MAT 137Y 2007-08 Winter Session, Solutions to Problem Set 6

1 (SHE 3.1)

10. Applying the definition of derivative,
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14. For f(x) =5 —x*and ¢ = —1, the difference quotient is
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30. Checking the one-sided limits, we have
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= 6, which implies that f/(1) =
32. Since lim flx)= and hm f(x) = =9, the function is not continuous at x = 3, so the func-
tion is also not dlfferentlable at 3.

52. (a) Since
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and f(x)/x = 11if x is rational (and non-zero) and 0 if x is irrational, it follows that lm(l) )
xX— X
does not exist. Hence f is not differentiable at 0.

(b) Note that
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so g is differentiable at 0 and g’(0) = 0.
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Hence, f/(0) = —1, f'(1) = 1.
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Therefore, f/(x) =0 at x = 2, f'(x) > 0 where |x| > 2 and f'(x) < 0 where |x| < 2.
60. Let (xo,y0) be the point on the graph that the tangent line passes through. f’(x) = 3x?, so the

slope of the tangent line is

42. Here, f'(x) =

-3
3x(2):z2_2 — 32(xp—2) =33 -8 = xp=2,—1.

Hence the lines are y —8 = 12(x—2) and y+ 1 =3(x+1).

3 (SHE 3.3)
32. Simplifying, we have f(x) = (4x> —9)x~! = 4x — 9x~!, hence f'(x) =4+ 9x2 and f"(x) =
—18x73.
40. Differentiating,
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it follows that g is differentiable and g’(0) = 0. Hence g'(x) = {O <0
,x < 0.

Similarly, since
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Then g’ is differentiable and g”(0) = 0. Hence g"(x) = A=
0, x<O0.
This solves parts (a) and (b). For part (c), note that
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so g” is not differentiable at 0.
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16. Set k(x) = f(x)g(x)h(x). Then K'(x) = f(x)g(x ) ()+f( )8’ (x)(x) + f(x)g(x)(x), so
K(1)=0-2:040-(=1)-(=2)+1-2-(=2) =

7 (SHE 3.5)

20. Differentiating,

[(2x+1) + (x+1)?]

(2x—|— 1)(2)+2(x+1)(1)]
5x+3).
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() =3[(2x+ 12+ (x+ 1)
=3[(2x+ 1)*+ (x+1))?
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6. (fohog)'(1)=f(h(g(1))H'(g(1))g'(1) = f'(2)H' (1)g'(1) = 0.

68. We are given that V = 3 nr3 S =4mr?, and ‘fi—‘tl =200, where V is the volume and S is the surface
area. By the chain rule,
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So when r =5, then = 80, so the surface area is increasing 80 square centimetres per second

at the instant the radlus is 5 centimetres.
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44 @__3 2544 Ivin — 12 4 — T 2w 4Am 5S¢
S csc“x+4, so solving csc = \/gglvesx—3,3,3,3~

54. Differentiating using (3.5.4), we get

dy dydudx )
dt  dudx dt (—2u)(—cscxcotx)(3) csc3t(—csc3tcot3r)(3) = 6¢sc”(3t) cot(3r)

Doing it the other way, we get

y=1-—csc?(3t) = y' = —2csc3t(—csc3tcot3t)(3) = 6esc? 3t cot 3.
70(a). Setting right and left-hand derivatives equal to each other at x = % yields —asin§ = %cos %, %0
a= —%. Setting right and left-hand values of f equal to each other at x = % yields 1 — %cos =
b+sinZ, sob=1



