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1 (i) For f (x) = (x2−1)3, the derivative is f ′(x) = 6x(x2−1), so the critical points are x = 0,±1 and
the endpoints are x = −1,2. For the local extrema, we see that f ′(x) > 0 when x ∈ (−1,0)∪
(1,∞) and f ′(x) < 0 when x∈ (−∞,−1)∪(0,1). Hence local minima occur at the points (−1,0)
and (1,0) and (0,−1).
For absolute extrema we compare the values of the function at the endpoints and critical points.
We have

f (−1) = 0, f (0) =−1, f (1) = 0, f (2) = 27,

so the absolute maximum is (2,27) and the absolute minima are (−1,0) and (1,0).
(ii) Given f (x) = x−2cosx, we have f ′(x) = 1+2sinx > 0, since sinx is positive on [0,π]. There-

fore there are no local extrema. Looking at the endpoints, f (0) = −2 and f (π

3 ) = 2π−3
√

3
6 > 0,

so the absolute minimum is at x = 0 and the absolute maximum is at x = π

3 .
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38. Suppose f (x) = Ax2 + Bx +C. Then f ′(x) = 2Ax + B = 0 =⇒ x = −B/2A = 2, so B = −4A.
Furthermore, f (−1) = 3 implies A−B +C = 3 and f (3) = −1 implies 9A + 3B +C = −1.
Solving for A, B, and C, we get A = 1

2 , B =−2, C = 1
2 .
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36. Suppose f (x) = (1 + x)r− (1 + rx) for x ≥ −1. Then f ′(x) = r[(1 + x)r−1− 1], so f ′(x) = 0
when x = 0. Furthermore, f ′′(x) = r(r−1)(1+ x)r−2, so f ′′(0) = r(r−1) > 0, so f has a local
minimum at x = 0. By Theorem 4.4.3, f (0) = 0 is the absolute minimum of f .
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14. By doing question 13, we see that A(m) = 10−2m− 25
2m , where m is the slope of the line which

intersects (2,5). Since m ∈ (0,∞) we find that at one of the endpoints,

lim
m→0−

A(m) = +∞,

so no absolute maximum exists.
44. We maximize the volume V = 1

3 πr2h, where r2 +h2 = a2, so

V (h) =
1
3

π(a2−h2)h, 0≤ h≤ a.

Thus, V ′(h) = 1
3 π(a2−3h2) = 0 =⇒ h = a√

3
. By checking the endpoints, we see the maximum

volume is V (a/
√

3) = 2
27 πa3

√
3.

5 We maximize the cross-sectional area

A(θ) = 10h+2(
1
2

dh) = 10h+dh = 10(10sinθ)+(10cosθ)(10sinθ)

= 100(sinθ + sinθ cosθ), 0≤ θ ≤ π

2
.

A′(θ) = 100(cosθ + cos2
θ − sin2

θ) = 100(cosθ +2cos2
θ −1) = 100(2cosθ −1)(cosθ +1)

= 0 when cosθ =
1
2
⇐⇒ θ =

π

3



since cosθ 6=−1 on θ ∈ [0, π

2 ]. Now A(0) = 0, A(π

2 ) = 100 and A(π

3 ) = 75
√

3. Thus, the maximum
occurs at θ = π

3 .

6 Let (c,1− c2) be a point on the parabola, where c ∈ (0,∞). If y(x) = 1− x2, then y′(c) =−2c, so the
equation of the tangent line is y− (1− c2) = −2c(x− c). From this equation it is easy to show that
the tangent line intersects the points (0,c2 +1) and ( c2+1

2c ,0). Therefore the area of the triangle is

A(c) =
1
2

(
c2 +1

2c

)
(c2 +1) =

1
4

(c2 +1)2

c
=

c4 +2c2 +1
4c

=
1
4

(
c3 +2c+

1
c

)
.

Solving A′(c) = 0 gives

1
4

(
3c2 +2− 1

c2

)
= 0 =⇒ 3c2 +2− 1

c2 = 0 =⇒ 3c4 +2c2−1 = 0

=⇒ (3c2−1)(c2 +1) = 0 =⇒ c2 =
1
3

=⇒ c =
1√
3
.

It is easy to see that at the endpoints lim
c→0+

A(c) = +∞ and lim
c→∞

A(c) = +∞. Hence at the point ( 1√
3
, 2

3),

the tangent line cuts from the first quadrant the triangle with smallest area.
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10. f (x) = x3− x4 =⇒ f ′(x) = 3x2− 4x3 =⇒ f ′′(x) = 6x− 12x2 = 6x(1− 2x). Solving the in-
equality 6x(1−2x) > 0, we find that f is concave down on (−∞,0)∪ (1

2 ,∞) and concave up on
(0, 1

2). Hence the points of inflection are (0,0) and (1
2 , 1

16).

