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1. (SHE 12.5)

4. Given ak = (−1)k 1
k lnk , we know that ∑ |ak| = ∑

1
k lnk diverges by the integral test (see 11.2 #21), but ∑ak

converges by the alternating series test, so the series converges conditionally and not absolutely.

6. As lim
k→∞

k
lnk

H= ∞, the alternating series test does not apply and the series diverges.

12. The values of sin kπ

4 alternate between 0,±1/
√

2, and ±1. The limit as k→ ∞ clearly does not exist, so
again the series diverges by the basic divergence test.

16. Since lim
k→∞

1√
k(k +1)

= 0 and the series alternate in sign, the series converges by the alternating series test.

Using the limit comparison test with bk = 1
k , the series ∑

∣∣∣∣ (−1)k√
k(k+1)

∣∣∣∣= ∑
1√

k(k+1)
diverges, so the series in

question conditionally converges (and not absolutely).
28. Since every absolutely convergent series converges, it is sufficient to show that the series absolutely con-

verges. Note that |ak|=
∣∣∣ sin(kπ/2)

k
√

k

∣∣∣< 1
k3/2 , so by the comparison test, the series converges absolutely.

32. With any alternating series, the error estimate of the actual series and the partial sum sn is approximately
an+1 (Equation 11.4.5). Therefore the error estimate between ∑(−1)k+1 1

k and s20 is a21 = 1
21 .

46. If the sequence of terms {an} is nonincreasing instead of decreasing, the alternating series still converges.
To see this, we can make slight changes of the proof of Theorem 11.4.4. The even partial sums s2m
are now nonnegative. Since s2m+2 ≤ s2m, the sequence of even terms converges, so s2m → L. Since
s2m+1 = s2m−a2m+1 and a2m+1→ 0, we have s2m+1→ L. Hence sn→ L.

2. (SHE 12.8)

6. Applying the ratio test, lim
k→∞

∣∣∣∣2k+1xk+1

k2
k2

2kxk

∣∣∣∣= lim
k→∞

∣∣∣∣∣2x
(

k
k +1

)2
∣∣∣∣∣= 2|x|.

Hence the series converges when 2|x|< 1, or |x|< 1
2 and diverges when |x|> 1

2 . (Therefore the radius of
convergence is 1

2 .) To find the interval of convergence, we check the points |x|= 1
2 . If x = 1

2 , then we have

∑
2k

k2 · 1
2k = ∑

1
k2 , which is a convergent p-series. if x =− 1

2 , then we have ∑
(−1)k

k2 which converges by the
alternating series test. Therefore the interval of convergence is [− 1

2 , 1
2 ].

8. Applying the ratio test, lim
k→∞

∣∣∣∣∣ (−1)k+1xk+1
√

k +1
·
√

k
(−1)kxk

∣∣∣∣∣= lim
k→∞

√
k

k +1
|x|= |x|.

Hence the series converges when |x|< 1 and diverges when |x|> 1. If x = 1, then we have ∑
(−1)k
√

k
which

converges by the alternating series test. If x = −1, then we have ∑
(−1)k·(−1)k
√

k
= ∑

1√
k
, which diverges by

the p-series test. Therefore the interval of convergence is (−1,1].

10. Applying the ratio test, lim
k→∞

∣∣∣∣ xk+1

(k +1)22k+1
k22k

xk

∣∣∣∣= lim
k→∞

1
2
|x|
(

k
k +1

)2

=
1
2
|x|,

so the series converges when |x| < 2 and diverges when |x| > 2. If x = 2, then we have ∑
1
k2 which

converges. If x = −2 then we have ∑
(−1)k

k2 which also converges by the alternating series test. Therefore
the interval of convergence is [−2,2].

14. Applying the ratio test, lim
k→∞

∣∣∣∣ xk+1 lnk
ln(k +1) · xk

∣∣∣∣= lim
k→∞
|x| lnk

ln(k +1)
= |x|.

