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18. Differentiating, x2 + 4xy + y3 + 5 = 0 =⇒ 2x + 4y + 4x dy
dx + 3y2 dy

dx = 0. At (2,−1) we get
4−4+8 dy

dx +3 dy
dx = 0, so dy

dx = 0. Differentiating again, we get

2+4
dy
dx

+4
dy
dx

+4x
d2y
dx2 +6y

(
dy
dx

)2

+3y2 d2y
dx2 = 0.

At (2,−1) we get 2+11 d2y
dx2 = 0, so d2y

dx2 =− 2
11 .

46. For y = 2x, the slope is m1 = 2. For x2− xy+2y2 = 28, we have

2x− y− x
dy
dx

+4y
dy
dx

= 0 =⇒ dy
dx

= m2 =
y−2x
4y− x

.

At a point of intersection of the line and the curve we have m2 = 0 since y = 2x. Thus tanα =
|−m1|= 2, so α is the angle between 0 and π

2 such that tanα = 2.

56. (a) Differentiating, x2/3 +y2/3 = a2/3 =⇒ 2
3 x−1/3 + 2

3 y−1/3 dy
dx = 0, so dy

dx =−
( y

x

)1/3. Thus the

slope at (x1,y1) (where x1 6= 0) is m =−
(

y1
x1

)1/3
.

(b) From part (a), it is easy to see that if m = 0, then y1 = 0, so the points for which m = 0 are
(a,0) and (−a,0).
For m = 1, we solve −(y1/x1)1/3 = 1. Hence y1 = −x1. This yields x1 = ±1

4 a
√

2. Hence
the points for which m = 1 are (1

4 a
√

2,−1
4 a
√

2) and (−1
4 a
√

2, 1
4 a
√

2).
For m =−1, we solve −(y1/x1)1/3 =−1. Hence y1 = x1. This yields x1 =±1

4 a
√

2. Hence
the points for which m = 1 are (−1

4 a
√

2,−1
4 a
√

2) and (1
4 a
√

2, 1
4 a
√

2).

2 (i) The circles x2 +y2 = ax and x2 +y2 = by intersect at the origin where the tangent lines are vertical
and horizontal, respectively. If (x0,y0) is the other point of intersection, then x2

0 + y2
0 = ax0 (*)

and x2
0 + y2

0 = by0 (**). Now x2 + y2 = ax =⇒ 2x + 2yy′ = a =⇒ y′ = a−2x
2y and x2 + y2 =

by =⇒ 2x+2yy′ = by′ =⇒ y′ = 2x
b−2y . Thus, the curves are orthogonal at (x0,y0) if and only if

a−2x0

2y0
=−b−2y0

2x0
⇐⇒ 2ax0−4x2

0 = 4y2
0−2by0 ⇐⇒ ax0 +by0 = 2(x2

0 + y2
0),

which is true by (*) and (**).

(ii) y = ax3 =⇒ y′ = 3ax2 and x2 +3y2 = b =⇒ 2x+6yy′ = 0 =⇒ 3yy′ =−x. Hence,

y′ =− x
3y

=− x
3(ax3)

=− 1
3ax2 ,

so the curves are orthogonal.
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20. We use the diagram illustrated below left. Expressing y as a function of t, we have y(t) =−16t2,
or dy

dt =−32t. By similar triangles,

y
x

=
64

20+ x
=⇒ y =

64x
20+ x

.

Differentiating,

dy
dt

=
(20+ x)(64)−64x

(20+ x)2
dx
dt

=
1280

(20+ x)2
dx
dt

=⇒ dx
dt

=
(20+ x)2

1280
dy
dt

.

At t = 1, y = 48, x = 60, and dy
dt =−32, we get dx

dt = 802

1280(−32) =−160 feet per second.

24. We use the diagram illustrated above. We have V = 1
3 πr2h and by similar triangles, r

h = 4
6 .

Therefore V = 4
27 πh3. Thus dV

dt = 4
9 πh2 dh

dt . Hence, when dh
dt = 1

2 and h = 2, we get dV
dt = 8π

9
cubic feet per second.

4 Let x be the horizontal distance between the vertical and the kite. Then tanθ = 30/x. Differentiating,

sec2
θ

dθ

dt
=−30

x2
dx
dt

.

When x = 60, then tanθ = 1
2 =⇒ sec2 θ = tan2 θ +1 = 1

4 +1 = 5
4 . Therefore

5
4

dθ

dt
=− 30

900
·2 =⇒ dθ

dt
=− 2

75
,

so the angle is decreasing at a rate of 2/75 radians per second.

5 The hour hand of a clock goes around once every 12 hours, or, in radians per hour, 2π

12 = π

6 radians
per hour. The minute hand goes around once an hour, or at the rate of 2π radians per hour. So the
angle θ between them (measuring clockwise from the minute hand to the hour hand) is changing at a
rate of dθ

dt = π

6 −2π == 11π

6 radians per hour. Now we relate θ to `, the distance between the tips of
the hands. By the law of cosines, `2 = 42 +82−2 ·4 ·8cosθ = 80−64cosθ (*). Differentiating with
respect to t, we get 2`d`

dt =−64(−sinθ)dθ

dt . At 2:00, the angle between the two hands is one-sixth of
the circle, that is π

3 radians. We use (*) to find ` at 2:00:

` =
√

80−64cos
π

3
=
√

48 = 4
√

3.

