MAT 137Y 2007-08 Winter Session, Solutions to Problem Set 7
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18.

46.

56.

Differentiating, 244y +yP4+5=0 = 2x+4y+ 4x 2+ 3y2dy =0. At (2,—1) we get
4—44 8 ot 3 =0, so Zy = 0. Differentiating again, we get

dy dy  d% dy\*> . ,d%
2442 44 4 axS 2 46 3y2==2 = 0.
+d+d+d2+y<)+ydx

At(2,—1)weget2+11 y—o sojxg: 2,

For y = 2x, the slope is m; = 2. For x> — xy + 2y*> = 28, we have

dy dy dy y—2x
2x—y—x—+4+4y—=0 =
Y xdx+ ydx dx -m=

4y —x

At a point of intersection of the line and the curve we have m; = 0 since y = 2x. Thus tano =
| —mi| =2, so a is the angle between 0 and 7 such that tan o = 2.

(a) Differentiating, x*/3 +y*/? = ¢*/?* — %x‘1/3 + %y‘1/3% 0, so ch —( ’)1/3. Thus the

slope at (x1,y1) (where x; # 0) ism = — (i—:) 1/3.

(b) From part (a), it is easy to see that if m = 0, then y; = 0, so the points for which m = 0 are
(a,0) and (—a,0).
For m = 1, we solve —(yl/xl)l/3 = 1. Hence y; = —x;. This yields x; = i%a\@. Hence
the points for which m = 1 are (ia\f, —iaﬂ) and (— a\f a\f)
For m = —1, we solve —(yl/x1)1/3 = —1. Hence y; = x;. This yields x; = i%a\@. Hence
the points for which m = 1 are (—}La\f, —%aﬁ) and (%aﬂ, %aﬁ).

2 (i) Thecircles x*+y? = ax and x> +y? = by intersect at the origin where the tangent lines are vertical

(1) y=ax

and horizontal, respectively. If (xo,yo) is the other point of intersection, then xo + yo = axy (*)
and xj+y§ = byo (**). Now ¥’ +y* =ax = 2x+2yy =a = y = = 2" and x> +y? =
by = 2x+2yy =by = y = bEny

, the curves are orthogonal at (xo, yo) if and only if

a—2xyp  b—2y

= 2axg —4x§ = 4y§ — 2byy <= axo+byo = 2(x¢ +¥}),
2y0 2x0

which is true by (*) and (**).
3 = y/ =3ax’ and x* +3y* =b = 2x+6yy' =0 = 3y)’ = —x. Hence,

X x o 1
Y= 3y 3(ax®)  3ax?’

so the curves are orthogonal.
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20. We use the diagram illustrated below left. Expressing y as a function of 7, we have y(t) = —16¢,

or ‘g = —32¢t. By similar triangles,
y_ 64 o 64x
x 20+x 0T 20+x
Differentiating,
dy _ (204x)(64) —64rdx _ 1280 dx _ dx _ (20+x)dy
dr (20+x)2  dr  (20+x)2dt dt 1280 dt’
Att=1,y=48,x =060, and dy = —32, we get 1280( 32) = —160 feet per second.
r"":l-"\
64 | A ¢
20 X

r

24. We use the diagram illustrated above We have V = 37tr2h and by similar triangles,
Therefore V = 24—77th3 Thus dv h2 dh Hence, when % and h = 2, we get % dV =Z
cubic feet per second.

— 4
-6

o]

Let x be the horizontal distance between the vertical and the kite. Then tan 6 = 30/x. Differentiating,
de  30dx
d— 2dt
When x = 60, then tan 6 = % — sec’O =tan’0+1 = % +1= %. Therefore
5d6 _ 30, _ 40 2
4 dt 900 dt 75’
so the angle is decreasing at a rate of 2 /75 radians per second.

sec? 0 —

The hour hand of a clock goes around once every 12 hours, or, in radians per hour, %’ = ¢ radians

per hour. The minute hand goes around once an hour, or at the rate of 27 radians per hour. So the
angle 6 between them (measuring clockwise from the minute hand to the hour hand) is changing at a
rate of % =Z-2m== lé” radians per hour. Now we relate 0 to ¢, the distance between the tips of
the hands. By the law of cosines, > = 4° + 82 —2-4-8cos O = 80 — 64 cos O (*). Differentiating with
respect to ¢, we get 2¢ Z—f = —64(—sin 6) . At 2:00, the angle between the two hands is one-sixth of

the circle, that is % radians. We use (*) to ﬁnd £ at 2:00:

(= ,/80— 64c0s— V48 = 44/3.

