

DMVstats 1.0 – A SQL Server 2005 Performance Data Warehouse Application

Author:
Tom Davidson

Reviewer:
Sanjay Mishra

Contents

1DMVstats 1.0 – A SQL Server 2005 Performance Data Warehouse Application

3Introduction

3Main Components

3Getting Started

3Installing DMVstats

3InstallDMVstatsDBProcs.cmd

3DeployReports.cmd

4Configure DMVstats

4Figure 1: Configure DMVStats

5DMV Collection Intervals

6Figure 2: Configure Baselines

6Figure 3: Relationship of samples, snapshots, and baselines

7Key Concepts

7Execution Model

7Figure 4: Execution Model – Running, runnable, suspended status, Runnable Queue, Wait List

7Figure 5: Execution Model – How status changes affect SPIDs

8Figure 6: Execution Model – After status change

8Execution Model DMVs

9Real-Time DMVs

9Figure 7: Resource, Signal and Total Wait time

10Historical DMV Statistics

11How to use DMVstats

11Configure DMVstats

11Configure Baselines

11Wait Stats

11Figure 8: Wait Stats: Signal vs. Resource

12Wait Stats: Wait Categories

12Figure 9: Category waits detail snapshot

12Drill-Through Guidance

12Figure 10: Drill-through guidance report

13Figure 11: Analyze Block Info report

13DMV schemas

13DMV data collection

13Table 1: DMV snapshots

14Table 2: DMV samples

15Figure 12: DMVsnapshot schema: collects aggregated DMVs

16Figure 13: DMVbaseline schema: user-defined collection of snapshots

17Figure 14: DMVsample schema: associates transient waits to Transact-SQL statements

18Figure 15: DMVconfig Schema: DMVstats configuration

19Q&A

Introduction

Microsoft SQL Server 2005 provides Dynamic Management Views (DMVs) to expose valuable information that you can use for performance analysis. DMVstats 1.0 is an application can collect, analyze and report on SQL Server 2005 DMV performance data. DMVstats does not support Microsoft SQL Server 2000 and earlier versions.
Main Components

The three main components of DMVstats are:

· DMV data collection
· DMV data warehouse repository
· Analysis and reporting.

Data collection is managed by SQL Agent jobs. The DMVstats data warehouse is called DMVstatsDB. Analysis and reporting is provided by means of Reporting Services reports.

This paper describes the process of DMV data collection, storage, and analysis.
Getting Started

Installing DMVstats

There are two scripts in the installation .zip file that install the DMVstats application. The first script creates the DMVstatsDB database and associated tables, stored procedures, and agent jobs. The second script deploys reports to a report server.
InstallDMVstatsDBProcs.cmd

The first script, called InstallDMVStatsDBProcs.cmd, creates the data warehouse. This .cmd file runs SQL scripts from the DatabaseScripts folder to create the DMVstatsDB database, schema, stored procedures to collect snapshots and samples, and SQL Agent jobs.
You may want to change the create database DMVstatsDB statement by specifying a different size and location (but do not change the database name). If so, edit the create database DMVstatsDB statement in the CreateDMVStatsDB.sql file, in the DatabaseScripts folder. For the DMVstats version 1.0, the DMVstatsDB database must be installed on the same server as the databases it is monitoring.
By default, the SQL Agent jobs run under the owner login name of $(COMPUTERNAME)\Administrator. If you want to change this, refer to CreateDMVstatsSQLAgentJobs.sql in the DatabaseScripts folder.
DeployReports.cmd

The second script, called DeployReports.cmd, deploys Reporting Services reports for DMVstats. Although you can deploy the reports to any location, make sure the DMVstatsDB datasource points to the data warehouse server. To specify a report location other than http://localhost/reportserver, edit the DeployReports.cmd file.
Configure DMVstats