48. It is sufficient to show that the x-coordinate of the point of inflection is the x-coordinate of
the midpoint of the line segment connecting the local extrema. It is easy to show that the x-
coordinate of the point of inflection is x0 = −1

3 a. Now suppose that p has local extrema at x1
and x2, where x1 6= x2. Then

p′(x1) = p′(x2) = 0 =⇒ 3x2
1 +2ax1 +b− (3x2

2 +2ax2 +b) = 0 =⇒ x1 + x2 =−2
3

a.

Thus, 1
2(x1 + x2) =−1

3 a = x0.

8 (i) lim
x→∞

√
x = ∞ means that for any M > 0, there exists N > 0 such that x > M implies

√
x > N.

Choose N =
√

M, then x > M implies
√

x >
√

M = N, which is exactly what we needed to show.

(ii) lim
x→2−

1
(x−2)3 =−∞ means that for a sufficient large negative number M < 0, there exists δ > 0

such that if 2−δ < x < 2, then (x−2)−3 < M.
Given M < 0, choose δ = 3

√
−1/M > 0. Then

2−δ < x < 2 =⇒ −δ < x−2 < 0 =⇒ − 1
δ

>
1

x−2
=⇒ 1

(x−2)3 <− 1
δ 3 = M.

9 (i) lim
x→∞

x4 +3x2 +1
x2(3x+1)(x−3)

= lim
x→∞

x4 +3x2 +1
3x4−8x3−3x2 = lim

x→∞

1+3x−2 + x−4

3−8x−1−3x−2 =
1
3

.



(ii) Multiplying top and bottom by the conjugate,

lim
x→−∞

(x+
√

x2 +5x)(x−
√

x2 +5x)
x−
√

x2 +5x
= lim

x→−∞

x2− (x2 +5x)
x−
√

x2 +5x
= lim

x→−∞

−5x

x−
√

x2 +5x

= lim
x→−∞

−5x

x−
√

x2(1+ 5
x )

= lim
x→−∞

−5x

x+ x
√

1+ 5
x

since as x→−∞,
√

x2 = |x|=−x. Hence,

lim
x→−∞

−5x

x+ x
√

1+ 5
x

= lim
x→−∞

−5

1+
√

1+ 5
x

=−5
2
.
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8. Evaluating limits, we see that for x 6= 0, we have
√

x
4
√

x− x
=

1
4−
√

x
, so

lim
x→∞

√
x

4
√

x− x
= 0, lim

x→0+

√
x

4
√

x− x
=

1
4
, lim

x→16+

√
x

4
√

x− x
=−∞, lim

x→16−

√
x

4
√

x− x
= ∞,

so x = 16 is a vertical asymptote and y = 0 is a horizontal asymptote.

22. For y = 3+x2/5 we have y′ = 2
5 x−3/5. Since lim

x→0+
y′ = +∞ and lim

x→0−
y′ =−∞, we see that at x = 0

we have a cusp.

30. Differentiating gives us f ′(x) = (4x−3)(x−1)−2/3. Since lim
x→1−

f ′(x) = lim
x→1+

= ∞, it follows we

have a vertical tangent at x = 1.

11 (i) (SHE 4.8 #12) We are given f (x) = (x+2)/x3 = 1
x2 + 2

x3 . The domain is x 6= 0. The lone intercept
is (−2,0). As for asymptotes, we evaluate the relevant limits:

lim
x→0+

f (x) = +∞, lim
x→0−

f (x) =−∞, lim
x→±∞

f (x) = 0,

hence x = 0 is a vertical asymptote, and y = 0 is a horizontal asymptote.
The first derivative is f ′(x) = − 2

x3 − 6
x4 = −2x−6

x4 . The critical points are x = −3 and x = 0,
although the function is not defined at x = 0. We now determine where f ′ is positive or negative
and see by inspection that f ′(x) > 0 when x < −3 and f ′(x) < 0 when x > −3. Hence f is
increasing on x <−3 and decreasing on x >−3. Hence x =−3 is a local maximum.

The second derivative is f ′′(x) = 6
x4 + 24

x5 = 6(x+4)
x5 . We have f ′′(x) = 0 when x = −4 and f ′′

is undefined when x = 0 (where the function is undefined). Again, we solve the inequality
f ′′(x) > 0 to get x ∈ (−∞,−4)∪ (0,∞); thus f is concave up on that interval, and f is concave
down on (−4,0). Therefore x =−4 and x = 0 are inflection points (since concavity changes at
both points). This yields the sketch below left.



