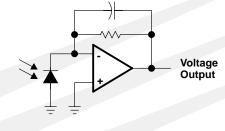


TAOS050 - SEPTEMBER 2003


- Monolithic Silicon IC Containing Photodiode, Operational Amplifier, and Feedback Components
- Converts Light Intensity to a Voltage
- High Irradiance Responsivity, Typically
 69 mV/(μW/cm²) at λ_p = 640 nm (TSL250RD)
 - 62 mV/(μ W/cm²) at λ_p = 940 nm (TSL260RD)
- Single Voltage Supply Operation
- Low Dark (Offset) Voltage ... 10 mV Max
- Low Supply Current . . . 1.1 mA Typical
- Wide Supply-Voltage Range . . . 2.7 V to 5.5 V
- Low-Profile Surface-Mount Package:
 - Clear Plastic for TSL250RD and TSL251RD
 - Visible Light-Cutoff Filter Plastic for TSL260RD and TSL261RD

Description

The TSL250RD, TSL251RD, TSL260RD, and TSL261RD are light-to-voltage optical sensors, each combining a photodiode and a transimpedance amplifier on a single monolithic IC. The TSL250RD and TSL260RD have an equivalent feedback resistance of 16 M Ω and a photodiode measuring 1 square mm. The TSL251RD and TSL261RD have an equivalent feedback resistance of 8 M Ω and a photodiode measuring 0.5 square mm. Output voltage is directly proportional to the light intensity (irradiance) on the photodiode. These devices have improved amplifier offset-voltage stability and low power consumption.

Functional Block Diagram

Terminal Functions

TERMINAL		DECODURTION
NAME	NO.	DESCRIPTION
GND	4	Ground (substrate). All voltages are referenced to GND.
OUT	7	Output voltage.
V _{DD}	6	Supply voltage.

The LUMENOLOGY® Company

Copyright © 2003, TAOS Inc.

800 Jupiter Road, Suite 205 • Plano, TX 75074 • (972) 673-0759

www.taosinc.com

Texas Advanced Optoelectronic Solutions Inc.

TAOS050 - SEPTEMBER 2003

Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{DD} (see Note 1)	6 V
Output current, I _O	±10 mA
Duration of short-circuit current at (or below) 25°C (see Note 2)	5s
Operating free-air temperature range, T _A	- 25°C to 85°C
Storage temperature range, T _{stg}	
Solder conditions in accordance with JEDEC J-STD-020A, maximum temperature	240°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltages are with respect to GND.

2. Output may be shorted to supply.

Recommended Operating Conditions

	MIN	NOM M	AX	UNIT
Supply voltage, V _{DD}	2.7		5.5	V
Operating free-air temperature, T _A	0		70	°C

Electrical Characteristics at V_{DD} = 5 V, T_A = 25°C, R_L = 10 k Ω (unless otherwise noted) (see Notes 3, 4, 5, and 6)

PARAMETER			λ p = 640 nm								λ p = 940 nm							
		TEST CONDITIONS	TSL250RD			TSL251RD			T	SL260R	D	TSL261RD			UNIT			
		CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	1			
VD	Dark voltage	E _e = 0	0	5	10	0	5	10	0	5	10	0	5	10	mV			
V _{OM}	Maximum output voltage	V _{DD} = 4.5 V	3	3.3		3	3.3		3	3.3		3	3.3		V			
	Output voltage	$E_e = 29 \ \mu W/cm^2$	1.5	2	2.5													
		$E_e = 116 \mu\text{W/cm}^2$				1.5	2	2.5							v			
vo		$E_e = 32 \ \mu W/cm^2$							1	2	3				v			
		$E_e = 124 \ \mu W/cm^2$										1	2	3				
R _e	Irradiance responsivity	See Note 7		69			17			62			16		mV/ (μW/ cm ²)			
	mperature	$V_{O} = 2 V @ 25^{\circ}C,$		2			2			8			8		mV/°C			
	cient of t voltage (V _O)	$T_A = 0^{\circ}C$ to $70^{\circ}C$ (see Note 8)		0.1			0.1			0.4			0.4		%/°C			
		$E_e = 29 \ \mu W/cm^2$		1.1	1.7													
Ι.	Supply current	$E_e = 116 \mu\text{W/cm}^2$					1.1	1.7							1			
IDD		$E_e = 32 \ \mu W/cm^2$	32 μW/cm ²			1.1	1.7				mA							
		$E_e = 124 \ \mu W/cm^2$											1.1	1.7	1			

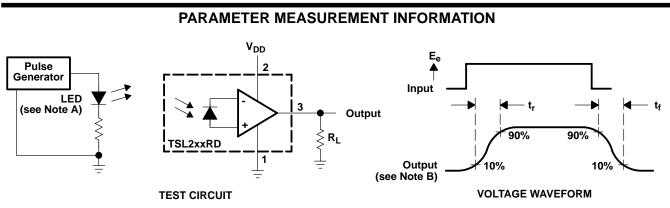
NOTES: 3. Measurements are made with $R_L = 10 \text{ k}\Omega$ between output and ground.

