
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

for the
MCS-51 Microcontroller Family

C8051-4

COPYRIGHT NOTICE
© Copyright 1991–2008 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of IAR
Systems. The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

Fourth edition: February 2008

Part number: C8051-4

This guide applies to version 7.4x of 8051 IAR Embedded Workbench®.

Internal reference: ISUD.

Brief contents
Tables ... xxiii

Preface .. xxv

Part 1. Using the compiler ... 1

Getting started .. 3

Understanding memory architecture ... 13

Data storage .. 21

Functions ... 47

Banked functions ... 55

Placing code and data .. 67

The DLIB runtime environment .. 85

The CLIB runtime environment .. 115

Assembler language interface ... 125

Using C++ .. 149

Efficient coding for embedded applications 163

Part 2. Reference information ... 179

External interface details .. 181

Compiler options ... 187

Data representation .. 217

Compiler extensions .. 227

Extended keywords ... 237

Pragma directives .. 259
C8051-4

iii

iv
Intrinsic functions ... 273

The preprocessor ... 277

Library functions ... 285

Segment reference ... 295

Implementation-defined behavior .. 327

Index ... 341
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Contents
Tables ... xxiii

Preface .. xxv

Who should read this guide ... xxv

How to use this guide .. xxv

What this guide contains ..xxvi

Other documentation ...xxvii

Further reading ..xxviii

Document conventions ...xxviii

Typographic conventions ..xxix

Part 1. Using the compiler ... 1

Getting started .. 3

Device support ... 3

Supported MCS-51 devices ... 3

Preconfigured support files .. 4

Examples for getting started .. 4

IAR language overview ... 4

Building applications—an overview .. 5

Compiling ... 6

Linking .. 6

Basic project settings .. 6

Optimization for speed and size ... 8

Runtime environment ... 8

Special support for embedded systems .. 10

Extended keywords .. 11

Pragma directives ... 11

Predefined symbols .. 11

Special function types .. 11

Accessing low-level features ... 11
C8051-4

v

vi
Understanding memory architecture ... 13

The MCS-51 microcontroller memory configuration 13

Code memory space ... 13

Internal data memory space ... 14

External data memory space .. 14

Run-time model concepts for memory configuration 14

Compiler concepts .. 14

Linker concepts .. 15

Basic project settings for hardware memory configuration 15

Classic 8051/8052 devices ... 15

Maxim (Dallas Semiconductor) 390 and similar devices 16

Devices based on Mentor Graphics M8051W/M8051EW core 17

Using the DPTR register .. 17

Location in memory ... 18

Selecting the active data pointer .. 19

Data storage .. 21

Different ways to store data ... 21

Data models .. 22

Specifying a data model ... 22

Memory types .. 24

Memory types for internal data memory space 26

Memory types for external data memory space 27

Memory types for code memory space .. 29

Using data memory attributes .. 30

Pointers and memory types .. 31

Structures and memory types .. 32

More examples ... 32

C++ and memory types .. 33

Constants and strings ... 34

Auto variables—stack and static overlay 35

Choosing a calling convention ... 35

The stack .. 40

Static overlay ... 42
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Contents
Dynamic memory on the heap .. 42

Virtual registers ... 44

The virtual bit register ... 44

Functions ... 47

Function-related extensions .. 47

Code models for function storage ... 47

Primitives for interrupts, concurrency, and OS-related
programming .. 48

Interrupt functions ... 49

Monitor functions ... 50

C++ and special function types ... 53

Banked functions ... 55

Introduction to the banking system ... 55

Code models for banked systems ... 56

The memory layout for the banked code model 56

The memory layout for the banked extended2 code model 57

Setting up the compiler for banked mode .. 57

Setting up the linker for banked mode ... 58

Writing source code for banked memory 59

C/C++ language considerations ... 59

Bank size and code size ... 59

Banked versus non-banked function calls .. 60

Code that cannot be banked ... 61

Bank switching ... 62

Accessing banked code .. 63

Bank switching in the Banked code model .. 63

Bank switching in the Banked extended2 code model 64

Modifying the default bank-switching routine 65

Downloading to memory ... 65

Debugging banked applications .. 66
C8051-4

vii

viii
Placing code and data .. 67

Segments and memory .. 67

What is a segment? .. 67

Placing segments in memory .. 68

Customizing the linker command file .. 69

Data segments .. 72

Static memory segments ... 72

The stacks ... 76

The heap ... 79

Located data ... 81

Code segments ... 81

Startup code ... 81

Normal code ... 82

Interrupt vectors .. 82

C++ dynamic initialization ... 83

Verifying the linked result of code and data placement 83

Segment too long errors and range errors .. 83

Linker map file ... 83

Managing multiple address spaces ... 84

The DLIB runtime environment .. 85

Introduction to the runtime environment 85

Runtime environment functionality ... 85

Library selection .. 86

Situations that require library building .. 87

Library configurations ... 87

Debug support in the runtime library .. 87

Using a prebuilt library .. 88

Customizing a prebuilt library without rebuilding 90

Choosing formatters for printf and scanf 91

Choosing printf formatter ... 91

Choosing scanf formatter .. 92

Overriding library modules ... 93
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Contents
Building and using a customized library 95

Setting up a library project ... 95

Modifying the library functionality .. 95

Using a customized library .. 96

System startup and termination .. 96

System startup .. 97

System termination .. 98

Customizing system initialization ... 99

__low_level_init ... 100

Modifying the file cstartup.s51 ... 100

Standard streams for input and output 100

Implementing low-level character input and output 101

Configuration symbols for printf and scanf 102

Customizing formatting capabilities .. 103

File input and output ... 103

Locale ... 104

Locale support in prebuilt libraries .. 104

Customizing the locale support .. 105

Changing locales at runtime .. 106

Environment interaction ... 106

Signal and raise .. 107

Time ... 107

Strtod ... 108

Assert ... 108

Heaps ... 108

C-SPY Debugger runtime interface .. 109

Low-level debugger runtime interface ... 109

The debugger terminal I/O window ... 110

Checking module consistency ... 111

Runtime model attributes ... 111

Using runtime model attributes .. 112

Predefined runtime attributes .. 112

User-defined runtime model attributes .. 114
C8051-4

ix

x

The CLIB runtime environment .. 115

Runtime environment .. 115

Combinations and dependencies .. 116

Building a runtime library ... 117

Input and output ... 118

Character-based I/O ... 118

Formatters used by printf and sprintf ... 118

Formatters used by scanf and sscanf .. 120

System startup and termination .. 120

System startup .. 121

System termination .. 122

Overriding default library modules .. 122

Customizing system initialization ... 123

C-SPY runtime interface .. 123

The debugger terminal I/O window ... 123

Termination .. 123

Checking module consistency ... 123

Assembler language interface ... 125

Mixing C and assembler ... 125

Intrinsic functions .. 125

Mixing C and assembler modules .. 126

Inline assembler .. 127

Calling assembler routines from C ... 128

Creating skeleton code ... 128

Compiling the code .. 129

Calling assembler routines from C++ .. 130

Calling convention .. 131

Choosing a calling convention ... 132

Function declarations .. 133

Using C linkage in C++ source code ... 133

Preserved versus scratch registers .. 133

Function entrance .. 134

Function exit ... 137
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Contents
Examples .. 138

Function directives ... 140

Calling functions .. 140

Assembler instructions used for calling functions 140

Memory access methods ... 142

Data access method .. 142

Idata access method ... 142

Pdata access method ... 143

Xdata access method .. 143

Far and huge access methods ... 143

Generic access method ... 144

Call frame information ... 144

Using C++ .. 149

Overview .. 149

Standard Embedded C++ ... 149

Extended Embedded C++ .. 150

Enabling C++ support .. 150

Feature descriptions .. 151

Classes .. 151

Functions .. 154

New and Delete operators .. 154

Templates .. 156

Variants of casts ... 159

Mutable .. 159

Namespace .. 159

The STD namespace .. 160

Pointer to member functions .. 160

Using interrupts and EC++ destructors .. 160

C++ language extensions ... 161

Efficient coding for embedded applications 163

Selecting data types ... 163

Using efficient data types ... 163

Floating-point types ... 164
C8051-4

xi

xii
Using the best pointer type ... 164

Anonymous structs and unions .. 164

Controlling data and function placement in memory 165

Data placement at an absolute location .. 167

Data and function placement in segments .. 168

Controlling compiler optimizations ... 169

Scope for performed optimizations .. 169

Optimization levels .. 170

Speed versus size ... 171

Fine-tuning enabled transformations ... 171

Writing efficient code ... 173

Saving stack space and RAM memory .. 174

Calling conventions .. 174

Function prototypes .. 175

Integer types and bit negation .. 175

Protecting simultaneously accessed variables 176

Accessing special function registers .. 177

Non-initialized variables .. 177

Part 2. Reference information ... 179

External interface details .. 181

Invocation syntax .. 181

Compiler invocation syntax ... 181

Passing options ... 182

Environment variables ... 182

Include file search procedure .. 182

Compiler output ... 183

Diagnostics .. 184

Message format .. 185

Severity levels .. 185

Setting the severity level .. 186

Internal error .. 186
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Contents
Compiler options ... 187

Options syntax ... 187

Types of options ... 187

Rules for specifying parameters ... 187

Summary of compiler options .. 190

Descriptions of options .. 192

--calling_convention .. 192

--char_is_signed ... 193

--code_model ... 193

--core .. 193

-D ... 194

--data_model .. 194

--debug, -r ... 195

--dependencies ... 195

--diag_error .. 196

--diag_remark ... 197

--diag_suppress .. 197

--diag_warning ... 198

--diagnostics_tables .. 198

 --dlib_config .. 198

--dptr ... 199

-e .. 200

--ec++ ... 201

--eec++ ... 201

--enable_multibytes .. 201

--error_limit .. 202

--extended_stack .. 202

-f ... 202

--header_context ... 203

-I ... 203

-l ... 203

--library_module .. 204

--migration_preprocessor_extensions .. 205
C8051-4

xiii

xiv
--misrac .. 205

--misrac_verbose .. 206

--module_name .. 206

--no_code_motion .. 207

--no_cse .. 207

--no_inline .. 207

--no_path_in_file_macros .. 208

--no_tbaa .. 208

--no_typedefs_in_diagnostics .. 208

--no_unroll ... 209

--no_warnings .. 209

--no_wrap_diagnostics ... 210

--nr_virtual_regs ... 210

-O ... 210

-o, --output ... 211

--omit_types ... 211

--only_stdout .. 212

--output, -o ... 212

--place_constants .. 212

--preinclude .. 213

--preprocess .. 213

--public_equ ... 213

-r, --debug ... 214

--remarks .. 214

--require_prototypes ... 214

--rom_mon_bp_padding ... 215

--silent .. 215

--strict_ansi ... 216

--warnings_affect_exit_code .. 216

--warnings_are_errors .. 216
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Contents
Data representation .. 217

