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Abstract—
This paper shows some preliminary results on the dynami-

cal balance of a humanoid robot grasping an environment. By
grasping an environment, it becomes easier for the robot to
keep balance. By using the linear programming, a necessary
condition for keeping balance of the robot is formulated
taking the grasping force into consideration. We show that
the occation exists where the stronger the hand of a humanoid
robot grasps the handrail, the larger the region of ZMP for
keeping balance becomes. We further show an experimental
result of a humanoid robot climbing up a big gap increasing
the stability by grasping a handrail.

I. INTRODUCTION

Since the kinematical structure of a humanoid robot is
similar to that of a human, a humanoid robot is expected
to realize a variety of motions as a human can do. To
realize such motions, a humanoid robot should move not
only on the flat plane but also in an unstructured envi-
ronment. However, it often becomes difficult for the robot
to keep balance when it moves in such an unstructured
environment.

Fig.1 shows a situation where a humanoid robot climbs
up a large gap. Climbing up such a large gap is difficult
to realize since it becomes difficult to keep balance of the
robot when only one of the feet contacts an environment.
However, even in such a case, a humanoid robot can
increase the stability by utilizing the interaction between
the hand and the environment. As shown in Fig.1, once
the hand of a humanoid robot grasps a handrail, it will
becomes easier for the robot to keep balance. We can
also expect that, the stronger the hand grasps the handrail,
the more stable the robot would become. Based on this
consideration, this research aims to give some preliminary
answers to the following couple of problems: (1) For a
given grasping force of the hand, judge whether or not
the robot can keep the dynamical balance, and (2) For a
humanoid robot to realize the planned motion stably, how
strong the hand has to grasp the handrail.

The ZMP (Zero Moment Point) is defined to be a point
on the ground at which the tangential component of the
ground reaction moment becomes zero[1]. A humanoid
robot can walk on the flat plane with keeping the dynamical
balance if the ZMP is included in the convex hull of the
foot supporting area. While the ZMP is very commonly

Fig. 1. A humanoid robot climbing up a big gap

used for the gait planning on the flat plane, the number of
research on the ZMP allowing the interaction between the
hand and environment is limited. Although we sometimes
encounter the situation where the hand of a humanoid robot
grasps an environment, there has been no research on the
ZMP analysis taking the grasping force of the hands into
consideration.

In this paper, after showing some previous works, we
show the basic idea of the proposed method in Section 3.
In Section 4, we formulate the region of ZMP with general
3D frictional contacts by using the linear programming. In
Section 5, we confirm the effectiveness of the proposed
method by numerical examples. We also show that the
method proposed in Sections 3 and 4 is a necessary
condition for keeping balance of the robot. In Section 6,
we show an extension of the proposed method. Section 7
shows an experimental result.

II. RELATED WORKS

As for an index of a humanoid robot to keep balance,
Vukobratovic et al.[1] introduced the ZMP. The ZMP
has been very commonly used for the gait planning of
biped/quadruped walking robots such as[9], [10], [11].

For a quadruped robot to walk stably on a sloped surface,
McGhee et al.[3] studied the position of the center of
gravity for keeping the statical balance of the robot. Yoneda
et al.[2] proposed the Tumble Stability Margin focusing
on the moment generated by the robot. Papadopoulos et
al.[4] considered the maximum inclination angle of the
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slope for keeping the dynamical balance of the robot.
Messuri et al.[5] and Ghasempoor and Sepehri[6] focused
on the potential energy of the robot for keeping the statical
and the dynamical balance, respectively. P.B. Wieber[7]
proposed the Lyapnov function based method for judging
the dynamical balance of the robot.

While the ZMP is commonly used for biped/quadruped
robots, the number of research on the ZMP analysis is
limited where the supporting points are not limited to
the horizontal plane. Kitagawa et al. [8] considered the
ZMP for the manipulation tasks and considered ZMP on
the sloped surface. Harada et al.[17] studied the ZMP
focusing on the 3D convex hull of the supporting points
for manipulation tasks.

As for the research on manipulation by a humanoid
robot, Harada et al.[12] and Hwang et al.[14] studied the
relationship between the external force applied at the hands
and the position of ZMP. Yokoyama et al.[13] realized the
cooperative work of a humanoid robot with a human.

However, there has been no research on the dynamical
balance of a humanoid robot taking the grasping force of
the hands into consideration.

