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1 (SHE 6.1)

10. See the figure below left. The area of the region (Ax = Ay) is

Ax =
∫ 2

0
(x− (−x)) dx =

[
x2
]2

0
= 4, Ay =

∫ 0

−2
[2− (−y)] dy+

∫ 2

0
(2− y) dy.

18. See the figure above right. The curves intersect when

x+ x3 = 2x6 =⇒ 2x6− x3− x = 0 =⇒ x(2x5− x2−1) = 0

=⇒ x(x−1)(2x4 +2x3 +2x2 + x+1) = 0,

or x = 0,1. Hence the points of intersection are (0,0) and (1,1). The area of the region is

A =
∫ 1

0
y1/3− (2y2− y) dy =

∫ 1

0
y1/3 + y−2y2 dy =

[
3
4

y4/3 +
y2

2
− 2

3
y3
]1

0
=

7
12

.

24. See the diagram above. The curves intersect when

sinx = sin2x =⇒ sinx = 2sinxcosx =⇒ x = 0,
π

3
.

The area is given by

A =
∫

π/3

0
sin2x− sinx dx+

∫
π/2

π/3
sinx− sin2x dx

=
[
−cos2x

2
+ cosx

]π/3

0
+
[
−cosx+

cos2x
2

]π/2

π/3
=

1
2
.



34. We want
∫ c

0
cosxdx =

1
2

∫ π

2

0
cosxdx. This implies

[
sinx

]c

0
=

1
2

[
sinx

] π

2

0
=

1
2

=⇒ sinc =
1
2

=⇒ c =
π

6
.

44. (a) The area of the region from x = 1 to x = b is A =
∫ b

1

1
x2 dx =

[
−1

x

]b

1
= 1− 1

b
.

(b) Since lim
b→∞

A(b) = 1, so as b→ ∞, the area is finite.

2 (SHE 6.2)

10. The sketch of the region is given above left. The volume is

V =
∫ 1

−2
π
[
(2− x)2− x4] dx = π

[
−(2− x)3

3
− x5

5

]1

−2
=

72π

5
.

20. The sketch of the region is given above right. The volume is

V =
∫ 2

−2
π[42− y4] dy = π

[
16y− y5

5

]2

−2
=

256
5

π.

26. The region bounded by x =
√

9− y2 and x = 0 is a half-sphere of radius 3, which is simply
2
3 π ·9 = 18π . Alternatively, the volume is

V =
∫ 3

0
π(9− y2) dy = π

[
9y− y3

3

]3

0
= 18π.

30. (a) Volume with cross sections as rectangles of height h is

V =
∫ 1

0
2
√

xhdx+
∫ 3

1
2 · 1√

2

√
3− xhdx =

4h
3

[
x3/2

]1

0
+

[
−2
√

2h
3

(3− x)3/2

]3

1

= 4h.

(b) Volume with cross sections as equilateral triangles is

V =
∫ 1

0

(
1
2
·2
√

x ·
√

3
√

x
)

dx+
∫ 3

1

(
1
2
·
√

2
√

3− x ·
√

3√
2

√
3− x

)
dx

=
√

3
∫ 1

0
xdx+

√
3

2

∫ 3

1
(3− x)dx =

3
√

3
2

.



(c) Volume with cross sections as isoceles triangles with the hypotenuse on the xy-plane:

V =
∫ 1

0

(
1
2
·2
√

x ·
√

x
)

dx+
∫ 3

1

(
1
2
·
√

2
√

3− x ·
√

2
2
·
√

3− x

)
dx

=
∫ 1

0
xdx+

1
2

∫ 3

1
(3− x)dx =

3
2
.

38. When the ellipse b2x2 +a2y2 = a2b2 is revolved about the y-axis, the volume is

V =
∫ b

−b
π

(a
b

√
b2− y2

)2
dy =

πa2

b2

∫ b

−b
(b2− y2) dy =

πa2

b2

[
b2y− y3

3

]b

−b
=

4
3

πa2b.

3 (SHE 6.3)

6. The sketch is omitted. The volume is

V =
∫ 1

0
2πx[x1/3− x2] dx = 2π

∫ 1

0
(x4/3− x3) dx = 2π

[
3
7

x7/3− x4

4

]1

0
=

5π

14
.

8. The volume of the solid when the triangle is rotated about the y-axis is

V =
∫ 3

1
2πx(x−1) dx+

∫ 5

3
2πx(6− x−1) dx = 2π

(∫ 3

1
x2− x dx+

∫ 5

3
5x− x2 dx

)
= 2π

([
x3

3
− x2

2

]3

1
+
[

5x2

2
− x3

3

]5

3

)
= 24π.

