the way to go with digital video. Up until this release of Flash, QuickTime
and Flash have had a rather uneasy relationship. It was extremely difficult to get Flash ani-
mations into QuickTime for editing in a video editing application. This impediment has
been removed, and publishing a Flash document as a QuickTime movie is easier than it
ever has been.

Which begs the question: How do you publish a Flash movie?

Yes, the earlier export exercise was partly mischievous. If you select File ä Export ä
Export Movie, you can bypass the need to restitch the GIF sequence in Fireworks by
choosing Animated GIF from the Export Movie dialog box. Still, it’s good to know your
options!

FOUNDATION FLASH CS3 FOR DESIGNERS

542

861XCh14.qxp 6/25/07 1:34 PM Page 542

It’s showtime!
Everything works as it should. You have sweated buckets to optimize the movie, and the
client has finally signed off on the project. It is showtime. The Flash movie is ready to hit
the Web and dazzle the audience. Though you may think publishing a Flash movie involves
nothing more than selecting Publish in the File menu, you would be seriously mistaken. The
process is as follows:

Open the Publish Settings window to determine how the movie will be published.

Publish the movie and preview the SWF.

Upload the SWF and any support files to your web server.

Let’s publish a movie. Here’s how:

1. Open MoonOverLakeNanagook.fla. Seeing as how this is the last chapter, let’s finish
the book by working with the file you created when you started the book.

2. Select File ä Publish Settings (Ctrl+Shift+F12 on a PC or Option+Shift+F12 on a Mac)
to open the Publish Settings dialog box shown in Figure 14-6.

Figure 14-6. The Publish Settings dialog box

PUBLISHING FLASH MOVIES

543

14

861XCh14.qxp 6/25/07 1:34 PM Page 543

As you can see, this dialog box is divided into three distinct sections: Format, Flash, and
HTML. In fact, that last tab (or tabs) will change depending on the format chosen. We’ll get
to that in a minute. The five buttons along the top are the Profile buttons. These allow you
to “tweak” your settings and then save them for future use.

The file types are as follows:

Flash (.swf): Select this, and you will create a SWF that uses the name in the File area
unless you specify otherwise.

HTML (.html): The default publishing setting is that the Flash and HTML settings are
both selected. This does not mean your SWF will be converted to an HTML docu-
ment. What it means is Flash will generate the HTML wrapper for the SWF.

GIF Image (.gif): Select this, and the Flash animation will be output as an animated
GIF, or the first frame of the movie will be output as a static GIF image.

JPEG Image (.jpg): The first frame of the Flash movie will be output as a JPEG image.

PNG Image (.png): The first frame of the movie will be output as a PNG image. Be
careful with this one because not all browsers can handle a PNG image.

Windows Projector (.exe): Think of this as being a desktop SWF that is best suited to
playback from a Windows desktop or CD, not from the browser.

Macintosh Projector: The same thing as the Windows projector. Just be aware that a
Mac projector won’t play on a PC, and vice versa.

QuickTime with Flash Track (.mov): Select this, and the Flash movie is output as
a QuickTime movie, providing you have chosen Flash Player 5 as your target player.
Why Flash Player 5? That is the only version of Flash Player the current version of
QuickTime supports.

We suspect the addition of the ability to publish to QuickTime from the File menu will
make this choice even more infrequently used than it currently is.

If you are a Dreamweaver CS3 user, you don’t need to select the HTML (.html) option.
Dreamweaver will write the necessary code for the SWF when it is imported into
the Dreamweaver CS3 page.

You can also click the Settings button on the Property inspector to launch the Publish
Settings dialog box. The one thing you don’t want to do, unless you have a lot of Flash
experience under your belt, is to select File ä Publish. Selecting this will publish the
movie using whatever default settings are in place.

FOUNDATION FLASH CS3 FOR DESIGNERS

544

861XCh14.qxp 6/25/07 1:34 PM Page 544

The Navigate buttons (they look like folders and are located beside each file type) allow
you to navigate to the folder where the SWF will be saved (see Figure 14-7). If you see a
path, click the Use Default Names button to strip out the path from the file name.

Figure 14-7. Strip out any paths in the file name
to avoid problems.

3. Select all of the types except for QuickTime. Notice how each file type kicks out its
own tab. Deselect everything but the Flash (.swf) option, and click the Flash tab to
open the Flash settings shown in Figure 14-8.

Figure 14-8. The Flash settings in the Publish Settings dialog box

There is a lot here, so let’s review each of the areas in this panel:

PUBLISHING FLASH MOVIES

545

14

861XCh14.qxp 6/25/07 1:34 PM Page 545

Version: This drop-down menu allows you to choose any version of Flash Player
from Versions 1 to 9 (the current version) and any version of Flash Lite Player from
versions 1 to 2.1. If you have the Property inspector open, you will see the version
chosen also appears in the Property inspector. It is extremely important you under-
stand that if you change your Flash Player version and are using features in the
Flash movie that aren’t supported by the Flash Player version you have chosen, you
will be greeted by the Alert dialog box shown in Figure 14-9—but this only happens
when you return to the Flash stage and try to add or manipulate something that
isn’t supported. In the case of Figure 14-9, we tried to add a drop shadow to a
movieclip, and that feature is not supported in our target player.

Figure 14-9. Flash will let you know you can’t do that
when you try to do something that isn’t supported by
the version of Flash Player you have targeted.

Load order: Your choices are Bottom up or Top down. This is the order in which Flash
will load timeline layers into Flash Player. ActionScript is not affected by this set-
ting: no matter what, ActionScript is performed in order of the highest layer to the
lowest.

ActionScript version: There are three versions of the language. If you are publishing
to Flash Player 9, you are safe with ActionScript 3.0, ActionScript 2.0, or ActionScript
1.0 (we recommend ActionScript 3.0). If you are publishing to Flash Player 8 to 6 or
Flash Lite 2 or 2.1, ActionScript 2.0 is your choice, though ActionScript 1.0 will work.
Everything else uses ActionScript 1.0.

Options: You have a number of options regarding the treatment of the SWF avail-
able to you. They are as follows:

Generate size report: Select this, and Flash will generate a .txt document that
shows you where potential bandwidth issues may be located. When this option
is selected, the .txt file is generated when you publish the SWF.

Protect from import: When this option is selected, the user will be prevented
from opening your SWF in Flash.

Omit trace actions: Flash will ignore any trace() actions you may have added to
your ActionScript (they will actually be removed from the SWF). You’ve used these
to track the value of a variable and display that value in the Output window. Tracing
is great for debugging, but enough such statements can affect performance.

Permit debugging: Select this, and you have access to the Debugger panel in Flash
even if the file is being viewed in a web browser. You really should turn this off
before you post the movie to the Web.

FOUNDATION FLASH CS3 FOR DESIGNERS

546

861XCh14.qxp 6/25/07 1:34 PM Page 546

Compress movie: Even though Flash compresses the FLA when it creates the
SWF, selecting this allows Flash to compress the SWF itself—usually text-heavy
or ActionScript-heavy—to an even greater extent during the publish process. If
you are publishing to Flash Player 5 or lower, you can’t use this option.

Optimize for Flash Player 6 r65: Though this option is usually grayed out, you may
select it when targeting Flash Player 6 to even further optimize the SWF. What’s
the r65? That particular release of Flash Player 6 introduced Flash Player
enhancements that made it a “sneak peek” at Flash Player 7.