Alignment .. 217

Alignment on the MCS-51 microcontroller 218

Basic data types .. 218

Integer types ... 218

Floating-point types .. 220

Pointer types .. 221

Function pointers .. 221

Data pointers .. 221

Casting ... 223

Structure types .. 224

General layout ... 224

Type qualifiers .. 225

Declaring objects volatile .. 225

Declaring objects const .. 226

Data types in C++ ... 226

Compiler extensions .. 227

Compiler extensions overview ... 227

Enabling language extensions .. 228

C language extensions .. 228

Important language extensions ... 228

Useful language extensions .. 230

Minor language extensions .. 233

Extended keywords ... 237

General syntax rules for extended keywords 237

Type attributes .. 237

Object attributes .. 240

Summary of extended keywords ... 241

Descriptions of extended keywords ... 242

__banked_func ... 242

__banked_func_ext2 .. 243

__bdata ... 243
C8051-4

xv

xvi
__bit ... 244

__code .. 244

__data ... 245

__data_overlay ... 245

__ext_stack_reentrant .. 246

__far ... 246

__far_code ... 247

__far_func .. 247

__far_rom .. 248

__generic .. 248

__huge .. 249

__huge_code .. 249

__huge_rom ... 250

__idata .. 250

__idata_overlay .. 251

__idata_reentrant ... 251

__ixdata .. 251

__interrupt .. 252

__intrinsic .. 252

__monitor ... 252

__near_func ... 253

__no_init .. 253

__noreturn .. 254

__overlay_near_func ... 254

__pdata ... 254

__pdata_reentrant .. 254

__root ... 255

__sfr ... 255

__task ... 255

__xdata ... 256

__xdata_reentrant .. 256

__xdata_rom .. 257
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Contents
Pragma directives .. 259

Summary of pragma directives .. 259

Descriptions of pragma directives .. 260

basic_template_matching ... 260

bitfields ... 261

constseg .. 261

dataseg .. 262

diag_default .. 262

diag_error ... 263

diag_remark ... 263

diag_suppress ... 263

diag_warning .. 264

include_alias ... 264

inline ... 265

language ... 265

location ... 266

message .. 266

object_attribute ... 267

optimize .. 267

__printf_args .. 268

register_bank .. 268

required .. 269

rtmodel ... 270

__scanf_args .. 270

segment .. 271

type_attribute ... 271

vector .. 272

Intrinsic functions ... 273

Summary of intrinsic functions ... 273

Descriptions of intrinsic functions ... 273

__disable_interrupt .. 273

__enable_interrupt ... 274

__get_interrupt_state ... 274
C8051-4

xvii

xvi
__no_operation .. 274

__parity .. 274

__set_interrupt_state .. 275

__tbac ... 275

The preprocessor ... 277

Overview of the preprocessor .. 277

Descriptions of predefined preprocessor symbols 278

__TID__ .. 281

Descriptions of miscellaneous preprocessor extensions 281

NDEBUG ... 281

_Pragma() ... 282

#warning message .. 282

__VA_ARGS__ ... 283

Library functions ... 285

Introduction .. 285

Header files .. 285

Library object files ... 286

Reentrancy ... 286

IAR DLIB Library .. 287

C header files ... 287

C++ header files ... 288

Library functions as intrinsic functions ... 290

Added C functionality .. 290

IAR CLIB Library .. 292

Library definitions summary .. 293

Segment reference ... 295

Summary of segments .. 295

Descriptions of segments .. 298

BANKED_CODE .. 299

BANKED_CODE_EXT2_AC ... 299

BANKED_CODE_EXT2_AN ... 299

BANKED_CODE_EXT2_C .. 299
C8051-4

ii
8051 IAR C/C++ Compiler
Reference Guide

Contents
BANKED_CODE_EXT2_N ... 300

BANKED_CODE_INTERRUPTS_EXT2 300

BANKED_EXT2 ... 300

BANK_RELAYS ... 301

BDATA_AN .. 301

BDATA_I ... 301

BDATA_ID .. 301

BDATA_N ... 302

BDATA_Z ... 302

BIT_N .. 302

BREG ... 303

CODE_AC ... 303

CODE_C .. 303

CODE_N .. 303

CSTART .. 304

DATA_AN ... 304

DATA_I ... 304

DATA_ID .. 305

DATA_N .. 305

DATA_Z .. 305

DIFUNCT .. 306

DOVERLAY .. 306

EXT_STACK ... 306

FAR_AN .. 306

FAR_CODE ... 307

FAR_CODE_AC ... 307

FAR_CODE_C .. 307

FAR_CODE_N .. 308

FAR_HEAP ... 308

FAR_I ... 308

FAR_ID .. 309

FAR_N ... 309

FAR_ROM_AC ... 309

FAR_ROM_C .. 310
C8051-4

xix

xx
FAR_Z ... 310

HUGE_AN ... 310

HUGE_CODE_AC .. 311

HUGE_CODE_C ... 311

HUGE_CODE_N ... 311

HUGE_HEAP .. 311

HUGE_I ... 312

HUGE_ID .. 312

HUGE_N .. 313

HUGE_ROM_AC .. 313

HUGE_ROM_C ... 313

HUGE_Z .. 313

IDATA_AN ... 314

IDATA_I .. 314

IDATA_ID ... 314

IDATA_N .. 315

IDATA_Z ... 315

INTVEC ... 316

INTVEC_EXT2 ... 316

IOVERLAY ... 316

ISTACK ... 316

IXDATA_AN ... 317

IXDATA_I ... 317

IXDATA_ID .. 317

IXDATA_N ... 318

IXDATA_Z .. 318

NEAR_CODE .. 318

PDATA_AN ... 319

PDATA_I ... 319

PDATA_ID .. 319

PDATA_N ... 320

PDATA_Z .. 320

PSP ... 320

PSTACK .. 321
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Contents
RCODE .. 321

SFR_AN ... 321

VREG ... 321

XDATA_AN .. 322

XDATA_HEAP ... 322

XDATA_I .. 322

XDATA_ID ... 323

XDATA_N ... 323

XDATA_ROM_AC ... 323

XDATA_ROM_C .. 324

XDATA_Z ... 324

XSP .. 324

XSTACK .. 325

Implementation-defined behavior .. 327

Descriptions of implementation-defined behavior 327

Translation ... 327

Environment ... 328

Identifiers ... 328

Characters ... 328

Integers ... 330

Floating point ... 330

Arrays and pointers .. 331

Registers ... 331

Structures, unions, enumerations, and bitfields 331

Qualifiers .. 332

Declarators ... 332

Statements .. 332

Preprocessing directives ... 332

IAR DLIB Library functions .. 334

IAR CLIB Library functions .. 337

 Index .. 341
C8051-4

xxi

xxi
C8051-4

i
8051 IAR C/C++ Compiler
Reference Guide

Tables
1: Typographic conventions used in this guide .. xxix

2: Command line options for specifying library and dependency files 9

3: Possible combinations of compiler options for core Plain 16

4: Possible combinations of compiler options for core Extended 1 16

5: Possible combinations of compiler options for core Extended 2 17

6: Data model characteristics .. 23

7: Memory types and pointer type attributes ... 26

8: Memory types for ROM memory in external data memory space 29

9: Calling conventions ... 36

10: Data models and calling convention ... 37

11: Code models .. 48

12: XLINK segment memory types .. 68

13: Memory layout of a target system (example) ... 69

14: Memory types with corresponding memory groups ... 73

15: Segment name suffixes ... 74

16: Summary of stacks .. 78

17: Library configurations ... 87

18: Levels of debugging support in runtime libraries ... 88

19: Customizable items ... 90

20: Formatters for printf .. 92

21: Formatters for scanf .. 93

22: Descriptions of printf configuration symbols ... 102

23: Descriptions of scanf configuration symbols .. 103

24: Low-level I/O files .. 104

25: Heaps and memory types .. 108

26: Functions with special meanings when linked with debug info 109

27: Example of runtime model attributes .. 111

28: Runtime model attributes .. 112

29: Defines used for customizing the runtime library ... 117

30: Registers used for passing parameters .. 135

31: Registers used for returning values ... 137
C8051-4

xxiii

xxi
32: Registers used for returning values ... 138

33: Coding of the most significant byte in a generic pointer 144

34: Resources for call-frame information ... 145

35: Compiler optimization levels .. 170

36: Compiler environment variables ... 182

37: Error return codes .. 184

38: Compiler options summary ... 190

39: Integer types .. 218

40: Floating-point types .. 220

41: Function pointers ... 221

42: Data pointers ... 222

43: Extended keywords summary ... 241

44: Pragma directives summary .. 259

45: Intrinsic functions summary .. 273

46: Predefined symbols ... 278

47: Traditional standard C header files—DLIB .. 287

48: Embedded C++ header files .. 288

49: Additional Embedded C++ header files—DLIB ... 289

50: Standard template library header files ... 289

51: New standard C header files—DLIB .. 290

52: IAR CLIB Library header files ... 293

53: Segment summary ... 295

54: Message returned by strerror()—IAR DLIB library ... 337

55: Message returned by strerror()—IAR CLIB library ... 340
C8051-4

v
8051 IAR C/C++ Compiler
Reference Guide

Preface
Welcome to the 8051 IAR C/C++ Compiler Reference Guide. The purpose
of this guide is to provide you with detailed reference information that can
help you to use the 8051 IAR C/C++ Compiler to best suit your application
requirements. This guide also gives you suggestions on coding techniques so
that you can develop applications with maximum efficiency.

Who should read this guide
You should read this guide if you plan to develop an application using the C or C++
language for the MCS-51 microcontroller and need to get detailed reference information
on how to use the 8051 IAR C/C++ Compiler. In addition, you should have a working
knowledge of the following:

● The architecture and instruction set of the MCS-51 microcontroller. Refer to the
documentation from chip manufacturer for information about the MCS-51
microcontroller

● The C or C++ programming language

● Application development for embedded systems

● The operating system of your host computer.

How to use this guide
When you start using the 8051 IAR C/C++ Compiler, you should read Part 1. Using the
compiler in this guide.

When you are familiar with the compiler and have already configured your project, you
can focus more on Part 2. Reference information.

If you are new to using the IAR Systems build tools, we recommend that you first study
the IAR Embedded Workbench® IDE User Guide. This guide contains a product
overview, tutorials that can help you get started, conceptual and user information about
the IAR Embedded Workbench IDE and the IAR C-SPY® Debugger, and
corresponding reference information.
C8051-4

xxv

xxv

What this guide contains
What this guide contains
Below is a brief outline and summary of the chapters in this guide.

Part 1. Using the compiler

● Getting started gives the information you need to get started using the 8051 IAR
C/C++ Compiler for efficiently developing your application.

● Understanding memory architecture gives an overview of the MCS-51
microcontroller memory configuration in terms of the different memory spaces
available. The chapter also gives an overview of the concepts related to memory
available in the 8051 IAR C/C++ Compiler and the linker.

● Data storage describes how data can be stored in memory, with emphasis on the
different data models and data memory type attributes.

● Functions gives a brief overview of function-related extensions—mechanisms for
controlling functions—and describes some of these mechanisms in more detail.

● Banked functions introduces the banking technique; when to use it, what it does, and
how it works.

● Placing code and data describes the concept of segments, introduces the linker
command file, and describes how code and data are placed in memory.

● The DLIB runtime environment describes the DLIB runtime environment in which
an application executes. It covers how you can modify it by setting options,
overriding default library modules, or building your own library. The chapter also
describes system initialization and introduces the file cstartup, as well as how to
use modules for locale, and file I/O.

● The CLIB runtime environment gives an overview of the CLIB runtime libraries and
how they can be customized. The chapter also describes system initialization and
introduces the file cstartup.

● Assembler language interface contains information required when parts of an
application are written in assembler language. This includes the calling convention.

● Using C++ gives an overview of the two levels of C++ support: The
industry-standard EC++ and IAR Extended EC++.

● Efficient coding for embedded applications gives hints about how to write code that
compiles to efficient code for an embedded application.

Part 2. Reference information

● External interface details provides reference information about how the compiler
interacts with its environment—the invocation syntax, methods for passing options
to the compiler, environment variables, the include file search procedure, and the
C8051-4

i
8051 IAR C/C++ Compiler
Reference Guide

Preface
different types of compiler output. The chapter also describes how the compiler’s
diagnostic system works.

● Compiler options explains how to set options, gives a summary of the options, and
contains detailed reference information for each compiler option.

● Data representation describes the available data types, pointers, and structure types.
This chapter also gives information about type and object attributes.

● Compiler extensions gives a brief overview of the compiler extensions to the
ISO/ANSI C standard. More specifically the chapter describes the available C
language extensions.

● Extended keywords gives reference information about each of the 8051-specific
keywords that are extensions to the standard C/C++ language.

● Pragma directives gives reference information about the pragma directives.

● Intrinsic functions gives reference information about the functions that can be used
for accessing 8051-specific low-level features.

● The preprocessor gives a brief overview of the preprocessor, including reference
information about the different preprocessor directives, symbols, and other related
information.

● Library functions gives an introduction to the C or C++ library functions, and
summarizes the header files.

● Segment reference gives reference information about the compiler’s use of
segments.

● Implementation-defined behavior describes how the 8051 IAR C/C++ Compiler.
handles the implementation-defined areas of the C language standard.

Other documentation
The complete set of IAR Systems development tools for the MCS-51 microcontroller is
described in a series of guides. For information about:

● Using the IAR Embedded Workbench® IDE with the IAR C-SPY Debugger®, refer
to the IAR Embedded Workbench® IDE User Guide

● Programming for the 8051 IAR Assembler, refer to the 8051 IAR Assembler
Reference Guide

● Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, refer to the IAR Linker and Library Tools Reference Guide

● Using the IAR DLIB Library functions, refer to the online help system

● Using the IAR CLIB Library functions, refer to the IAR C Library Functions
Reference Guide, available from the online help system.
C8051-4

xxvii

xxv

Document conventions
● Porting application code and projects created with a previous 8051 IAR Embedded
Workbench IDE, refer to 8051 IAR Embedded Workbench® Migration Guide

● Developing safety-critical applications using the MISRA C guidelines, refer to the
IAR Embedded Workbench® MISRA C Reference Guide.

All of these guides are delivered in hypertext PDF or HTML format on the installation
media. Some of them are also delivered as printed books.

FURTHER READING

The following books may be of interest to you when using the IAR Systems
development tools:

● Barr, Michael, and Andy Oram, ed. Programming Embedded Systems in C and
C++ . O’Reilly & Associates.

● Harbison, Samuel P. and Guy L. Steele (contributor). C: A Reference Manual.
Prentice Hall.

● Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language.
Prentice Hall. [The later editions describe the ANSI C standard.]

● Labrosse, Jean J. Embedded Systems Building Blocks: Complete and Ready-To-Use
Modules in C. R&D Books.

