MAT 137Y 2007-08 Winter Session, Solutions to Problem Set 8

1 (i) For f(x) = (x> — 1)3, the derivative is f’(x) = 6x(x> — 1), so the critical points are x = 0, %1 and
the endpoints are x = —1,2. For the local extrema, we see that f’(x) > 0 when x € (—1,0) U
(1,00) and f’(x) < 0 when x € (—o0, —1)U (0, 1). Hence local minima occur at the points (—1,0)
and (1,0) and (0,—1).
For absolute extrema we compare the values of the function at the endpoints and critical points.
We have

f(=1)=0, f(0)=-1, f(1)=0, f(2)=27,
so the absolute maximum is (2,27) and the absolute minima are (—1,0) and (1,0).
(i) Given f(x) = x —2cosx, we have f'(x) = 14 2sinx > 0, since sinx is positive on [0, 7]. There-

fore there are no local extrema. Looking at the endpoints, f(0) = —2 and f(§) = % >0,

so the absolute minimum is at x = 0 and the absolute maximum is at x = %

2 (SHE 4.3)

38. Suppose f(x) = Ax> +Bx+C. Then f/(x) =2Ax+B =0 = x= —B/2A =2, 50 B = —4A.
Furthermore, f(—1) = 3 implies A—B+C =3 and f(3) = —1 implies 94 +3B+C = —1.
Solving for A, B, and C, we get A = %, B=-2,C= %

3 (SHE 4.4)

36. Suppose f(x) = (1+x)"— (1 +rx) for x > —1. Then f'(x) = r[(1+x)" 1 —1], so f/(x) =0
when x = 0. Furthermore, f”(x) = r(r — 1)(14x)"2, s0 f"(0) = r(r — 1) > 0, so f has a local
minimum at x = 0. By Theorem 4.4.3, f(0) = 0 is the absolute minimum of f.

4 (SHE 4.5)

14. By doing question 13, we see that A(m) = 10 — 2m — %, where m is the slope of the line which
intersects (2,5). Since m € (0,0) we find that at one of the endpoints,
lim A(m) = oo,
m—0~
so no absolute maximum exists.

44. We maximize the volume V = %nrzh, where 2 + h? = a2, so

1
V(h) = g7r(a2 —hHh, 0<h<a.

Thus, V'(h) = 17(a*—3h*) =0 = h= % By checking the endpoints, we see the maximum
volume is V (a/+/3) = %ﬂ:cﬁ\/g.

5 We maximize the cross-sectional area
A(0) = 10h+2(%dh) = 10h+dh = 10(10sin8) + (10cos 8)(10sin )
— 100(sin 6 + sinBcosH), 0< O < g
A’(6) = 100(cos 6 +cos® 8 — sin® ) = 100(cos 8 +2cos* 6 — 1) = 100(2cos @ — 1)(cos 6 + 1)

1
:Owhencosezi <~ 0=

Wl



since cos 6 # —1 on 6 € [0, %]. Now A(0) =0, A(%) = 100 and A(%) = 75V/3. Thus, the maximum
occurs at 6 = 3.

6 Let (c,1—c?) be a point on the parabola, where ¢ € (0,00). If y(x) = 1 —x2, then y/(c) = —2c, so the

equation of the tangent line is y — (1 —¢?) = —2c(x — ¢). From this equation it is easy to show that
c +1

the tangent line intersects the points (0,c?+ 1) and (55,0). Therefore the area of the triangle is

1/c2+1 1(2+1)? A+22+1 1 1
A(c):(c+ )(62+1):(c+ ) S e :<63+26+>.
C

2 2c 4 c 4c 4

Solving A’(c) = 0 gives

1 1 1
—(3%42—= =0 = 3% +2——= =0 = 3c*+22-1=0
4 c? c?

1 1
— B3P+ 1)=0 = == = c= —.

3 V3

It is easy to see that at the endpoints lir(r)1+A(c) = o0 and lim A(c) = +oo. Hence at the point (7 %),
c— c—o0

the tangent line cuts from the first quadrant the triangle with smallest area.
7 (SHE 4.6)

10. f(x) =x>—x* = f'(x) =3x" —4x> = f"(x) = 6x — 12x> = 6x(1 — 2x). Solving the in-
equahty 6x(1—2x) > 0, we find that f is concave down on (—e0,0) U (4,) and concave up on
(0, ). Hence the points of inflection are (0,0) and (3, ).