The Configure DMVstats report helps you select databases for DMVstats to monitor. The scheduled jobs can be enabled or disabled as well.
When viewing the report, note the links in red. By default, DMVstats SQL Agent Jobs are disabled. The Configure DMVstats report below shows the DMVstats SQL Agent jobs are enabled which means they are collecting DMVstatistics. To stop the jobs you must disable them by clicking disable jobs.
DMVstats collects statistics for the database that you specify in the Databases Included section of the Configure DMVstats report. To remove a database, click Remove. This will move the database from the Databases Included section to the Databases Not Included section. Similarly, to select a database for inclusion, click Add in the Databases Not Included section.
[image: image1.png]Configure DMVstats

DMVstats SQL Agent Job Status: Enabled disable jobs

Databases Included

8 AdventureWorks remove
7 oMvstatsos remave
11 Northwind remove
10 pubs temove

Databases Not included

‘master
model

msdb

NWReport
ReportServer
ReportServerTempDe.
tempdb

3313111

Figure 1: Configure DMVStats
The Util folder also contains sample scripts that can be used instead of the above to enable or disable jobs.
DMV Collection Intervals

Snapshots of DMVs

By default, periodic snapshots of DMVs occur at five-minute intervals. Snapshots are effective for aggregate DMVs such as sys.dm_exec_query_stats or sys.dm_os_wait_stats. The snapshot schedule can be changed to 10-minute intervals as shown:
exec msdb.dbo.sp_update_schedule

@name=N'DMVstats Snapshot Schedule',

@freq_subday_interval=10
Samples of DMVs

Samples are taken more frequently than snapshots. They provide a picture of the highly transient execution model that is made up of sys.dm_exec_requests and sys.dm_os_waiting_tasks. Since sys.dm_os_waiting_tasks show the short term transient waits in the waiter list, samples allow you to associate the Transact-SQL statements to waits in the waiter list. The default sample interval is 20 seconds.
It is recommended that the sample interval not be less than 15 seconds. The sample interval can be changed to 30 seconds as shown:

exec msdb.dbo.sp_update_schedule

@name=N'DMVstats Sample Schedule'

,@freq_subday_type = 2,@freq_subday_interval = 30
Please note that @freq_subday_type=2 is used to set the interval in seconds while @freq_subday_type=4 specifies minutes. The Util folder also contains sample scripts to change the scheduled intervals.
Displaying DMV job schedules

The following SQL statement can be used to display the job schedule for Sample collection. Please note that @freq_subday_type=2 show the interval in seconds while @freq_subday_type=4 are in minutes.

exec msdb.dbo.sp_help_schedule

@schedule_name=N'DMVstats Sample Schedule'

While the SQL Server Management Studio can be used to display job schedule properties, it will only work with @freq_subday_types of 4 (minutes) or 1 (hours). To display job schedule properties with @freq_subday_types of 2 (seconds), use the script above.
The Util folder also contains sample scripts to display job status and intervals.
Baseline
A critical DMVstats concept is the baseline. Analysis reports provided by Reporting Services require the user to define a baseline. Baselines are user-defined aggregations of snapshots over a period of time. That is, baseline=1:N snapshots. You can use baselines may be used for many purposes such as:

· Compare today to yesterday (or any other date and time period)

· Compare performance before and after application changes

· Trending
Use the Configure Baselines report to create a baseline. Baselines consist of one or more snapshots. In the screenshot below, the BL2 baseline was created from snapshots 93 through 105 and covers the time from 9:00 AM to 10:00 AM.
[image: image2.png]Starting snapshot [93: May 11 2007 9:00aM _[v] Ending snapshot | 105: May 11 2007 10:00AM ¥ (iew Repe
O —

4 4 [t Jofz b »I [100% [|Find | Next [Select a format Vet @ &
Configure Baselines
To crest a new baseine, vt he parametes above and cck View Feport”
Date Start End Seconds Name Snapshot source
1 5/11/2007 1:10:15 AM 2:00:01 AM 2,986 BL1 ‘Snapshots 1 through 9 delete