The series converges when |x| < 1 and diverges when |x| > 1. If x = 1, we have ∑
1

lnk which diverges by

comparison with the harmonic series. If x =−1, then we have ∑
(−1)k

lnk which converges by the alternating
series test. Hence the interval of convergence is [−1,1).



16. Applying the ratio test, lim
k→∞

∣∣∣∣ (k +1)ak+1xk+1

kakxk

∣∣∣∣= lim
k→∞

k +1
k
|ax|= |ax|.

The series converges when |x|< 1
|a| and diverges if |x|> 1

|a| . If x = 1
|a| , then we have ∑k ak

|a|k , which diverges

by the basic divergence test. The case for x =− 1
|a| is identical, so the interval of convergence is (− 1

|a| ,
1
|a| ).

26. Applying the ratio test, lim
k→∞

∣∣∣∣ (−e)k+1xk+1

(k +1)2
k2

(−e)kxk

∣∣∣∣= lim
k→∞
|x|e
(

k
k +1

)2

= e|x|.

The series converges when |x| < 1
e and diverges when |x| > 1

e . If x = 1
e , then the series becomes ∑

(−1)k

k2 ,
which converges by the alternating series test. If x =− 1

e , then the series becomes ∑
1
k2 , which converges.

The interval of convergence is [− 1
e , 1

e ].

46. It is easy to see (by induction) that sk =
k

∑
n=1

1
n

< k for all positive integers k. Furthermore ∑kxk converges

for |x| < 1 by the ratio test. Therefore ∑skxk converges for at least |x| < 1 by the comparison test. But if
|x|= 1, then we have either ∑sk or ∑(−1)ksk. But neither of these sums converge; by the basic divergence
test

lim
k→∞

sk =
∞

∑
n=1

1
n

diverges, so the series in question must diverge for all |x|> 1 (Theorem 12.8.2, statement 2). The interval
of convergence is therefore (−1,1).

3. (SHE 12.9)

2. Using the geometric series, we have

1
(1− x)3 =

1
2

d2

dx2

(
1

1− x

)
=

1
2

d2

dx2

∞

∑
n=0

xn =
1
2

∞

∑
n=2

n(n−1)xn−2 =
∞

∑
n=2

n(n−1)
2

xn−2.

6. ln(2−3x) = ln2+ ln(1− 3
2 x) = ln2− 3

2 x− 1
2 ( 3

2 )2x2− 1
3 ( 3

2 )3x3−·· ·− 1
n+1 ( 3

2 )n+1xn+1−·· · .

14.
1− x
1+ x

=
1

1+ x
− x

1+ x
=

∞

∑
k=0

(−1)kxk− x
∞

∑
k=0

(−1)kxk = 1+2
∞

∑
k=0

(−1)k+1xk+1.

28. Substituting the power series of cosx and integrating term-by-term,∫ x

0

1− cos t
t2 dt =

∫ x

0

1
t2

[
1−

∞

∑
k=0

(−1)k t2k

(2k)!

]
dt

=
∫ x

0

1
t2

[
∞

∑
k=1

(−1)k+1 t2k

(2k)!

]
dt =

∫ x

0

[
∞

∑
k=1

(−1)k+1 t2k−2

(2k)!

]
dt

=
∞

∑
k=1

(−1)k+1

(2k)!
x2k−1

2k−1
.

42. First note that the power series for ex =
∞

∑
k=0

xk

k!
. To obtain the power series required, note that

ex3
=

∞

∑
k=0

x3k

k!
=⇒ xex3

=
∞

∑
k=0

x3k+1

k!
.

4. (i) lim
k→∞

∣∣∣∣ (k +1)k+1xk+1

(k +1)!
k!

kkxk

∣∣∣∣= lim
k→∞

(k +1)k

kk |x|= lim
k→∞

(
1+

1
k

)k

|x|= e|x|.

Hence by the ratio test, the series converges for |x|< 1
e , so the radius of convergence is R = 1

e .