Export hidden layers: All this means is that any layer with the visibility icon turned
off will be compiled into the SWF. Developers often like to keep reference lay-
ers handy during authoring, but in previous versions of Flash, such layers would
show in the SWF, even if they were hidden in the FLA. An old trick to “really”
hide them was to convert such layers to guide layers—but that can get tedious.
If you really want those layers gone, just delete them. If you’re a little lazy, use
this feature instead.

Export SWC: Select this if you are an absolute code jockey and create your own
custom components for Flash. That sort of thing is way out of the scope of this
book.

Password: This option works in conjunction with the Debugger panel. If you add a
password to this text entry box, whoever opens the Debugger panel will be
prompted to enter the password if debugging the SWF in a browser. If the plan is
to test and debug your Flash app remotely, this is a “must do” option.

Script time limit: Sometimes your scripts will get into a loop, sort of like a dog chas-
ing its tail, and these things can go on for quite a long time before Flash sighs and
gives up. Enter a value here, and you are telling Flash exactly when to give up.

JPEG quality: This slider and text field combo specifies the amount of JPEG com-
pression applied to bitmapped artwork in your movie. The value you set here will
be applied to all settings in the Bitmap properties area of the library unless you
override it for individual bitmaps on a per-image basis.

Audio stream: Unless there is a compelling reason to do otherwise, leave this one
alone. The value shown is the one applied to the Stream option for audio in the
Property Inspector.

Audio event: Same warning as the previous choice but for event sounds.

Override sound settings: Click this and any settings—Stream and Event—you set in
the Sound properties area of the library are, for all intents and purposes, gone.

Export device sounds: Use this only if you are using Flash Lite and publishing to a
mobile device.

Local playback security: The two options in this drop-down menu—Access local files
only and Access network only—permit you to control the SWF’s network access. The
important one is the network choice. Access networks only protects information on
the user’s computer from being accidentally uploaded to the network.

PUBLISHING FLASH MOVIES

547

14

861XCh14.qxp 6/25/07 1:34 PM Page 547

4. Click the Formats tab and select the HTML (.html) file type. When you do that, the
Publish Settings dialog box sprouts an HTML tab. Click the HTML tab to open the
HTML settings shown in Figure 14-10.

Figure 14-10. The HTML tab in the Publish Settings dialog box in Flash CS3

The important thing about this dialog box is to be aware that it does not convert your SWF
to HTML. The best way to consider this option is like buying a hamburger at a large inter-
national chain. When the hamburger is finally ready, it will be wrapped in paper or placed
in a colored box that identifies the contents. For example, you have ordered the
MegaBurger, and the burger is wrapped in blue paper that has the words “MegaBurger”
printed on it. The HTML option performs the same job: it provides the wrapper that tells
the browser what’s inside.

If you are a Dreamweaver CS3 user or prefer to “roll your own” HTML code, it still
won’t hurt to review this section, but Dreamweaver CS3 does this job for you.

If the Flash movie is to appear in a CSS-based layout, a lot of the options in this dialog
box will not be used by the coder. Still, the HTML page to be created is a good start-
ing point for a code jockey.

FOUNDATION FLASH CS3 FOR DESIGNERS

548

861XCh14.qxp 6/25/07 1:34 PM Page 548

Let’s review the main features of this panel:

Template: This drop-down menu contains 11 options,
but they all specify the type of HTML file you want the
SWF to be embedded into. The Info button will give
you a brief description of the selected template (see
Figure 14-11). These templates can be found in
C:\Program Files\Adobe\Adobe Flash CS3\en\First
Run\HTML on your PC or HD:/Applications/Adobe
Flash CS3/First Run/HTML on your Mac. If you are a
hardcore coder and know exactly what you are doing,
feel free to change them only after you have made a
backup of the files. Though there are a number of tem-
plates, the Flash Only template will most likely become
the one you use most often.

Detect Flash Version: This option determines whether the JavaScript code for this
purpose is added to the HTML. What this does is to check to see whether the user’s
Flash plug-in will work with the version of Flash Player you have targeted. If the
user has the version, life is a wonderful thing and the movie will play. If not, the
user will see an error message along with a link to the location where the latest
plug-in can be found.

Dimensions: You get three choices—Match Movie, Pixels, or Percent—in this drop-
down menu. Select one of the last two options, and you can change the physical
size of your movie. If you choose Percent, you will discover the one circumstance
that allows content positioned outside the stage to possibly show.

Playback: These four choices determine what happens when the movie starts playing:

The first option, Paused at start, means the user gets things going. This is very
common with banner ads, and you’d have to provide a button to tell the play-
head to start moving, or the user would have to be smart enough to right-click
and use the plug-in’s context menu to select Play.

The Display menu option is actually quite important. It has nothing to do with
menus in the movie and everything to do with Flash Player. If you test
MoonOverLakeNanagook.fla and right-click (PC) or Ctrl-click (Mac) the SWF, the
menu shown in Figure 14-12 appears. This menu allows the user to modify how
Flash Player displays the movie. Many Flash designers and developers turn this
off because they don’t want people switching to low-quality graphics or zoom-
ing in on the stage. Still, there is a very important use for this menu. If your site
requires visitors to use a web camera or a microphone, clicking the Settings
option will allow them to choose the devices to be used. (The Settings option is
always available, even if you hide the rest of the context menu.)

If you are a JavaScript wizard, feel free to customize the detection JavaScript to react
differently if the wrong plug-in version is detected. For instance, if the IT boys have
decreed “Thou shalt not add software to our machines,” you could rewrite the code
to load and play an alternate version of the SWF instead of suggesting the user do
something that is forbidden.

PUBLISHING FLASH MOVIES

549

14

Figure 14-11. The Flash Only template description

861XCh14.qxp 6/25/07 1:34 PM Page 549

Figure 14-12. The Flash menu that is displayed at runtime

The Loop option plays the movie continuously if it is selected or only once if
deselected. The key point here is any stop() actions you may have in your
ActionScript will override this selection.

The Device font selection replaces any static text in your movie with a system font—
_sans, _serif, and _typewriter—which can result in a significant file-size reduction.
The downside to this choice is you have absolutely no control over which font is
used because if the user doesn’t have the three fonts installed, the machine will use
one that is closest to the font, meaning the text may wrap or even change the
“look” of your movie. Is this one of those things that falls into the category of
things you should never do? Not really. It is your movie, and if you decide this is the
way to go, you at least are aware of the potential hazards in the choice.

Quality: This drop-down menu contains the six choices shown in Figure 14-13. These
specify the render quality that your movie will play at, and the choice you make
determines the speed at which your movie runs on the user’s machine or device.
We suggest you start with Auto High, which permits Flash to automatically drop the
quality to maintain the frame rate and synchronization if needed. In many respects,
this area is not one that should concern you because if Display menu is selected, the
user can change this setting at runtime.

Figure 14-13. Try starting with
the Auto High quality setting.

FOUNDATION FLASH CS3 FOR DESIGNERS

550

861XCh14.qxp 6/25/07 1:34 PM Page 550

Window Mode: The selection you make here will appear in the wmode settings in the
<object> and <embed> tags used in the HTML. If you are unsure as to what the
choices do, just leave the choice at the default: Window.

HTML alignment: This selection allows you to specify the position of your movie
window inside the browser window. The default will place the SWF in the center of
the browser window.

Scale: If you have changed the dimensions of the movie using the Dimensions
option, the choices in the drop-down menu determine how the movie is scaled to
fit into the browser window.

Flash alignment: These two options permit you to set the Vertical and Horizontal
alignment of your movie in its window and how it will be cropped, if necessary.