2 512007 9:00:00 AM 10:00:00 AM 3,600 BL2 Snapshots 93 through 105 delete

Figure 2: Configure Baselines

The user-defined baseline provides a means to string together a range of snapshots for comparison purposes. Baseline names can also be descriptive. Relationship of Samples, Snapshots, and Baselines are shown below.
	Samples
	S1
	S2
	S3
	S4
	S5
	S6
	S7
	S 8
	S 9
	S10
	S11
	S12
	S13
	S14
	S15
	S16
	S17
	S18
	S19
	S20
	S21

	Snapshots
	SS1

11:00
	SS 2
11:05
	SS3
11:10
	SS4
13:00
	SS5
13:05
	

	Baselines
	Friday11am_BL
	Friday01pm_BL
	

Figure 3: Relationship of samples, snapshots, and baselines

Key Concepts

Execution Model

The SQLOS server uses schedulers to manage the execution of user requests. SQLOS schedulers map to CPUs. Assuming server contained four CPUs, there would be four SQLOS schedulers by default. The following diagrams depict a simplified version of execution model using a single SQLOS scheduler. The execution model in Figure 4 shows how SQL Server user requests or sessions (denoted by SPIDs) are scheduled for execution.
[image: image3.png]Running - 1/5QLOS ‘Waiter List (Resource Waits)

SPID 60 Running SPID 73 LK M_S.
SPID 59 NETWORKIO
SPID 56 CXPACKET

e SPID 55 RESOURCE_SEMAPHORE

(signal Waits)
SPID 51 Runnable
SPID 64 Runnable
SPID 87 Runnable
SPID 52 Runnable
SPID 93 Runnable

Figure 4: Execution Model – Running, runnable, suspended status, Runnable Queue, Wait List
Figure 5 shows how SQL Server sessions rotate between the following statuses: Running (only one session can be running or executing, per scheduler), Runnable (sessions waiting for CPU), or Suspended. SPIDs with suspended statuses are placed in the wait list until the requested resources are available. If a running session needs a data page that is not in cache, or needs a page that is blocked by another user’s lock, the session is moved to the wait list. The next SPID or session_id in the runnable queue is scheduled to start running.
[image: image4.png]@

9 - 1/5QL0S

[—=2SPID 60 Running

ompletio

Runnable Queve 1/Scheduler
(signal Waits)

S0 &4 Rumabie (3)

S50 &7 Rumnale

S0 52 Rumnale

S0 53 Rumnale

SH10 56 Runnabie +—(B)

waiter

t (Resource Wi

SPID 73 LCK_M_S
SPID 59 NETWORKIO
SPID 56 CXPACKET
SPID 55 RESOURCE_SEMAPHORE
SPID 60 10_Completion

Figure 5: Execution Model – How status changes affect SPIDs

The status change sequence of events is as follows:
1. SPID60 needs a page that is not in cache. Its status changes from Running to Suspended with wait type of IO_Completion.
2. SPID60 moved to the wait list.
3. SPID51 moves from the Runnable queue with a Runnable status to Running status, SPID64 then moves to the top of the Runnable queue.
4. SPID56 is waiting for a parallel process to complete. When the parallel process is completed, the status for SPID56 changes from Suspended with wait type CXPACKET to Runnable.
5. SPID56 is moved to the bottom of the Runnable queue.
Figure 6 shows execution after session_ids (or SPIDs) have rotated clockwise due to status changes.
[image: image5.png]Running - 1/5QLOS

SPID 51 Runnable

Runnable Queue 1/Scheduler
(signal Waits)

SPID 64 Runnable

SPID 87 Runnable

SPID 52 Runnable

SPID 93 Runnable

SPID 56 Runnable

‘Waiter List (Resource Waits)

SPID 73 LCK_M_S
SPID 59 NETWORKIO.

