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10.
∫ 1

0

dx√
1− x

= lim
a→0+

∫ 1

a

dx√
1− x

= lim
a→0+

[
−2
√

1− x
]1

a
= lim

a→0+
0+2
√

1−a = 2, so the integral con-

verges to 2.

26.
∫

∞

1

x
(1+ x2)2 dx = lim

b→∞

∫ b

1

x
(1+ x2)2 dx = lim

b→∞

[
−1

2(1+ x2)

]b

1
= lim

b→∞

[
− 1

2(1+b2)
+

1
4

]
=

1
4

, so

the integral converges to 1
4 .

54. Since 0≤
∫

∞

π

sin2 2x
x2 dx≤

∫
∞

π

1
x2 dx, and

∫
∞

π

1
x2 dx converges (10.7.1), it follows by the integral

comparison test (10.7.2) that
∫

∞

π

sin2 2x
x2 dx also converges.

2 (a) We prove by induction on n that lim
x→0+

x(lnx)n = 0. For n = 1, we have

lim
x→0+

x lnx = lim
x→0+

lnx
1/x

H= lim
x→0+

1/x
−1/x2 = lim

x→0+
(−x) = 0,

so the base case is true. Now suppose the statement is true for n = k, i.e. lim
x→0+

x(lnx)k = 0. Then

lim
x→0+

x(lnx)k+1 = lim
x→0+

(lnx)k+1

1/x
H= lim

x→0+

(k +1)(lnx)k · (1/x)
−1/x2 =−(k +1) lim

x→0+
x(lnx)k = 0,

so the statement is true for all positive integers n.

(b) Once again we apply induction to show that
∫ 1

0
(lnx)n dx = (−1)nn!. If n = 1, then

∫ 1

0
lnx dx = lim

a→0+

∫ 1

a
lnx dx = lim

a→0+

[
x lnx− x

]1

a
= lim

a→0+
−1−a lna+a =−1 = (−1)11!

since lim
a→0+

a lna = 0 by part (a). This proves the base case. Now assume
∫ 1

0
(lnx)k dx = (−1)kk!

for some positive integer k. Integrating by parts and applying the result fro part (a), we have∫ 1

0
(lnx)k+1 dx = lim

a→0+

∫ 1

a
(lnx)k+1 dx = lim

a→0+

[
x(lnx)k+1

]1

a
− (k +1) lim

a→0+

∫ 1

a
(lnx)k dx

= lim
a→0+

a(lna)k+1− (k +1) · (−1)kk! = 0+(−1)k+1(k +1)! = (−1)k+1(k +1)!,

so the statement is true for n = k +1, and hence the statement is true for all positive integers n.
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4. Computing derivatives,

f (x) = secx =⇒ f ′(x) = secx tanx =⇒ f ′′(x) = secx tan2 x+ sec3 x

=⇒ f ′′′(x) = secx tan3 x+5sec3 x tanx

=⇒ f (4)(x) = secx tan4 x+18sec3 x tan2 x+5sec5 x,



so
f (0) = 1, f ′(0) = 0, f ′′(0) = 1, f ′′′(0) = 0, f (4)(0) = 5.

Hence, the fourth Taylor polynomial for secx is

P4(x) = f (0)+ f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)
3!

x3 +
f (4)(0)

4!
x4 = 1+

x2

2
+

5x4

24
.

8. Computing derivatives, if f (x) = xcos(x2), then

f ′(x) = cos(x2)−2x2 sin(x2) =⇒ f ′′(x) =−6xsin(x2)−4x3 cos(x2)

=⇒ f ′′′(x) =−24x2 cos(x2)−6sin(x2)+8x4 sin(x2)

=⇒ f (4)(x) =−60xcos(x2)+80x3 sin(x2)+16x5 cos(x2)

=⇒ f (5)(x) =−60cos(x2)+360x2 sin(x2)+240x4 cos(x2)−32x6 sin(x2),

so all derivatives at 0 are zero except f ′(0) = 1 and f (5)(0) = −60. Hence, the fifth Taylor
polynomial of f (x) = xcos(x2) is

P5(x) = f ′(0)x+
f (5)(0)

5!
x5 = x− 1

2
x5.

Alternatively, since P2,cosx(x) = 1− x2

2 , then P2,cosx(x2) = P4,cos(x2)(x) = 1− x4

2 . Subsequently,

x ·P4,cos(x2)(x) = P5,xcos(x2)(x) = x− x5

2 , which is identical to our answer above.

14. Consider the function f (x) = ln(1− x). Then it is easy to show by induction that f (n)(x) =
−(n−1)!(1− x)−n for all n≥ 1. Hence f (0) = 0 and f (n)(0) =−(n−1)! for all n≥ 1. Hence,

Pn(x) =
n

∑
k=0

f (k)(0)
k!

xk = 0+
n

∑
k=1

−(k−1)!
k!

xk =
n

∑
k=1

−1
k

xk =
n

∑
k=1

−xk

k
.

16. Let f (x) = cosbx. It follows that if k is odd, then | f (k)(x)| = |bk sinbx|, so f (k)(0) = 0. For the
even derivatives, it is easy to check that

f (0) = 1, f ′′(0) =−b2, f (4)(0) = b4, · · · f (2m)(0) = (−1)mb2m.