Show warning messages: If this box is checked, any errors discovered when the
HTML file is loaded—missing images is a common one—are displayed as browser
warnings when the user arrives on the page.

Now that we have reviewed the major points, let’s publish Lake Nanagook and look at it in
a browser. Before you start, click the OK or Cancel button to close the Publish Settings dia-
log box and return to the Flash stage. Save the MoonOverLakeNanagook.fla to the
Nanagook folder in your Chapter 14 Exercise folder. We’ll explain why in a moment. Now
open the Publish Settings dialog box and let’s get busy:

1. Click the Formats tab and select the Flash and HTML formats.

2. Click the Flash tab and specify these settings:

Version: Flash Player 9

Load order: Bottom up

ActionScript version: ActionScript 3.0

Compress movie: Selected

Export hidden layers: Deselected

3. Click the HTML tab and specify these settings:

Template: Flash Only

Dimension: Match Movie

Quality: Auto High

Flash alignment: Center for both Horizontal and Vertical

4. Click the Formats tab and, when the panel opens, click the Use Default Names but-
ton to strip off any paths that might be associated with this movie.

5. Click the Publish Button. You will see a progress bar that follows the publishing
process. Click OK to close the Publish Settings dialog box and return to your movie.

PUBLISHING FLASH MOVIES

551

14

861XCh14.qxp 6/25/07 1:34 PM Page 551

6. Minimize the Flash stage and open the Nanagook folder in the Chapter 14 Exercise
folder. You will see that Flash has created four files, as shown in Figure 14-14. There
are the FLA, SWF, an HTML file, and a JavaScript file named AC_RunActiveContent.js.
This last file is used to prevent Internet Explorer from kicking out the “Click to activate
and use this control” warning that has plagued developers since Microsoft changed
how its browser displays active content such as Flash and even its own Windows Media
Player. The only file that doesn’t need to get uploaded to the server is the FLA.

Figure 14-14. The results of publishing the Flash movie

7. Open the MoonOverLakeNanagook.html file in a browser. The movie, as shown in
Figure 14-15, starts playing. Congratulations!

Figure 14-15. Playing the movie in a browser

Hang on. How did the background color of the browser page turn blue? There was
nothing in the HTML settings for that one. If you publish a Flash movie and use the
HTML option, the background color of the HTML document will change to the stage
color of the Flash movie.

FOUNDATION FLASH CS3 FOR DESIGNERS

552

861XCh14.qxp 6/25/07 1:34 PM Page 552

Before we move on, there is one last option you may have noticed in the File menu that
we’d like to talk about. The Publish Preview menu—File ä Publish Preview—contains the
formats from the Publish Settings dialog box (see Figure 14-16). Selecting this will publish
the movie and then launch the results in a browser if you select Default - (HTML). This menu
reflects the choices made in the Publishing Settings window, which explains why a lot of the
options are grayed out. If you are a Dreamweaver CS3 or Fireworks CS3 user, this menu
item is the same as being able to do a browser preview in both of those apps. In fact, they
all use the same key, F12, to launch the preview. The browser that opens will be the
default browser used by your computer’s operating system.

Figure 14-16. You can preview the movie in a
browser without leaving the Flash interface.

Publishing Flash movies containing linked files

In Chapter 5, you created an MP3 player. Though you tested it locally, nothing beats testing on
a remote server. The other aspect of that exercise, which we didn’t review until now, is that of
playing content located in another folder on the server. In the case of the MP3 files, this actu-
ally makes sense. Let’s assume you are going to use the same MP3 soundtrack in five Flash
movies over the coming year. If that MP3 is 5 MB in size, you will have used up 25 MB of
server space if the file is slipped into the folder for each project that uses it. Doesn’t it make
more sense to upload it once and have the movies call it into the SWF from a single location?

In this example, we are going to assume the three audio files are located in a folder named
Tunes in the mythical domain of mySite.com.

1. Open the Player.fla file located in your Exercise folder. When the file opens,
open the Actions Panel and scroll down to the loadSong function in line 41 of the
Script pane.

2. The critical line in this function is line 43, which uses the load() method to get the
song. Change this line to the following:

song.load(new URLRequest("http://www.mySite.com/Tunes/" + thisSong));

Everything is straightforward if you use absolute paths, like you’ve seen so far. Absolute paths
contain the full domain name, which means they’re accessible from anywhere on the
Internet. That’s both a plus and a minus. If you hardcode all your file references as absolute
paths, you know they’ll work—until you decide to change your domain name, or until you
repurpose your content for another project in another folder structure somewhere else. In
cases like that, a relative path may suit your needs. Relative paths do not reference a domain

PUBLISHING FLASH MOVIES

553

14

861XCh14.qxp 6/25/07 1:34 PM Page 553

http://www.mySite.com/Tunes

name, and because of that, they depend entirely on a very particular “point of view,” namely,
the physical location of the file making the reference.

You would think that a SWF looking for MP3s (or any external file) would consider itself as
the beginning of the path—“Where is that file in relation to me?”—but that’s not how it
works. When a SWF references external files with relative paths, its point of view is actually
that of the HTML document that contains it. If the SWF and the HTML file are in the same
folder, this is a moot point, but keep it in mind if you decide to put all your SWFs in one
folder and your HTML files in another.

To make matters even more interesting, there’s an exception, and FLV video files are it. If
you are using the FLVPlayback component, the path to the video, if it is a relative path,
takes its cue from the location of the SWF itself. Same goes for a video object using the
NetStream class. That said, the FLVPlayback component optionally uses skins, and skins are
SWF files. If your movie uses relative paths to reference an FLVPlayback skin, set your point
of view to the HTML document that contains this movie, but when referencing the FLV, set
your point of view to the movie itself.

This “gotcha” often raises its ugly head if you have a custom controller or video skin or are
using a server that dynamically loads the content. Either understand the “gotcha” fully, or
enter the paths, as shown in Figure 14-17, as absolute paths.

Figure 14-17. You can save FLV skins to remote sites as well.

FOUNDATION FLASH CS3 FOR DESIGNERS

554

861XCh14.qxp 6/25/07 1:34 PM Page 554

What you’ve learned
How to prepare a SWF for web playback

How to export a Flash movie as a GIF animation and how to import a GIF animation
into Flash

How to deal with remote content needed by the SWF

This chapter dealt with the “end game” in Flash. We think you are now aware that preparing
your Flash files for web output involves a lot more than simply selecting Publish in the File
menu. There is a lot to consider, and those considerations range from what format will be
used to output the file to a number of very important options that need to be addressed. We
also dealt with remote content and how the SWF can grab it from elsewhere on your site and
on the Web.

Speaking of the “end game,” we are at the end of this journey that started and ended at
Lake Nanagook. We hope you had fun and that you are inspired to explore Flash CS3 even
further. As you do, you will discover a fundamental truth about this application: the
amount of fun you can have with it should be illegal. We’ll see you in jail.