24. The volume is

V =
∫ 1

0
2πy ·2√y dy+

∫ 2

1
2πy ·2(2− y) dy = 4π

(∫ 1

0
y3/2 dy+

∫ 2

1
(2y− y2) dy

)
= 4π

([
2
5

y5/2
]1

0
+
[

y2− y3

3

]2

1

)
=

64π

15
.

4 (i) Let yc =−x2−3x+6 and yl = 3− x. The curves intersect when

−x2−3x+6 = 3− x =⇒ x2 +2x−3 = 0 =⇒ x =−3,1.

Then

V = π

∫ 1

−3
(yc)2− (yl)2 dx = π

∫ 1

−3
x4 +6x3−4x2−30x+27 dx =

1792π

15
.

(ii) Let yc and yl be defined as before. Then

V = 2π

∫ 1

−3
(yc− yl)(3− x) dx = 2π

∫ 1

−3
(x3− x2−9x+9) dx =

256π

3
.



(iii) The curves intersect where −x2−3x+6 = 3−x, or x2 +2x−3 = 0, or x = 1,−3. Therefore the
volume is∫ 1

−3
2π(3− x)(−x2−3x+6− (3− x)) dx = 2π

∫ 1

−3
x3− x2−9x+9 dx

= 2π

[
1
4

x4− 1
3

x3− 9
2

x2 +9x
]1

−3
=

256π

3
.

5 (SHE 7.1)

44. Given f (x) = x−π + cosx, then f ′(x) = 1− sinx ≥ 0 for all x (and equal to zero only at one
point), so the function is continuous and strictly increasing. Thus, the function is one-to-one,
and therefore an inverse exists. Hence,

( f−1)′(−1) =
1

f ′( f−1(−1))
=

1
f ′(π)

= 1.

since f ′(π) = 1− sinπ = 1.
52. Since f ′(x) = 2

√
16+(2x)4 > 0 for all x, then f is increasing for all x, so f is one-to-one,

which implies f has an inverse. For part (b), notice that f (1
2) = 0, so f−1(0) = 1

2 . Thus,

( f−1)′(0) =
1

f ′(1
2)

=
1

2
√

17
=
√

17
34

.

6 (SHE 7.2)

20. 1
2 lnx = ln

√
x, so for the equation to hold we must have

√
x = 2x−1. Solving this equation by

squaring both sides gives us x = 4x2− 4x + 1 =⇒ 4x2− 5x + 1 = 0 =⇒ (4x− 1)(x− 1) =
0 =⇒ x = 1

4 ,1. However, ln(2x−1) is not defined for x = 1
4 , so the only solution is x = 1.

24. The question is not posed correctly and therefore is omitted.

7 (SHE 7.3)

24. Let u = ln(x+a). Then du =
dx

x+a
, so

∫ ln(x+a)
x+a

dx =
∫

u du =
1
2

u2 =
1
2

ln2(x+a)+C.

26. Let u = 4− tan2x. Then du =−2sec2 2xdx. Thus∫ sec2 2x
4− tan2x

dx =−1
2

∫ du
u

=−1
2

ln |u|+C =−1
2

ln |4− tan2x|+C.

36. Multiplying the integrand, we have∫
(3− cscx)2 dx =

∫
9−6cscx+ csc2 x dx = 9x−6ln |cscx− cotx|− cotx+C.

50. Given g(x) = x(x+a)(x+b)(x+ c), we take the logarithm of both sides to obtain

lng(x) = ln[x(x+a)(x+b)(x+ c)] = lnx+ ln(x+a)+ ln(x+b)+ ln(x+ c).

Differentiating both sides gives us
1

g(x)
·g′(x) =

1
x

+
1

x+a
+

1
x+b

+
1

x+ c
, so

g′(x) = x(x+a)(x+b)(x+ c)
[

1
x

+
1

x+a
+

1
x+b

+
1

x+ c

]
.



8 (i) Applying L’Hôpital’s Rule,

lim
x→∞

(lnx)4

x
H= lim

x→∞

4(lnx)3

x
H= lim

x→∞

12(lnx)2

x
H= lim

x→∞

24(lnx)
x

H= lim
x→∞

24
x

= 0,

so the limit is zero.

(ii) The limit is of the form (0 ·∞), so we re-write the limit and get

lim
x→0+

sinx · lnx = lim
x→0+

lnx
cscx

H= lim
x→0+

1/x
−cscxcotx

= lim
x→0+

1
−xcscxcotx

= lim
x→0+

sin2 x
−xcosx

= lim
x→0+

−sinx
x
· tanx =−1 ·0 = 0.


