MAT 137Y 2007-08 Winter Session, Solutions to Problem Set 12

1 (SHE 11.7)
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comparison test (10.7.2) that / dx also converges.
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2 (a) We prove by induction on n that lim x(Inx)" = 0. For n = 1, we have
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so the base case is true. Now suppose the statement is true for n =k, i.e. 11r51+x(lnx) =0. Then
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so the statement is true for all positive integers n.
1
(b) Once again we apply induction to show that / (Inx)" dx = (—1)"n!. If n = 1, then
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since lim alna = 0 by part (a). This proves the base case. Now assume / (lnx)k dx= (-1 )kk!
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for some positive integer k. Integrating by parts and applying the result fro part (a), we have
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so the statement is true for n = k+ 1, and hence the statement is true for all positive integers n.
3 (SHE 12.5)

4. Computing derivatives,

f(x) =secx = f'(x) = secxtanx = f”(x) = secxtan’x +sec’x

f" (x) = secxtan® x + 5sec® xtanx
)

— @ (x) = secxtan® x + 18 sec® xtan® x + 5sec’ x,



SO
fO)=1, f0)=0, f(0)=1, f"0)=0, fH0)=5.

Hence, the fourth Taylor polynomial for secx is
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Pafx) = f(0)+ f(O)x+ 7 4 T =t = 1 5
8. Computing derivatives, if f(x) = xcos(x?), then
f(x) = cos(x?) — 2x?sin(x?) = f”(x) = —6xsin(x?) — 4x> cos(x?)

— " (x) = —24x*cos(x?) — 6sin(x?) 4 8x* sin(x?)
— @ (x) = —60xcos(x?) + 80x" sin(x?) + 16x° cos(x?)
— f(s) (x) = —60 cos(xz) +360x> sin(xz) +240x* cos(xz) —32x%sin(x?),

so all derivatives at 0 are zero except f'(0) = 1 and f©)(0) = —60. Hence, the fifth Taylor
polynomial of f(x) = xcos(x?) is

)
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P5(x) = f1(0)x+ >

Alternatively, since Ps cosx(x) = 1 — %, then P cosy (%) = Py o5y () = 1= )‘74 Subsequently,
X Py cos(x2) (X) = P5 ycos(a2) (X) = X — %, which is identical to our answer above.

14. Consider the function f(x) = In(1 —x). Then it is easy to show by induction that " (x) =
—(n—1)!(1—x)"" forall n > 1. Hence f(0) =0 and £ (0) = —(n—1)! for all n > 1. Hence,

n f(k) 0 " (k—1)! o n
B =Y . )xkz(’*,;(kz)xkzikx =Y+

16. Let f(x) = cosbx. It follows that if k is odd, then | f*)(x)| = |b¥sinbx], so f*)(0) = 0. For the
even derivatives, it is easy to check that

f(0) =1, f//(()) = —1727 f(4) (0) = b4, ... f(2m)(0) _ (_l)mb2m.
So if n is even, then n = 2m for some integer m, and
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Pa) =) ((Zk))!
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(bx)**.
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22. Since we are given | (") (3)| < 3 for all x, we choose M = 3. Then f(2) = F,(2) +R,(2), where

3’2|n+1 B 3. 2n+1

Ra(2)] = (n+1)! (n+1)!

For three decimal place accuracy, we wish to find n such that

32 s gt e ! Lo ppp e 1D

<6-10°.
(n+1)! 3011 5.0 4 ontl




Using trial-and-error, we observe that

(1) _ 14175 (n+1)! 155925

n=9 = ontl T4 ) - on+1 = 8

> 6000,

so n = 10 is the least integer which satisfies the inequality.
24. Again we have M = 3. We wish to find x such that

3‘x‘n+1 3’)(‘10 1

10!
— %< <o = 60480.

So the values of x must satisfy x € (— V60480, V/60480). For reference, V60480 ~ 3.0072.

(a) Suppose Py,+1(x) is the 2n + 1-st Taylor polynomial for sinx. Then sinx = Py, (x) + Rapt1(X)
and lim Ry, 11 (x) = 0. It then follows that lim Ry, (xz) =0 and
n—oo n—o0

sin(x?) = P,y 1 (¥%) + Rop1 (£7),

thus P, 1 (x*) must be the 4n + 2-nd Taylor polynomial for sin(x?).
(b) Using part (a), we have the 4n + 2-nd Taylor polynomial for sin(xz)

6 10 4n+2
2 Yoy
P4n+2,sin(x2) ('x) - 3| + 51 +( 1) (2n+ 1)‘ .
Hence, | Ant3
7 1 n+
30X X X
P4n+3,xsin(x2)(x) =X = 31 "’; A (=) 2n+1)!"
Finally,
7 11 4n+3
2, 3 X X X
P4n+37x2+xsin(x2)(x) =X +x — ? + ? ek (_1)nm'

(The question contains a typo, you should have been asked for the 4n + 3-rd Taylor polynomial,
although the solution is identical, since the coefficients for x*"+# and x*"*> must both be zero.)
(c) If P,(x) is the n-th Taylor polynomial for f(x), then it follows that f*)(0) = k! - a, where a;
is the coefficient for the x* term. Notice that the coefficient for x2°°% must be zero (since 2008
can’t be written in the form x**3 for some integer n), hence £(2°°®)(0). However 2007 can be

written in the form 4n+ 3, so if n = 501, then £2007)(0) = 20071 {ZUZ0 — 20071

(1) See Section 12.6 Example 7.

(ii) Consider the function f(x) = e*. Then in particular, ") (x) = %, so if we let x = —1/2, then we
can choose d = 1 and so | £ (x)| < e < 3. Thus we let M = 3 and thus

1+l
3.1 3 1

(et 1)1 20 (ng 1)1~ 100000°

R,(— i) <

Thus we require to find n such that 2" - (n+1)! > 300000. Since 27 - 7! = 645120 > 300000
and 2°- 6! = 46080 < 300000, it follows that

P6(—%):1—1+ 21 LS S N
27 22(21)  23(31) ' 24(41)  25(5!) ' 25(6!)
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estimates e~!/2 to within 107,

As a check, we can use a calculator to find that P(,(—%) — e 1/220.14584 - 1075 < 107>, s0 our
estimate is well within our desired error of 10>,

(iii) Solution omitted. Using our form of reminder does not lead to an elegant solution, so let’s
pretend this question never existed, okay?

(a) Since M is finite and

Ry < M Mg M MR M
X — X) < ——— —
T (1) (n+1)! =" T (n41)! (n+1)! = x ~ (n+1)V
. . Ru(x)
so by the squeeze theorem, it follows that hII(l) =0.
xX— X
(b) (i) Using the result of part (a), we have
2
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1 1
= — 0 = —
2 + 2

You can verify your answer by two simple applications of L’Hdpital’s Rule.

(i) Similar to our approach to part (i), let R,(x) be the associated remainder term for ¢* and
0, (x) be the associated remainder term for sinx. Then

2 2 3
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