III. BASIC PRINCIPLE

As shown in Fig.2, let us consider the situation where
a hand of a humanoid robot grasps a handrail. By mod-
eling the dynamics of the robot using the 2D cart-table
model[16], we explain the basic idea of the proposed
necessary condition(Fig.2(b)) for keeping balance of the
robot. For simplicity, we assume a parallel gripper with
a one-dof translational joint as shown in the figure. Also,
only in this section, we neglect the effect of friction at each
contact point.

When the table tips over, the table will rotate about the
edges of the contact area between the table and the floor.
However, the finger in the left-side of the hand-rail is fixed
to the table, the table does not rotate about the right edge
unless the slip occurs at contact area between the table and
the floor. Thus, we only consider the situation where the
table rotates about the left edge.

Let fH1 (≤ 0) and fH2 (≥ 0) be the reaction forces
applied by the gripper. Also, let fL1 (≥ 0) and fL2 (≥
0) be the reaction forces between the table and the floor
applied at the edges of the contact area. Here, for the cart-
table model,

fL1 + fLe = mg (1)

is satisfied.
We consider the situation where the acceleration of the

cart becomes large. In such a case, fH1 = 0 is satisfied
and the table will rotate about the edge. At the ZMP, since
the ground reaction moment becomes zero, we obtain the
following equation.

0 = −fL1xZ + fL2(l − xZ) − fH2zH , (2)

where some comments on this equation are shown in the
appendix.

(b) The cart-table model
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Fig. 2. Explanation of the proposed method
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Fig. 3. The region of ZMP of the 2D cart-table model

Solving eq.(2) with respect to the position of the ZMP,
the following equation can be obtained:

xZ = (fL2l − fH2zH)/(mg). (3)

Now, let us focus on the region of the ZMP for keeping
the dynamical balance of the cart-table system. When
both fL1 > 0 and fL2 > 0 are satisfied, the cart-table
model keeps the dynamical balance. From eq.(1), they are
equivalent to 0 < fL2 < mg. Substituting this relationship
into eq.(3), the set of ZMP keeping the dynamical balance
can be obtained as:

XZ =
{
xz

∣∣∣ −fH2zH/(mg) < xz , fH2 ≥ 0
}

. (4)

This set of ZMP is a function of the grasping force of
the gripper as shown in Fig.3. If the grasping force is
zero (fH2 = 0), the set of ZMP is bounded by xZ > 0
which means that the ZMP exists inside of the contact area
between the table and the floor. On the other hand, when
the hand is grasping a handrail, the set of ZMP is bounded
by xZ > −fH2zH/(mg) which means that the cart-table
system can keep the dynamical balance even if the ZMP
exists out-side of the contact area. It also means that, if the
hand grasps an handrail with stronger grasping force, the
robot can keep the dynamical balance more easily. This
means that, the stronger the hand grasps a handrail, the
more stable the cart-table system will become.
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Fig. 4. The contact model

IV. 3D FRICTIONAL CONTACTS

In this section, we extend the ZMP analysis to the 3D
case assuming frictional contacts at each contact point. As
shown in Fig.4, we assume contact points at the vertices
of the convex hull of the contact area between the foot
and the floor. Let us approximate the friction cone at each
contact point by using the k-faced convex polyhedron. Let
vLij be the unit vector along the j-th edge of the convex
polyhedron. Also, let λLij (j = 1, · · · , k) be the magnitude
of contact force along the edge. Since the contact force at
each contact point is expressed by the vector sum of the
contact forces along the edges of the convex polyhedron,
the contact forces can be expressed as

fLi = V LiλLi, λLi ≥ 0, (5)

where V Li = [vLij , · · · , vLik], λLi = [λLij , · · · , λLik]T .
Also, the contact forces between a finger and the hand-rail
are expressed as

fHi = V HiλHi, λHi ≥ 0, (i = 1, 2) (6)

where V Hi = [vHi1, · · · , vHik ], λHi =
[λHi1, · · · , λHik ]T .