● Lippman, Stanley B. and Josée Lajoie. C++ Primer. Addison-Wesley.

● Mann, Bernhard. C für Mikrocontroller. Franzis-Verlag. [Written in German.]

● Stroustrup, Bjarne. The C++ Programming Language. Addison-Wesley.

We recommend that you visit the following web sites:

● The website of your chip manufacturer

● The IAR Systems web site, www.iar.com, holds application notes and other
product information.

● Finally, the Embedded C++ Technical Committee web site,
www.caravan.net/ec2plus, contains information about the Embedded C++
standard.

Document conventions
When, in this text, we refer to the programming language C, the text also applies to C++,
unless otherwise stated.
C8051-4

iii
8051 IAR C/C++ Compiler
Reference Guide

Preface
TYPOGRAPHIC CONVENTIONS

This guide uses the following typographic conventions:

Style Used for

computer Text that you enter or that appears on the screen.

parameter A label representing the actual value you should enter as part of a
command.

[option] An optional part of a command.

{option} A mandatory part of a command.

a|b|c Alternatives in a command.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

reference A cross-reference within this guide or to another guide.

… An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Table 1: Typographic conventions used in this guide
C8051-4

xxix

xxx

Document conventions
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Part 1. Using the compiler
This part of the 8051 IAR C/C++ Compiler Reference Guide includes the
following chapters:

● Getting started

● Understanding memory architecture

● Data storage

● Functions

● Banked functions

● Placing code and data

● The DLIB runtime environment

● The CLIB runtime environment

● Assembler language interface

● Using C++

● Efficient coding for embedded applications.
C8051-4

1

2

C8051-4

Getting started
This chapter gives the information you need to get started using the 8051 IAR
C/C++ Compiler for efficiently developing your application.

First you will get an overview of the supported programming languages,
followed by a description of the steps involved for compiling and linking an
application.

Next, the compiler is introduced. You will get an overview of the basic settings
needed for a project setup, including an overview of the techniques that enable
applications to take full advantage of the MCS-51 microcontroller. In the
following chapters, these techniques will be studied in more detail.

To get a deeper understanding about the concepts and available features
presented here, you need to read the other chapters in this guide.

Device support
To get a smooth start with your product development, the IAR product installation
comes with wide range of device-specific support.

SUPPORTED MCS-51 DEVICES

The 8051 IAR C/C++ Compiler supports all devices based on the standard MCS-51
microcontroller. The following extensions are also supported:

● Multiple data pointers (DPTRs). Support for up to eight data pointers is integrated
in the code generator

● Extended code memory, up to 16 Mbytes. (Used for example in Maxim (Dallas
Semiconductors) DS80C390/DS80C400 devices.)

● Extended data memory, up to 16 Mbytes. (Used for example in the Analog Devices
ADuC812 device and in Maxim DS80C390/DS80C400 devices.)

● Maxim DS80C390/DS80C400 devices and similar devices, including support for
the extended instruction set, multiple data pointers, and extended stack (a call stack
located in xdata memory)

● Mentor Graphics M8051W/M8051EW core and devices based on this, including
support for the banked LCALL instruction, banked MOVC A,@A+DPTR, and for
placing interrupt service routines in banked memory.
C8051-4

Part 1. Using the compiler 3

4

IAR language overview
To read more about how to set up your project depending on device you are using, see
Basic project settings, page 6.

PRECONFIGURED SUPPORT FILES

The IAR product installation contains a vast amount of preconfigured files for
supporting different devices.

Header files for I/O

Standard peripheral units are defined in device-specific I/O header files with the
filename extension h. The product package supplies I/O files for many devices. You can
find these files in the 8051\inc directory. Make sure to include the appropriate include
file in your application source files. If you need additional I/O header files, they can be
created using one of the provided ones as a template.

Linker command files

The 8051\config directory contains ready-made linker command files for some
supported devices. The files have the filename extension xcl and contain the
information required by the linker. To read more about the linker command file, see
Placing code and data, page 67.

Device description files

The IAR C-SPY Debugger handles several of the device-specific requirements, such as
definitions of peripheral registers and groups of these, by using device description files.
These files are located in the 8051\config\devices directory and they have the
filename extension ddf. To read more about these files, see the IAR Embedded
Workbench® IDE User Guide.

EXAMPLES FOR GETTING STARTED

The 8051\src\examples directory contains many examples of working applications
to give you a smooth start with your development. The complexity of the examples
ranges from simple LED blink to more advanced types of examples. There are examples
provided for most of the supported devices.

IAR language overview
There are two high-level programming languages you can use with the 8051 IAR
C/C++ Compiler:

● C, the most widely used high-level programming language used in the embedded
systems industry. Using the 8051 IAR C/C++ Compiler, you can build
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Getting started
freestanding applications that follow the standard ISO 9899:1990. This standard is
commonly known as ANSI C.

● C++, a modern object-oriented programming language with a full-featured library
well suited for modular programming. IAR Systems supports two levels of the
C++ language:

● Embedded C++ (EC++), a subset of the C++ programming standard, which is
intended for embedded systems programming. It is defined by an industry
consortium, the Embedded C++ Technical committee. See the chapter Using
C++.

● IAR Extended Embedded C++, with additional features such as full template
support, multiple inheritance, namespace support, the new cast operators, as well
as the Standard Template Library (STL).

Each of the supported languages can be used in strict or relaxed mode, or relaxed with
IAR extensions enabled. The strict mode adheres to the standard, whereas the relaxed
mode allows some deviations from the standard. For more details, see the chapter
Compiler extensions.

It is also possible to implement parts of the application, or the whole application, in
assembler language. See the 8051 IAR Assembler Reference Guide.

For more information about the Embedded C++ language and Extended Embedded
C++, see the chapter Using C++.

Building applications—an overview
A typical application is built from a number of source files and libraries. The source files
can be written in C, C++, or assembler language, and can be compiled into object files
by the 8051 IAR C/C++ Compiler or the 8051 IAR Assembler.

A library is a collection of object files that are added at link time only if they are needed.
A typical example of a library is the compiler library containing the runtime
environment and the C/C++ standard library. Libraries can also be built using the IAR
XAR Library Builder, the IAR XLIB Librarian, or be provided by external suppliers.

The IAR XLINK Linker is used for building the final application. XLINK normally uses
a linker command file, which describes the available resources of the target system.

Below, the process for building an application on the command line is described. For
information about how to build an application using the IAR Embedded Workbench
IDE, see the IAR Embedded Workbench® IDE User Guide.
C8051-4

Part 1. Using the compiler 5

6

Basic project settings
COMPILING

In the command line interface, the following line compiles the source file myfile.c
into the object file myfile.r51 using the default settings:

icc8051 myfile.c

In addition, you need to specify some critical options, see Basic project settings, page 6.

LINKING

The IAR XLINK Linker is used for building the final application. Normally, XLINK
requires the following information as input:

● A number of object files and possibly certain libraries

● The standard library containing the runtime environment and the standard language
functions

● A program start label

● A linker command file that describes the placement of code and data into the
memory of the target system

● Information about the output format.

On the command line, the following line can be used for starting XLINK:

xlink myfile.r51 myfile2.r51 -s __program_start -f lnk51.xcl
cl-pli-nsid-1e16x01.r51 -o aout.a51 -r

In this example, myfile.r51 and myfile2.r51 are object files, lnk51.xcl is the
linker command file, and cl-pli-nsid-1e16x01.r51 is the runtime library. The
option -s specifies the label where the application starts. The option -o specifies the
name of the output file, and the option -r is used for specifying the output format
UBROF, which can be used for debugging in C-SPY®.

The IAR XLINK Linker produces output according to your specifications. Choose the
output format that suits your purpose. You might want to load the output to a
debugger—which means that you need output with debug information. Alternatively,
you might want to load the output to a flash loader or a PROM programmer—in which
case you need output without debug information, such as Intel-hex or Motorola
S-records. The option -F can be used for specifying the output format.

Basic project settings
This section gives an overview of the basic settings for the project setup that are needed
to make the compiler generate the best code for the MCS-51 device you are using. You
can specify the options either from the command line interface or in the IAR Embedded
Workbench IDE.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Getting started
Depending on your hardware memory configuration, there are basic settings for:

● Core

The 8051 IAR C/C++ Compiler supports the classic Intel 8051 microcontroller core,
the Maxim (Dallas Semiconductor) DS80C390 core, the Mentor Graphics
M8051W/M8051EW core, as well as similar devices of these. Use the --core option
to choose the core—Plain, Extended1, or Extended2—that matches the device you
are using. This option reflects the addressing capability of the target microcontroller.
For information about the cores, see Basic project settings for hardware memory
configuration, page 15.

● Data model and code model

One of the characteristics of the MCS-51 microcontroller is that there is a trade-off
regarding the way memory is accessed, between the range from cheap access to small
memory areas, up to more expensive access methods that can access external data.
For more information, see the chapter Understanding memory architecture.

Use the --data_model compiler option to specify (among other things) the default
memory placement of static and global variables, which also implies a default
memory access method.

Use the --code_model compiler option to specify the default placement of
functions, which also implies the default function call method. For more information,
see Code models for function storage, page 47.

● Calling convention

Use the --calling_convention compiler option to control whether the compiler
by default should use a stack model or an overlay model for local data and in which
memory the stack or overlay frame should be placed. In other words, whether local
variables and parameters should be placed on the stack or via an overlay memory
area, and where in memory the stack/memory area should be placed. For more
information, see Choosing a calling convention, page 35.

● DPTR setup

Some devices provide up to 8 data pointers and if used, execution of some library
routines can be improved.

Use the --dptr compiler option to specify the number of data pointers to use, the
size of the data pointers, and where the data pointers should be located. The memory
addresses for data pointers are specified in the linker command file or in the IAR
Embedded Workbench IDE.

Not all combinations of core variant, code model, data model, calling convention, and
DPTR setup are possible. You must choose the settings depending on your hardware
memory configuration based on which device you are using. For detailed information,
see Basic project settings for hardware memory configuration, page 15.
C8051-4

Part 1. Using the compiler 7

8

Basic project settings
See the chapter Compiler options for syntax information and for information about
corresponding options in the IAR Embedded Workbench IDE.

OPTIMIZATION FOR SPEED AND SIZE

The 8051 IAR C/C++ Compiler is a state-of-the-art compiler with an optimizer that
performs, among other things, dead-code elimination, constant propagation, inlining,
common sub-expression elimination, and precision reduction. It also performs loop
optimizations, such as unrolling and induction variable elimination.

You can decide between several optimization levels and for the highest level you can
choose between different optimization goals—size, speed, or balanced. Most
optimizations will make the application both smaller and faster. However, when this is
not the case, the compiler uses the selected optimization goal to decide how to perform
the optimization.

The optimization level and goal can be specified for the entire application, for individual
files, and for individual functions. In addition, some individual optimizations, such as
function inlining, can be disabled.

For details about compiler optimizations and for more information about efficient
coding techniques, see the chapter Efficient coding for embedded applications.

RUNTIME ENVIRONMENT

To create the required runtime environment you should choose a runtime library and set
library options. You may also need to override certain library modules with your own
customized versions.

There are two different sets of runtime libraries provided:

● The IAR DLIB Library, which supports ISO/ANSI C and C++. This library also
supports floating-point numbers in IEEE 754 format and it can be configured to
include different levels of support for locale, file descriptors, multibyte characters,
et cetera. (This library is the default for the C++ language).

● The IAR CLIB Library is a light-weight library, which is not fully compliant with
ISO/ANSI C. Neither does it fully support floating-point numbers in IEEE 754
format nor does it support Embedded C++. (This library is used by default for the C
language).

The runtime library you choose can be one of the prebuilt libraries, or a library that you
have customized and built yourself. The IAR Embedded Workbench IDE provides a
library project template for both libraries, that you can use for building your own library
version. This gives you full control of the runtime environment. If your project only
contains assembler source code, there is no need to choose a runtime library.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Getting started
For detailed information about the runtime environments, see the chapters The DLIB
runtime environment and The CLIB runtime environment, respectively.

The way you set up a runtime environment and locate all the related files differs
depending on which build interface you are using—the IAR Embedded Workbench IDE
or the command line.

Choosing a runtime library in the IAR Embedded Workbench IDE

To choose a library, choose Project>Options, and click the Library Configuration tab
in the General Options category. Choose the appropriate library from the Library
drop-down menu.

Note that for the DLIB library there are different configurations—Normal and
Full—which include different levels of support for locale, file descriptors, multibyte
characters, et cetera. See Library configurations, page 87, for more information.

Based on which library configuration you choose and your other project settings, the
correct library file is used automatically. For the device-specific include files, a correct
include path is set up.

Choosing runtime environment from the command line

Use the following command line options to specify the library and the dependency files:

For information about prebuilt library object files for the IAR DLIB Library, see Using
a prebuilt library, page 88. For information about prebuilt object files for the IAR CLIB
Library, see Runtime environment, page 115.