(ii) lim
k→∞

∣∣∣∣ (k +1)k+1xk+1

[(k +1)!]2
(k!)2

kkxk

∣∣∣∣= lim
k→∞

(k +1)k−2

kk |x|= lim
k→∞

(
1+

1
k

)k

· 1
(k +1)2 |x|= 0.

The limit is always less than 1, so by the ratio test, the series converges for all x. Therefore, the radius of
convergence is R = ∞.

(iii) lim
k→∞

∣∣∣∣∣ (k +1)k+1xk+1

[(k +1)!]3/2

(k!)3/2

kkxk

∣∣∣∣∣= lim
k→∞

(k +1)k− 1
2

kk |x|= lim
k→∞

(
1+

1
k

)k

· 1
(k +1)1/2 |x|= 0.

Again, the limit is always less than 1, so the series converges for all x, and the radius of convergence is
R = ∞.

(iv) For this series, neither the ratio test nor the root test helps. However, note that k
√

k! <
k√kk = k, and ∑kxk

converges for all |x| < 1 by the ratio test, so by the comparison test, the series ∑
k
√

k!/xk converges for
|x| < 1. What about |x| ≥ 1? At x = 1, the series is merely ∑

k
√

k!, but k
√

k! > k
√

k and lim
k→∞

k√k = 1, so

lim
k→∞

k√k! 6= 0, so the series must diverge by the basic divergence test. So by statement 2 of Theorem 12.8.2,

the series in question must diverge for all |x|> 1. Hence, the radius of convergence is R = 1.

5. Starting with
1

1− x
=

∞

∑
k=0

xk, we have

d
dx

(
1

1− x

)
=

d
dx

∞

∑
k=0

xk =
∞

∑
k=1

kxk−1 =⇒ x
d
dx

(
1

1− x

)
= x

∞

∑
k=1

kxk−1 =
∞

∑
k=1

kxk

d
dx

(
x

d
dx

(
1

1− x

))
=

∞

∑
k=1

k2xk−1 =⇒ x
d
dx

(
x

d
dx

(
1

1− x

))
=

∞

∑
k=1

k2xk = ∑
k=0

k2xk.

But x
d
dx

(
x

d
dx

(
1

1− x

))
=

x
(1− x)2 +

2x2

(1− x)3 , which is the equation for
∞

∑
k=0

k2xk.

6. (a) To prove that an ≤ 2n for all n, we use complete induction. It is obvious that the statement is true for n = 0
and n = 1. Now suppose ak ≤ 2k and ak+1 ≤ 2k+1 for some integer k. Then

ak+2 = ak+1 +ak ≤ 2k+1 +2k = 2 ·2k +2k = 3 ·2k < 4 ·2k = 2k+2,

which is what we needed to show.
(b) Since ∑2nxn = ∑(2x)n converes for |x|< 1

2 (which can be easily verified by the ratio test), then by part (a)
and the comparison test, the series ∑anxn converges for |x| < 1

2 , so the radius of convergence must be at
least 1

2 .

(c) Since f (x) =
∞

∑
n=0

anxn, then

f (x)− x f (x)− x2 f (x) =
∞

∑
n=0

anxn− x
∞

∑
n=0

anxn− x2
∞

∑
n=0

anxn

=
∞

∑
n=0

anxn−
∞

∑
n=1

an−1xn−
∞

∑
n=2

an−2xn

= a0 +(a1−a0)x+
∞

∑
n=2

(an−an−1−an−2)xn.

But a0 = a1 = 1 and an− an−1− an−2 = 0 (by definition of the Fibonacci sequence), so f (x)− x f (x)−
x2 f (x) = 1. Solving for f gives us f (x) = 1/(1− x− x2).

(d) Since
∞

∑
n=0

anxn is the power series for f , then it is also the Taylor series of f , so the result is obvious from

Equation 12.6.4.



7. (i) From question 5, we have

x
d
dx

(
1

1− x

)
=

x
(1− x)2 =

∞

∑
k=1

kxk.