PUBLISHING FLASH MOVIES

555

14

861XCh14.qxp 6/25/07 1:34 PM Page 555

861XIndex.qxp 6/25/07 1:30 PM Page 556

INDEX

861XIndex.qxp 6/25/07 1:30 PM Page 557

Numbers and Symbols
9-slice scaling, 118–124
+ (addition) operator, using with text, 184
@ (at symbol), in E4X, 457
[] (array access operator), 458
= (assignment operator), 179, 184–185
\ (backslash) character, 258–260
{} (bracket characters), 432

 (break) tag, 434
. (dot) notation syntax

in E4X, 457
in setStyle() method, 436–437

&& (double ampersand), 186
|| (double bar), 186
// (double forward slash), 175–176, 435
== (equality operator), 185
> (greater than) operator, 185
>= (greater than or equal to) operator, 185
! (logical NOT) operator, 232
< (less than) operator, 185
<= (less than or equal to) operator, 185
() parentheses, grouping expressions with, 184
; (semicolons), in ActionScript, 175
/* and */ characters, commenting code blocks with, 176

A
<a> (anchor) tag, 264, 434
actions, code blocks as, 17
Actions panel, ActionScript, 160–163

Apply line comment button, 170
context menu, 163
new features since Flash 8, 161
zones in, 161–162

Actions toolbox, Actions panel, 162
ActionScript. See also ActionScript 3.0

accessing properties with, 166–169
adding items to TileList instance with, 420
basics of, 158
vs. behaviors, 164
class files, 190
code coloring in, 170
creating scroll buttons with, 279
creating text fields with, 261–263
displayed in color, 175
dot (.) notation in, 177–178
escape sequences supported by, 258–260
grammar rules, 174–175
looping the timeline, 202–203
objects in, 164–173
pausing main timeline, 201–202
playing video with, 361, 364
power of, 159–160
putting letters in motion with, 529–530

INDEX

558

setting properties via, 168
syntax for, 174–175
triggering to make frog disappear, 275–276
using, 200–203
writing and testing code, 168
writing for mobile devices, 495–502

ActionScript 2.0
syntax errors reported in, 196–200

ActionScript 3.0
case sensitivity of, 174
controlling audio with, 219–224
creating Object instance in, 432
event handling in, 171–173
migrating to, 191
reading language and components reference, 192–195,

260
setting version, 546
syntax errors reported in, 196–200
tutorials and articles, 160
using tooltips, 222

ActionScript version, 546
:active pseudo-class, 441
addChild(loader), 521
addition operator (+), using with text, 184
Adobe, web site, 322
Adobe Developer Center, web site, 160
Adobe Flash Video Encoder, opening, 344
Adobe Mobile & Devices Developer Center, web site, 474
Advanced Effects dialog box, 254
Afterburner, creating .dcr files with, 537
AI File Importer preferences, 100
AIFF (Audio Interchange File Format), 207, 237
Alert dialog box, 518–519
Align panel

aligning buttons in, 226
and stacking order, 140–143

alignment of text. See text
alpha channel video

encoding, 346
playing with, 383–384
preparing and using, 369–371

alpha transition, tweening, 323–325
Alpha value, 32
anchor points, 68–69

Bezier curves, 67
shape tweens use of, 291–292
using sparingly, 296

anchor tag (<a>), 264, 434
Angular blend, shape tween settings, 290
animated buttons, 328–333
animation

creating (exercise), 148
in Flash CS3, 284–336
shared symbols used by, 124
start and end points, 15–16

861XIndex.qxp 6/25/07 1:30 PM Page 558

“As We May Think” article, 508
aspect ratio, 348
assignment operator (=), 179, 184–185
audio

adding to Flash, 210–213
in Flash CS3, 206–237
pausing a track, 233
previewing files, 211
working with in Flash, 214–216

Audio event option, 547
audio formats, Flash and, 207
Audio Interchange File Format (AIFF). See AIFF (Audio

Interchange File Format)
Audio stream option, 547
authoring environment interface. See Flash authoring

environment interface
authors under glass (exercise), 147–148
auto kern option, 248
auto-widen mode, text fields, 246
Available Devices bar, Search Devices icon on, 478
AVI (Audio Video Interleave) format, 342

B
backslash (\) character, 258–260
Balderson, Joseph, 124
bandwidth, 532

effect on download speed, 509–510
limit, 513

Bandwidth Profiler
dealing with image distortions, 519–520
for Flash movies, 512–515
spike issue from vectors, 518–519

banner advertising
creating in Flash, 107–109
creating in Photoshop, 101–103
GIF image use for, 91

BaseButton.selected property, 395–396
behaviors

ActionScript vs., 164
panel in Flash, 164

Bezier curves, 67–68, 307–309
Bezier, Pierre, 67
bit depth, 207–209
bitmap images, 51–52

in Flash, 82–84
tracing in Flash, 85–87

bitmap layers, importing as movieclips, 103
Bitmap Properties dialog box, 88–89
blend, shape tween settings, 290

INDEX

559

blend modes, 155
applying, 134–136
filters and, 129–136
manipulating static text with, 253–255

block elements vs. inline elements, 436
bold styles, in text fields, 246
bold tag (), 264
Book Category list box, filtering searches in, 194–195
break statements, 189
break (
) tag, 264
Bringhurst, Robert, 240
Brush Mode, option modifiers, 65
Brush tool, 53

options, 65–66
vs. Pencil tool, 65

bunny bits, library of, 127–128
Bunnies Theatre cartoons, 127–128
Bush, Vannevar, 508
button

adding sound to, 218
aligning, 226
bar, creating, 143
giving instance name, 226
library, 225
symbols, 115–116

Button component, 391–396
changing appearance of, 396–398
events available to, 396

bytesLoaded values, 522

C
Capellari, Claudio, 206
captions

syntax for, 378–381
Timed Text, XML for, 366–369
XML for video, 378–383

<cartoon> elements, 453–454
Cascading Style Sheets (CSS). See CSS (Cascading Style

Sheets)
<cast> elements, 454–455
center point control (Gradient Transform tool), 58
changeFunction() declaration, 470
character design, 322
Character Embedding dialog box, 270–272
character position, 247
check boxes, interacting with (exercise), 402
CheckBox component, 401–402
Check syntax button

in ActionScript 2.0 vs. 3.0, 196–200
class files, ActionScript, 190
class identifier, for library items, 125–126
class selectors vs. element selectors, 434–437

861XIndex.qxp 6/25/07 1:30 PM Page 559

classes, objects defined by, 165–166
CLICK event handlers, coding, 230
CMX Suite, 130
code, commenting, 175–176
code blocks, in frames, 17
code coloring, ActionScript, 170
codec (enCODer/DECoder), 209, 211
Color panel, 56
Color Picker

component, 402–404
in Property inspector, 19–20

colors
basic Color palette, 74
changing for layer outline, 28
changing static text, 253–255
changing value on Mac, 75–76
color models in Flash, 72–109
gradient tricks, 78–79
panel, 60–61
persistent custom, 76–78
selection and options tools, 53
window, 74–75
ComboBox component, 404–407

commenting code, 175–176
Compiler Errors panel

syntax errors reported in, 199
Compiler Errors tab, Property inspector, 181–182
Component Inspector

changing component parameters in, 393
setting FLVPlayback parameters in, 358–359

components
finding packages for, 400
styling, 398–401

Components panel, 392
compression. See file compression
compression settings, MP3 format, 212
conditional statements, ActionScript, 185–189
Constan, Randy (Peter Pan), 120
constants, ActionScript 3.0, 175
content types, 482–483
context menu, 17
Convert to Symbol dialog box

advanced options in, 113–114
opening, 63

copy motion as ActionScript 3.0, 331–333
crashing text, 247
crayons, 61–62
Create Shape Tween choice, 289
createLetter function, 528
CSS (Cascading Style Sheets)

applying formatting to, 431–433
Flash and, 426–449
loading external, 445–448
power of, 427–433