Let pLi = [xLi yLi zLi]T (i = 1, · · · , m) be the
position vectors of the vertices of the convex hull of the
foot supporting area. Also, let pHi = [xHi yHi zHi]T

(i = 1, 2) and pZ = [xZ yZ zZ ] be the position vectors of
the contact points between the hand and the handrail and
that of the ZMP, respectively. The ground reaction moment
τZ about the ZMP can be expressed as

τP =
m∑

i=1

(pLi −pZ)×fLi +
n∑

i=1

(pHi −pZ)×fHi, (7)

where the horizontal components (first two elements) of
the ground reaction moment τZ about the ZMP are always
zero. Substituting eqs.(5) and (6) into eq.(7) and solving
with respect to xZ and yz , the position of the ZMP can be

expressed as

xZ =

(
m∑

i=1

xT
LiλLi +

n∑
i=1

xT
HiλHi

)

/ ( m∑
i=1

zT
LiλLi +

n∑
i=1

zT
HiλHi

)
, (8)

yZ =

(
m∑

i=1

yT
LiλLi +

n∑
i=1

yT
HiλHi

)

/ ( m∑
i=1

zT
LiλLi +

n∑
i=1

zT
HiλHi

)
, (9)

λLi ≥ 0, (i = 1, · · · , m), (10)
λHi ≥ 0, (i = 1, 2) (11)

where xLi = −eT
y (pLi−ezzZ)×V Li, xHi = −eT

y (pHi−
ezzZ) × V Hi, yLi = eT

x (pLi − ezzZ) × V Li, yHi =
eT

x (pHi − ezzZ) × V Hi, zLi = eT
z V Li, zHi = eT

z V Hi,
ex = [1 0 0]T , ey = [0 1 0]T , and ez = [0 0 1]T . We
note that eqs.(8) ∼ (11) show the set of ZMP for keeping
the dynamical balance of the robot which corresponds to
eq.(4) of the 2D cart-table model.

Next, let us introduce the constraint on the grasping
force. The constraints on the grasping forces depend on
the joint configuration of the gripper since the joint torque
is obtained by multiplying the transpose of the jacobian
matrix by the vector of the grasping force. Here, for sim-
plicity, we consider two examples of the joint configuration
of the gripper as shown in Fig.5. For the one-dof gripper
shown in Fig.5(a), one constraint on the grasping force
is imposed. Let us introduce the unit vector en1 normal
to both the joint axis and the line connecting the center
of rotation of the joint and the contact point. The inner
product of the grasping force and en1 is determined by
the joint torque divided by the distance between the joint
and the contact point. On the other hand, for the two-
dof gripper shown in Fig.5(b), the constraints are imposed
on the grasping forces at both of the contact points. For
the two-dof gripper, constraint on the grasping force is
expressed by using eq.(6):

fdi = eT
niV HiλHi, λHi ≥ 0, (i = 1, 2), (12)

where eni denotes the unit vector perpendicular to the
plane including both the joint axis and the contact point.
While we only focus on simple one or two dof grippers, we
can easily extend the formulation to multi-fingered hands
unless the grasping forces are underdetermined. For more
precise discussion, see[22].

For the cart-table model, the COG moves within the
horizontal direction. This condition provides the following
constraint on the contact forces.

m∑
i=1

zT
LiλLi +

2∑
i=1

zT
HiλHi = mg, (13)

where m denotes the total mass of the robot.
Now we obtain the region of the ZMP for keeping the

dynamical balance of the robot. The ZMP is defined in
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eqs.(8) and (9). The region of ZMP is limited by eqs.
(10), (11), (12), and (13). Although eqs.(8) and (9) are
nonlinear equation with respect to λ̃Li (i = 1, · · · , m)
and λ̃Hi (i = 1, 2), they can be linearized by using the
method shown in the appendix. Now, we formulate the
following linear programming problem:

Minimize/Maximize yZ =
m∑

i=1

yT
Liλ̃Li +

2∑
i=1

yT
Hiλ̃Hi

with respect to λ̃Li (i = 1, · · · , m),
λ̃Hi (i = 1, 2)

Subject to
m∑

i=1

xT
Liλ̃Li +

2∑
i=1

xT
Hiλ̃Hi = xZ

m∑
i=1

zT
Liλ̃Li +

2∑
i=1

zT
Hiλ̃Hi = 1

eT
niV Hiλ̃Hi = fdi/(mg) (i = 1, 2)

λ̃Li ≥ 0, (i = 1, · · · , m)
λ̃Hi ≥ 0, (i = 1, 2)

In the above linear programming problem, the ZMP in
the x direction is one of the constraint conditions, while the
ZMP in the y direction is an objective function. As shown
in Fig.6, by solving the linear programming problem for a
given xZ , we can obtain a point on the boundary of the
region of ZMP. By descretizing xZ and solving the above
linear programming problem for each descretized xZ , we
can obtain the whole shape of the region of ZMP on the
floor.