In particular if x = 1
2 , we have

∞

∑
k=1

k
2k =

1
2

(1− 1
2 )2

= 2.

(ii) Using the geometric series
∞

∑
k=0

xk =
1

1− x
, we multiply both sides by x and differentiate twice, giving us

∞

∑
k=0

xk+1 =
x

1− x
=⇒

∞

∑
k=1

(k +1)kxk−1 =
d2

dx2

(
x

1− x

)
=

2
(1− x)2 +

2x
(1− x)3

=⇒
∞

∑
k=1

(k +1)kxk =
2x

(1− x)2 +
2x2

(1− x)3 .

(iii) We need to find the power series for ∑k2xk. This is done in question 5:

∞

∑
k=0

k2xk =
x

(1− x)2 +
2x2

(1− x)3 =⇒
∞

∑
k=1

k2

2k =
1
2
1
4

+
1
2
1
8

= 6,

where we let x = 1
2 . Hence the sum is 6.

(iv) It can be easily shown either by the basic divergence test or the ratio test that the series must diverge.

8. The power series for et2
is obtained by using the power series for et :

et =
∞

∑
k=0

tk

k!
=⇒ et2

=
∞

∑
k=0

t2k

k!
, t ∈ R.

Now integrating both sides,∫ x

0
et2

dt =
∫ x

0

∞

∑
k=0

t2k

k!
dt =

∞

∑
k=0

[
t2k+1

(2k +1)k!

]x

0
=

∞

∑
k=0

x2k+1

(2k +1)k!
.

The original power series converges for all x. By Theorem 12.9.4, integrating term-by-term preserves the radius
of convergence, so the power series converges to the integral for all x.

9. Let a0 = 1, a1 = 1, and an+2 = an+1 +6an for n≥ 0.

(a) a2 = 7, a3 = 13, a4 = 55.

(b) To prove that an ≤ 6n for all n, we use complete induction. Since a0 = 1 ≤ 60 and a1 = 1 ≤ 61, the
statement is true for n = 0 and n = 1. Now suppose ak ≤ 6k and ak+1 ≤ 6k+1 for some integer k. Then

ak+2 = ak+1 +ak ≤ 6k+1 +6k = 6 ·6k +6k = 7 ·6k < 36 ·6k = 6k+2,

which is what we needed to show.

(c) Since ∑6nxn = ∑(6x)n converes for |x|< 1
6 (which can be easily verified by the ratio test), then by part (b)

and the comparison test, the series ∑anxn converges for |x| < 1
6 , so the radius of convergence must be at

least 1
6 .



(d) Since f (x) =
∞

∑
n=0

anxn, then

f (x)− x f (x)−6x2 f (x) =
∞

∑
n=0

anxn− x
∞

∑
n=0

anxn−6x2
∞

∑
n=0

anxn

=
∞

∑
n=0

anxn−
∞

∑
n=1

an−1xn−6
∞

∑
n=2

an−2xn

= a0 +(a1−a0)x+
∞

∑
n=2

(an−an−1−6an−2)xn.

But a0 = a1 = 1 and an−an−1−6an−2 = 0 (by definition), so f (x)− x f (x)−6x2 f (x) = 1. Solving for f
gives us f (x) = 1/(1− x−6x2).

(e) By partial fractions f (x) =
2
5

2x+1
−

3
5

3x−1
=

2
5

1
1+2x

+
3
5

1
1−3x

.

(f) Note that 1/(1+2x) and 1/(1−3x) can both be written as power series, so

f (x) =
2
5

∞

∑
n=0

(−2)nxn +
3
5

∞

∑
n=0

3nxn =
∞

∑
n=0

[
(−2)n 2

5
+3n · 3

5

]
xn.

But f (x) =
∞

∑
n=0

anxn, so equating coefficients we get an = (−2)n · 2
5

+3n · 3
5

, which is exactly what we need

to prove. This gives a non-recursive formula for an!