SPID 55 RESOURCE_SEMAPHORE
SPID 60 10_Completion

Figure 6: Execution Model – After status change

When a thread has to wait for a resource, it is added to the wait list. Examples of resource waits includes I/Os to complete, a lock to be released, a memory grant, and so on. When the session is moved to the wait list, a wait type is assigned and time is accumulated. When the resource becomes available, the thread is moved to the runnable queue and it executes as soon as the CPU is available. The clockwise rotation between running, runnable and suspended states continues until the user request is completed.

Execution Model DMVs

Sys.dm_exec_requests

Each SQL Server session has a unique session_id in the system DMV sys.dm_exec_requests. The sp_who2 stored procedure provides a list of these sessions in addition to other connection information such as command, resource, wait types, wait time, and status. User queries have a session_id > 50. Common status values are Running, Runnable, and Suspended, as described in the Execution Model section above. A session status of Sleeping indicates that SQL Server is waiting for the next SQL Server command.

Wait List - sys.dm_os_waiting_tasks

The wait list that shows all waiting sessions and the reasons for the waits is in the sys.dm_os_waiting_tasks DMV. You can see the session_id, wait type, and associated wait time. In addition, if the session is blocked from acquiring a lock, the session holding (known as blocking) the lock as well as the blocked resource is shown in the blocking_session_id and resource columns.

All currently running SQL requests shown in figures 4-6 are contained in the sys.dm_exec_requests DMV. The subset of those requests that are waiting for resources in the wait list sys.dm_os_waiting_tasks will also have a status of Suspended in sys.dm_exec_requests.
The key execution model DMVs, sys.dm_exec_requests and sys.dm_os_waiting_tasks, can be highly transient. Tracking down highly transient waits requires small sample intervals.

Sys.dm_os_wait_stats

Sys.dm_os_wait_stats is the DMV that contains wait statistics, which are aggregated across all session ids since the last restart of SQL Server or since the last time that the wait statistics were reset manually using:

DBCC SQLPERF ('sys.dm_os_wait_stats', CLEAR).
Resetting wait statistics can be helpful before running a test or workload.
Any time a session_id waits for a resource, the session_id is moved to the waiter list along with an associated wait type. The sys.dm_os_waiting_tasks DMV shows the wait list at a given moment in time. Waits for all session_ids are aggregated in sys.dm_os_wait_stats.
Real-Time DMVs
Some DMVs provide real-time data whereas others contain historical information. The execution model described above in terms of Running, Runnable, and Suspended statuses are examples of real-time data.
Those requests with a status of Runnable are waiting only for CPU. Thus, the time spent in the runnable queue (also known as signal waits) is a measure of CPU pressure. Other requests in sys.dm_exec_requests having a Suspended status are detailed in sys.dm_os_waiting_tasks (also known as the waiter list). The time spent in the wait list is known as resource waits. Requests in the wait list are due to other resource issues (such as I/O, locks, memory allocation, or network) but not CPU.
[image: image6.png]T0 = Request resource, enter wait state
T1 = Signal Resource Availability

T2 = Use resource, reset wait state

f - Wait Time

Figure 7: Resource, Signal and Total Wait time
One request can quickly cycle from a Running status, to Suspended (wait list), to Runnable and back to Running status multiple times before the query completes. The advantage of capturing the wait list is that it allows us to associate wait statistics with individual requests.
When Signal wait begins (at T1) the resource wait is over, and the session_id is moved to the runnable queue with a Runnable status. Signal wait time includes the time it takes to move up the runnable queue to a Running status. After the signal occurs at T1, you are waiting to get scheduled back to a Running status. The session_id is running at T2 so the total wait time is the sum of resource and signal waits. To determine the extent to which CPU plays a role in performance, you must compare signal waits to resource waits. High signal (signal accounts for more than 25 percent of total waits) waits indicates CPU pressure.
Historical DMV Statistics

In contrast to the execution model’s real-time transient status changes shown in sys.dm_exec_requests and sys.dm_os_waiting_tasks, aggregated historical query stats for Transact-SQL statements including execution counts, I/Os, worker time, and elapsed time are maintained in sys.dm_exec_query_stats. Waits other than I/O and Worker (approximates CPU) time, and elapsed time are not available at the statement level in sys.dm_exec_query_stats.

