MAT 137Y, 2007-2008, Solutions to Problem Set 15
1. (SHE 12.5)
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Given a; = (—l)kk]nk, we know that ¥ |a;| = ¥ - Fnk diverges by the integral test (see 11.2 #21), but ¥ a;
converges by the alternating series test, so the series converges conditionally and not absolutely.

k u
. As lim — = oo, the alternating series test does not apply and the series diverges.
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12. The values of sin % alternate between 0,4+1/v/2 v/2, and £1. The limit as k — oo clearly does not exist, so
again the series drverges by the basic divergence test.
1
16. Since ]}im m = 0 and the series alternate in sign, the series converges by the alternating series test.
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Using the limit comparison test with by = ¢, 5| = Yy ] diverges, so the series in
question conditionally converges (and not absolutely).
28. Since every absolutely convergent series converges, it is sufficient to show that the series absolutely con-
verges. Note that |a;| = sin k”/ 2) ‘ < /2, so by the comparison test, the series converges absolutely.
32. With any alternating series, the error estimate of the actual series and the partial sum s, is approximately
ay+1 (Equation 11.4.5). Therefore the error estimate between Y (—1 )k‘H L and 5o is ar) = 211
46. If the sequence of terms {ay, } is nonincreasing instead of decreasing, the alternating series still converges.
To see this, we can make slight changes of the proof of Theorem 11.4.4. The even partial sums s7,,
are now nonnegative. Since sy,42 < S2,,, the sequence of even terms converges, so sy, — L. Since
S2m+1 = S2m — Aam+1 and a1 — 0, we have sp,,11 — L. Hence s, — L.
2. (SHE 12.8)
. ) gkt lkl g2 . k\2
6. Applying the ratio test, ;}EI;, e k| = kln:r; 2x <k+1> =2|x].
Hence the series converges when 2|x| < 1, or |x| < § and diverges when |x| > }. (Therefore the radius of
convergence is % ) To find the interval of convergence, we check the points \x\ =1 Ifx= ; then we have
Z . 2k =yl 2> Which is a convergent p-series. if x =
alternatlng series test. Therefore the interval of convergence is [— é, 2}.
(_ 1 )k+lxk+l \/]; k
8. Applying the ratio test, lnn . Him X .
pplying AL e Sl o v B "\ e 1 x| = |x]
Hence the series converges when |x| < 1 and diverges when |x| > 1. If x = 1, then we have Z * which
k
converges by the alternating series test. If x = —1, then we have }_ % =y e which dlverges by
the p-series test. Therefore the interval of convergence is (—1, 1].
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10. Applying the ratio test, hm ——T = = x|,
PPyIng k12t o |~ 2| |<k+l) il
so the series converges when |x| < 2 and diverges when |x| > 2. If x =2, then we have Zk]—z which
converges. If x = —2 then we have ): k2 Which also converges by the alternating series test. Therefore
the interval of convergence is [—2,2].
Kk lnk Ink
14. Applying the ratio test, hm ————— | = lim x| ——= = [x|.
pplying fotest, lim |4y |~ A Mgy ~ X

The series converges when |x| < 1 and diverges when |x| > 1. If x = 1 we have ¥ ;. which diverges by

comparison with the harmonic series. If x = —1, then we have Z Wthh converges by the alternating
series test. Hence the interval of convergence is [—1,1).
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The series converges when |x| < |a‘ and diverges if [x| >

. +1
= lim . lax| = |ax|.

Applying the ratio test, 11m Jin
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|a| Ifx= \al then we have Zk‘ e which diverges

by the basic divergence test. The case for x = — W is identical, so the interval of convergence is (— L L).
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la]* [al
0 \2
= lim |x|e ({ —— | =elx]|.
(k+1)2  (—e)fxk| koo k+1
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The series converges when |x| < 1 and diverges when |x| > 1. If x = L, then the series becomes ¥ kz) ,

which converges by the alternating series test. If x = —%, then the series becomes ¥ - 72> Which converges.

The interval of convergence is [—1, 1].

Applying the ratio test, lim

—00
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It is easy to see (by induction) that s; = Z — < k for all positive integers k. Furthermore ¥ kx* converges
n
n=1
for |x| < 1 by the ratio test. Therefore Y s;x* converges for at least |x| < 1 by the comparison test. But if
|x| = 1, then we have either ¥ s or ¥'(—1)Xs;. But neither of these sums converge; by the basic divergence

test
1

lim s = i -
n=1
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diverges, so the series in question must diverge for all |x| > 1 (Theorem 12.8.2, statement 2). The interval
of convergence is therefore (—1,1).