In these chapters you can also find information about how the object files correspond to
the dependent project options, and the corresponding configuration files. Make sure to
use the object file that matches your other project options.

Command line Description

-I 8051\inc Specifies the include paths

-I 8051\inc\{clib|dlib} Specifies the library-specific include path. Use clib or
dlib depending on which library you are using.

libraryfile.r51 Specifies the library object file

--dlib_config

C:\...\configfile.h

Specifies the library configuration file (for the IAR DLIB
Library only)

Table 2: Command line options for specifying library and dependency files
C8051-4

Part 1. Using the compiler 9

10

Special support for embedded systems
Setting library and runtime environment options

You can set certain options to reduce the library and runtime environment size:

● The formatters used by the functions printf, scanf, and their variants, see
Choosing formatters for printf and scanf, page 91 (DLIB) and Input and output,
page 118 (CLIB).

● The size of the stack and the heap, see The stacks, page 76, and The heap, page 79,
respectively.

Building your own library

The prebuilt runtime libraries are configured for different combinations of the following
features:

● DLIB and CLIB runtime environment
● Core variant
● Code models
● Data model
● Calling convention
● Stack location
● Constant location
● Number of data pointers
● Data pointer visibility
● Data pointer size
● Data pointer selection method
● Library configuration: Normal.

Some of these combinations are delivered as prebuilt runtime libraries. When you need
a compiler configuration for which there is no prebuilt library, you can build your own
library. This is simple, as the IAR Embedded Workbench IDE provides a library project
template which can be used for customizing the runtime environment configuration
according to your needs.

For detailed information, see Building and using a customized library, page 95.

Special support for embedded systems
This section briefly describes the extensions provided by the 8051 IAR C/C++ Compiler
to support specific features of the MCS-51 microcontroller.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Getting started
EXTENDED KEYWORDS

The 8051 IAR C/C++ Compiler provides a set of keywords that can be used for
configuring how the code is generated. For example, there are keywords for controlling
the memory type for individual variables as well as for declaring special function types.

By default, language extensions are enabled in the IAR Embedded Workbench IDE.

The command line option -e makes the extended keywords available, and reserves them
so that they cannot be used as variable names. See, -e, page 200 for additional
information.

For detailed descriptions of the extended keywords, see the chapter Extended keywords.

PRAGMA DIRECTIVES

The pragma directives control the behavior of the compiler, for example how it allocates
memory, whether it allows extended keywords, and whether it issues warning messages.

The pragma directives are always enabled in the 8051 IAR C/C++ Compiler. They are
consistent with ISO/ANSI C, and are very useful when you want to make sure that the
source code is portable.

For detailed descriptions of the pragma directives, see the chapter Pragma directives.

PREDEFINED SYMBOLS

With the predefined preprocessor symbols, you can inspect your compile-time
environment, for example the code and data models.

For detailed descriptions of the predefined symbols, see the chapter The preprocessor.

SPECIAL FUNCTION TYPES

The special hardware features of the MCS-51 microcontroller are supported by the
compiler’s special function types: interrupt, monitor, and task. You can write a complete
application without having to write any of these functions in assembler language.

For detailed information, see Primitives for interrupts, concurrency, and OS-related
programming, page 48.

ACCESSING LOW-LEVEL FEATURES

For hardware-related parts of your application, accessing low-level features is essential.
The 8051 IAR C/C++ Compiler supports several ways of doing this: intrinsic functions,
mixing C and assembler modules, and inline assembler. For information about the
different methods, see Mixing C and assembler, page 125.
C8051-4

Part 1. Using the compiler 11

12

Special support for embedded systems
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Understanding memory
architecture
This chapter gives an overview of the MCS-51 microcontroller memory
configuration in terms of the different memory spaces available. To use
memory efficiently you also need to be familiar with the concepts related to
memory available in the 8051 IAR C/C++ Compiler and the linker.

Finally, for each type of supported device you will get a brief overview about
basic project settings to get started setting up the tools for the device you are
using.

The MCS-51 microcontroller memory configuration
The MCS-51 microcontroller has three separate memory spaces: code memory, internal
data memory, and external data memory.

The different memory spaces are accessed in different ways. Internal data memory can
always be efficiently accessed, whereas external data memory and code memory cannot
always be accessed in the same efficient way.

CODE MEMORY SPACE

In a classic 8051, the code memory space is a 64-Kbyte address area of ROM memory
that is used for storing program code, including all functions and library routines, but
also constants. Depending on the device you are using and your hardware design, code
memory can be internal (on-chip), external, or both.

For classic 8051/8052 devices, code memory can be expanded with up to 256 banks of
additional ROM memory. The compiler uses 2-byte pointers to access the different
banks. Silabs C8051F12x and Texas Instruments CC2430 are examples of this device
type.

Furthermore, some devices have extended code memory which means they can have up
to 16 Mbytes of linear code memory (used for example in the Maxim
DS80C390/DS80C400 devices). The compiler uses 3-byte pointers to access this area.

Devices based on the Mentor Graphics M8051W/M8051EW core divide their code
memory in 16 memory banks where each bank is 64 Kbytes. The compiler uses 3-byte
pointers to access the different banks.
C8051-4

Part 1. Using the compiler 13

14

Run-time model concepts for memory configuration
INTERNAL DATA MEMORY SPACE

Depending on the device, internal data memory consists of up to 256 bytes of on-chip
read and write memory that is used for storing data, typically frequently used variables.
In this area, memory accesses uses either the direct addressing mode or the indirect
addressing mode of the MOV instruction. However, in the upper area (0x80–0xFF), direct
addressing accesses the dedicated SFR area, whereas indirect addressing accesses the
IDATA area.

The SFR area, is used for memory-mapped registers, such as DPTR, A, the serial port
destination register SBUF, and the user port P0. Standard peripheral units are defined in
device-specific I/O header files with the filename extension h. For more details about
these files, see Header files for I/O, page 4.

The area between 0x20 and 0x2F is bit-addressable, as well as 80, 88, 90, 98...F0,
and F8. Note that the compiler reserves one byte of the bit-addressable memory for
internal use, see Virtual registers, page 44.

EXTERNAL DATA MEMORY SPACE

External data can consist of up to 64 Kbytes of read and write memory, which can be
addressed only indirectly via the MOVX instruction. For this reason, external memory is
slower than internal memory.

Many modern devices provide on-chip XDATA (external data) in the external data
memory space. For example, the Texas Instruments CC2430 device has 8 Kbytes
on-chip XDATA.

Some devices extend the external data memory space to 16 Mbytes. In this case, the
compiler uses 3-byte pointers to access this area.

Run-time model concepts for memory configuration
COMPILER CONCEPTS

The 8051 IAR C/C++ Compiler associates each part of memory area with a memory
type. By mapping different memories—or part of memories—to memory types, the
compiler can generate code that can access data or functions efficiently.

For each memory type, the compiler provides a keyword—a memory attribute—that
you can use directly in your source code. These attributes let you explicitly specify a
memory type for individual objects, which means the object will reside in that memory.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Understanding memory architecture
You can specify a default memory type to be used by the compiler by selecting a data
model. It is possible to override this for individual variables and pointers by using the
memory attributes. Conversely, you can select a code model for default placement of
code.

For detailed information about available data models, memory types and corresponding
memory attributes, see Data models, page 22 and Memory types, page 24, respectively.

LINKER CONCEPTS

The compiler generates a number of segments. A segment is a logical entity containing
a piece of data or code that should be mapped to a physical location in memory.

The 8051 IAR C/C++ Compiler has a number of predefined segments for different
purposes. Each segment has a name that describes the contents of the segment, and a
segment memory type that denotes the type of content. In addition to the predefined
segments, you can define your own segments.

At compile time, the compiler assigns each segment its contents. For example, the
segment DATA_Z holds zero-initialized static and global variables.

The IAR XLINK Linker is responsible for placing the segments in the physical memory
range, in accordance with the rules specified in the linker command file.

To read more about segments, see Placing code and data, page 67.

Basic project settings for hardware memory configuration
Depending on the device you are using and its memory configuration, there are basic
project settings required for:

● Core

● Code model

● Data model

● Calling convention

● DPTR setup.

Not all combinations of these are possible. The following paragraphs provide you with
information about which settings that can be used for a specific type of device.

CLASSIC 8051/8052 DEVICES

For classic 8051/8052 devices, there are three main categories of hardware memory
configurations:

● No external RAM (single chip, with or without external ROM)
C8051-4

Part 1. Using the compiler 15

16

Basic project settings for hardware memory configuration
● External RAM present (from 0 to 64 Kbytes)

● Banked mode (more than 64 Kbytes of ROM).

A combination of the following compiler settings can be used:

† Requires the extended stack compiler option to be used (--extended_stack).
†† Requires the extended stack compiler option not to be used (--extended_stack).

If you use the Banked code model, you can explicitly place individual functions in the
root bank by using the __near_func memory attribute.

You can use the __code memory attribute to place constants and strings in the code
memory space.

The following memory attributes are available for placing individual data objects in
different data memory than default: __sfr, __bit, __bdata, __data, __idata,
__pdata, __xdata, __xdata_rom, __ixdata, __generic.

MAXIM (DALLAS SEMICONDUCTOR) 390 AND SIMILAR
DEVICES

This type of devices can have memory extended up to 16 Mbytes of external continuous
data memory and code memory.

A combination of the following compiler settings can be used:

† Requires an extended stack, which means the compiler option --extended_stack to be
used.
†† Requires the compiler option --extended_stack not to be used.

You can use the __far_code and __huge_code memory attributes to place constants
and strings in the code memory space.

The following memory attributes are available for placing individual data objects in a
non-default data memory: __sfr, __bit, __bdata, __data, __idata, __pdata.

--core --code_model --data_model --calling_convention --dptr

plain near tiny|small do|io 16|24

plain near|banked tiny|small ir 16|24

plain near|banked far pr|xr††|er† 24

plain near|banked large pr|xr††|er† 16

plain near|banked generic do|io|ir|pr|xr††|er† 16

Table 3: Possible combinations of compiler options for core Plain

--core --code_model --data_model --calling_convention --dptr

extended1 far far|large pr|er†|xr†† 24

extended1 far tiny|small ir 24

Table 4: Possible combinations of compiler options for core Extended 1
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Understanding memory architecture
For the tiny and large data models also: __xdata, __xdata_rom, __ixdata,
__generic.

For the far data model also: __far, __far_rom, __huge, __huge_rom.

Note: Although the 8051 IAR C/C++ Compiler supports the code and data memory
extension model of the Maxim (Dallas Semiconductor) DS80C390 device, it does not
support the 40-bit accumulator of the device.

DEVICES BASED ON MENTOR GRAPHICS M8051W/M8051EW
CORE

This core and devices based on it, provide an extended addressing mechanism which
means you can extend your code memory with up to 16 banks where each bank is 64
Kbytes.

The following combination of compiler settings can be used:

The following memory attributes are available for placing individual data objects in
different data memory than default: __sfr, __bit, __bdata, __data, __idata,
__pdata.

For the tiny and large data models also: __xdata, __xdata_rom, __ixdata,
__generic.

Using the DPTR register
Some devices have up to 8 data pointers that can be used for speeding up memory
accesses. Devices that support extended memory must use 24-bit data pointers, whereas
classic devices that do not support extended memory use 16-bit data pointers.

The 8051 IAR C/C++ Compiler supports up to 8 data pointers using the DPTR register.
Using the DPTR register can in some cases generate more compact and efficient code. In
many applications, the data pointer is a heavily used resource that often has to be saved
on the stack or in a register, and later restored. If the application can use more than one
data pointer, the overhead can be considerably reduced.

If you use the DPTR register you must specify:

● The number of data pointers to use
● The size of the data pointers
● Where the data pointers are located
● How to select a data pointer.

--core --code_model --data_model --calling_convention --dptr

extended2 banked_ext2 large xdata_reentrant 16

Table 5: Possible combinations of compiler options for core Extended 2
C8051-4

Part 1. Using the compiler 17

18

Using the DPTR register
To set options for the DPTR register in the IAR Embedded Workbench IDE, choose
Project>Options>General Options>Data Pointer.

On the command line, use the compiler option --dptr to specify the necessary options,
see --dptr, page 199.

LOCATION IN MEMORY

Different 8051 devices represent the DPTR register in different ways. One of two
methods is used for locating the data pointer register in memory.

Use the one that is supported by the device you are using.

● Shadowed visibility

Means that the same SFR (DPS and DPH) addresses are used for all data pointers; the
data pointer select register (DPS) specifies which data pointer is visible at that
address.

● Separate visibility

Means that different locations DPL0, DPL1, etc and DPH0, DPH1 etc are used for the
different data pointers. If you use this method, the DPS register specifies which data
pointer is currently active.