Note that statements that are currently executing in sys.dm_exec_requests will not be reflected in sys.dm_exec_query_stats until the query completes. So if a batch job executes for three hours, the stats associated are not updated until the query completes three hours later. Therefore, to understand current bottlenecks such as high CPU, long I/Os, and network or lock waits, you must look at sys.dm_exec_requests.

From the last time SQL Server was restarted, sys.dm_exec_query_stats contains aggregates of query executions. After each query completes, sys.dm_exec_query_stats is aggregated with additional I/Os, executions, worker time, and elapsed time. Unless memory pressure forces query plans to be evicted, query stats will be continuously aggregated until the next time SQL Server is restarted.

To answer historical questions of what queries executed last week, you would need to compare snapshots of sys.dm_exec_query_stats, subtracting execution counts, I/Os, worker and elapsed times. The limitation to this approach is that the association of transient wait states from the execution model sys.dm_exec_requests (and waiter lists in sys.dm_os_waiting_tasks) to individual Transact-SQL statements cannot be made without capturing and comparing these DMVs.

How to use DMVstats
Configure DMVstats

The first step is to configure DMVstats using the Configure DMVstats report. First, specify databases to monitor, then enable DMVStats jobs to collect DMV statistics.
While DMVstats reports can be deployed on any computer, the SQL Agent jobs and DMVstatsDB database should reside on the same computer as the databases you are monitoring. For more information, see the Getting Started section.
Configure Baselines

After collecting DMVstats, the next step is to create a baseline using the Configure Baselines report. For more information, see the Getting Started section.
Wait Stats

After configuring the baselines, the next step is to analyze the data using the Wait Stats report which contains two graphs. The first graph compares signal (time in the runnable queue) to resource waits (time in the wait list) - See Figure 8 below. The second graph breaks down waits by category. Wait Stats can be summarized for the baseline, or shown in more detail with snapshots.
[image: image7.png]‘Snapshot v BaselinelDs |1 | May 11 2007 1:10AM | 298| View Repo

Detail Level
Snapshots |1 May 112007 1:10aM, 2: Mal¥| Samples |All samples in selected snapshd v
W4 of1 b bl [100% v Find | Select a format v
=]

Change detail level to Baseline

Change detail level to Sample

Signal vs. Resource Waits - Detail: Snapshot

8000000

6000000

4000000
W Signal Waits
M Resource Waits
2000000 I l
0

T Y I S Iy S G S SR
L Baseline 1. |

Figure 8: Wait Stats: Signal vs. Resource

Signal waits start to rise significantly during snapshot 6. To see what queries are using the most CPU during snapshot 6, you can drill into the area in blue.
Wait Stats: Wait Categories

There are approximately 200 wait types in SQL Server 2005, organized into 14 categories. The following graph shows the breakdown of waits by snapshot for Baseline 1.

[image: image8.png]Category Waits - Detail: Snapshot
8000000

6000000

- THREAD

DML CONTENT!
4000000 — LOCK
— MISC
m— SERVICE BROKER
2000000 — NETWORK
l — (0
o

B O Y S S (S S S|
[Baseline 1 |

Figure 9: Category waits detail snapshot
Locking waits appear in snapshot 4. To find the statements that can be associated with these lock waits, drill into the pink area of snapshot 4.

Drill-Through Guidance

When you drill into a wait type of the Wait Stats report, you will see the Drill-through Guidance report. Because the wait category you are drilling into is LOCK from the above graph, Drill Through Guidance will display choices for locking.

[image: image9.png]Report Guidance

Dl into LOCK waits. Wait Stats
Find biggest blocks (currently running) ~ Analyze Block Info Display statements involved in the block
in the waiter list

Find Index Contention Index Operational Stats Diill to snapshots, samples.

