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4. The function f (x) = 1− x2 is decreasing on the interval [0,1], so mi = f (xi) and Mi = f (xi−1)
for all i. Hence,

L f (P) = 1
4 ·

15
16 + 1

4 ·
3
4 + 1

2 ·0 = 27
64 , U f (P) = 1

4 ·1+ 1
4 ·

15
16 + 1

2 ·
3
4 = 55

64 .

10. The function f (x) = cosx is decreasing on the interval [0,π], so mi = f (xi) and Mi = f (xi−1) for
all i. In similar fashion to the solutions above, we get

L f (P) = 1
2 ·

π

3 +0 · π

6 +(−1) · π

2 =−π

3 , U f (P) = 1 · π

3 + 1
2 ·

π

6 +0 · π

2 = 5π

12 .

32. Suppose P = {x0,x1, · · · ,xn} is a regular partition of [a,b]. Then xk − xk−1 = ∆x for all k =
1, · · · ,n. Thus,

L f (P) = (m1 +m2 + · · ·+mn)∆x, U f (P) = (M1 +M2 + · · ·+Mn)∆x.

But f is continuous and decreasing. Therefore mi = f (xi) and Mi = f (xi−1). Thus

U f (P)−L f (P) = ∆x
[(

f (x0)+ f (x1)+ · · ·+ f (xn−1)
)
−
(

f (x1)+ f (x2)+ · · ·+ f (xn)
)]

= ∆x ·
(

f (x0)− f (xn)
)

= ∆x ·
(

f (a)− f (b)
)
.

38. (a) Given f (x) = x2 and P is the regular partition of [0,b], then mi = f (xi−1) since f is increas-
ing. Also, ∆xi = b

n and xi = ib
n for all i. Therefore,

L f (P) =
b
n

( f (x0)+ f (x1)+ · · ·+ f (xn−1)) =
b
n

[
02 +

(
b
n

)2

+
(

2b
n

)2

+ · · ·+
(

(n−1)b
n

)2
]

=
b3

n3

[
12 +22 + · · ·+(n−1)2] .

(b) Similar to part (a), we get

U f (P) =
b
n

( f (x1)+ f (x2)+ · · ·+ f (xn)) =
b
n

[(
b
n

)2

+
(

2b
n

)2

+ · · ·+
(

nb
n

)2
]

=
b3

n3

[
12 +22 + · · ·+n2] .

(c) Using the result from question 38, we have

L f (P) =
b3

n3
n(n−1)(2n−1)

6
, U f (P) =

b3

n3
n(n+1)(2n+1)

6
.

Applying limits,

lim
n→∞

L f (P) = lim
n→∞

n(n−1)(2n−1)
6n3 =

1
3
, lim

n→∞
U f (P) = lim

n→∞

n(n+1)(2n+1)
6n3 =

1
3
,

so
∫ b

0
x2 dx =

1
3

b3.
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12. If F(x) =
∫ x

2
(t + 1)3 dt, then F ′(x) = (x + 1)3. So F ′(−1) = 0, F ′(0) = 1, F ′(1

2) = 27
8 , and

F ′′(x) = 3(x+1)2.

26. Let f (x) =
∫ x

1

√
1− t2 dt and g(x) = cosx. Then we must differentiate F(x) = f (g(x)), which

by the Chain Rule is f ′(g(x)) ·g′(x). Hence

F ′(x) =
√

1− cos2 x · (−sinx) =−
√

sin2 xsinx =−|sinx|sinx.

36. Suppose
∫ x

0

[
t
∫ t

1
f (u) du

]
dt. Then F ′(x) = x

∫ x

1
f (u) du. Hence F ′(1) = 1 ·0 = 0. Differen-

tiating again we have (by the product rule) F ′′(x) =
∫ x

1 f (u) du+ x f (x), so F ′′(1) = 0+ f (1) =
f (1).
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16.
∫ a

0
(a2x− x3) dx =

[
a2x2

2
− x4

4

]a

0
=

a4

4
.

34.
∫ π

2

0

[
d
dx

sin3 x
]

dx =
[
sin3 x

] π

2

0
= 1.

46. Note that
∫ 2

−4
(2x+3)dx =

[
x2 +3x

]2

−4
= 6, but

∫ 2

−4
|2x+3|dx =

∫ −3/2

−4
(−2x−3)dx+

∫ 2

−3/2
(2x+3)dx =

[
−x2−3x

]−3/2

−4
+
[
x2 +3x

]2

−3/2
=

37
2

.
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16. A =
∫ 16

0

√
x− 1

4
xdx =

32
3

. The sketch is given below.