V. NUMERICAL EXAMPLE

We confirm the proposed method by numerical exam-
ples. The physical parameters of the robot used for the
numerical calculation is shown in Fig.7(a). We model the
friction cone by a four-faced convex polyhedron, whose
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Fig. 7. Simulation Results of ZMP area

friction angle is set to be 30 [deg]. We assume a two dof
gripper at the tip of each arm. The region of ZMP for
keeping the dynamical balance of the robot is shown in
Fig. 7 (b), (c), and (d). As shown in Fig.7(b), the region
of ZMP becomes equivalent to the foot supporting area
when the grasping force is zero. This is equivalent to the
conventional definition of ZMP where the robot can keep
the dynamical balance if the ZMP is included in the foot
supporting area. On the other hand, the stronger the gripper
applies the grasping force, the larger the region of ZMP for
keeping balance of the robot becomes. This also indicates
that, under a certain condition, the stronger the gripper
applies the grasping force, the easier it becomes for the
robot to keep balance since the acceleration generated at
the COG of the robot can be larger.

In the following, we state why the method proposed
in Sections 3 and 4 are necessary condition for keeping
balance of the robot. When a humanoid robot stands on a
flat floor, the position of the ZMP can be defined as

xZ =

(
m∑

i=1

xHifzi

)/(
m∑

i=1

fzi

)
, fzi ≥ 0, (14)

yZ =

(
m∑

i=1

yHifzi

)/(
m∑

i=1

fzi

)
, fzi ≥ 0, (15)

where fHi
�
= [fxi fyi fzi]T . These equations indicate

that the ZMP is a convex set and that the robot can keep
balance if the ZMP is included in the convex hull of the
foot supporting area. In this case, the region of ZMP is
independent of the motion of the robot.

On the other hand, when the hand of a humanoid
robot contacts an environment, the region of the ZMP
changes depending on the motion of the robot[17]. In



the linear programming problem proposed in Section 4,
we consider all the possible contact forces within the
the friction cone constraint (eqs.(10) and the constraint
on the grasping force(eq.(12)). For 3D case with friction,
the grasping forces are affected by the motion of the
robot. In the numerical example shown in Fig.7, (a) shows
the necessary and sufficient condition for keeping balance
of the robot, while, in (b) and (c), the region of ZMP
becomes larger than the actual one. In the next section,
we propose a quantitative test for balancing of a humanoid
robot grasping an environment taking the motion of the
robot into consideration.

VI. FURTHER EXTENSION

In this section, we will consider extending the proposed
method taking the motion of the robot into consideration.
Let us assume that the trajectories of the ZMP, the posi-
tion/velocity of the wrists and the feet, and the joint torque
of the hands are given.

Let P = [Px Py Pz]T and L = [Lx Ly Lz ]T be the lin-
ear/angular momenta of the robot, respectively. For given
trajectories of the ZMP, the linear/angular momenta can be
obtained by solving the following differential equations:

xZ =
−L̇y + (Ṗz + Mg)xG − zGṖx

Ṗz + Mg
, (16)

yZ =
L̇x + (Ṗz + Mg)yG − zGṖy

Ṗz + Mg
, (17)

where pG = [xG yG zG]T denotes the position of the
COG(Center of Gravity) of the robot. The linear/angular
momenta are also expressed by the following equations:

Ṗ =
m∑

i=1

V LiλLi +
n∑

i=1

V HiλHi, (18)

L̇ =
m∑

i=1

(pLi − pG) × V LiλLi

+
n∑

i=1

(pHi − pG) × V HiλHi, (19)

λHi ≥ 0, λLi ≥ 0.

Let τ
�
= [τT

L1 τT
L2 τT

A1 τT
H1 τT

A2τ
T
H2]

T be the joint
torque vector where τLi, τAi, and τHi (i = 1, 2) denote
the torque of the legs, the arms, and the fingers, respec-
tively. The joint torque is obtained as a function of the
contact forces as:

τ =
m∑

i=1

JT
LiV LiλLi +

n∑
i=1

JT
HiV HiλHi + hg, (20)

λHi ≥ 0, λLi ≥ 0,

where JHi and JLi denote the jacobian matrices of the
contact points with respect to the joint variables, and hg

shows the effect of gravity force on the joint torque. For
given linear/angular momenta of the robot, the joint torque
can be calculated based on the inverse dynamics. Thus, we
can judge whether or not the robot can keep balance by
considering eqs.(18), (19), and (20).