48. It is sufficient to show that the x-coordinate of the point of inflection is the x-coordinate of
the midpoint of the line segment connecting the local extrema. It is easy to show that the x-
coordinate of the point of inflection is xy = —fa Now suppose that p has local extrema at x;
and x,, where x| # x,. Then

2
P(x1)=p(x2) =0 = 3x7 +2ax; +b— (3x3 +2ax, +b) =0 — x1+xz:—§a.

Thus, %(xl +x)= —%a = X0.

8 (i) lim \/x = > means that for any M > 0, there exists N > 0 such that x > M implies /x > N.

X—00

Choose N = /M, then x > M implies \/x > VM = N, which is exactly what we needed to show.

1
(i1) lir? 7( DE = —oo means that for a sufficient large negative number M < 0, there exists § > 0
x—27 (X —

such that if 2 — § < x < 2, then (x—2) > < M.
Given M < 0, choose 6 = {/—1/M > 0. Then

1 1 1 1
2-0<x<2 = 0<x2<0 = ——>— =— —— < —— =M.
* * 5§ x-—2 x—23° &

9 (@) lim skt ST ot v ot o8 SNRTOUND B o Sk SR |
xoeo x2(3x+ 1) (x—3)  x—owo3xt =813 —3x2  1oe3—8x 1 —3x2 3’




(i) Multiplying top and bottom by the conjugate,

fm (x+ Vx% 4+ 5x) (x — Vx* + 5x) fim x? — (x* 4 5x) fim —5x

1 = 1 B —— 1 _—

X—y—oo x—Vx2+5x xome x—/x24+5x e x—/x2+5x
—5x —5x

= lim ———= lim ————
T x = 2(142) T xay 142
since as x — —oo, Vx? = |x| = —x. Hence,

Em — % fim >

e
X——00 5 X——o0 5 o 2
x+xy/1+2 I+4/14+3
10 (SHE 4.7)
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= N
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4y/x—x 44— /x
VX o Vx 1 VX Vx

8. Evaluating limits, we see that for x # 0, we have

lim = lim =—, lim = —oo, lim = o0
x—eo 4y /x —x =0t dy/x—x 4 x—l16t4y/x—x x—16-4y/x —x
so x = 16 is a vertical asymptote and y = 0 is a horizontal asymptote.
22. Fory=3+x%" we havey’ = 2x73/. Since liI(I)l+ y' = 4o and liI(I)l y' = —oo, we see that at x =0
X— x—U—

we have a cusp.

30. Differentiating gives us f’(x) = (4x—3)(x—1)"2/3. Since linln fx)= 1ir{l+ = oo, it follows we
X—1 X—
have a vertical tangent at x = 1.

11 (i) (SHE 4.8 #12) We are given f(x) = (x+2)/x° = xiz + x% The domain is x # 0. The lone intercept
is (—2,0). As for asymptotes, we evaluate the relevant limits:

lim f(x) =+, lim f(x)=—co, lim f(x) =0,

x—0t x—0~ x—+oo

hence x = 0 is a vertical asymptote, and y = 0 is a horizontal asymptote.

The first derivative is f'(x) = —)% - x% = 72;276. The critical points are x = —3 and x = 0,
although the function is not defined at x = 0. We now determine where f’ is positive or negative
and see by inspection that f'(x) > 0 when x < —3 and f’(x) < 0 when x > —3. Hence f is

increasing on x < —3 and decreasing on x > —3. Hence x = —3 is a local maximum.

The second derivative is f”(x) = x% + % = %. We have f”(x) = 0 when x = —4 and f”
is undefined when x = 0 (where the function is undefined). Again, we solve the inequality
f"(x) > 0to get x € (—oo,—4) U (0,00); thus f is concave up on that interval, and f is concave
down on (—4,0). Therefore x = —4 and x = 0 are inflection points (since concavity changes at

both points). This yields the sketch below left.
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(ii) (SHE 4.8 #36) We are given f(x) = x°(x+5)%. As the function is a polynomial, the domain is
R. The intercepts are (0,0) and (—5,0). As the function is a polynomial of degree 5, there are
no vertical nor horizontal asymptotes.

