49th INTERNATIONAL MATHEMATICAL OLYMPIAD MADRID (SPAIN), JULY 10-22, 2008

Problem 1. An acute-angled triangle $A B C$ has orthocentre H. The circle passing through H with centre the midpoint of $B C$ intersects the line $B C$ at A_{1} and A_{2}. Similarly, the circle passing through H with centre the midpoint of $C A$ intersects the line $C A$ at B_{1} and B_{2}, and the circle passing through H with centre the midpoint of $A B$ intersects the line $A B$ at C_{1} and C_{2}. Show that $A_{1}, A_{2}, B_{1}, B_{2}$, C_{1}, C_{2} lie on a circle.

Problem 2. (a) Prove that

$$
\frac{x^{2}}{(x-1)^{2}}+\frac{y^{2}}{(y-1)^{2}}+\frac{z^{2}}{(z-1)^{2}} \geq 1
$$

for all real numbers x, y, z, each different from 1 , and satisfying $x y z=1$.
(b) Prove that equality holds above for infinitely many triples of rational numbers x, y, z, each different from 1, and satisfying $x y z=1$.

Problem 3. Prove that there exist infinitely many positive integers n such that $n^{2}+1$ has a prime divisor which is greater than $2 n+\sqrt{2 n}$.

49th INTERNATIONAL MATHEMATICAL OLYMPIAD MADRID (SPAIN), JULY 10-22, 2008

Problem 4. Find all functions $f:(0, \infty) \rightarrow(0, \infty)$ (so, f is a function from the positive real numbers to the positive real numbers) such that

$$
\frac{(f(w))^{2}+(f(x))^{2}}{f\left(y^{2}\right)+f\left(z^{2}\right)}=\frac{w^{2}+x^{2}}{y^{2}+z^{2}}
$$

for all positive real numbers w, x, y, z, satisfying $w x=y z$.
Problem 5. Let n and k be positive integers with $k \geq n$ and $k-n$ an even number. Let $2 n$ lamps labelled $1,2, \ldots, 2 n$ be given, each of which can be either on or off. Initially all the lamps are off. We consider sequences of steps: at each step one of the lamps is switched (from on to off or from off to on).

Let N be the number of such sequences consisting of k steps and resulting in the state where lamps 1 through n are all on, and lamps $n+1$ through $2 n$ are all off.

Let M be the number of such sequences consisting of k steps, resulting in the state where lamps 1 through n are all on, and lamps $n+1$ through $2 n$ are all off, but where none of the lamps $n+1$ through $2 n$ is ever switched on.

Determine the ratio N / M.

Problem 6. Let $A B C D$ be a convex quadrilateral with $|B A| \neq|B C|$. Denote the incircles of triangles $A B C$ and $A D C$ by ω_{1} and ω_{2} respectively. Suppose that there exists a circle ω tangent to the ray $B A$ beyond A and to the ray $B C$ beyond C, which is also tangent to the lines $A D$ and $C D$. Prove that the common external tangents of ω_{1} and ω_{2} intersect on ω.