Figure 10: Drill-through guidance report

Selecting the Analyze Block Info report displays the statements involved in LOCK waits, collected from the execution model wait list DMV sys.dm_os_waiting_tasks. These statements were captured during sample collection. Note the waiting and blocking statements along with the associated baseline, snapshot and sample IDs.

The same drill-through approach also works with all the other wait categories.

[image: image10.png]Analyze Block Info

resourcetype resourceassociated requestmode waitms Baseline Il

entity id
PAGE 2525889234725 15612

SELECT C,CategoryName,Productiame, Yr=Substring (Convert{nvarchar (4),0.OrderDate, 111), 1,4),
TotaPurchase =ROUND(SUM(CONVERT (decimal(14,2), OD.Quantity = (1-0D.Discount) * OD. Uniterice)), 0)
FROM [Order Detais] 0D, Orders O, Products P, Categories C

VIHERE 0D, OrderD = 0.0rcerlD

AND OD.ProductiD = P Productld

AND P.CategoryID = C.CategorylD

‘GROLP BY C.Categoryame Productame, Substrng(Convert{nvarchar (4),0.0rderDate, 111),1,4)
‘ORDER BY C.CategoryName Productame, Substrng(Convert{nvarchar (4),0.OrderDate, 111), 1,4)
reate procedure Salessyfear

as

Thiss provided "AS IS” with no warrantes, and confers no ights.

~Use of induded script samples are subject to the terms specified at

hitp:/fanen.microsoft. comfinfo/cpyright.tm

SELECT Year =DATEPART(yy,ShippedDate), Orders.OrderlD, [Order Subtotals].subtotal
FROM Orders INNER JOIN [Order Subtotak]

ON Orders.OrderID = [Order Subtotak].OrderID

order by DATEPART(yy, ShippedDate),Orders.OrderID

compute sum([Order Subtotals].Subtotal) by DATEPART(yy,ShippedDate)

PAGE 28288832344726.
PAGE 282888323447256.
PAGE 282888323447256.

Snapshot
D

Sample

B8R

Figure 11: Analyze Block Info report

The Index Operational Stats link displays index contention. Here you can see which indexes have the most contention as measured by lock requests and lock waits.

DMV schemas

These are four main schemas – DMVsnapshot, DMVbaseline, DMVsample, and DMVconfig.
DMV data collection
The automatic collection creates snapshots of the DMV data at given points in time. Regularly scheduled DMV snapshots will include the following six tables:

	Description
	Table name
	Performance issue

	File statistics
	virtual_file_stats
	Database I/O, stalls

	Operational index statistics
	index_operational_stats
	Blocks, hot spots

	Query statistics
	query_stats
	Min, max, average worker and elapsed time, I/O

	Wait statistics
	wait_stats
	Resource and CPU waits (cross reference to performance counters)

	Performance counters
	performance_counters
	Resource capacity and usage

	Instrumentation
	instrumentation
	Records each DMV collection

Table 1: DMV snapshots
Each of the DMV snapshot tables can be rolled up into baselines for Reporting Services analysis reports. The control table for snapshot tables is DMVsnapshot.snapshots and DMVbaseline.baselines for baseline tables. The main purpose of the baseline is for reference, comparison, and trending. Typically, baselines will be compared to other baselines.

Regularly scheduled DMV samples are used to associate transient waits to SQL statements. DMV samples include the following six tables:

	Description
	Table name
	Performance issue

	Requests and waiters
	requests_and_waiters
	User requests currently executing from sys.dm_exec_requests and the wait list from sys.dm_os_waiting_tasks

	Blocking
	block_info
	Finds statements involved in blocking

	Schedulers
	schedulers
	Min, max, average worker and elapsed time, I/O

	Wait statistics
	wait_stats
	Waits, CPU pressure (cross reference to performance counters)

	Performance counters
	performance_counters
	Resource capacity and usage

	Instrumentation
	instrumentation
	Records each DMV collected for overhead purposes

Table 2: DMV samples
[image: image11.emf]index_operational_stats (DMVsnapshot)

