Theorem. Let {a,, }52 be a sequence of real numbers such that >, a,, converges to S, then [;* (3207,
exists and is equal to S. In other words,
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proof. Consider a function f defined on (0, 00) by
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Since the sum > dnz"e”" converges uniformly on [0, R], the order of summation and integration in

f(R) can be exchanged, giving f(R) = ., OR Snx"e”" dr. Then one can show that
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by applying integration by parts successively.

Let s, = Y 1y ak be partial sum of a,, with s_; = 0. Using summation by parts, S — f(R) =
e By (S — sn—1)f. Since s, — S as n — oo, for € > 0, we can choose N such that [S — 5,1 < §
whenever n > N. Then
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Choosing K sufficiently large, we have OE}&XN{ ,e*R} ( neo|S — sn,1|> < 5 for R > K. To-
gether with (x), we have |S — f(R)| < € for sufficiently large R. Therefore, [~ e~ (307 %a™) dx =

limp 0o f(R) exists and is equal to S as desired.
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