If the data pointers have different locations in memory, these memory locations must be
individually specified. For most devices these addresses are set up automatically by IAR
Embedded Workbench. If this information is missing for your device, you can easily
specify these addresses.

Specifying the location in memory

The memory addresses used for the data pointers are specified in the linker command
file.

The following lines exemplifies a setup for a device that uses two 24-bit data pointers
located at different addresses:

-D?DPS=86
-D?DPX=93
-D?DPL1=84
-D?DPH1=85
-D?DPX1=95

The symbol ?DPS specifies where the DPS register is located. ?DPX specifies the location
of extended byte of the first data pointer. (The low and high address of the first data
pointer is always located at the addresses 0x82 and 0x83, respectively.) ?DPL1, ?DPH1,
and ?DPX1 specify the location of the second data pointer.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Understanding memory architecture
SELECTING THE ACTIVE DATA POINTER

There are two different ways of switching active data pointers: incremental or XOR.

The incrementation method (INC) is the more efficient method, but it is not supported
by all 8051 devices. Using this method, the bits in the DPS register can be incremented
to select the active data pointer. This is only possible if the contents of the DPS register
that is not relevant for the data pointer selection can be destroyed during the switch
operation, or if bits that must not be destroyed are guarded by a dead bit that prevents
the switch operation to overflow into them. The selection bits in the DPS register must
also be located in sequence and start with the least significant bit.

Figure 1: Selecting active data pointer

The number of DPTRs that can be used together with the INC method depends on the
location of the dead bit. If, for example, four data pointers are available and bit 0 and 1
in the DPS register are used for data pointer selection and bit 2 is a dead bit, the INC
method can only be used when all four data pointers are used. If only two of the four
data pointers are used, the XOR selection method must be used instead.

If on the other hand bit 0 and 2 are used for data pointer selection and bit 1 is a dead bit,
the INC method can be used when two data pointers are used, but if all four data pointers
are used, the XOR method must be used instead.

The XOR method is not always as efficient but it can always be used. Only the bits used
for data pointer selection are affected by the XOR selection operation. The bits are
specified in a bit mask that must be specified if this method is used. The selection bits
are marked as a set bit in the bit mask. For example, if four data pointers are used and
the selection bits are bit 0 and bit 2, the selection mask should be 0x05 (00000101 in
binary format).

The XOR data pointer select method can thus always be used regardless of any dead bits,
of which bits are used for the selection, or of other bits used in the DPS register.

Note: INC is the default switching method for the Extended1 core. For other cores
XOR is the default method. The default mask depends on the number of data pointers
specified. Furthermore, it is assumed that the least significant bits are used, for example,
if 6 data pointers are used, the default mask will be 0x07.
C8051-4

Part 1. Using the compiler 19

20

Using the DPTR register
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Data storage
This chapter gives a brief introduction to the memory layout of the MCS-51
microcontroller and the fundamental ways data can be stored in memory: for
auto variables, for global variables and local variables declared static, and for
dynamically allocated data.

For efficient memory usage, 8051 IAR C/C++ Compiler provides a set of data
models and data memory attributes, allowing you to fine-tune the access
methods, resulting in smaller code size. The concepts of data models and
memory types are described in relation to pointers, structures, Embedded
C++ class objects, and non-initialized memory. Finally, detailed information
about data storage on the stack and the heap is provided.

Different ways to store data
In a typical application, you can handle data in three different ways:

● Auto variables.

All variables that are local to a function, except those declared static, are stored either
in registers or in the local frame of each function. These variables can be used as long
as the function executes. When the function returns to its caller, the memory space is
no longer valid.

The local frame can either be allocated at runtime from the stack—stack frame—or
be statically allocated at link time—static overlay frame. Functions that use static
overlays for their frame are usually not reentrant and do not support recursive calls.
For more information, see Auto variables—stack and static overlay, page 35.

● Global variables and local variables declared static.

In this case, the memory is allocated once and for all. The word static in this context
means that the amount of memory allocated for this kind of variables does not change
while the application is running. For more information, see Data models, page 22 and
Memory types, page 24.

● Dynamically allocated data.

An application can allocate data on the heap, where the data it remains valid until it
is explicitly released back to the system by the application. This type of memory is
useful when the number of objects is not known until the application executes. Note
that there are potential risks connected with using dynamically allocated data in
C8051-4

Part 1. Using the compiler 21

22

Data models
systems with a limited amount of memory, or systems that are expected to run for a
long time. For more information, see Dynamic memory on the heap, page 42.

Note: Only MCS-51 devices with external memory can have a heap.

Data models
The 8051 IAR C/C++ Compiler supports a number of data models for applications with
different data requirements.

Technically, the data model specifies the default memory type. This means that the data
model controls the following:

● The default placement of static and global variables, as well as constant literals

● Dynamically allocated data, for example data allocated with malloc, or, in C++,
the operator new

● The default pointer type.

It is possible to override the default memory placement for individual variables and
pointers. This makes it possible to create an application that can contain a large amount
of data, and at the same time make sure that variables that are used often are placed in
memory that can be efficiently accessed. For information about how to specify a
memory type for individual objects, see Using data memory attributes, page 30.

The chosen data model may restrict the calling conventions and the location of constants
and strings. When compiling non-typed ANSI C or C++ code, including the standard C
libraries, the default pointer in the chosen data model must be able to reach all default
data objects. Thus, the default pointer must be able to reach variables located on the
stack as well as constant and strings objects. Therefore, not all combinations of data
model, calling convention, and constant location are permitted, see Calling conventions
and matching data models, page 37.

SPECIFYING A DATA MODEL

Five data models have been implemented: Tiny, Small, Large, Generic, and Far. The data
models range from Tiny, which is suitable for applications—with less than 128 bytes of
data—to Far, which supports up to 16 Mbytes of data. These models are controlled by
the --data_model option. Each model has a default memory type and a default pointer
size.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Data storage
The following table summarizes the different data models:

Your project can only use one data model at a time, and the same model must be used
by all user modules and all library modules. However, you can override the default
memory type for individual data objects by explicitly specifying a memory attribute,
using either keywords or the #pragma type_attribute directive.

See the IAR Embedded Workbench® IDE User Guide for information about setting
options in the IAR Embedded Workbench IDE.

Use the --data_model option to specify the data model for your project; see
--data_model, page 194.

The Tiny data model

The Tiny data model uses Tiny memory by default, which is located in the first 128 bytes
of the internal data memory space. This memory can be accessed using direct
addressing. The advantage is that only 8 bits are needed for pointer storage. The default
pointer type passed as a parameter will use one register or one byte on the stack.

The Small data model

The Small data model uses the first 256 Kbytes of memory by default. This memory can
be accessed using 8-bit pointers. The advantage is that only 8 bits are needed for pointer
storage. The default pointer type passed as a parameter will use one register or one byte
on the stack.

The Large data model

The Large data model uses the first 64 Kbytes of memory by default. This memory can
be accessed using 16-bit pointers. The default pointer type passed as a parameter will
use two register or two bytes on the stack.

Data model
Default data

 memory attribute
Default data pointer

Default in

Core

Tiny __data __idata —

Small __idata __idata Plain

Large __xdata __xdata —

Generic __xdata __generic —

Far __far __far Extended1

Table 6: Data model characteristics
C8051-4

Part 1. Using the compiler 23

24

Memory types
The Generic data model

The Generic data model uses 64 Kbytes of the code memory space, 64 Kbytes of the
external data memory space, and 256 Kbytes of the internal data memory space. This is
the only memory type that can be accessed using 24-bit pointers. The default pointer
type passed as a parameter will use three registers or 3 bytes on the stack.

The Far data model

The Far data model uses the 16 Mbytes of the external data memory space. This is the
only memory that can be accessed using 24-bit pointers. The default pointer type passed
as a parameter will use three register or 3 bytes on the stack.

Requires that you use 24-bit data pointers, which you set explicitly using the --dptr
compiler option.

Memory types
This section describes the concept of memory types used for accessing data by the 8051
IAR C/C++ Compiler. It also discusses pointers in the presence of multiple memory
types. For each memory type, the capabilities and limitations are discussed.

The 8051 IAR C/C++ Compiler uses different memory types to access data that is
placed in different areas of the memory. There are different methods for reaching
memory areas, and they have different costs when it comes to code space, execution
speed, and register usage. The access methods range from generic but expensive
methods that can access the full memory space, to cheap methods that can access limited
memory areas. Each memory type corresponds to one memory access method. By
mapping different memories—or part of memories—to memory types, the compiler can
generate code that can access data efficiently.

For example, the memory accessible using the xdata memory access method is called
memory of xdata type, or simply xdata memory. For more information about memory
access methods, see Memory access methods, page 142.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Data storage
Figure 2, The memory and associated memory types illustrates the different memory
types and how they are associated with the different parts of memory:

Figure 2: The memory and associated memory types
C8051-4

Part 1. Using the compiler 25

26

Memory types
The following table summarizes the available memory types and their corresponding
keywords:

* In this table, the term IDATA refers at the internal data memory space, XDATA refers at the
external data memory space, CODE refers at the code memory space. See The MCS-51 micro-
controller memory configuration, page 13 for more information about the memory spaces.

All memory types are not always available; for more information, see Basic project
settings for hardware memory configuration, page 15. For detailed information about
the pointers that can be used, see Pointer types, page 221.

MEMORY TYPES FOR INTERNAL DATA MEMORY SPACE

In the internal data memory space, the following memory types are available:

● data

● idata

● bit/bdata

● sfr.

Memory

type

Memory

space *
Memory type

attribute
Address range

Max. object

size

Pointer type

attribute

Data IDATA __data 0x0–0x7F 128 bytes __idata

SFR IDATA __sfr 0x80–0xFF 128 bytes n/a

Idata IDATA __idata 0x0–0xFF 256 bytes __idata

Bit IDATA __bit 0x0–0xFF 1 bit n/a

Bdata IDATA __bdata 0x0–0x2F 16 bytes n/a

Pdata XDATA __pdata 0x0–0xFF 256 bytes __pdata

Ixdata XDATA __ixdata 0x0–0xFFFF 64 Kbytes __xdata

Xdata XDATA __xdata 0x0–0xFFFF 64 Kbytes __xdata

Far XDATA __far 0x0–0xFFFFFF 64 Kbytes __far

Huge XDATA __huge 0x0–0xFFFFFF 16 Mbytes __huge

Xdata ROM XDATA __xdata_rom 0x0–0xFFFF 64 Kbytes __xdata

Far ROM XDATA __far_rom 0x0–0xFFFFFF 64 Kbytes __far

Huge ROM XDATA __huge_rom 0x0–0xFFFFFF 16 Mbytes __huge

Code CODE __code 0x0–0xFFFF 64 Kbytes __code

Far code CODE __far_code 0x0–0xFFFFFF 64 Kbytes __far_code

Huge code CODE __huge_code 0x0–0xFFFFFF 16 Mbytes __huge_code

Table 7: Memory types and pointer type attributes
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Data storage
data

The data memory covers the first 128 bytes (0x0-0x7F) of the internal data memory
space. To place a variable in this memory, use the __data memory attribute. This means
the variable will be directly addressed using MOV A,10, which is the most compact
access to variables possible. The size of such an object is limited to 128 bytes-8 bytes
(the register area). This memory is default in the Tiny data model.

idata

The idata memory covers all 256 bytes of internal data memory space (0x0-0xFF). An
idata object can be placed anywhere in this range, and the size of such an object is
limited to 256 bytes-8 (the register area). To place a variable in this memory, use the
__idata memory attribute. Such an object will be accessed with indirect addressing
using the following construction MOV R0,H10 and MOV A, @R0, which is slower
compared to objects accessed directly in the data memory. Idata memory is default in
the Small data model.

bit/bdata

The bit/bdata memory covers the 32-byte bit-addressable memory area (0x20-0x2F and
all SFR addresses that start on 0x0 and 0x08) in the internal data memory space. The
__bit memory attribute can access individual bits in this area, whereas the __bdata
attribute can access 8 bits with the same instruction.

sfr

The sfr memory covers the 128 upper bytes (0x80-0xFF) of the internal data memory
space and is accessed using direct addressing. Standard peripheral units are defined in
device-specific I/O header files with the filename extension h. For more details about
these files, see Header files for I/O, page 4.

Use the __sfr memory attribute to define your own SFR definitions.

MEMORY TYPES FOR EXTERNAL DATA MEMORY SPACE

In the external data memory space, the following memory types are available:

● xdata

● pdata

● ixdata

● far

● huge

● Memory types for ROM memory in the external data memory space.
C8051-4

Part 1. Using the compiler 27

28

Memory types
xdata

The xdata memory type refers to the 64-Kbyte memory area (0x0–0xFFFF) in the
external data memory space. Use the __xdata memory attribute to place an object in
this memory area, which will be accessed using MOVX A, @DPTR. This memory type is
default in the Large and Generic data models.

pdata

The pdata memory type refers to a 256-byte area placed anywhere in the memory range
0x0–0xFFFF of the external data memory space. Use the __pdata memory attribute to
place an object in this memory area. The object which will be accessed using MOVX A,
@Ri, which is more efficient compared to using the xdata memory type.

ixdata

Some devices provide on-chip xdata (external data) memory that is accessed faster than
normal external data memory.