SnapshotID

database_id

object_id

index_id

partition_number

leaf_insert_count

leaf_delete_count

leaf_update_count

leaf_ghost_count

nonleaf_insert_count

nonleaf_delete_count

nonleaf_update_count

leaf_allocation_count

nonleaf_allocation_count

leaf_page_merge_count

nonleaf_page_merge_count

range_scan_count

singleton_lookup_count

forwarded_fetch_count

lob_fetch_in_pages

lob_fetch_in_bytes

lob_orphan_create_count

lob_orphan_insert_count

row_overflow_fetch_in_pages

row_overflow_fetch_in_bytes

column_value_push_off_row_count

column_value_pull_in_row_count

row_lock_count

row_lock_wait_count

row_lock_wait_in_ms

page_lock_count

page_lock_wait_count

page_lock_wait_in_ms

index_lock_promotion_attempt_count

index_lock_promotion_count

page_latch_wait_count

page_latch_wait_in_ms

page_io_latch_wait_count

page_io_latch_wait_in_ms

performance_counters (DMVsnapshot)

SnapshotID

object_name

counter_name

instance_name

cntr_value

cntr_type

query_stats (DMVsnapshot)

SnapshotID

sql_handle

statement_start_offset

statement_end_offset

plan_generation_num

plan_handle

creation_time

last_execution_time

execution_count

total_worker_time

last_worker_time

min_worker_time

max_worker_time

total_physical_reads

last_physical_reads

min_physical_reads

max_physical_reads

total_logical_writes

last_logical_writes

min_logical_writes

max_logical_writes

total_logical_reads

last_logical_reads

min_logical_reads

max_logical_reads

total_clr_time

last_clr_time

min_clr_time

max_clr_time

total_elapsed_time

last_elapsed_time

min_elapsed_time

max_elapsed_time

snapshots (DMVsnapshot)

SnapshotID

snapshotTime

interval_seconds

SQL_restart

last_snapshot_before_restart

new_query_stats_rows

new_query_sql_rows

total_query_stats_rows

new_filestats_rows

new_waitstats_rows

new_indexstats_rows

new_perfcounter_rows

description

virtual_file_stats (DMVsnapshot)

SnapshotID

database_id

file_id

sample_ms

num_of_reads

num_of_bytes_read

io_stall_read_ms

num_of_writes

num_of_bytes_written

io_stall_write_ms

io_stall

size_on_disk_bytes

wait_stats (DMVsnapshot)

SnapshotID

wait_type

waiting_tasks_count

wait_time_ms

max_wait_time_ms

signal_wait_time_ms

Figure 12: DMVsnapshot schema: collects aggregated DMVs

[image: image12.emf]instrumentation (DMVbaseline)

BaselineID

SequenceNo

proc_id

proc_name

proc_start_time

proc_end_time

rows

duration

database_id

snapshots (DMVbaseline)BaselineID

StartSnapshotTime

EndSnapshotTime

interval_seconds

name

new_query_stats_rows

new_query_sql_rows

total_query_stats_rows

new_filestats_rows

new_waitstats_rows

new_indexstats_rows

new_perfcounter_rows

snapshot_source

description

first_snapshot

last_snapshot

Figure 13: DMVbaseline schema: user-defined collection of snapshots

[image: image13.emf]block_info (DMVsample)

SampleID

database_id

dbname

resource_type

resource_associated_en...

request_mode

request_session_id

wait_duration_ms

waiting_batch

waiting_stmt

blocking_session_id

include_perf_counters (DMVsample)

object_name

counter_name

instance_name

instrumentation (DMVsample)

SampleID

SequenceNo

proc_id

proc_name

proc_start_time

proc_end_time

rows

performance_counters (DMVsample)

SampleID

object_name

counter_name

instance_name

cntr_value

last_cntr_value

delta_cntr_value

requests_and_waiters (DMVsample)