4. Optical measurements are made using small-angle incident radiation from an LED optical source.

5. The 640 nm input irradiance E_e is supplied by an AIInGaP LED with peak wavelength λ_p = 640 nm.

- 6. The 940 nm input irradiance E_e is supplied by a GaAs LED with peak wavelength $\lambda_p = 940$ nm.
- 7. Irradiance responsivity is characterized over the range $V_O = V_D$ to 3 V. The best-fit straight line of Output Voltage V_O versus irradiance E_e over this range will typically have a positive extrapolated V_O value for $E_e = 0$.
- 8. The temperature coefficient of output voltage measurement is made by adjusting irradiance such that V_0 is approximately 2 V at 25°C and then with irradiance held constant, measuring V_0 while varying the temperature between 0°C and 70°C.

Copyright © 2003, TAOS Inc.



The LUMENOLOGY® Company

TAOS050 - SEPTEMBER 2003

			λ p = 640 nm							λ p = 940 nm						
PARAMETER		TEST CONDITIONS	TSL250RD			TSL251RD			T	SL260R	D	TSL261RD			UNIT	
		CONDITIONS		TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
t _r	Output pulse rise time	V _{O(peak)} = 2 V		260			70			260			70		μs	
t _f	Output pulse fall time	V _{O(peak)} = 2 V		260			70			260			70		μs	
Vn	Output noise voltage	E _e = 0, f = 1000 Hz		0.8			0.7			0.8			0.7		μV/ (√(Hz))	

Dynamic Characteristics at V_{DD} = 5 V, T_A = 25°C, R_L = 10 k Ω (unless otherwise noted) (see Figure 1)

NOTES: A. The input irradiance is supplied by a pulsed light-emitting diode with $t_r < 1 \ \mu s$, $t_f < 1 \ \mu s$.

The LUMENOLOGY® Company

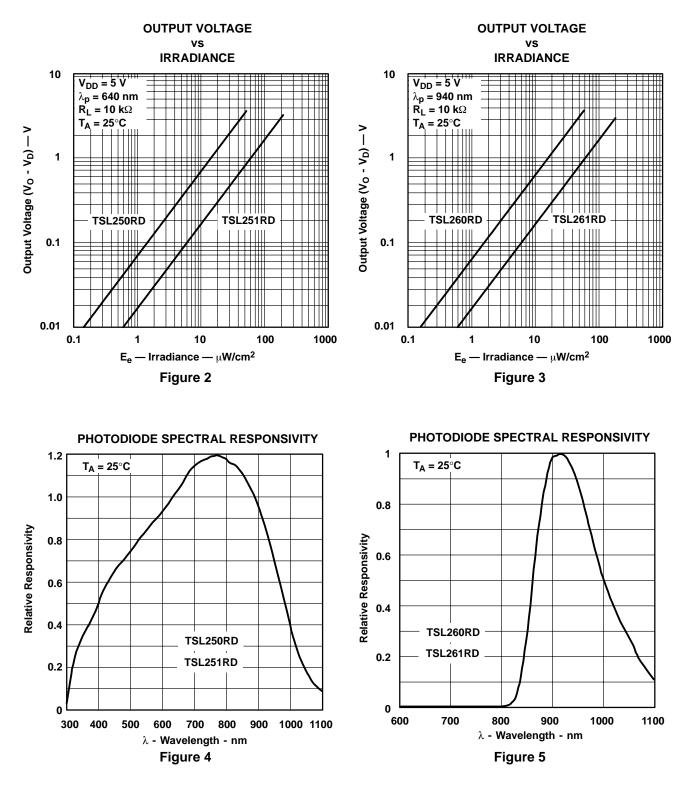
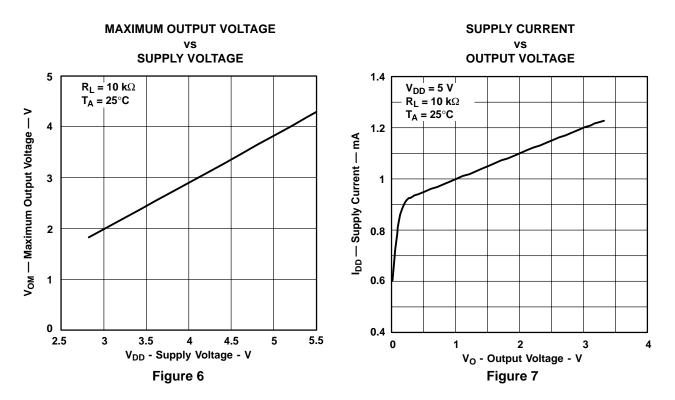

B. The output waveform is monitored on an oscilloscope with the following characteristics: $t_r < 100$ ns, $Z_i \ge 1$ M Ω , $C_i \le 20$ pF.

Figure 1. Switching Times

TAOS050 - SEPTEMBER 2003

TYPICAL CHARACTERISTICS



Copyright © 2003, TAOS Inc.

The LUMENOLOGY® Company

TAOS050 - SEPTEMBER 2003

TYPICAL CHARACTERISTICS

Copyright © 2003, TAOS Inc.