(ii) (SHE 4.8 #36) We are given f (x) = x3(x + 5)2. As the function is a polynomial, the domain is
R. The intercepts are (0,0) and (−5,0). As the function is a polynomial of degree 5, there are
no vertical nor horizontal asymptotes.
The first derivative is f ′(x) = 5x2(x + 3)(x + 5). The critical points are x = 0,−3,−5. Solving
f ′(x) > 0 gives us x∈ (−∞,−5)∪(−3,0)∪(0,∞), so this is the interval for which f is increasing.
Hence f is decreasing on (−5,−3). Therefore the point (−5,0) is a local maximum, (−3,−108)
is a local minimum, and (0,0) is not a local extrema.
Evaluating the second derivative, we get f ′′(x) = 10x(2x2 + 12x + 15). The candidates for in-
flection points (by applying the quadratic formula) are x = 0,−3− 1

2

√
6,−3 + 1

2

√
6. Solving

f ′′(x) > 0 gives us (−3− 1
2

√
6,−3+ 1

2

√
6)∪(0,∞), so this is the interval for which f is concave

up. Thus, f is concave down on (−∞,−3− 1
2

√
6)∪ (−3+ 1

2

√
6,0). Therefore all candidates of

inflection points are indeed inflection points. This yields the sketch above right.

(iii) (SHE 4.8 #42) We are given f (x) = x2(x−7)1/3. The domain is R and the intercepts are (0,0)
and (7,0). There are no vertical or horizontal asymptotes since lim

x→±∞
f (x) does not exist and the

domain is R.

The first derivative is f ′(x) =
7x(x−6)

3(x−7)2/3 . The critical points are x = 0,6,7. By evaluating

where f ′(x) > 0 and f ′(x) < 0, we see that f is increasing on (−∞,0)∪ (6,∞) and decreasing
on (0,6). Hence (0,0) is a local maximum and (6,−36) is a local minimum.

The second derivative is f ′′(x) =
14(2x2−24x+63)

9(x−7)5/3 . We find the candidates for inflection

points are x = 6− 3
2

√
2, x = 6+ 3

2

√
2, and x = 7. The function f is concave down on (−∞,6−

3
2

√
2)∪ (7,6 + 3

2

√
2) and concave up on (6− 3

2

√
2)∪ (6 + 3

2

√
2,∞). Hence all candidates are

indeed inflection points. This yields the sketch below left.
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6. The recursion formula is xn+1 = xn− f (xn)
f ′(xn)

. For f (x) = sinx− x2, we have f ′(x) = cosx− 2x.

Hence, xn+1 = xn−
sinxn− x2

n

cosxn−2xn
=

xn sinxn−2x2
n− sinxn + x2

n

cosxn−2xn
=

xn sinxn− x2
n− sinxn

cosxn−2xn
. With a

calculator, we find that x4 ≈ 0.87673.
14(a) Let f (x) = xk− a. Then f ′(x) = kxk−1. The Newton-Raphson method applied to this function

gives

xn+1 = xn−
xk

n−a
kxk−1

n
= xn−

1
k

xn +
1
k

a
xk−1

n
=

1
k

[
(k−1)xn +

a
xk−1

n

]
.

13 (i) lim
x→0

1− cosx
x2 + x

H= lim
x→0

sinx
2x+1

= 0.

(ii) Applying L’Hôpital’s Rule twice we get

lim
x→0

tanx− x− 1
3 x3

x5
H= lim

x→0

sec2 x−1− x2

5x4
H= lim

x→0

2sec2 x tanx−2x
20x3 = lim

x→0

sec2 x tanx− x
10x3

= lim
x→0

tan3 x+ tanx− x
10x3 .

Applying L’Hôpital’s Rule again gives

lim
x→0

3tan2 xsec2 x+ sec2 x−1
30x2 = lim

x→0

3tan4 x+3tan2 x+ tan2 x
30x2 = lim

x→0

3tan4 x+4tan2 x
30x2

= lim
x→0

sin4 x
10x2 cos4 x

+
2sin2 x

15x2 cos2 x
= 0+

2
15

=
2

15
.

(iii) lim
x→0

4
x2 −

2
1− cosx

= lim
x→0

4−4cosx−2x2

x2(1− cosx)
H= lim

x→0

4sinx−4x
2x−2xcosx+ x2 sinx

.

Applying L’Hôpital’s Rule three more times,

lim
x→0

4cosx−4
2−2cosx+4xsinx+ x2 cosx

H= lim
x→0

−4sinx
6sinx+6xcosx− x2 sinx

H= lim
x→0

−4cosx
12cosx−8xsinx− x2 cosx

=−1
3
.



14 We have f (x) =

{
sinx

x , x 6= 0,

1, x = 0.

(a) f ′(0) = lim
h→0

f (0+h)− f (0)
h

= lim
h→0

f (h)−1
h

= lim
h→0

sinh
h −1

h
= lim

h→0

sinh−h
h2

H= lim
h→0

cosh−1
2h

H=

lim
h→0

−sinh
2

= 0.

(b) Differentiating for x 6= 0, we get f ′(x) =

{
xcosx−sinx

x2 , x 6= 0,

0, x = 0.

Evaluating, we get

f ′′(0) = lim
h→0

f ′(0+h)− f ′(0)
h

= lim
h→0

f ′(h)
h

= lim
h→0

hcosh− sinh
h3

H= lim
h→0

cosh−hsinh− cosh
3h2 = lim

h→0

−sinh
3h

=−1
3
.