SampleID

RequestWaiterID

request_id

session_id

task_address

waiting_task_address

scheduler_id

exec_context_id

wait_type

wait_time

wait_resource

task_state

status

command

sql_handle

statement_start_offset

statement_end_offset

plan_handle

database_id

user_id

start_time

open_transaction_count

open_resultset_count

transaction_id

cpu_time

total_elapsed_time

reads

writes

logical_reads

transaction_isolation_level

sample_snapshots (DMVsample)

SampleID

SampleCount

SnapshotID

sampleTime

interval_seconds

qsTime

schedulers (DMVsample)

SampleID

scheduler_address

parent_node_id

scheduler_id

cpu_id

status

is_online

is_idle

preemptive_switches_count

context_switches_count

idle_switches_count

current_tasks_count

runnable_tasks_count

current_workers_count

active_workers_count

work_queue_count

pending_disk_io_count

load_factor

yield_count

last_timer_activity

wait_stats (DMVsample)

SampleID

wait_type

waiting_tasks_count

wait_time_ms

max_wait_time_ms

signal_wait_time_ms

Figure 14: DMVsample schema: associates transient waits to Transact-SQL statements

[image: image14.emf]config_values (DMVconfig)

config_name

config_type

database_files (DMVconfig)

database_id

file_id

filename

physical_name

database_object_index_columns (DMVconfig)

database_id

schema_id

object_id

index_id

index_column_id

column_id

colname

database_object_indexes (DMVconfig)

database_id

dbname

schema_id

object_id

objname

index_id

indexname

type

is_unique

is_disabled

database_objects (DMVconfig)

database_id

dbname

schema_id

object_id

database_schemas (DMVconfig)

database_id

dbname

schema_id

databases (DMVconfig)

database_id

dbname

exclude_wait_types (DMVconfig)

wait_type

include_perf_counters (DMVconfig)

object_name

counter_name

instance_name

instrumentation (DMVconfig)

ID

SequenceNo

proc_id

proc_name

proc_start_time

proc_end_time

rows

wait_stats_categories (DMVconfig)

wait_type

wait_category

Figure 15: DMVconfig Schema: DMVstats configuration

 Q&A
1. What is the overhead of DMVstats?

The overhead of DMVstats depends on:
· The size of the workload. If the workload is light, DMVstats data collection will account for a larger percentage of overhead compared with the workload.
· The snapshot interval. By default, the snapshot interval is set to five minutes. This means that every five minutes, DMV statistics are inserted into the snapshot tables. Longer snapshot intervals can reduce the overhead.
· The sample interval. The default sample interval is 20 seconds. This means that every 20 seconds, transient execution model DMVs such as sys.dm_exec_requests and sys.dm_os_waiting_tasks are inserted into the sample tables. The 20 second interval allows the association of transient execution model waits to individual Transact-SQL statements. Longer sample intervals can reduce the overhead, but will also reduce the likelihood of associating statements to transient waits.

The rows inserted for wait statistics will be constant for each collection (sample or snapshot). There are 200 wait types; so each wait stats collection inserts 200 rows.

While wait statistics consistently inserts 200 rows for each collection, the rows inserted for other DMV statistics depends on other factors such as object counts. For example, for virtual_file_stats, how many files do you have? There will be one row written for each file. For index_operational_stats, there is one row written for each index. The rows inserted for query stats are affected by the workload and stored procedure (and ad-hoc Transact-SQL) counts, for example.
If you are not tracking down transient execution model waits such as statements involved in locking, or what statements use the most memory, you could set the sample interval higher, for example to 60 seconds.

2. What is a baseline? What is it used for?

A baseline is a user-specified collection of snapshots that define a workload for a certain duration of time. In other words, there are one or more snapshots in a baseline. Baseline = 1:N contiguous snapshots.

For example, a Monday morning baseline would consist of all snapshots taken on Monday between 8:00 AM and 12:00 noon. This baseline can then be compared to other baselines, or it can be analyzed individually.
DMVstats 1.0 - A Performance DataWarehouse
Page 3

