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proof. Consider a function f defined on (0,∞) by
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by applying integration by parts successively.

Let sn =
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k=0 ak be partial sum of an, with s−1 = 0. Using summation by parts, S − f(R) =
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. Choosing K sufficiently large, we have max
0≤n≤N

{
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2 for R > K. To-

gether with (∗), we have |S − f(R)| < ε for sufficiently large R. Therefore,
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limR→∞ f(R) exists and is equal to S as desired.

1