If available, this on-chip data memory is placed anywhere in the memory range
0x0–0xFFFF of the external data memory space. Use the __ixdata memory attribute
to access objects in this on-chip memory.

If used, this memory is enabled in the system startup code (cstartup.s51). You
should verify that it is set up according to your requirements.

far

The far memory type refers to the whole 16-Mbyte memory area (0x0–0xFFFFFF) in
the external data memory space. Use the __far memory attribute to place an object in
this memory area, which will be accessed using MOVX. This memory type is only
available when the Far data model is used, and in that case it is used by default.

Note that the size of such an object is limited to 64 Kbytes-1. For details about
placement restrictions, see Table 42, Data pointers, page 222.

huge

The huge memory type refers to the whole 16-Mbyte memory area (0x0–0xFFFFFF) in
the external data memory space. Use the __huge memory attribute to place an object in
this memory area, which will be accessed using MOVX.

The drawback of the huge memory type is that the code generated to access the memory
is larger and slower than that of any of the other memory types. In addition, the code
uses more processor registers, which may force local variables to be stored on the stack
rather than being allocated in registers.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Data storage
Memory types for ROM memory in the external data memory
space

Some devices provide ROM memory in the external data memory space that is accessed
in the same way as other external data memory. Depending on where in the 16-Mbyte
address space this ROM memory is available, different memory types are associated
with the ROM memory:

Use this memory for constants and strings, as this memory can only be read from not
written to.

MEMORY TYPES FOR CODE MEMORY SPACE

In the code data memory space, the following memory types are available:

● code

● far code

● huge code.

For information about placing functions in the code memory space, see Code models for
function storage, page 47.

code

The code memory type refers to the 64-Kbyte memory area (0x0–0xFFFF) in the code
memory space. Use the __code memory attribute to place constants and strings in this
memory area, which will be accessed using MOVC.

Memory type Attribute Address range Comments

Xdata ROM __xdata_rom 0x0-0xFFFF The size of such an object is limited to 64
Kbytes-1, and it cannot cross a 64-Kbyte
physical segment boundary.

Far ROM __far_rom 0x0-0xFFFFFF The size of such an object is limited to 64
Kbytes-1. For details about placement
restrictions, see Table 42, Data pointers,
page 222.

Huge ROM __far_rom 0x0-0xFFFFFF The code generated to access the memory
is larger and slower than that of any of the
other memory types. In addition, the code
uses more processor registers, which may
force local variables to be stored on the
stack rather than being allocated in
registers.

Table 8: Memory types for ROM memory in external data memory space
C8051-4

Part 1. Using the compiler 29

30

Memory types
far code

The far code memory type refers to the whole 16-Mbyte memory area (0x0–0xFFFFFF)
in the code memory space. Use the __far_code memory attribute to place constants
and strings in this memory area, which will be accessed using MOVC.

Note that the size of such an object is limited to 64 Kbytes-1. For details about
placement restrictions, see Table 42, Data pointers, page 222.

This memory type is only available when the Far data model is used.

huge code

The huge code memory type refers to the whole 16-Mbyte memory area
(0x0–0xFFFFFF) in the external data memory space. Use the __huge_code memory
attribute to place an object in this memory area, which will be accessed using MOVC.

The drawback of the huge memory type is that the code generated to access the memory
is larger and slower than that of any of the other memory types. In addition, the code
uses more processor registers, which may force local variables to be stored on the stack
rather than being allocated in registers.

This memory type is only available when the Far data model is used.

USING DATA MEMORY ATTRIBUTES

The 8051 IAR C/C++ Compiler provides a set of extended keywords, which can be used
as data memory attributes. These keywords let you override the default memory type for
individual data objects, which means that you can place data objects in other memory
areas than the default memory. This also means that you can fine-tune the access method
for each individual data object, which results in smaller code size.

The keywords are only available if language extensions are enabled in the 8051 IAR
C/C++ Compiler.

In the IAR Embedded Workbench IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 200 for
additional information.

For reference information about each keyword, see Descriptions of extended keywords,
page 242.

Syntax

The keywords follow the same syntax as the type qualifiers const and volatile. The
memory attributes are type attributes and therefore they must be specified both when
variables are defined and in the declaration, see General syntax rules for extended
keywords, page 237.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Data storage
The following declarations place the variable i and j in idata memory. The variables k
and l will also be placed in idata memory. The position of the keyword does not have
any effect in this case:

__idata int i, j;
int __idata k, l;

Note that the keyword affects both identifiers. If no memory type is specified, the default
memory type is used.

In addition to the rules presented here—to place the keyword directly in the code—the
directive #pragma type_attribute can be used for specifying the memory attributes.
The advantage of using pragma directives for specifying keywords is that it offers you a
method to make sure that the source code is portable. Refer to the chapter Pragma
directives for details about how to use the extended keywords together with pragma
directives.

Type definitions

Storage can also be specified using type definitions. The following two declarations are
equivalent:

typedef char __idata Byte;
typedef Byte *BytePtr;
Byte b;
BytePtr bp;

and

__idata char b;
char __idata *bp;

POINTERS AND MEMORY TYPES

Pointers are used for referring to the location of data. In general, a pointer has a type.
For example, a pointer that has the type int * points to an integer.

In the 8051 IAR C/C++ Compiler, a pointer also points to some type of memory. The
memory type is specified using a keyword before the asterisk. For example, a pointer
that points to an integer stored in idata memory is declared by:

int __idata * p;

Note that the location of the pointer variable p is not affected by the keyword. In the
following example, however, the pointer variable p2 is placed in xdata memory
(assuming the Large data model). Like p, p2 points to a character in idata memory.

char __idata * __xdata p2;
C8051-4

Part 1. Using the compiler 31

32

Memory types
Differences between pointer types

A pointer must contain information needed to specify a memory location of a certain
memory type. In the 8051 IAR C/C++ Compiler, a smaller pointer can be implicitly
converted to a pointer of a larger type if they both point to the same type of memory. For
example, a __pdata pointer can be implicitly converted to an __xdata pointer. A
pointer cannot be implicitly converted to a pointer that points to an incompatible
memory area (that is, a code pointer cannot be implicitly converted to a data pointer and
vice versa) and a larger pointer cannot be implicitly converted to a smaller pointer if it
means that precision is being lost.

Whenever possible, pointers should be declared without memory attributes. For
example, the functions in the standard library are all declared without explicit memory
types.

STRUCTURES AND MEMORY TYPES

For structures, the entire object is placed in the same memory type. It is not possible to
place individual structure members in different memory types.

In the example below, the variable gamma is a structure placed in idata memory.

struct MyStruct
{
 int alpha;
 int beta;
};
__idata struct MyStruct gamma;

The following declaration is incorrect:

struct MySecondStruct
{
 int blue;
 __idata int green; /* Error! */
};

MORE EXAMPLES

The following is a series of examples with descriptions. First, some integer variables are
defined and then pointer variables are introduced. Finally, a function accepting a pointer
to an integer in xdata memory is declared. The function returns a pointer to an integer
in idata memory. It makes no difference whether the memory attribute is placed before
or after the data type. To read the following examples, start from the left and add one
qualifier at each step

int a; A variable defined in default memory
determined by the data model in use.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Data storage
C++ and memory types
A C++ class object is placed in one memory type, in the same way as for normal C
structures. However, the class members that are considered to be part of the object are
the non-static member variables. The static member variables can be placed individually
in any kind of memory.

Remember, in C++ there is only one instance of each static member variable, regardless
of the number of class objects.

All restrictions that apply to the default pointer type also apply to the this pointer. This
means that it must be possible to convert a pointer to the object to the default pointer
type. Also note that for non-static member functions—unless class memory is used, see
Classes, page 151—the this pointer will be of the default data pointer type.

In the Large data model, this means that objects of classes with a member function can
only be placed in the default memory type (__xdata).

int __xdata b; A variable in xdata memory.

__idata int c; A variable in idata memory.

int * d; A pointer stored in default memory. The pointer
points to an integer in default memory.

int __xdata * e; A pointer stored in default memory. The pointer
points to an integer in xdata memory.

int __xdata * __idata f; A pointer stored in idata memory pointing to an
integer stored in xdata memory.

int __idata * myFunction(

 int __xdata *);
A declaration of a function that takes a
parameter which is a pointer to an integer stored
in xdata memory. The function returns a pointer
to an integer stored in idata memory.
C8051-4

Part 1. Using the compiler 33

34

Constants and strings
Example

In the example below, an object, named delta, of the type MyClass is defined in xdata
memory. The class contains a static member variable that is stored in pdata memory.

// The class declaration (placed in a header file):
class MyClass
{
public:
 int alpha;
 int beta;

 __pdata static int gamma;
};

// Definitions needed (should be placed in a source file):
__pdata int MyClass::gamma;

// A variable definition:
__xdata MyClass delta;

Constants and strings
The placement of constants and strings can be handled in one of three ways:

● Constants and strings are copied from ROM (non-volatile memory) to RAM at
system initialization

Strings and constants will be handled in the same way as initialized variables. This
is the default behavior and all prebuilt libraries delivered with the product use this
method. If the application only uses a small amount of constants and strings and the
microcontroller does not have non-volatile memory in the external data memory
space, this method should be selected. Note that this method requires space for
constants and strings in both non-volatile and volatile memory.

● Constants are placed in ROM (non-volatile memory) located in the external data
memory space

Constants and strings are accessed using the same access method as ordinary external
data memory. This is the most efficient method but only possible if the
microcontroller has non-volatile memory in the external data memory space. To use
this method, you should explicitly declare the constant or string with the memory
attribute __xdata_rom, __far_rom, or __huge_rom. This is also the default
behavior if the option --place_constants=data_rom has been used. Note that
this option can be used if one of the data models Far, Generic, or Large is used.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Data storage
● Constants and strings are located in code memory and are not copied to data
memory.

This method occupies memory in the external data memory space. However,
constants and strings located in code memory can only be accessed through the
pointers __code, __far_code, __huge_code, or __generic. This method
should only be considered if a large amount of strings and constants are used and
neither of the other two methods are appropriate. There are some complications when
using the runtime library together with this method, see Placing constants and
strings in code memory.

Placing constants and strings in code memory

If you want to locate constants and strings in the code memory space, you have to
compile your project with the option --place_constants=code. It is important to
note that runtime library functions that take constant parameters as input, such as
sscanf and sprintf, will still expect to find these parameters in data memory rather
than in code memory.

Auto variables—stack and static overlay
Variables that are defined inside a function—not declared static—are named auto
variables by the C standard. A small number of these variables are placed in processor
registers; the rest are placed either on the stack or in a static overlay area. From a
semantic point of view, this is equivalent. The main differences are that accessing
registers is faster, and that less memory is required compared to when variables are
located on the stack or the static overlay area. The stack is dynamically allocated at
runtime, whereas the static overlay area is statically allocated at link time.

Auto variables can only live as long as the function executes; when the function returns,
the memory allocated on the stack is released.

CHOOSING A CALLING CONVENTION

The 8051 IAR C/C++ Compiler provides six different calling conventions that control
how memory is used for parameters and locally declared variables. You can specify a
default calling convention or you can explicitly declare the calling convention for each
individual function.
C8051-4

Part 1. Using the compiler 35

36

Auto variables—stack and static overlay
The following table lists the available calling conventions:

Only the reentrant models adhere strictly to ANSI C. The overlay calling conventions
do not allow recursive functions and they are not reentrant, but they adhere to ANSI C
in all other respects.

Choosing a calling convention also affects how a function calls another function. The
compiler handles this automatically, but if you write a function in the assembler
language you must know where and how its parameter can be found and how to return
correctly. For detailed information, see Calling convention, page 131.

Specifying a default calling convention

You can choose a default calling convention by using the command line option
--calling_convention=convention, see --calling_convention, page 192.

 To specify the calling convention in the IAR Embedded Workbench IDE, choose
Project>Options>General Options>Target>Calling convention.

Specifying a calling convention for individual functions

In your source code, you can declare individual functions to use, for example, the Idata
reentrant calling convention by using the __idata_reentrant function attribute, for
example:

extern __idata_reentrant void doit(int arg);

Calling

convention
Function attribute

Stack

pointer
Description

Data overlay __data_overlay -- An overlay frame in data memory is
used for local data and parameters.

Idata overlay __idata_overlay -- An overlay frame in idata memory is
used for local data and parameters.

Idata reentrant __idata_reentrant SP The idata stack is used for local data
and parameters.

Pdata reentrant __pdata_reentrant PSP An emulated stack located in pdata
memory is used for local data and
parameters.