3. (SHE 12.9)
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Using the geometric series, we have
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Substituting the power series of cosx and integrating term-by-term,

X ] —cost X o 12k
/0 tzos dt:/o 2 [1‘,{220(‘”'(@/()!] i
x 1 oo t2k x | o t2k72
:/0 = L;(_l)k“(z]{)!] dt:/o L;(—l)k“(%)!] dt
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First note that the power series for ¢* = Z ik To obtain the power series required, note that
k=0 "

+

3k [ x3k+1
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(i) lim (ke D7 AT K :lim( —]tk) x:kh_r,?o<l+k> |x| = elx]|.

k—soo (k+1)!  Kxk| ke
Hence by the ratio test, the series converges for |x| < é, so the radius of convergence is R = 1
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limit is always less than 1, so by the ratio test, the series converges for all x. Therefore, the radius of

convergence is R = oo,
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Again, the limit is always less than 1, so the series converges for all x, and the radius of convergence is

R =

oo,

(iv) For this series, neither the ratio test nor the root test helps. However, note that k! < ik = k, and kak
converges for all [x| < 1 by the ratio test, so by the comparison test, the series ¥ v/k!/x* converges for

|x| < 1. What about |x| > 1? At x = 1, the series is merely ¥ v/k!, but v/k! > v/k and lim Vk=1, so

lim

k—so0

V! k! # 0, so the series must diverge by the basic divergence test. So by statement 2 of Theorem 12.8.2,

the series in question must diverge for all |x| > 1. Hence, the radius of convergence is R = 1.
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5. Starting w1th  — Z , we have

k=0

d< > kakl dx< >_kax"1 Zk)ﬂ‘
d( ( )) ik”1=>Xi(ic<11x)>:,;k2"k:,§w‘

d d 1 252 >
Butxd ( ( )) = ( r A , which is the equation for Z K2k,

dx \1—x 1—-x)2  (1—-x)3 =

6. (a) To prove that a, < 2" for all n, we use complete induction. It is obvious that the statement is true for n =0
and n = 1. Now suppose a; < 2F and a;,; < 25*! for some integer k. Then

Arpn = ap +ap < 28142k =20k ok — 3.0k < 4.0k — pk+2

which is what we needed to show.

(b) Since Y. 2"x" =Y (2x)" converes for |x| < % (which can be easily verified by the ratio test), then by part (a)

and

the comparison test, the series Y a,x" converges for |x| < % so the radius of convergence must be at

least l

(c) Since f(x Z ax", then

But

n=0
Fx) —xf(x) —x*f(x) Zanx foanx —X Zanx
= Z apx’ — Z ap_1xX" — Z ay_ox"
n=0 n=1 n=2
=ag+ (a1 —ao)x+ Y (an— an—1 —an-2)x".
n=2
ap =a; = 1 and a, — a,—1 — a,—» = 0 (by definition of the Fibonacci sequence), so f(x) —xf(x) —

x> f(x) = 1. Solving for f gives us f(x) = 1/(1 —x—x?).
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(d) Since Z ayx" is the power series for f, then it is also the Taylor series of f, so the result is obvious from

n=0
Equation 12.6.4.



7. (i) From question 5, we have

k=1
o 1
In particular if x = %, we have Z %= (1_#)2 =2
k=1 2
s 1
(ii) Using the geometric series Z xk = 1% we multiply both sides by x and differentiate twice, giving us
k=0 X
') oo 2
1 X 1 d X 2 2x
X = = ) k+Dkx"""'=— ( > = +
,;0 1—x ,;l dx* \1—x (1-x)2 (1—x)3
= 2x 2x?
= Y (k+ Dkt = :
(e A (e
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(iii) We need to find the power series for ¥ k%x*. This is done in question 5:
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= (1-x)2 (1—-x)3 = 2k
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where we let x = % Hence the sum is 6.

(iv) It can be easily shown either by the basic divergence test or the ratio test that the series must diverge.
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8. The power series for ¢’ is obtained by using the power series for ¢':
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Now integrating both sides,

/x tzd /x o [2k 4 i |: [2k+1 ]x i x2k+1
e = —dt = RS — ER—
0 o Bk T ARk, A 2k+ D!

The original power series converges for all x. By Theorem 12.9.4, integrating term-by-term preserves the radius
of convergence, so the power series converges to the integral for all x.

9. Letag=1,a; =1, and a1 = ay+1 + 6a, forn > 0.

@) ap =7,a3 =13, a4 = 55.
(b) To prove that a,, < 6" for all n, we use complete induction. Since agp =1 < 6% and a; = 1 < 6!, the

statement is true for 7 = 0 and n = 1. Now suppose a; < 6% and a;; < 6¢*! for some integer k. Then
apyr = ar1 +ap <6 46k =6.6 46 =7-65 <36.6° = 652,

which is what we needed to show.

(c) Since Y 6"x" =Y (6x)" converes for |x| < % (which can be easily verified by the ratio test), then by part (b)
and the comparison test, the series } a,x" converges for |x| < é, so the radius of convergence must be at

1
least 5



(d) Since f(x) Z a,x", then
n=0

F(x) = xf(x) — 6x%f(x) Za,,x foanx 76x22an
= Zanx"f Zan,]x”f62an,2x"

=ap+ (a; —ao)x Z _1—6a,_2)x"

But ap = a; = 1 and @, —a,_1 — 6a,_» = 0 (by definition), so f(x) —xf(x) — 6x>f(x) = 1. Solving for f
gives us f(x) = 1/(1 —x—6x?).
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(f) Note that 1/(14 2x) and 1/(1 — 3x) can both be written as power series, so

(e) By partial fractions f(x) =

2 & 3
f(x):ilgo 2)"" + ¢ Z3”xﬂ Z{ +3" 5] .
. n 2 n 3 . :
But f(x Z a,x", so equating coefficients we get a, = (—2)" - = +3" - =, which is exactly what we need

n=0 5 5

to prove. This gives a non-recursive formula for a,,!