22. A =
∫ 4

0
(x2 +

√
x) dx =

80
3

. The sketch is given above center.

36. The sketch is given above right. The region consists of two identical regions, so by symmetry,

A = 2
∫

π/2

0
(1+ cosx−1) dx = 2sinx

∣∣∣π/2

0
= 2.
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28. We have f ′(x) = x− x2

2 +C, but f ′(2) = 1 so f ′(x) = x− x2

2 +1. Hence f (x) = x2

2 −
x3

6 + x +K
for some constant K. But f (2) = 0, so f (x) =− x3

6 + x2

2 + x− 8
3 .

6 Let F(x) =
∫ x

0
f (u)(x−u)du =

∫ x

0
x f (u)−u f (u)du = x

∫ x

0
f (u)du−

∫ x

0
u f (u)du and

G(x) =
∫ x

0

(∫ u

0
f (t)dt

)
du. By FTC and the product rule, F ′(x) = x f (x) +

∫ x

0
f (u)du− x f (x) =∫ x

0
f (u)du; and G′(x) =

∫ x

0
f (t)dt. By inspection F ′(x) = G′(x), so it follows that F(x) = G(x)+C.

But clearly F(0) = G(0) = 0, so it follows that C = 0, so F(x) = G(x), as required.

7 (a) Let d be the distance, v be the velocity, and a be the acceleration. We have the properties that
d′(t) = v(t), and v′(t) = a(t). When the train is accelerating, we have v′(t) = a(t) = 2

3 , so
v(t) = 2

3 t + v0. Since v0 = 0, we can solve for the time it takes to accelerate to maximum speed:
120 = 2

3 t =⇒ t = 180 seconds. The distance traveled while accelerating is d(t) = v0t + 1
2 at2;

since v0 = 0 and a = 2
3 , we have d(t) = 1

3 t2, so d(180) = 10800 meters. By symmetry, the
train accelerates and decelerates for 180 seconds and 10800 meters. Thus, the train must be
at maximum speed for exactly 90 seconds. The distance traveled at top speed is d(90 sec) =
120 m/sec ·90 sec = 10800 meters.
Therefore, the distance between the airport and the city centre station is 32400 meters.

(b) Using the information in part (a), the train accelerates for 10800 meters and decelerates for
10800 meters. Therefore, the train between Shanghai and Hangzhou will stay at top speed for

148400 meters. The train stays at top speed for
148400 m
120 m/sec

= 1236
2
3

seconds. Thus the total

time taken from Shanghai and Hangzhou is 180+1236 2
3 +180 = 1596 2

3 seconds, or 26 minutes
and 36 2

3 seconds.
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12. Let u = 6−5s2. Then du =−10sds and∫ 2s
3
√

6−5s2
ds =−1

5

∫ du
3
√

u
=− 3

10
u2/3 +C =− 3

10
(6−5s2)2/3 +C.

18. Let u = x2 +3x+1. Then du = (2x+3) dx. Therefore,∫ 4x+6√
x2 +3x+1

dx = 2
∫ du√

u
= 4
√

u+C = 4
√

x2 +3x+1+C.

22. Let u = 4+2x3. Then du = 6x2 dx. Changing the limits of integration, if x =−1 then u = 2 and
if x = 0 then u = 4. Therefore,∫ 0

−1
3x2(4+2x3)2 dx =

1
2

∫ 4

2
u2 du =

[
1
6

u3
]4

2
=

28
3

.

30. Let u = (x+2)(x+3) = x2 +5x+6. Then du = (2x+5) dx. Changing the limits of integration,
we have x = 0 =⇒ u = 6 and x = 1 =⇒ u = 12. Hence,∫ 1

0

2x+5
(x+2)2(x+3)2 dx =

∫ 12

6

1
u2 du =

[
−1

u

]12

6
=

1
12

.



48. Let u = x2. Then du = 2x dx, so∫
xsec2 x2 dx =

1
2

∫
sec2 u du =

1
2

tanu+C =⇒ 1
2

tanx2 +C.

72. Using the formula cos2 x = 1
2(1+ cos2x), we have∫

cos2 xdx =
∫ 1

2
+

1
2

cos2xdx =
1
2

x+
1
4

cos2x+C.