INDEX

560

style properties in, 427–428
styling applied to series of tags, 431
using styles in (exercise), 428–430

cue points, adding to FLV files, 378
Curtis, Hillman, 108, 509
curves, optimizing, 518–519
Custom Ease In/Ease Out dialog box

areas of, 304–305
custom easing in, 304–310
how grid works in, 305–306

Custom Ease In/Ease Out editor, 304–310

D
data types, ActionScript 3.0, 180–182
DataGrid component, 407–408
Davis, Joshua, 117
de Visser, Martin, 341
deinterlace area, Encode Video panel, 346
Detect Flash Version option, 549
Device Central CS3, 474

accessing through Adobe Bridge, 481
choosing specific device in, 477
creating Flash documents with, 480–483
Emulator tab in, 484–486
Group By button in, 480
new to CS3 Studio, 476–480
publishing mobile movies in, 487–489
returning to Flash from, 487–489
specific searches in, 479

device fonts, 243–244. See also fonts; fonts and typefaces
Device Profiles panel, 478
Device Sets panel, removing set from, 480
dictionaries, 274
Difference mode, 136
Dimensions option, 549
Director, 537
display lists, 262
Distort option, Free Transform tool, 287
Distribute to Layers, rules for using, 141–142
Distributive blend, shape tween settings, 290
documents, managing properties in, 11
Document class, 190
Document Properties dialog box

changing movie frame rate in, 311
managing document properties in, 10–11
shrinking stage to video in, 356

documents
managing properties in, 10
setting preferences and properties, 9–14

dot (.) notation, 177–178
in E4X, 457
in setStyle() method, 436–437

drawers, in panel collapse process, 8

861XIndex.qxp 6/25/07 1:30 PM Page 560

drawing
objects, 52
tools, 63

Dreamweaver CS3, 373, 476
Drop Shadow filter, 130–133
DV format, 342
dynamic data (XML), Flash and, 452–471
dynamic text box, in status layer, 227
dynamic text fields

controlling events, 276
formatting (exercise), 256–263
properties, 256
selectively formatting, 261
vs. static text fields, 255–256

E
E4X (ECMAScript for XML)

accessing data in XML, 457–462
filtering with comparison operators, 461–462
returning film titles, 462–463
viewing attributes in, 458–460

easing
custom, 304–310
shape tweens, 289
with standard easing controls, 301–303

Ecma International, ECMA-262 specification by, 160
Edit Format Options button, 246
Edit Grid, 139
Edit Multiple Frames button

adjusting keyframes with, 316–317
timeline, 314

Elapsed Time indicator, 311
element selectors

vs. class selectors, 434, 436–437
exercise using, 434–435

The Elements of Typographic Style, 240
embedFonts property, 442
Emulator tab, 485
Encode Video panel

deinterlace area, 346
setting video data rate in, 344–345

Encoding Settings dialog box
Crop and Resize tab, 348
opening, 344
preset encoding profile in, 345–346
setting values in, 347–348

encoding values, 347
ENTER_FRAME event, 232–233
Envelope option, Free Transform tool, 287
equality operator (==), 185
Eraser tool, 66–67
escape sequences, 258–260

INDEX

561

Event class instance, required for event handling, 171–173
event handlers

in ActionScript, 171–173
coding, 228–236
EventCOMPLETE, 470

Event sound, 214
Event.ID3 event, alert raised by, 230–231
EventListeners, 521
events

controlling with dynamic text fields, 176
handling in ActionScript, 171–173

exercises
creating animation (authors under glass), 147–148
creating soft masks, 151–155
element selectors, using, 434–435
formatting dynamic text fields, 256–263
hyperlinks, 275–276
interacting with check boxes, 402
making a frog disappear, 275–276
Peter Pan, 120–121
static text, 248–255
styles in CSS, using, 428–430
text scrolling, 277–280

Export device sounds option, 547
Export dialog box, 539
Export GIF dialog box, 540
Export Movie dialog box, 530
external sound. See sound
ExternalInterface class, 452
eyeball icon, 27
Eyedropper tool, 78

F
file compression, 387

applying settings, 91
changing, 89
checking type used, 342
handling in Flash, 88–91

file size
balancing, 108
vector vs. bitmap images, 51

file types, on Web, 537–542
<film> elements

adding <title> elements to, 454
adding to <cartoon> root element, 453–454

filters
applied through ActionScript, 129
applying in Flash, 130
applying to static text and tweening, 248–250
blend modes and, 129–136
in Flash, 129

Finish Video Import screen, 355

861XIndex.qxp 6/25/07 1:30 PM Page 561

Fireworks CS3
bitmap images, 51
importing documents into Flash, 93–95
importing GIF files into, 541
as planning aid, 517–518
round tripping feature in, 84
vector images, 51

Fireworks PNG Import Settings dialog box, 94–95
Flash. See also Flash CS3

alignment options, 551
audio in, 210–216
audio formats and, 207
common file formats in, 209
CSS and, 426–449
and devices, 474–475
evolution of, 537–538
going mobile in, 474–503
guidelines, 510
importing GIF animation into, 542
importing video into, 351–356
mass editing in, 314–316
MP3 and, 209–210
optimizing content for use in video, 527–531
publishing mobile movie, 487–489
sound types in, 214
video in, 340–387

Flash 8, Object Drawing mode, 58–59
Flash 9 vs. Flash mobile, 475
Flash authoring environment interface, 6–7, 46

exploring panels in, 15–23
opening, 5

Flash Color Picker, 74–76
Flash CS3, 237, 471

animation in, 284–336
audio formats and, 207
banner advertising, 107–109
bitmap images in, 82–84
changes in, 53
Create Shape Tween choice in, 289
drawing in, 63–72
dynamic data (XML) and, 452–471
font formats supported by, 243
GIF files in, 91–93
going mobile in, 474–503
graphic objects, 52
graphics, 50
optimizing JPG images, 88–91
playing an FLV in, 351–386
spell-checking feature, 273–274
Start page in, 4–7
text in, 240–281
tracing bitmaps in, 85–87
using GIF files in, 91–93

INDEX

562

Flash CS3 UI components. See also individual component
names

building interfaces with, 390–423
skinning, 396–398
styling, 398–401
weight added to movies by, 396

Flash documents
accessing MovieClip class members, 166
creating, 4–7

Flash Exchange link, to Adobe web site, 5
Flash Lite 2.0, Flash mobile use of, 475
Flash movies. See also movies

creating for mobile devices, 480–483
general guidelines for, 510
optimizing and fine-tuning, 516–521
publishing, 536–555
testing mobile, 484–486
Web formats for, 536–542

Flash Only template, 549
Flash Platform, evolution of, 159
Flash Player

functionality in new versions, 537–538
playing audio and video with, 338
preparing and using alpha channel video, 367–369

Flash Player 9, strict (or strong) data typing in, 182
Flash stage, distributing buttons to, 226
Flash timeline, exporting as GIF animation, 540–541
Flash Video (FLV) Encoder, Flash 8 Professional, 340
Flash video players, 341
Flex Builder 2, SWFs produced by, 159
Flick, Chris, 130
Fluffy Flash video player, web site, 341
FLV (Flash video)

and cue points, 378–383
connecting TV to, 361–364
converting existing video to, 342–350
encoding, 342–350
filename extension, 341
playing in Flash CS3, 351–386

FLVPlayback component
control components, 364–365
in Flash 8 Professional, 340
manually connecting FLV to, 357
setting content path to, 360
setting parameters for, 358–359