Xdata reentrant __xdata_reentrant XSP An emulated stack located in xdata
memory is used for local data and
parameters.

Extended stack
reentrant

__ext_stack_reentrant ESP:SP The extended stack is used for local
data and parameters.

Table 9: Calling conventions
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Data storage
Calling conventions and matching data models

The choice of calling convention is closely related to the default pointer used by the
application (specified by the data model). An application written without specific
memory attributes or pragma directives will only work correctly if the default pointer
can access the stack or static overlay area used by the selected calling convention.

The following table shows which data models and calling conventions you can combine
without having to explicitly type-declare pointers and parameters:

The compiler will not permit inconsistent default models, but if any functions have been
explicitly declared to use a non-default calling convention, you might have to explicitly
specify the pointer type when you declare pointers.

Example

__idata_reentrant void f(void)
{

int x;
int * xp = &x;

}

Data model Default pointer Calling convention
Memory for stack or

overlay frame

Tiny Idata Data overlay
Idata overlay
Idata reentrant

Data
Idata
Idata

Small Idata Data overlay
Idata overlay
Idata reentrant

Data
Idata
Idata

Large Xdata Pdata reentrant
Xdata reentrant
Extended stack reentrant

Pdata
Xdata
Xdata

Generic Generic Data overlay
Idata overlay
Idata reentrant
Pdata reentrant
Xdata reentrant
Extended stack reentrant

Data
Idata
Idata
Pdata
Xdata
Xdata

Far Far Pdata reentrant
Xdata reentrant
Extended stack reentrant

Pdata
Xdata
Far

Table 10: Data models and calling convention
C8051-4

Part 1. Using the compiler 37

38

Auto variables—stack and static overlay
If the above example is compiled using the Small data model, the compilation will
succeed. In the example, the pointer xp will be of the default pointer type, which is idata.
An idata pointer can be instantiated by the address of the local variable x, located on the
idata stack.

If on the other hand the application is compiled using the Large data model, the
compilation will fail. The variable x will still be located on the idata stack, but the
pointer xp, of the default type, will be an xdata pointer which is incompatible with an
idata address. The compiler will generate the following error message:

Error[Pe144]: a value of type "int __idata *" cannot be used to
initialize an entity of type "int *"

Here, the int * pointer is of the default type, that is, it is in practice int __xdata *.
However, if the pointer xp is explicitly declared as an __idata pointer, the application
can be successfully compiled using the Large data model. The source code would then
look like this:

__idata_reentrant void f(void)
{

int x;
int __idata * xp = &x;

}

Mixing calling conventions

Not all calling conventions can coexist in the same application, and passing local
pointers and returning a struct can only be performed in a limited way if you use more
than one calling convention.

Only one internal stack—the stack used by, for example, PUSH and CALL
instructions—can be used at the same time. Most 8051 devices only support an internal
stack located in IDATA. A notable exception is the extended devices which allow the
internal stack to be located in XDATA if you use the extended stack option. This means
that the idata reentrant and the extended stack reentrant calling conventions cannot be
combined in the same application. Furthermore, the xdata reentrant calling convention
cannot be combined with the extended stack reentrant calling convention, because there
can be only one stack located in XDATA at the same time.

Mixing calling conventions can also place restrictions on parameters and return values.
These restrictions only apply to locally declared pointers passed as parameters and when
returning a struct-declared variable. The problem occurs if the default pointer
(specified by the data model) cannot refer to the stack implied by the calling convention
in use. If the default pointer can refer to an object located on the stack, the calls are not
restricted.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Data storage
Example

__xdata_reentrant void foo(int *ptr)
{

*ptr = 20;
}

__idata_reentrant void bar(void)
{

int value;

foo(&value);
}

The application will be successfully compiled if the Small data model is used and the
variable value will be located on the idata stack. The actual argument &value,
referring to the variable value, will become an __idata * pointer when it refers to an
object located on the idata stack. The formal argument to the function foo will be of the
default pointer type, that is, __idata, which is the same type as the actual argument
used when the function is called.

The same reasoning applies to return values of a structure type. The calling function will
reserve space on the calling function’s stack and pass a hidden parameter to the called
function. This hidden parameter is a pointer referring to the location on the caller’s stack
where the return value should be located.

Applications are thus restricted in how functions using different calling convention can
call each other. Functions using a stack which is reachable with the default pointer type
can call all other functions regardless of the calling convention used by the called
function.
C8051-4

Part 1. Using the compiler 39

40

Auto variables—stack and static overlay
Functions calling other functions

The following picture shows how functions can call each other:

Figure 3: Function calls between different calling conventions

Thus, if an application is compiled using the Small data model, an
__idata_reentrant function can call an __xdata_reentrant function. But an
__xdata_reentrant function cannot call an __idata_reentrant function.
However, all applications can be explicitly type-declared so that they work as intended.

Using the extended stack excludes the possibility to use the idata and xdata stacks;
extended stack reentrant functions can only coexist with pdata reentrant functions. The
extended stack is located in xdata memory and can be viewed in the same way as the
xdata stack in the context of calling convention compatibility.

THE STACK

The stack can contain:

● Local variables and parameters not stored in registers

● Temporary results of expressions

Idata default pointer

Idata reentrant

Data overlay

Idata overlay

Pdata reentrant

Xdata reentrant

Ext. stack reentrant

Xdata/far default pointer

Idata reentrant

Data overlay

Idata overlay

Pdata reentrant

Xdata reentrant

Ext. stack reentrant

X

X

The arrow means that a call is possible. The X means that no call is
possible unless the source code has been explicitly type-declared using
function attributes or pragma directives.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Data storage
● The return value of a function (unless it is passed in registers)

● Processor state during interrupts

● Processor registers that should be restored before the function returns (callee-save
registers)

● Registers saved by the calling function (caller-save registers).

The stack is a fixed block of memory, divided into two parts. The first part contains
allocated memory used by the function that called the current function, and the function
that called it, etc. The second part contains free memory that can be allocated. The
borderline between the two areas is called the top of stack and is represented by the stack
pointer, which for the idata and extended stack is a dedicated processor register. Memory
is allocated on the stack by moving the stack pointer.

A function should never refer to the memory in the area of the stack that contains free
memory. The reason is that if an interrupt occurs, the called interrupt function can
allocate, modify, and—of course—deallocate memory on the stack.

Advantages

The main advantage of the stack is that functions in different parts of the program can
use the same memory space to store their data. Unlike a heap, a stack will never become
fragmented or suffer from memory leaks.

It is possible for a function to call itself—a so-called recursive function—and each
invocation can store its own data on the stack.

Potential problems

The way the stack works makes it impossible to store data that is supposed to live after
the function has returned. The following function demonstrates a common
programming mistake. It returns a pointer to the variable x, a variable that ceases to exist
when the function returns.

int * MyFunction()
{
 int x;
 ... do something ...
 return &x;
}

Another problem is the risk of running out of stack. This will happen when one function
calls another, which in turn calls a third, etc., and the sum of the stack usage of each
function is larger than the size of the stack. The risk is higher if large data objects are
stored on the stack, or when recursive functions—functions that call themselves either
directly or indirectly—are used.
C8051-4

Part 1. Using the compiler 41

42

Dynamic memory on the heap
STATIC OVERLAY

Static overlay is a system where local data and function parameters are stored at static
locations in memory. Each function is associated with an overlay frame that has a fixed
size and contains space for local variables, function parameters and temporary data.

Static overlay can produce very efficient code on the MCS-51 microcontroller because
it has good support for direct addressing. However, the amount of directly accessible
memory is limited, so static overlay systems are only suitable for small applications.

There is a problem with the static overlay system, though; it is difficult to support
recursive and reentrant applications. In reentrant and recursive systems, several
instances of the same function can be alive at the same time, so it is not enough to have
one overlay frame for each function; instead the compiler must be able to handle
multiple overlay frames for the same function. Therefore, the static overlay system is
restricted and does not support recursion or reentrancy.

For information about the function directives used by the static overlay system, see the
8051 IAR Assembler Reference Guide.

Dynamic memory on the heap
Memory for objects allocated on the heap will live until the objects are explicitly
released. This type of memory storage is very useful for applications where the amount
of data is not known until runtime.

Note: Only MCS-51 devices with external memory can have a heap. When the CLIB
library is used, the heap can be located in xdata and far memory. When the DLIB library
is used, the heap can also be located in huge memory. The use of heaps is depending on
the selected data model. For more information about this, see The heap, page 79.

In C, memory is allocated using the standard library function malloc, or one of the
related functions calloc and realloc. The memory is released again using free.

In C++, there is a special keyword, new, designed to allocate memory and run
constructors. Memory allocated with new must be released using the keyword delete.

Potential problems

Applications that are using heap-allocated objects must be designed very carefully,
because it is easy to end up in a situation where it is not possible to allocate objects on
the heap.

The heap can become exhausted if your application uses too much memory. It can also
become full if memory that no longer is in use has not been released.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Data storage
For each allocated memory block, a few bytes of data for administrative purposes is
required. For applications that allocate a large number of small blocks, this
administrative overhead can be substantial.

There is also the matter of fragmentation; this means a heap where small sections of free
memory is separated by memory used by allocated objects. It is not possible to allocate
a new object if there is no piece of free memory that is large enough for the object, even
though the sum of the sizes of the free memory exceeds the size of the object.

Unfortunately, fragmentation tends to increase as memory is allocated and released. For
this reason, applications that are designed to run for a long time should try to avoid using
memory allocated on the heap.

Alternative memory allocation functions

Because the internal memory is very limited on the MCS-51 microcontroller, the
MCS-51 IAR C/C++ Compiler only supports a heap located in the external data memory
space. To fully support this heap when you use the 8051 IAR CLIB runtime library,
additional functions are included in the library:

void __xdata *__xdata_malloc(unsigned int)
void __xdata *__xdata_realloc(void __xdata *, unsigned int)
void __xdata *__xdata_calloc(unsigned int, unsigned int)
void __xdata_free(void __xdata *)
void __far *__far_malloc(unsigned int)
void __far *__far_realloc(void __far *, unsigned int)
void __far *__far_calloc(unsigned int, unsigned int)
void __far_free(void __far *)

It is recommended that these alternative functions are used instead of the standard C
library functions malloc, calloc, realloc, and free. The __xdata versions of the
functions are available when 16-bit data pointers (DPTRs) are used and the __far
versions when 24-bit data pointers are used.

The standard functions can be used together with the Large, Generic and Far data
models; they will call the corresponding __xdata or __far alternative function,
depending on the size of the DPTRs you are using. However, if the Tiny or Small data
model is used, the standard malloc, calloc, realloc, and free functions cannot be
used at all. In these cases, you must explicitly use the corresponding alternative
functions to use a heap in external memory.
C8051-4

Part 1. Using the compiler 43

44

Virtual registers
The difference between the alternative __xdata and __far memory allocation
functions and the standard functions is the pointer type of the return value and the
pointer type of the arguments. The functions malloc, calloc, and realloc return a
pointer to the allocated memory area and the free and realloc functions take a pointer
argument to a previously allocated area. These pointers must be a pointer of the same
type as the memory that the heap is located in, independent of the default memory and
pointer attributes.

Note: The corresponding functionality is also available in the DLIB runtime
environment.

Virtual registers
The 8051 IAR C/C++ Compiler uses a set of virtual registers—located in data
memory—to be used like any other registers. A minimum of 8 virtual registers are
required by the compiler, but as many as 32 can be used. A larger set of virtual registers
makes it possible for the compiler to allocate more variables into registers. However, a
larger set of virtual registers also requires a larger data memory area. In the Large data
model you should probably use a larger number of virtual registers, for example 32, to
help the compiler generate better code.

In the IAR Embedded Workbench IDE, choose Project>Options>General
Options>Target>Number of virtual registers.

On the command line, use the option --nr_virtual_regs to specify the number of
virtual registers. See --nr_virtual_regs, page 210.

You must also allocate the data memory space required for the virtual registers in the
linker command file by setting the constant _NR_OF_VIRTUAL_REGISTERS to the same
number of registers as set by the --nr_virtual_regs compiler option.

Note: The allocated memory space must be at least equal in size to the number of
virtual registers used. For example, the linker command file can contain the following
lines if 32 virtual registers are used:

-D_NR_OF_VIRTUAL_REGISTERS=0x20
-Z(DATA)VREG+_NR_OF_VIRTUAL_REGISTERS=08-7F

THE VIRTUAL BIT REGISTER

The 8051 IAR C/C++ Compiler reserves one byte of bit-addressable memory to be used
internally, for storing locally declared bool variables. The virtual bit register can be
located anywhere in the bit-addressable memory area (0x20–0x2F). It is recommended
that you use the first or last byte in this area.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Data storage
Specify the location of the virtual bit register in the linker command file by defining ?VB
to the appropriate value, for instance:

-D?VB=2F
C8051-4

Part 1. Using the compiler 45

46

Virtual registers
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Functions
This chapter contains information about functions. It gives a brief overview of
function-related extensions—mechanisms for controlling functions—and
describes some of these mechanisms in more detail.