TAOS050 - SEPTEMBER 2003

APPLICATION INFORMATION

Power Supply Considerations

For optimum device performance, power-supply lines should be decoupled by a $0.01-\mu$ F to $0.1-\mu$ F capacitor with short leads connected between VDD and GND mounted close to the device package.

Device Operational Details

The voltage developed at the output pin (OUT) is given by:

$$V_{O} = V_{D} + (R_{e}) (E_{e})$$

where:

Vo	is the output voltage
VD	is the output voltage for dark condition ($E_e = 0$)
R _e	is the device responsivity for a given wavelength of light given in mV/(μ W/cm ²)
Ee	is the incident irradiance in μ W/cm ²

 V_D is a fixed offset voltage resulting primarily from the input offset voltage of the internal op amp. As shown in the equation above, this voltage represents a constant, light-independent term in the total output voltage V_O . At low light levels, this offset voltage can be a significant percentage of V_O . For optimum performance of any given device over the full output range, the value of V_D should be measured (in the absence of light) and later subtracted from all subsequent light measurements (see Figures 2 and 3).

PCB Pad Layout

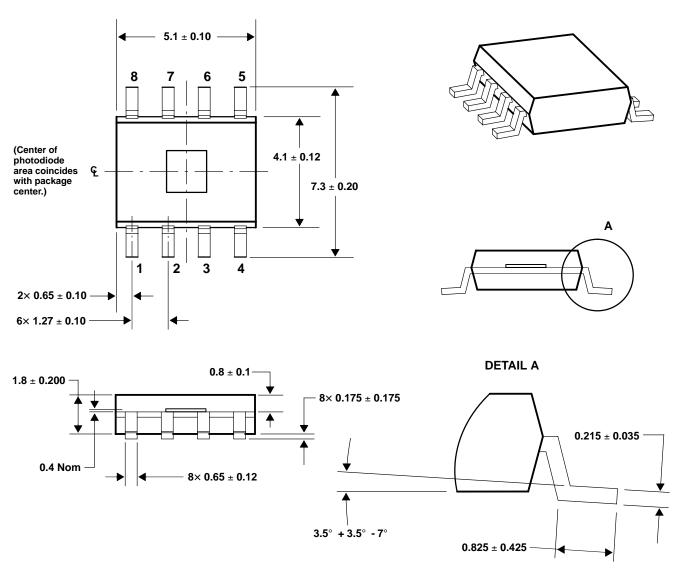
Suggested PCB pad layout guidelines for the D package is shown in Figure 8.

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

The LUMENOLOGY® Company

Copyright © 2003, TAOS Inc.


TAOS050 - SEPTEMBER 2003

MECHANICAL DATA

This SOIC package consists of an integrated circuit mounted on a lead frame and encapsulated with an electrically nonconductive clear plastic compound. The photodiode area is typically 1 mm² for the TSL250RD and TSL260RD, and is typically 0.5 mm² for the TSL251RD and TSL261RD.

PACKAGE D

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

- B. Package is molded with an electrically nonconductive clear plastic compound having an index of refraction of 1.55.
- C. Actual product will vary within the mechanical tolerances shown on this specification. Designs for use of this product MUST allow for the data sheet tolerances.
- D. Pin 4 (GND) is mechanically connected to the die mount pad.
- E. This drawing is subject to change without notice.

Figure 9. Package D — Plastic Small Outline IC Packaging Configuration

The LUMENOLOGY® Company

Copyright © 2003, TAOS Inc.

TAOS050 - SEPTEMBER 2003

PRODUCTION DATA — information in this document is current at publication date. Products conform to specifications in accordance with the terms of Texas Advanced Optoelectronic Solutions, Inc. standard warranty. Production processing does not necessarily include testing of all parameters.

NOTICE

Texas Advanced Optoelectronic Solutions, Inc. (TAOS) reserves the right to make changes to the products contained in this document to improve performance or for any other purpose, or to discontinue them without notice. Customers are advised to contact TAOS to obtain the latest product information before placing orders or designing TAOS products into systems.

TAOS assumes no responsibility for the use of any products or circuits described in this document or customer product design, conveys no license, either expressed or implied, under any patent or other right, and makes no representation that the circuits are free of patent infringement. TAOS further makes no claim as to the suitability of its products for any particular purpose, nor does TAOS assume any liability arising out of the use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages.

TEXAS ADVANCED OPTOELECTRONIC SOLUTIONS, INC. PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN CRITICAL APPLICATIONS IN WHICH THE FAILURE OR MALFUNCTION OF THE TAOS PRODUCT MAY RESULT IN PERSONAL INJURY OR DEATH. USE OF TAOS PRODUCTS IN LIFE SUPPORT SYSTEMS IS EXPRESSLY UNAUTHORIZED AND ANY SUCH USE BY A CUSTOMER IS COMPLETELY AT THE CUSTOMER'S RISK.

LUMENOLOGY, TAOS, the TAOS logo, and Texas Advanced Optoelectronic Solutions are registered trademarks of Texas Advanced Optoelectronic Solutions Incorporated.

The LUMENOLOGY® Company