FLVPlaybackCaptioning component, 366
focus rectangle, 496
folders, 28–29
Font Rendering method, 247
fonts, 281. See also device fonts

effect on SWF file size, 242
embedded, 442–444
 tag, 264, 431

861XIndex.qxp 6/25/07 1:30 PM Page 562

outlines, embedding, 269–272
setting size, 246
symbol, embedding fonts with, 271–272
and typefaces, 241–243

for each..in statement, in E4X filtering, 462
Foundation ActionScript 3.0 with Flash CS3 and Flex 2, 158,

190, 331
Foundation ActionScript Animation, 331
Foundation Flash Applications for Mobile Devices, 475
frame rates

default in Flash movies, 16
Frame Rate indicator, 311
setting in Encode Video panel, 346

frames, 16–18. See also keyframes
editing multiple, 314–317
options for, 17
in timeline, 7

Free Transform tool, 55–56
adjusting picture frames with, 121
mastering white dot in, 56
Rotate and Skew option, 300
scaling and rotating objects with, 114
stretching shapes with, 286–287

friends of ED, web site, 539
fromCharCode() method, String class, 528
From After Effects to Flash: Poetry in Motion Graphics, 375
Frutiger, Adrian, 245
fscommand2() functions, 496
FSCommands, 476
Full Screen button, making functional, 373

G
GalaxyGoo, web site, 191
gallery of images, adding to mobile applications, 494
Gallery page, setting Listener to return to, 501–502
Georgenes, Chris, 319–321
GIF animation

creating in Fireworks CS3, 541
exporting Flash movie as, 539–541
filename extension, 537
importing into Flash, 539–542
importing into movieclips, 92–93
used before Shockwave, 539

GIF files, using in Flash CS3, 91–93
GIF images, 91–92
glint, adding to Over frame, 329
gotoAndPlay(10) method, 523
gradient

changing colors, 61–62
filling a span with, 80
overflow options, 79

INDEX

563

Gradient Transform tool, 56–58
altering gradients with, 296–297
controls, 58
filling shapes with, 57

graphic symbols, 115
changing displayed frame of, 318
vs. movieclips, 318
swapping across keyframes, 315–316

graphics, Flash CS3, 50
greater than (>) operator, 185
greater than or equal to (>=) operator, 185
Green, Tom, 334–335, 375
Grid dialog box, editing Grid in, 139
Group By button, Device Central CS3, 480
guide layer, 25, 325
guides, 139–140
Guides dialog box, 140

H
Hanna, William, 341
Head layer, formatting a mobile application, 492
Help menu, user manuals in, 22–23
Help panel

accessing and using, 192–193
component styles under class entry in, 398
keywords and reserved words in, 179
search tactics, 193–195

Henry, Kristin, 191
Hide Timeline button, 16
:hover pseudo-class, 441
HTML (HyperText Markup Language), 538–539

vs. ActionScript, 538
alignment selection, 551
filename extensions, 537
formatting, 264–266
page, 508
using for hyperlinks, 267–268
tab (Publish Settings dialog box), 549–551
styling tags, 432–433
vs. XML, 453

Humber School of Technology, School of Media Studies,
341

hyperlinks
absolute and relative, 267
exercise, 275–276
and Flash text, 266–269
option, 248
styling, 440–442
triggering ActionScript with, 268–269
using HTML for, 267

861XIndex.qxp 6/25/07 1:30 PM Page 563

I
icons, 27–28

Search Devices, 478
Symbol Editor, 32

ID3 tags, MP3 file metadata in, 227
if..else statements, 189, 194
if statements, 186–189
Illustrator CS3

Device Central available in, 476
importing documents, 96–100
tool of choice for type design, 243
vector images, 51

Illustrator File Importer, 96–100
image tag (), 264–265
images

changing compression of, 89
converting imported to symbol, 322–325
filling objects, 80–81
types, 51
vector vs. bitmap, 51–52

ImpactNormal font, 443
Import Bitmap dialog box, 89
Import statement, 400
Import Video wizard, 351–356
inheritance, 439–440
Ink Bottle tool, 53
input text fields, properties, 256, 263
Instance Name field, 166
interlacing, 346
Internet, Flash “love-hate” relationship with, 506–510
Internet Protocol (IP), 508. See also Transmission Control

Protocol/Internet Protocol (TCP/IP)
!isPlaying variable, 232
italic

applying in CCS, 430–431
applying to text fields, 246
tag (<i>), 265

J
JPG (JPEG)

optimizing images, 88–91
quality option (Publish Settings dialog box), 547

K
kerning, auto kern option, 248
key frame areas, Encode Video panel, 347
key label, changing, 502
keyframes. See also frames

adding to a timeline, 17–18, 172
inserting and removing, 286
swapping graphic symbols across, 315–316

keywords and reserved words, in Help panel, 179

INDEX

564

knob, dragging in Seek knob layer, 226–227. See also Seek
knob layer

Kricfalusi, John, 334–335

L
Label component, 408
Layer content menu, opening, 144
layer modes, assigning to layers, 25
Layer Properties dialog box, 214–215
Layer Visibility icon, eyeball icon as, 27
layers, 25–29

adding content to, 26
adding to mobile application, 492
grouping using folders, 28–29
hiding, 28
icons used in, 27–28
of timelines, 24–29

leading, applying in CCS, 431
Leggett, Richard, 475
less than (<) operator, 185
less than or equal to (<=) operator, 185
letter spacing (tracking), 247
 tag, applying italic to, 430–431
library

in Property inspector, 21–22
playing sounds from, 219
sharing, 125–127, 155

Library Preview pane
GIF files in, 91
sampling colors from, 78

Lighten mode, applying, 136
line breaks, adding in ActionScript, 259–260
Line Numbers, in Action panel context menu, 163
Line Type option, 247
linear gradient, filling square with, 58
linkage identifier, assigning, 113
Linkage Properties dialog box

adding items to shared library in, 125–126
specifying class in, 220

linked files, publishing movies with, 553–554
lip-synching techniques, 322
List component, 409–410
list item tag (), 265
Load Order option, 546
load() method, 520–521
Loader class, 169, 520–521
Loader object, 520
loadSong() function, 231–232
Local playback security option, 547
logical NOT operator, 232
Longo, Ryan, 206
Lorem ipsum, origination of, 243
lossy format, JPG format as, 88

861XIndex.qxp 6/25/07 1:30 PM Page 564

M
Macintosh Color Picker, 75–76
Magnification menu, zooming the stage from, 13
manuals. See user manuals
masks, 155. See also soft masks

adding motion to movie, 149
applying filter to text, 150
applying locks to, 145
creating simple, 144–148
creating soft (exercise), 151–155
layer, 25
masking and, 143–150
using strong fonts as, 148–149
using text as, 148–150
without a mask layer, 153–155

max data rate area (Encode Video panel), 346
Maximum Characters property, 263
Maynard, Jay (Tron Guy), 323
McSharry, Sean, 158, 190
members of a class, in ActionScript, 165–166
methods, for ActionScript object types, 169–171
mobile application

adding gallery to, 494–495
adding layers to, 492
constructing, 489–493
creating, 491–493
writing ActionScript for, 495–502

mobile devices
bitmap and vector rules for, 495
soft keys on, 490

mobile document, creating, 480
Modify menu

Group option, 54
Ungroup option, 54

Modify Onion Markers button, 312
Modify Remove Transform, 56
motion guide layer, changing normal layer into, 325–326
motion guides, 25

tweening along curves with, 325–327
motion tweening, 297–298

between two keyframes, 316
changing objects with, 18
creating animations with, 18
creating twinkling stars with, 36
custom easing, 304–310
easing, 301–303
effects, 322–325
entities required by, 297
lack of shapes support for, 288
properties, 299
rotation, 298–299
scaling, stretching, and deforming, 300

