MAT 137Y 2007-08 Winter Session, Solutions to Problem Set 10

1 (SHE 7.4)

16. y =x%¢* —xe® — y = 2xe" +x%e* — e — 232",
1
30. /)ce'_"2 dx = —Ee_xz +C.
; —2x 1
40. /sm(;x)dx = /e_zx sin(e_zx)dx = Ecos(e_zx) +C.
56. If y = ¢* then x = Iny. The area of the rectangle is A = ylny. Therefore

dA dy

— = (14+Iny)—.
dt (+ny)a't

Aty =3, we have % = 1,50 42 = 1(1+1n3) square units per minute.
2. (SHE7.5)
24. h(x) =7 = K(x) = 75" (In7)(cos x?)2x.
36. Notice that ¢ = b'°%¢, Then log, c = log,,(h'°%¢) = (log, c)(log, b).

50. Applying logarithmic differentiation, y = = In y=xInx.
Therefore y;/ = x+2xInx => y =x° (x+ 2xInx).

1 4% 1 3
| #dx= ==
60 /o dx [1114]0 In4

3. (SHE 7.6)

36. Suppose f'(¢t) = (sint) f(¢). Then f'(r) — (sint) f(¢) = 0. Multiplying both sides by e/,

S / . COS? d COS !t CcOSs?
e f (1) — (sint)e > f(t) =0 = o [P f(1)] =0 = &' f(r) =C.
Hence f (1) = Ce™ ",

38. Clearly f(r) = 0 is a solution to the equation f’(t) = g(r) f(¢). Otherwise, rewrite the equation
as f'(t) —g(r)f(t) =0 and set h(tr) = — [ g() dt. Then

!

SOf (1)~ g0) O f(1) =0 = [ ()] =0 = M) =C.

Therefore (1) = Ce ") = Cel 81) 1,

4. (SHE7.7)
16. f(x) — earctanx —_— f'(x) — earctanxﬁ'
cop—] o
30. f(x) =€ Y = f/(x) =% . |x|\/:ﬂ'
2
sec”x du u

54. Let u = tanx, then du = sec’x dx. Then | ——— dx = /7 — aresin ¥ 4+ C =

V9 tan?x N 3

. tanx
arcsin =3 +C.



58. Let u = sinx — du = cosx dx.
COSX du 1 u 1 sinx
/7dx = —arctan— +C = —arctan — + C.

34sin2x  J 3+ur 3 V3 V3 V3
5. Consider the equation Inx = cx?. It is clear via a diagram that when ¢ < 0 the equation has exactly
one solution. If ¢ > 0, there is a unique curve y = cx? which intersects y = Inx once; at the point a,
they share the same tangent line. Therefore

1 1
lna = Caz’ and — = 2ca —_— a2 ———
a 2c
Therefore
Ina=ca®=c L1 — a=¢? = c—lnl_i
a 2 2 - =2 T 2

Therefore c <0 orc= L

2e
6. (i) By properties of exponents, 1ir(1)1+x‘ = lir(r)1+ ¢*I"*_ Since (by letting x = %),
X—> X—>
In(1/¢ —Int
lim xlnx = fim P00 g T H
x—0t f—o0 t t—o0 t

so it follows that lim x* = ¢° = 1.

x—07T

X—00 X—00

a
. o limain (142)
(ii) By continuity of ¢*, we have lim (1 + ﬁ) = lim & MUF3) = ex—e x/ . Now
X

In(1 + at 1
limxln(l—kg): fim U Ha) B a=a — lim (1+9)X:ea.
t—0t t t—0+ 1 +at xX—00 X

X—00 X

X—r00 _x

1 X
In particular, note that for the case a = 1, lim (1 + ) —e.

7. If f(x) is continuous, then by Theorem 5.3.5 (First Fundamental Theorem of Calculus) we differen-
tiate both sides to get f'(x) = f(x). By Theorem 7.6.1 it follows that f(x) = Ce* for some constant
C. But note that f(0) = 0, so it follows that C = 0. Therefore the only function which satisfies

Jo f(t) dr = f(x) is identically f(x) = 0.

9. (a) Consider the graph of y = exz, which is positive and increasing for all x. It follows that the area

under the curve between x and x + 1;‘—; is larger than the rectangle with vertices located at (x,0),

(x+12X,0) and (x, ¢*). That is,

X 2
x+% 2 2 Inx e" Inx
e dt>e" - — =
X 2x 2x

x-‘rl"%
(Alternatively, consider the partition P = {x,x-+ 2} and consider L;(P) < / Yo dr)
X
(b) Note that by L’Hdpital’s Rule
e.x 1 X X

lim — lim Inx- lim ; B limInx-lim & = o,

X—00 X X—00 X—o0 X X—00 X—00




x_;'_l“J

so it follows that lim ¢’ dt = oo, so by L’Hopital’s Rule
x—oo [y
RS e Rl a - fretdr b8 14 M| o2
lim 5 = lim 5 lim 5
X—00 ex X—00 eX X—o0 2xex
o 1+ 0589 -7 xe5Pe? [14 080 — e
= llm > == llm )
X—00 2_xex X—00 2.xex
xe%) [1 + (12;”‘)] e
= lim
x—o0 2x
1 1 —Inx 1
— i (l9x)2 1 _
BT { e ] 2’
1 —1
since lim % =0 and lim 2nx = 0, both which are easily solved by L’Hopital’s Rule.
X—00 X X—00 X