So if n is even, then n = 2m for some integer m, and

Pn(x) =
m

∑
k=0

(−1)k

(2k)!
(bx)2k.
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22. Since we are given | f (n)(3)| ≤ 3 for all x, we choose M = 3. Then f (2) = Pn(2)+Rn(2), where

|Rn(2)| ≤ 3|2|n+1

(n+1)!
=

3 ·2n+1

(n+1)!
.

For three decimal place accuracy, we wish to find n such that

3 ·2n+1

(n+1)!
< 5 ·10−4 ⇐⇒ (n+1)!

3 ·2n+1 <
1

5 ·10−4 = 2 ·103 ⇐⇒ (n+1)!
2n+1 < 6 ·103.



Using trial-and-error, we observe that

n = 9 =⇒ (n+1)!
2n+1 =

14175
4

< 6000, n = 10 =⇒ (n+1)!
2n+1 =

155925
8

> 6000,

so n = 10 is the least integer which satisfies the inequality.

24. Again we have M = 3. We wish to find x such that

|R9(x)| ≤
3|x|n+1

(n+1)!
=

3|x|10

10!
<

1
20

=⇒ |x|10 <
10!
60

= 60480.

So the values of x must satisfy x ∈ (− 10
√

60480, 10
√

60480). For reference, 10
√

60480≈ 3.0072.

5 (a) Suppose P2n+1(x) is the 2n+1-st Taylor polynomial for sinx. Then sinx = P2n+1(x)+R2n+1(x)
and lim

n→∞
R2n+1(x) = 0. It then follows that lim

n→∞
R2n+1(x2) = 0 and

sin(x2) = P2n+1(x2)+R2n+1(x2),

thus P2n+1(x2) must be the 4n+2-nd Taylor polynomial for sin(x2).

(b) Using part (a), we have the 4n+2-nd Taylor polynomial for sin(x2)

P4n+2,sin(x2)(x) = x2− x6

3!
+

x10

5!
−·· ·+(−1)n x4n+2

(2n+1)!
.

Hence,

P4n+3,xsin(x2)(x) = x3− x7

3!
+

x11

5!
−·· ·+(−1)n x4n+3

(2n+1)!
.

Finally,

P4n+3,x2+xsin(x2)(x) = x2 + x3− x7

3!
+

x11

5!
−·· ·+(−1)n x4n+3

(2n+1)!
.

(The question contains a typo, you should have been asked for the 4n+3-rd Taylor polynomial,
although the solution is identical, since the coefficients for x4n+4 and x4n+5 must both be zero.)

(c) If Pn(x) is the n-th Taylor polynomial for f (x), then it follows that f (k)(0) = k! · ak, where ak
is the coefficient for the xk term. Notice that the coefficient for x2008 must be zero (since 2008
can’t be written in the form x4n+3 for some integer n), hence f (2008)(0). However 2007 can be
written in the form 4n+3, so if n = 501, then f (2007)(0) = 2007! · (−1)501

1003! =−2007!
1003! .

6 (i) See Section 12.6 Example 7.

(ii) Consider the function f (x) = ex. Then in particular, f (n)(x) = ex, so if we let x =−1/2, then we
can choose d = 1 and so | f (n)(x)| ≤ e < 3. Thus we let M = 3 and thus

Rn(−1
2)≤

3 · 1
2

n+1

(n+1)!
=

3
2n+1(n+1)!

<
1

100000
.

Thus we require to find n such that 2n+1 · (n + 1)! > 300000. Since 27 ·7! = 645120 > 300000
and 26 ·6! = 46080 < 300000, it follows that

P6(−1
2) = 1− 1

2
+

1
22(2!)

− 1
23(3!)

+
1

24(4!)
− 1

25(5!)
+

1
26(6!)



estimates e−1/2 to within 10−5.
As a check, we can use a calculator to find that P6(−1

2)−e−1/2 ≈ 0.14584 ·10−5 < 10−5, so our
estimate is well within our desired error of 10−5.

(iii) Solution omitted. Using our form of reminder does not lead to an elegant solution, so let’s
pretend this question never existed, okay?

7 (a) Since M is finite and

|Rn(x)| ≤
M|x|n+1

(n+1)!
⇐⇒ −M|x|n+1

(n+1)!
≤ Rn(x)≤

M|x|n+1

(n+1)!
=⇒ − M|x|

(n+1)!
≤ Rn(x)

xn ≤ M|x|
(n+1)!

,

so by the squeeze theorem, it follows that lim
x→0

Rn(x)
xn = 0.

(b) (i) Using the result of part (a), we have

lim
x→0

ex−1− x
x2 = lim

x→0

(
1+ x+ x2

2! +R2(x)
)
−1− x

x2 = lim
x→0

x2

2 +R2(x)
x2 = lim

x→0

(
1
2

+
R2(x)

x2

)
=

1
2

+0 =
1
2
.

You can verify your answer by two simple applications of L’Hôpital’s Rule.
(ii) Similar to our approach to part (i), let Rn(x) be the associated remainder term for ex and

Qn(x) be the associated remainder term for sinx. Then

lim
x→0

1+ x+ x2

2 − ex

sinx− x
= lim

x→0

1+ x+ x2

2 −
(

1+ x+ x2

2 + x3

6 +R3(x)
)

(
x− x3

6 +Q3(x)
)
− x

= lim
x→0

− x3

6 −R3(x)

− x3

6 +Q3(x)

= lim
x→0

−1
6 −

R3(x)
x3

−1
6 + Q3(x)

x3

=
−1

6 −0

−1
6 +0

= 1.