Substituting, we get 2`d`
dt = 64sin π

3 (−11π

6 ), which implies

d`

dt
=

64(
√

3
2 )(−11π

6 )

2 ·4
√

3
=−22π

3
,

so at 2:00, the distance between the tips of the hands is decreasing at a rate of 22π

3 cm/hr.
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2. For f (x) = x4− 2x2− 8, the function is a polynomial, hence it is continuous and differentiable
everywhere. Furthermore, f (−2) = f (2) = 0, hence by Rolle’s Theorem, there exists c∈ (−2,2)
such that f ′(c) = 0. We can find c explicitly: f ′(x) = 4x3− 4x = 4x(x2− 1), so there are three
values of c in the interval (−2,2) such that f ′(c) = 0, namely, c =−1,0,1.

6. f (x) = 3
√

x− 4x is continuous and differentiable for all x > 0. Hence, by the Mean Value
Theorem, there exists c ∈ (1,4) such that

f ′(c) =
f (4)− f (1)

4−1
=
−10− (−1)

4−1
=−3.

We can find c explicitly: f ′(x) = 3
2
√

x −4. Solving,

3
2
√

c
−4 =−3 =⇒ 2

√
c

3
= 1 =⇒ c =

9
4
,

which is certainly in the interval (1,4).

24. Set P(x) = 6x5 + 13x + 1, which is continuous and differentiable for all x (since it is a polyno-
mial). Since P(−1) < 0 and P(1) > 0, by IVT, the equation P(x) = 0 has at least one real root c1.
Suppose the equation has another real root c2. Then by Rolle’s Theorem, there exists c between
c1 and c2 such that P′(c) = 0. But P′(x) = 30x4 + 13 > 0 for all x, a contradiction. Therefore,
P(x) = 0 has only one solution.

40. We prove the result for h > 0, since the proof for h < 0 is similar. If f is differentiable on
(x,x + h), it is continuous there and thus, by the hypothesis at x and x + h, is continuous on
[x,x+h]. By the Mean Value Theorem, there exists c ∈ (x,x+h) such that

f (x+h)− f (x)
x+h− x

= f ′(c) =⇒ f (x+h)− f (x) = f ′(c)h.

Since c is between x and x+h, c can be written as c = x+θh, where 0 < θ < 1, thus completing
the proof.

7 Suppose f is an odd function and differentiable everywhere. Then by the Mean Value Theorem, for
any b > 0, there exists c ∈ (−b,b) such that

f ′(c) =
f (b)− f (−b)

b− (−b)
=

f (b)+ f (b)
2b

=
f (b)

b
,

since f is odd.
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18. We take cases on x. By the definition of absolute value, we have

f (x) =


x2− x−2, x≤−1,

−x2 + x+2, −1 < x < 2,

x2− x−2, x≥ 2.

=⇒ f ′(x) =


2x−1, x <−1,

−2x+1, −1 < x < 2,

2x−1, x > 2.

Therefore f increases on (−1, 1
2)∪ (2,∞) and f decreases on (−∞,−1)∪ (1

2 ,2).



48. The statement in part (a) is true: Let x1,x2 ∈ [a,c], where x1 < x2. If x1,x2 ∈ [a,b], or if x1,x2 ∈
[b,c], then f (x1) > f (x2). If x1 ∈ [a,b) and x2 ∈ [b,c], then f (x1) > f (b)≥ f (x2). Therefore f
decreases on [a,c]. The statement in part (b) is false: consider the function

f (x) =

{
−x+2, x≤ 1,

−x+3, x > 1.

56. (a) Consider the function h(x) = f (x)−g(x). Then h′(x) = f ′(x)−g′(x) > 0 on (0,c), and h is
increasing on (0,c). Since h(0) = f (0)−g(0) = 0, it follows that h(x) > 0 on (0,c). Thus,
f (x) > g(x) on (0,c).

(b) Again, let h(x) = f (x)−g(x). Then h is increasing on (−c,0) which implies that h(x) < 0
on this interval since h(0) = 0. Therefore, f (x) < g(x) on (−c,0).

60. Let f (x) = x−x3/6 and g(x) = sinx. Then f ′(x) = 1−x2/2, g′(x) = cosx, f ′′(x) =−x, g′′(x) =
−sinx, f ′′′(x) =−1, and g′′′(x) =−cosx. Note that f ′′(0) = g′′(0) = 0 and f ′′′(x)≤ g′′′(x) for
all x > 0; hence, f ′′(x) < g′′(x) for all x > 0 by question 56. Furthermore, f ′(0) = g′(0) and
f ′′(x) < g′′(x), so by question 56, we have f ′(x) < g′(x) for x > 0. Applying question 56 once
more, we have f (0) = g(0), so it follows that f (x) < g(x) for all x > 0, thereby ending the proof.


