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1 (SHE 7.4)

16. y = x2ex− xex2
=⇒ y′ = 2xex + x2ex− ex2−2x2ex2

.

30.
∫

xe−x2
dx =−1

2
e−x2

+C.

40.
∫ sin(e−2x)

e2x dx =
∫

e−2x sin(e−2x)dx =
1
2

cos(e−2x)+C.

56. If y = ex then x = lny. The area of the rectangle is A = y lny. Therefore

dA
dt

= (1+ lny)
dy
dt

.

At y = 3, we have dy
dt = 1

2 , so dA
dt = 1

2(1+ ln3) square units per minute.

2. (SHE 7.5)

24. h(x) = 7sinx2
=⇒ h′(x) = 7sinx2

(ln7)(cosx2)2x.

36. Notice that c = blogb c. Then loga c = loga(b
logb c) = (logb c)(loga b).

50. Applying logarithmic differentiation, y = xx2
=⇒ lny = x2 lnx.

Therefore y′
y = x+2x lnx =⇒ y′ = xx2

(x+2x lnx).

60.
∫ 1

0
4x dx =

[
4x

ln4

]1

0
=

3
ln4

.

3. (SHE 7.6)

36. Suppose f ′(t) = (sin t) f (t). Then f ′(t)− (sin t) f (t) = 0. Multiplying both sides by ecos t ,

ecos t f ′(t)− (sin t)ecos t f (t) = 0 =⇒ d
dt

[
ecos t f (t)

]
= 0 =⇒ ecos t f (t) = C.

Hence f (t) = Ce−cos t .

38. Clearly f (t) = 0 is a solution to the equation f ′(t) = g(t) f (t). Otherwise, rewrite the equation
as f ′(t)−g(t) f (t) = 0 and set h(t) =−

∫
g(t) dt. Then

eh(t) f ′(t)−g(t)eh(t) f (t) = 0 =⇒
[
eh(t) f (t)

]′
= 0 =⇒ eh(t) f (t) = C.

Therefore f (t) = Ce−h(t) = Ce
∫

g(t) dt .

4. (SHE 7.7)

16. f (x) = earctanx =⇒ f ′(x) = earctanx 1
1+x2 .

30. f (x) = esec−1 x =⇒ f ′(x) = esec−1 x · 1
|x|
√

x2−1
.

54. Let u = tanx, then du = sec2 x dx. Then
∫ sec2 x√

9− tan2 x
dx =

∫ du√
9−u2

= arcsin
u
3

+C =

arcsin
tanx

3
+C.



58. Let u = sinx =⇒ du = cosx dx.∫ cosx
3+ sin2 x

dx =
∫ du

3+u2 =
1√
3

arctan
u√
3

+C =
1√
3

arctan
sinx√

3
+C.

5. Consider the equation lnx = cx2. It is clear via a diagram that when c ≤ 0 the equation has exactly
one solution. If c > 0, there is a unique curve y = cx2 which intersects y = lnx once; at the point a,
they share the same tangent line. Therefore

lna = ca2, and
1
a

= 2ca =⇒ a2 =
1
2c

.

Therefore
lna = ca2 = c · 1

2c
=

1
2

=⇒ a = e1/2 =⇒ c =
lna
a2 =

1
2e

.

Therefore c≤ 0 or c = 1
2e .

6. (i) By properties of exponents, lim
x→0+

xx = lim
x→0+

ex lnx. Since (by letting x = 1
t ),

lim
x→0+

x lnx = lim
t→∞

ln(1/t)
t

= lim
t→∞

− ln t
t

H= 0,

so it follows that lim
x→0+

xx = e0 = 1.

(ii) By continuity of ex, we have lim
x→∞

(
1+

a
x

)x
= lim

x→∞
ex ln(1+ a

x ) = e
lim
x→∞

x ln
(

1+
a
x

)
. Now

lim
x→∞

x ln
(

1+
a
x

)
= lim

t→0+

ln(1+at)
t

H= lim
t→0+

1
1+at

·a = a =⇒ lim
x→∞

(
1+

a
x

)x
= ea.

In particular, note that for the case a = 1, lim
x→∞

(
1+

1
x

)x

= e.

7. If f (x) is continuous, then by Theorem 5.3.5 (First Fundamental Theorem of Calculus) we differen-
tiate both sides to get f ′(x) = f (x). By Theorem 7.6.1 it follows that f (x) = Cex for some constant
C. But note that f (0) = 0, so it follows that C = 0. Therefore the only function which satisfies∫ x

0 f (t) dt = f (x) is identically f (x) = 0.

9. (a) Consider the graph of y = ex2
, which is positive and increasing for all x. It follows that the area

under the curve between x and x+ lnx
2x is larger than the rectangle with vertices located at (x,0),

(x+ lnx
2x ,0) and (x,ex2

). That is,

∫ x+ lnx
2x

x
et2

dt > ex2 · lnx
2x

=
ex2

lnx
2x

.

(Alternatively, consider the partition P = {x,x+ lnx
2x } and consider L f (P) <

∫ x+ lnx
2x

x
et2

dt.)

(b) Note that by L’Hôpital’s Rule

lim
x→∞

ex lnx
2x

= lim
x→∞

lnx · lim
x→∞

ex

2x
H= lim

x→∞
lnx · lim

x→∞

ex

2
= ∞,



so it follows that lim
x→∞

∫ x+ lnx
2x

x
et2

dt = ∞, so by L’Hôpital’s Rule

lim
x→∞

∫ x+ lnx
2x

x et2
dt

ex2 = lim
x→∞

∫ x+ lnx
2x

0 et2
dt−

∫ x
0 et2

dt
ex2

H= lim
x→∞

e(x+ lnx
2x )2
[
1+ 2(1−lnx)

4x2

]
− ex2

2xex2

= lim
x→∞

ex2+lnx+ (lnx)2

4x2

[
1+ (1−lnx)

2x2

]
− ex2

2xex2 = lim
x→∞

xe( lnx
x )2

ex2
[
1+ (1−lnx)

2x2

]
− ex2

2xex2

= lim
x→∞

xe( lnx
x )2
[
1+ (1−lnx)

2x2

]
− ex2

2x

= lim
x→∞

1
2

e( lnx
2x )2
[

1+
1− lnx

2x2

]
=

1
2
,

since lim
x→∞

lnx
2x

= 0 and lim
x→∞

1− lnx
x2 = 0, both which are easily solved by L’Hôpital’s Rule.