MouseEvent.CLICK event handlers, coding, 228–230
MOV format, 342, 537

INDEX

565

Movie clips
icon for Symbol Editor, 32
in New Symbol dialog box, 38

movie mask, adding motion to, 149
MovieClip

class, methods in, 169–171
instance, exploring, 169–171
symbols, 116–117
unsettable properties in ActionScript, 169

MovieClip.currentFrame property, 174
MovieClip.gotoAndPlay() method, 171
movieclips

acting as draggable buttons, 229
giving instance name, 221
vs. graphic symbols, 318
importing bitmap layers as, 103
importing GIF images into, 92–93
manipulation objects in, 384–386
nesting, 116
playing sounds with, 220–222
setting properties via ActionScript, 168
testing, 91

movies. See also Flash movies
adding audio to, 41–43
adding grass and lake, 35
adding moon over lake in, 37–41
adding mountains and color to, 32–33
building, 29–45
composition of, 16
creating illusion of depth in, 33–34
creating moon shadow in, 38
creating moonrise over lake, 44–45
creating twinkling star, 36
length range, 16
tasks to build, 29
testing, 43–44

MP3 format, 207, 237
compression settings, 212
metadata in files, 227
perceptual encoding used by, 209–210
player, coding, 228–236

MPG/MPEG (Motion Picture Experts Group) format, 342
Multiply mode, applying to image, 135–136

N
\n (newline escape sequence), 259–260
NetConnection, between player and server, 363
New from Template dialog box, 5

Flash Lite 2.0 templates in, 480
New Symbol dialog box, 69

use of Movie clip type in, 38
Next button, coding, 233–234
nextSong() function, coding, 233
NumericStepper component, 411

861XIndex.qxp 6/25/07 1:30 PM Page 565

O
O’Meara, Robert, 341
Object Drawing mode, 58–60
Object instance, creating, 432
objects

classes defined as, 165–166
constraining proportions of, 56
moving, 54
registration points, 31
scaling, skewing, and rotating, 55–56
turning on snapping, 294
working with ActionScript, 164–173

onion skinning, in animation, 311–314
Open link, on Start page, 5
operator precedence, 183–185
operators, ActionScript, 182–185
Optimize Curves dialog box, 87, 518
Options menu, 546–547
orientation, changing static texts, 247
Oval Primitive tool, 52
Oval tool, using in Object Drawing mode, 59–60
Over frame, adding glint to, 329
overflowing process, 78
Override sound settings option, 547

P
packages, finding for components, 400
packets, 508
Paint Bucket tool, 53

filling shapes, 57
Lock Fill feature, 80

panel collapse process, 7–8
panels, managing, 7–8
paragraph tag (<p>), 265
Password option, 547
paste commands, for layers, 26–27
path, linked series of objects as, 178
pauseSong() function, 230
Pen tool, 67–69
Pencil icon, 28
Pencil tool, 63–65
Peters, Keith, 331
Photos button, in mobile applications, 493
Photoshop CS3

bitmap images, 51
Device Central available in, 476
importing documents into Flash, 100–106

Photoshop File Importer, 104–106
Pilotvibe, 216
pipe. See bandwidth
placeholder text, generating, 243
Playback choices, 549–550

INDEX

566

playhead
in timelines, 7
navigating to timeline frames with, 18

playSong() function, 230, 232
PNG image, importing into Flash, 94–95
Popeye cartoons, organizing collection of, 453
PostScript drawing applications, 243
Preferences dialog box, 102
Preferences panel, 9–10
preloader, 522–526
Previous button, coding, 233–234
prevSong() function, coding, 233
primitives. See Oval Primitive tool; Rectangle Primitive tool
Programming ActionScript 3.0 book (Help panel), 182
ProgressBar component, 412–413
properties

accessing with ActionScript, 166–169
vs. variables, 178–179

Property inspector, 12
accessing Document class through, 190
collapsing panels in, 8
Compile Errors tab, 181–182
concept of, 18–20
fonts in, 244
Instance Name field, 166
setting FLVPlayback parameters in, 358–359
Smooth option, 66
and static text, 245–248
using stream or event sound in, 216

PSD File Importer, 101
pseudo-classes, 440–442
Publish Preview menu, 553
Publish Settings dialog box, 372

Export device sounds setting in, 547
file types in, 544
Flash Only template in, 549
Flash settings in, 545
HTML alignment selection in, 551
HTML tab in Flash CS3, 548
JPEG quality option in, 547
launching to publish movies, 543–544
Navigate buttons in, 545
options in, 547–551
Playback choices in, 549–550
Profile buttons in, 544
publishing Lake Nanagook movie, 551–552
Quality menu in, 550
Scale menu in, 551
setting ActionScript version in, 546
setting Window Mode in, 551
Show warning messages box in, 551
Version menu in, 546

Publish Settings panel, audio options in, 213

861XIndex.qxp 6/25/07 1:30 PM Page 566

Q
quality area (Encode Video panel), 346
Quality menu, 550
QuickTime, 542

creating movies in Flash, 527–531
Export Settings dialog box, 530–531
formats, 207

R
radial gradient tool, 57
RadioButton component, 413–414
radius handle control (Gradient Transform tool), 58
randomBetween() function, 528
rapid prototyping tool, Fireworks CS3 as, 517–518
Rectangle Primitive tool, 52
registration points, of objects, 31
relational operators, 185
Render Text as HTML option, 247
reserved words, in Help panel, 179
resize handle control (Gradient Transform tool), 58
Riva FLV player, web site, 341
root element, XML documents, 453
rotate handle control (Gradient Transform tool), 58
Rotate property, 299
rotation, 298–299
rotoscoping video images, 329–331
round tripping, in Fireworks CS3, 84
routers, 508
rulers, aligning objects on stage with, 139

S
salmon recipe, styling, 426–449
sample rates, 207–209
Scale menu, 551
scaling, skewing, and rotating objects, 55–56
Script Assist feature

Actions panel, 200
script editors, 161
Script navigator, 162
Script pane

Action panel, 162
adding code to, 221, 522–523

Script time limit option, 547
Script window, script editor lock out by, 161
scroll bars, 415
scroll buttons, symbol buttons as, 279–280
ScrollPane component, 415
scrubbing, across timelines, 18
Search Devices icon, Available Devices bar, 478
Seek bar, 226
Seek knob layer, 226
Seek slide layer, 226

INDEX

567

Seek slider, coding, 234
Selectable option, static text, 247
Selection tool, 53–55
semicolons (;), in ActionScript, 175
shape hints, guiding anchor points, curves, or lines with,

292–296
shape tweening, 285–297

altering gradients, 296–297
altering shapes, 290–292
anchor points in, 291–292
easing in and out, 289, 301–303
modifiers, 289–290
scaling and stretching, 286–289
shape hints, 292–296

shapes, altering, 290–292
shared libraries. See library
Shiman, Jennifer, 127–128
shimmy() function, 528–529
Shockwave products, by Macromedia, 537
Show All Layers As Outlines icon, 28
Show Border Around Text option

input text fields, 263
not available for static text, 247

Show Grid, aligning objects on stage with, 138–139
Show warning messages box, 551
Shroeder, Dave, 216–217
skin style, selecting, 354–355
skinning, UI components, 396–398
Skip Intro button, 506–507
Slider component, 416–417
slideshow

bringing to life, 465–468
building with XML, 463–471
changeFunction() declaration, 470
changing reference to button event handler, 470–471
EventCOMPLETE event handler, 470
geocaching photos for, 465–468
handling events and populating combo box, 465–468
walkthrough of “hard-wired” movie, 464