The first derivative is f'(x) = 5x*(x+3)(x+5). The critical points are x = 0,—3, —5. Solving
f'(x) >0 gives us x € (—oo, —5)U(—3,0)U(0,0), so this is the interval for which f is increasing.
Hence f is decreasing on (—5, —3). Therefore the point (—5,0) is a local maximum, (—3,—108)
is a local minimum, and (0,0) is not a local extrema.
Evaluating the second derivative, we get f”(x) = 10x(2x*> + 12x + 15). The candidates for in-
flection points (by applying the quadratic formula) are x = 0, —3 — %\@, -3+ %\@ Solving
f(x) >0 gives us (=3 — 3v/6,—3+3v/6) U(0,0), so this is the interval for which f is concave
up. Thus, f is concave down on (—eo, —3 — $1/6) U (=3 4 11/6,0). Therefore all candidates of
inflection points are indeed inflection points. This yields the sketch above right.

(iii) (SHE 4.8 #42) We are given f(x) = x*(x—7)'/3. The domain is R and the intercepts are (0,0)
and (7,0). There are no vertical or horizontal asymptotes since XEIEW f(x) does not exist and the

domain is R.

Tx(x—6)
3(x—7)2/3
where f/(x) > 0 and f’(x) < 0, we see that f is increasing on (—eo,0) U (6,c0) and decreasing
on (0,6). Hence (0,0) is a local maximum and (6, —36) is a local minimum.

_ 14(2x* —24x+63)
B 9(x—7)3/3
points are x = 6 — % 2, x=06+ % 2, and x = 7. The function f is concave down on (—o0,6 —
3V2) U (7,6 + 3/2) and concave up on (6 — 3v/2) U (6 + 31/2,0). Hence all candidates are
indeed inflection points. This yields the sketch below left.

The first derivative is f'(x) = The critical points are x = 0,6,7. By evaluating

The second derivative is f”(x) . We find the candidates for inflection




(8,-36)
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6. The recursion formula is x,,+1 = x, — }C,(&Z)) For f(x) = sinx —x?, we have f'(x) = cosx — 2x.
. 2 . 2 . 2 . 2 .
SINXy — X5 Xn SN, — 2%, — SN, X, X, Sinx, — X, — s, o

Hence, x,11 = x, —
COSX, — 2x, COSX, — 2Xy, COSX, — 2x,

calculator, we find that x4 ~ 0.87673.
14(a) Let f(x) = x* —a. Then f’(x) = kx*~!. The Newton-Raphson method applied to this function

gives
*—a 1 1 a 1 a
Xn+1 :xn—# :xn—%xnﬂ—%xF = % |:(k— l)xn+x]}fll:| .
1—cosx g sinx
13 i) li =1l =0.
(l) xl—I>r(l) x2—|—x xl—I>I(l)2X+l
(i) Applying L’ Hopital’s Rule twice we get
lim tanx — x — %xg’ H lim sectx— 1 —x2 H lim 2sec?xtanx — 2x ~ lim secZxtanx — x
x—0 x5 - x—0 5X4 o x—0 20X3 - x—0 10X3
. tandx+tanx—x
=lim——n——
x—0 10x3
Applying L’Hopital’s Rule again gives
. 3tan®xsec’x+sec’x—1 . 3tan*x+ 3tan%x + tan®x . 3tan*x+4tan®x
lim = lim = lim
x—0 30x2 X0 30x2 x—0 30x2
sin®x 2sin®x 2 2
= 11m = _— =
x—0 10x2cos?*x ~ 15x2cos2x 15 15
... 4 2 . 4—4cosx—2x> y .. 4sinx — 4x
(i) lim — — = lim = lim —.
x—=0x2  1—cosx x-0 x*(1—cosx)  x—02x—2xcosx+x2sinx
Applying L’Hopital’s Rule three more times,
y 4cosx—4 H y —4sinx
im = lim
x—02 —2cosx+4xsinx +x2cosx  x—0 6sinx+ 6xcosx — x2sinx
—4cosx 1

lim . =
x—0 12 cosx — 8xsinx — x2 cosx 3




Siﬂ’ O,
14 We have f(x) =< * X7
1, x=0.
O+h)—f(0 h) —1 M_l inh—h ho1
(a) f’(O):limM:ﬁmﬂ) ~fim A imsm2 wo cosh—ly
.hZO h h—0 h h—0 h h—0 h ) 2%
lim — .
h—0 2

XCOSX—sinx
5] , x#0,

(b) Differentiating for x # 0, we get f'(x) = {O x 0
, x=0.

Evaluating, we get

"(04+h) — f'(0) f(h) hcosh—sinh
/" g 1 f ( = 1 == 1
£0) ) h o h ) h?
H cosh—hsinh —cosh . —sinh 1
= lim = lim = ——,

li
h—0 352 h—0 3h 3