Edﬂ

Substituting, we get 209F = 64sin Z(—11%), which implies

de 64(2)(-1m) 2o

dt— 2.4/3 3

so at 2:00, the distance between the tips of the hands is decreasing at a rate of ZZT” cm/hr.
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2.

24.

40.

For f(x) = x* —2x? — 8, the function is a polynomial, hence it is continuous and differentiable
everywhere. Furthermore, f(—2) = f(2) = 0, hence by Rolle’s Theorem, there exists ¢ € (—2,2)
such that f'(c) = 0. We can find c explicitly: f’(x) = 4x> — 4x = 4x(x> — 1), so there are three
values of ¢ in the interval (—2,2) such that f'(c) = 0, namely, ¢ = —1,0, 1.

. f(x) = 3y/x —4x is continuous and differentiable for all x > 0. Hence, by the Mean Value

Theorem, there exists ¢ € (1,4) such that

flo=fB=IW _Z10-CD _

We can find ¢ explicitly: f'(x) = 2%/} —4. Solving,
3 2 9

——4=-3 = — c=

2./c 3 4
which is certainly in the interval (1,4).

Set P(x) = 6x° + 13x 4+ 1, which is continuous and differentiable for all x (since it is a polyno-
mial). Since P(—1) < 0and P(1) > 0, by IVT, the equation P(x) = 0 has at least one real root c;.
Suppose the equation has another real root c;. Then by Rolle’s Theorem, there exists ¢ between
c1 and ¢; such that P'(c) = 0. But P'(x) = 30x* + 13 > 0 for all x, a contradiction. Therefore,
P(x) = 0 has only one solution.

We prove the result for 4 > 0, since the proof for 4 < 0 is similar. If f is differentiable on
(x,x+ h), it is continuous there and thus, by the hypothesis at x and x + &, is continuous on
[x,x+ h|. By the Mean Value Theorem, there exists ¢ € (x,x+ h) such that

) —
ORI _ ey = st~ 1) = (e
Since c is between x and x + &, ¢ can be written as ¢ = x+ 0h, where 0 < 6 < 1, thus completing
the proof.

7 Suppose f is an odd function and differentiable everywhere. Then by the Mean Value Theorem, for
any b > 0, there exists ¢ € (—b,b) such that

f(b) = f(=b) _f(b)+[f(b) _ f(b)

1) = b—(—b) 2o b
since f is odd.
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18. We take cases on x. By the definition of absolute value, we have

¥ —x=2, x<—1, 2x—1, x < —1,
flx) =R —xX*4+x+2, —l<x<2, = f(x)=< —2x+1, —l<x<2,
r—x—2, x>2. 2x—1, x>2.

Therefore f increases on (—1,4)U(2,0) and f decreases on (—e0,—1) U (1,2).



48. The statement in part (a) is true: Let x1,x; € [a,c|, where x| < xp. If x1,x2 € [a,D], or if x1,x; €
[b,c], then f(x1) > f(x2). If x; € [a,b) and x € [b,c], then f(x1) > f(b) > f(x2). Therefore f
decreases on [a, c|. The statement in part (b) is false: consider the function

—x+2, x<lI,
X)) =
J(x) {—x+3, x> 1.

56. (a) Consider the function h(x) = f(x) — g(x). Then #'(x) = f'(x) —g'(x) > 0on (0,c¢), and & is
increasing on (0,¢). Since ~(0) = f(0) — g(0) = 0, it follows that (x) > 0 on (0,c). Thus,
f(x) > g(x) on (0,¢).
(b) Again, let h(x) = f(x) — g(x). Then & is increasing on (—c,0) which implies that 4(x) < 0
on this interval since #(0) = 0. Therefore, f(x) < g(x) on (—c,0).

60. Let f(x) =x—x>/6 and g(x) = sinx. Then f'(x) = 1 —x?/2, g'(x) = cosx, f"(x) = —x, g"(x) =
—sinx, f'(x) = —1, and g’ (x) = —cosx. Note that f”(0) = ¢”(0) =0 and " (x) < g""(x) for
all x > 0; hence, f”(x) < g"(x) for all x > 0 by question 56. Furthermore, f’(0) = g’(0) and
" (x) < g’ (x), so by question 56, we have f’(x) < g'(x) for x > 0. Applying question 56 once
more, we have f(0) = g(0), so it follows that f(x) < g(x) for all x > 0, thereby ending the proof.