VII. EXPERIMENT

The experimental environment is shown in Fig.8 where
it includes a gap whose height is 28[cm]. Beside the gap,
there is a handrail which can be grasped by a humanoid
robot.

We performed experiment by using the humanoid robot
HRP2[23]. The height, the weight, and the total DOF of
HRP2 are h = 1.54[m], m = 58[kg], and 30, respectively.
The motion of the robot climbing up a large gap is shown
in Fig.9. In this experiment, the motion of the robot was
relatively slow. In the figure, the robot grasps the hand
rail(Fig.9(a)∼(c)), steps the left foot onto the gap(Fig.9(d)),
shifts the position of the COG(Fig.9(e)), steps the right
foot onto the gap(Fig.9(f),(g)), and stands up by releasing
the hand from the handrail(Fig.9(h)). When the robot shits
the position of the COG(Fig.9(e)), it is impossible to
keep balance without using the interaction between the
hand and the environment. Also, when stepping the right
foot onto the gap(Fig.9(f),(g)), it becomes difficult for the
robot to keep balance without grasping the handrail. The
experimental result is shown in Fig.10. The robot can stably
climb up the gap by grasping the handrail.

Fig. 8. Experimental environment

VIII. CONCLUSIONS

In this paper, we analyzed the motion of a humanoid
robot grasping a handrail. We formulated the region of
ZMP for keeping the dynamical balance of the robot by
using the linear programming. We showed the occation
where the robot becomes more stable if the the environment
is grasped more strongly. We also performed an experiment
of climbing up a large gap by grasping the handrail.

The formulation of the ZMP analysis taking the mo-
tion of the robot is considered to be our future research
topic. Also, when performing an experiment of grasping a



(a) t=0.0[sec] (b) t=3.75[sec] (c) t=7.5[sec]

(d) t=11.25[sec] (e) t=15.0[sec] (f) t=18.75[sec]

(g) t=22.5[sec] (h) t=26.25[sec] (i) t=30.0[sec]

Fig. 9. Overview of planned motion

handrail, the motion of the robot was slow enough almost
satisfying the statical balance of forces. We will plan the
motion of the robot grasping an environment, and realize
the dynamical motion of climbing up the gap with grasping
a handrail. Furthermore, since the experiment was per-
formed without using the vision sensors, the measurement
of the position of the handrail by using the vision sensor
is also considered to be our future research topic.
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APPENDIX

Additional Comments on eq.(1)
There are two kinds of ZMPs when the hand contacts

an environment[17]. In the ZMP studied in this paper, we
consider all forces acting on the robot as sources of the
ground reaction moment. The ground reaction moment τZ

is given by

τZ = −fL1xZ + fL2(l − xZ) − fH2zH , (21)
= mg(xG − xZ) − mẍGzG. (22)

We note that the second line of the above equation is same
as that of a humanoid robot whose hands do not contact
an environment. Solving above equations, the position of
ZMP is

xZ = (fL2l − fH2zH)/(mg), (23)

= xG − ẍG

g
zG. (24)

This ZMP is same as the Generalized ZMP(GZMP) studied
in [17].

On the other hand, when we only consider the forces
acting at the contact between the floor and the foot, the
ground reaction moment τ ′

Z is given by

τ ′
Z = −fL1x

′
Z + fL2(l − x′

Z), (25)
= mg(xG − x′

Z) − mẍGzG + fH2zH , (26)

where the first line of the above equation is same as
that of a humanoid robot whose hands do not contact an
environment. Solving these equations, we can also obtain
the position of ZMP. This ZMP can be measured by using
force/torque sensor at the ankle of the robot.

Transformation to LP problem
Let us consider the following nonlinear programming

problem:

Minimize or Maximize z = aT x/bT x
With respect to x
Subject to Ax = c

x ≥ 0

The solution of this nonlinear programming problem is
equivalent to that of the following linear programming
problem when bT x > 0 [20], [21]:

Minimize or Maximize z = aT x̃
With respect to x̃, t
Subject to Ax̃ = ct

bT x̃ = 1
x̃ ≥ 0, t > 0
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