Smooth option, in Property inspector, 66
Snap Align, aligning objects with, 138
snapping, turning on, 294
soft key events, creating listeners for, 497
soft masks, 155. See also masks

creating (exercise), 151–155
SoftKeyID, mobile application settings, 492
sound, 237. See also audio

adding to buttons, 218
loading external, 222–223
playing, 219–223
turning remote on and off, 223–224

Sound Properties dialog box, 211–213
SoundChannel class, stop() method in, 224
soundTransform property, 232

861XIndex.qxp 6/25/07 1:30 PM Page 567

SOUND_COMPLETE event handler, 232
span tag (), 265
speed-dial buttons, in mobile applications, 493
spell checking, 273–274, 281
squares, moving, 54
stacking order, 140–143
stage

aligning objects on, 138–139
changing size or color of, 11
grouping content on, 137–138
in authoring environment interface, 7
managing content on, 136–143
side-by-side image comparisons, 14
zooming, 13–14

Start page, 4–7
static text

applying filters and tweening, 248–250
configurable items, 245–248
exercises, 248–255
Property inspector and, 245–248

static text fields
vs. dynamic text fields, 255–256
properties, 248

status layer, dynamic text box in, 227
Stiller, David, 489–490
stop() method, in SoundChannel class, 224
Stream sound, 214
streamhead, adding to timeline, 512
streaming buffer, creating, 512
streaming movie content, 510–512
strict (or strong) data typing, 180–182
Stroke Style dialog box, settings in, 71
style inheritance, 439–440, 449. See also inheritance
StyleSheet class, importing, 429
StyleSheet.setStyle() method, 430
styling components, 398–401
Subselection tool, 69–70
SWF file

advantages of small, 113
filename extension, 537

switch statement, 189
symbol buttons, 279–280
Symbol Editor

Movieclip icon for, 32
opening, 117

Symbol Properties dialog box, 119
symbols, 155. See also button symbols; graphic symbols;

MovieClip, symbols
9-slice scaling and, 118–124
adding to shared libraries, 126–127
creating, 113–114
editing, 117–118
essentials of, 113–118

INDEX

568

and libraries, 112–115
sharing, 124–127
swapping graphic across keyframes, 315–316
types of, 115–117
updating changed in shared library, 127
using from another movie, 124–125

syntax
checking, 196–200

syntax errors
checking for, 196–200

T
\t (tab escape sequence), 259–260
tabular data, displaying with HTML, 265–266
tags, creating custom, 437–439
TCP/IP. See Transmission Control Protocol/Internet

Protocol (TCP/IP)
templates, creating documents with, 5
Test Set folder, creating custom groupings in, 480
testing panels, Device Central, 485
text

adding color in CCS, 431
adding fields with ActionScript, 261
aligning, 246, 281
auto-widen mode, 246
changing orientation of static, 247
character position, 247
field types, 245–263
format tag (<textformat>), 265
hyperlinks support, 266–267
import options, 102
scrolling exercises, 277–280
setting color, 246
type, 246

text masks, creating Places intro screen with, 148–150
TextArea component, 417–418
TextField class, 169
TextField.setTextFormat() method, 261
TextField.text property, input text fields, 263
TextFormat class, 528

declaring and setting variables, 400–401
setting properties, 260–263

TextInput component, 418–419
this keyword, ActionScript use of, 170–171
<title> elements, adding to <film> elements, 454
Thomas, Adam, 183
Thumbs movieclip, activating buttons, 498–500
TileList component, 419–420
Timed Text (TT) XML, for captions, 366–369
Timeline panel

checking settings, 288
dashboard strip, 310–311

861XIndex.qxp 6/25/07 1:30 PM Page 568

timelines, 15–16
in authoring environment interface, 7
combining, 318–322
layers feature of, 24–29
looping, 202–203
in movieclips, 169–171
navigating to frames in, 18
pausing the main, 201–202
scrubbing, 7, 18
for symbols, 32
tweening inside butterfly graphic symbol, 327

Timer object, creating in Flash, 527–528
Title box, in Document Properties dialog box, 11
tools, 53–56. See also Free Transform tool; Oval tool;

Rectangle tool; Selection tool
Tools panel, 52–63

areas in, 20–21
selecting objects in, 19–20
turning object snapping on, 294

Trace Bitmap dialog box, 85–86
trace() function, 521

ActionScript, 167–168
seeing operators in action with, 182

traced images, optimizing, 87
tracing bitmap images, in Flash, 85–87
tracking. See letter spacing (tracking)
Transform panel, motion tweens use of, 300
transformation point, scaling shapes with, 287
transformations, removing, 56
Transmission Control Protocol/Internet Protocol (TCP/IP),

508, 532
transparency, adjusting for imported photos, 322–325
Tween property, 288
tweening, 46

along curves, 325–327
masks, 327–328
static text with filters applied, 248–250
updating multiple symbol properties, 309–310

typeface, 242. See also device fonts; fonts
typographic tools, CS3, 240

U
UI components. See Flash CS3 UI components
UIComponent.setStyle() method, 401
UILoader component, 420–422
UIScrollBar component, 277–278
UIScroller component, 422–423
underline tag (<u>), 265
Uniform Resource Locator (URL), 508
Univers 55 font, 243
URLLoader class, 452
URLVariables class, 452

INDEX

569

Use device fonts, Font rendering method menu, 242, 245
user manuals, Flash, 22–23

V
var keyword, 179
variables

naming, 228
vs. properties, 178–179
setting, 231–232

vector images, 51
vector morphing, shape tweens, 292
vectors (vector points), effect on Bandwidth Profiler,

518–519
Version menu, 546
video

applying captions to, 367–369
building custom controller, 364–365
codec (Encode Video panel), 346
converting to FLV format, 342–350
Flash content interacting with, 377
going full screen with, 371–374
hearing-impaired access to, 365–366
importing into movieclip, 375–377
live preview, 360
playing with alpha channel, 383–384
setting data rate, 346
streaming into video object, 363
trimming, 344
on the Web, 341
XML captions for, 376–383

video object, 361–362
Video Properties dialog box, 361–363
:void, using in functions, 182
volume control, 227
volume slider

coding, 235–236
layer, 227

W
W3C (World Wide Web Consortium) specification, 426
WAV format, 207
waveforms, 207–208
Web. See World Wide Web
Web formats, for Flash movies, 536–542
web pages, 508
Webster, Steve, 158, 190, 331
white dot, mastering in Free Transform tool, 56
Window Mode, 551
workspaces, managing, 7–8
World Wide Web, evolution of, 508–509
WYSIWYG editor, Dreamweaver CS3 as, 538

861XIndex.qxp 6/25/07 1:30 PM Page 569

X
X-height, 245
XML (eXtensible Markup Language). See also dynamic data

(XML)
building slideshows with, 463–471
captions for video, 387
file, loading, 456–457
vs. HTML, 453
loading a file, 456–457
markup languages and formats based on, 453
power of, 453–457
rules for using, 455–456
writing, 453

XMLList instance, 462–463

Z
Zoom tool, 69

INDEX

570

861XIndex.qxp 6/25/07 1:30 PM Page 570

