Definition For $s>0$, the Dirichlet eta function is defined by

$$
\begin{equation*}
\eta(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}} \tag{1}
\end{equation*}
$$

Theorem η is infinitely differentiable on $(0, \infty)$ and its n-th derivatives are obtained by applying termwise differentiation on (1) n times.

To prove this, we need some preliminaries.
Lemma 1 (Abel's test) Suppose $A \subset \mathbb{R}^{m}$ and f_{n}, φ_{n} are real valued functions defined on A. If
(1) φ_{n} is monotonic,
(2) φ_{n} are uniformly bounded, and
(3) $\sum_{n=1}^{\infty} f_{n}$ converges uniformly,
then $\sum_{n=1}^{\infty} f_{n} \varphi_{n}$ converges uniformly.
This is a typical application of summation by parts.
Lemma 2 For $s>0$, define $f_{k}(s)=\frac{(-1)^{k-1}}{k^{s}} \log ^{n+1} k$. Then for any $a>b>0, \sum_{k=1}^{\infty} f_{k}$ converges uniformly on (a, b).
proof. Put $h(\alpha)=\frac{\log ^{n+1} \alpha}{\alpha^{s}}$. Then $h^{\prime}(\alpha)=\frac{\log ^{n} \alpha}{\alpha^{1+s}}(n+1-s \log \alpha)$. Then it suffices to show that

$$
f_{m+1}+\cdots f_{m+2 k}=(-1)^{m}(h(m+1)-h(m+2)+\cdots+h(m+2 k-1)-h(m+2 k))
$$

converges uniformly for $m=0,1$. But since

$$
\begin{aligned}
\left|f_{m+2 k-1}+f_{m+2 k}\right| & =|h(m+2 k-1)-h(m+2 k)| \\
& =\left|h^{\prime}(c)\right| \quad(\text { for some } m+2 j-1<c<m+2 j) \\
& \leq \frac{(n+1) \log ^{n} c+s \log ^{n+1} c}{c^{1+s}} \\
& \leq \frac{(n+1) \log ^{n}(2 k+1)+b \log ^{n+1}(2 k+1)}{(2 k-1)^{1+a}}
\end{aligned}
$$

and

$$
\sum_{j=1}^{\infty} \frac{(n+1) \log ^{n}(2 j+1)+b \log ^{n+1}(2 j+1)}{(2 j-1)^{1+a}}<\infty
$$

Weierstrass M-test assures that $f_{1}+\cdots+f_{k}$ converges uniformly on (a, b).
Now we are ready to prove the theorem.
proof. We use induction to prove that for nonnegative n and $s>0$, we have

$$
\begin{equation*}
\eta^{(n)}(s)=(-1)^{n} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}} \log ^{n} k \tag{2}
\end{equation*}
$$

By definition, (2) holds for $n=0$. Now assume (2) holds for some nonnegative integer n. Assume $b>a>0$ and put $A=\{(s, t) \mid s, t \in(a, b)$ and $s \leq t\}$. Put $h(x)=\frac{e^{-x}-1+x}{x}$. Then it is easy to show that h is monotone increasing and $h(x) \rightarrow 1$ as $x \rightarrow \infty$. Let f_{k}, φ_{k} be functions on A defined by

$$
f_{k}(s, t)=\frac{(-1)^{k-1}}{k^{s}} \log ^{n+1} k, \quad \varphi_{k}(s, t)=1-h((t-s) \log k)
$$

Note that $0 \leq \varphi_{k+1}(s, t) \leq \varphi_{k}(s, t) \leq \varphi_{1}(s, t)=1$ and $f_{1}+\cdots+f_{k}$ converges uniformly on A by Lemma 2. Then by Abel's test, $\sum_{k=1}^{\infty} f_{k} \varphi_{k}$ converges uniformly. But

$$
\begin{equation*}
\left|\frac{\eta^{(n)}(t)-\eta^{(n)}(s)}{t-s}-(-1)^{n+1} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^{s}} \log ^{n+1} k\right|=\left|\sum_{k=1}^{\infty} f_{k}(s, t)-\sum_{k=1}^{\infty} f_{k}(s, t) \varphi_{k}(s, t)\right| . \tag{3}
\end{equation*}
$$

By the uniform convergence and continuity of each $f_{k} \varphi_{k}$, we find that the right hand side of (3) converges to 0 as $t-s \rightarrow 0^{+}$. This completes the proof.