For details about extensions related to banked functions, see the chapter
Banked functions.

Function-related extensions
In addition to the ISO/ANSI C standard, the 8051 IAR C/C++ Compiler provides
several extensions for writing functions in C. Using these, you can:

● Control the storage of functions in memory

● Use primitives for interrupts, concurrency, and OS-related programming

● Setting up for and using the banking system

● Facilitate function optimization

● Access hardware features.

The compiler supports this by means of compiler options, extended keywords, pragma
directives, and intrinsic functions.

For more information about optimizations, see Writing efficient code, page 173. For
information about the available intrinsic functions for accessing hardware operations,
see the chapter Intrinsic functions.

Code models for function storage
By means of code models, the 8051 IAR C/C++ Compiler supports placing functions in
a default part of memory, or in other words, use a default size of the function address.
Technically, the code models control the following:

● The default memory range for storing the function, which implies a memory
attribute

● The maximum module size

● The maximum application size.
C8051-4

Part 1. Using the compiler 47

48

Primitives for interrupts, concurrency, and OS-related programming
The compiler supports four code models. If you do not specify a code model, the
compiler will by default use a code model depending on your choice of core. Your
project can only use one code model at a time, and the same model must be used by all
user modules and all library modules.

The following code models are available:

To choose a code model in the IAR Embedded Workbench IDE, choose
Project>Options>General Options>Code model.

Use the --code_model option to specify the code model for your project; see
--code_model, page 193.

Pointers with different sizes have restrictions in implicit and explicit casts between
pointers and between pointers and integer types. For details about the restrictions, see
Casting, page 223.

In the chapter Assembler language interface, the generated code is studied in more detail
when we describe how to call a C function from assembler language and vice versa.

Primitives for interrupts, concurrency, and OS-related programming
The 8051 IAR C/C++ Compiler provides the following primitives related to writing
interrupt functions, concurrent functions, and OS-related functions:

● The extended keywords __interrupt, __task, and __monitor

● The pragma directives #pragma vector

Code model
Default for

core
Pointer size Description

Near Plain 2 bytes Supports up to 64 Kbytes ROMable code, can
access the entire 16-bit address space

Banked -- 2 bytes Supports banked function calls, see Code models for
banked systems, page 56. Functions can be explicitly
placed in the root bank by using the
__near_func memory attribute, see
__near_func, page 253.

Banked
Extended2

Extended2 3 bytes Supports banked function calls, see Code models for
banked systems, page 56.

Far Extended1 3 bytes Supports true 24-bit calls; only to be used for
devices with extended code memory and true
24-bit instructions

Table 11: Code models
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Functions
● The intrinsic functions __enable_interrupt, __disable_interrupt,
__get_interrupt_state, and __set_interrupt_state.

INTERRUPT FUNCTIONS

In embedded systems, using interrupts is a method for handling external events
immediately; for example, detecting that a button has been pressed.

In general, when an interrupt occurs in the code, the microcontroller simply stops
executing the code it runs, and starts executing an interrupt routine instead. It is
extremely important that the environment of the interrupted function is restored after the
interrupt has been handled; this includes the values of processor registers and the
processor status register. This makes it possible to continue the execution of the original
code when the code that handled the interrupt has been executed.

The MCS-51 microcontroller supports many interrupt sources. For each interrupt
source, an interrupt routine can be written. Each interrupt routine is associated with a
vector number which is specified in the MCS-51 microcontroller documentation from
the chip manufacturer. The interrupt vector is the offset into the interrupt vector table. If
you want to handle several different interrupts using the same interrupt function, you can
specify several interrupt vectors. For the MCS-51 microcontroller, the interrupt vector
table always starts at the address 0x03.

The header file iodevice.h, where device corresponds to the selected device,
contains predefined names for the existing exception vectors.

To define an interrupt function, the __interrupt keyword and the #pragma vector
directive can be used. For example:

#pragma vector=0xIE0_int /* Symbol defined in I/O header file */
__interrupt void my_interrupt_routine(void)
{
 /* Do something */
}

Note: An interrupt function must have the return type void, and it cannot specify any
parameters.

If a vector is specified in the definition of an interrupt function, the processor interrupt
vector table is populated. It is also possible to define an interrupt function without a
vector. This is useful if an application is capable of populating or changing the interrupt
vector table at runtime. See the chip manufacturer’s MCS-51 microcontroller
documentation for more information about the interrupt vector table.
C8051-4

Part 1. Using the compiler 49

50

Primitives for interrupts, concurrency, and OS-related programming
Register banks

The basic MCS-51 microcontroller supports four register banks. If you have specified a
register bank to be used by an interrupt, the registers R0–R7 are not saved on the stack
when the interrupt function is entered. Instead the application switches to the bank you
have specified and then switches back when the interrupt function exits. This is a useful
way to speed up important interrupts.

One register bank, usually bank 0, is used internally by the runtime system of the
compiler. You can change the default register bank used by the runtime system by
redefining the value of the symbol REGISTER_BANK in the linker command file. Other
register banks can be associated with an interrupt routine by using the #pragma
register_bank directive.

Note: The bank used by the runtime system of the compiler must not be used for
interrupts, and different interrupts that can interrupt each other must not use the same
register bank.

Example

#pragma register_bank=1
#pragma vector=0xIE0_int
__interrupt void my_interrupt_routine(void)
{

/* Do something */
}

In the linker command file it can look like this:

-D?REGISTER_BANK=1 /* Default register bank (0,1,2,3) */
-D_REGISTER_BANK_START=08 /* Start address for default
 register bank (00,08,10,18) */
-Z(DATA)REGISTERS+8=_REGISTER_BANK_START

If you use a register bank together with interrupt routines, the space occupied by the
register bank cannot be used for other data.

MONITOR FUNCTIONS

A monitor function causes interrupts to be disabled during execution of the function. At
function entry, the status register is saved and interrupts are disabled. At function exit,
the original status register is restored, and thereby the interrupt status that existed before
the function call is also restored.

To define a monitor function, you can use the __monitor keyword. For reference
information, see __monitor, page 252.

Avoid using the __monitor keyword on large functions, since the interrupt will
otherwise be turned off for too long.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Functions
Example of implementing a semaphore in C

In the following example, a semaphore is implemented using one static variable and two
monitor functions. A semaphore can be locked by one process, and is used for
preventing processes from simultaneously using resources that can only be used by one
process at a time, for example a UART. The __monitor keyword assures that the lock
operation is atomic; in other words it cannot be interrupted.

/* When the_lock is non-zero, someone owns the lock. */
static volatile unsigned int the_lock = 0;

/* get_lock -- Try to lock the lock.
 * Return 1 on success and 0 on failure. */

__monitor int get_lock(void)
{
 if (the_lock == 0)
 {
 /* Success, we managed to lock the lock. */
 the_lock = 1;
 return 1;
 }
 else
 {
 /* Failure, someone else has locked the lock. */
 return 0;
 }
}

/* release_lock -- Unlock the lock. */

__monitor void release_lock(void)
{
 the_lock = 0;
}

The following is an example of a program fragment that uses the semaphore:

void my_program(void)
{
 if (get_lock())
 {
 /* ... Do something ... */

 /* When done, release the lock. */
 release_lock();
 }
C8051-4

Part 1. Using the compiler 51

52

Primitives for interrupts, concurrency, and OS-related programming
}

Example of implementing a semaphore in C++

In C++, it is common to implement small methods with the intention that they should be
inlined. However, the 8051 IAR C/C++ Compiler does not support inlining of functions
and methods that are declared using the __monitor keyword.

In the following example in C++, an auto object is used for controlling the monitor
block, which uses intrinsic functions instead of the __monitor keyword.

#include <intrinsics.h>

volatile long tick_count = 0;

/* Class for controlling critical blocks */
class Mutex
{
public:
 Mutex ()
 {
 _state = __get_interrupt_state();
 __disable_interrupt();
 }

 ~Mutex ()
 {
 __set_interrupt_state(_state);
 }

private:
 __istate_t _state;
};

void f()
{
 static long next_stop = 100;
 extern void do_stuff();
 long tick;

 /* A critical block */
 {
 Mutex m;
 /* Read volatile variable 'tick_count' in a safe way
 and put the value in a local variable */

 tick = tick_count;
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Functions
 }

 if (tick >= next_stop)
 {
 next_stop += 100;
 do_stuff();
 }
}

C++ AND SPECIAL FUNCTION TYPES

C++ member functions can be declared using special function types. However, there is
one restriction: interrupt member functions must be static. When calling a non-static
member function, it must be applied to an object. When an interrupt occurs and the
interrupt function is called, there is no such object available.
C8051-4

Part 1. Using the compiler 53

54

Primitives for interrupts, concurrency, and OS-related programming
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Banked functions
This chapter introduces the banking technique. It is important to know when
to use it, what it does, and how it works. More specifically, this chapter
contains the following:

● Introduction to the banking system, which introduces the code models
available for banked systems, exemplifies standard bank memory layouts,
and describes how to set up the compiler and linker

● Writing source code for banked memory, which describes how to write
and partition source code and interrupt service routines for banked
applications

● Bank switching, which describes this mechanism in detail

● Downloading to memory, which discusses linker output formats suitable
for handling banked addresses and methods for downloading to multiple
PROMs

● Debugging banked applications, which describes how to set up the C-SPY
debugger and gives some hints for debugging.

Note that when you read this chapter, you should be familiar with the other
concepts described in Part 1. Using the compiler.

Introduction to the banking system
If you are using an MCS-51 microcontroller with a natural address range of 64 Kbytes
of memory, it has a 16-bit addressing capability. Banking is a technique for extending
the amount of memory that can be accessed by the processor beyond the limit set by the
size of the natural addressing scheme of the processor. In other words, more code can be
accessed.

Banked memory is used in projects which require such a large amount of executable
code that the natural 64 Kbytes address range of a basic MCS-51 microcontroller is not
sufficient to contain it all.
C8051-4

Part 1. Using the compiler 55

56

Introduction to the banking system
CODE MODELS FOR BANKED SYSTEMS

The 8051 IAR C/C++ Compiler provides two code models for banking your code
allowing for up to 16 Mbytes of ROM memory:

● The Banked code model

allows the code memory area of the MCS-51 microcontroller to be extended with up
to 256 banks of additional ROM memory. Each bank can be up to 64 Kbytes, minus
the size of a root bank.

● The Banked extended2 code model

allows the code memory area of the MCS-51 microcontroller to be extended with up
to 16 banks of additional ROM memory. Each bank can be up to 64 Kbytes, You do
not need to reserve space for a traditional root bank.

Your hardware must provide these additional physical memory banks, as well as the
logic required to decode the high address bits which represent the bank number.

Because a basic MCS-51 microcontroller cannot handle more than 64 Kbytes of
memory at any single time, the extended memory range introduced by banking implies
that special care must be taken. Only one bank at a time is visible for the CPU, and the
remaining banks must be brought into the 64 Kbytes address range before they can be
used.

THE MEMORY LAYOUT FOR THE BANKED CODE MODEL

You can place the banked area anywhere in code memory, but there must always be a
root area for holding the runtime environment code and relay functions for bank
switches.

The following illustration shows an example of a MCS-51 banked code memory layout:

Figure 4: Banked code memory layout (example)

0x0000

0xFFFF

0x8000

BANK 1
BANK ...

BANK n

ROOT
(CODE)

BANK 0
(CODE)
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Banked functions
It is practical to place the root area at address 0 and upwards. For information about how
to explicitly place functions in the root area, see Banked versus non-banked function
calls, page 60.

THE MEMORY LAYOUT FOR THE BANKED EXTENDED2 CODE
MODEL

Devices based on the Mentor Graphics M8051EW core—which implies that you are
using the --core=extended2 compiler option—use a different banked mechanism
than the classic MCS-51 microcontroller.

The following illustration shows an example of a MCS-51 banked code memory layout:

Figure 5: Banked code memory layout for the extended2 core (example)

Bank 0 holds the runtime environment code.

SETTING UP THE COMPILER FOR BANKED MODE

To specify the banked code model in the IAR Embedded Workbench IDE, choose
Project>Options>General Options>Target>Code model. Choose either Banked or,
if you are using the Exteded2 core option, Banked extended2.

To compile your modules for banked mode, use the compiler option with the appropriate
parameter:

--code_model={banked|banked_ext2}

Note: The Banked code model is available when using the core Plain (classic 8051) and
the Banked extended 2 code model is available when using the core Extended2 (for the
Mentor Graphics M8051EW core).

0x0000

0xFFFF

BANK 1
BANK ...

BANK n

BANK 0
(CODE)

where n can be up to 16
C8051-4

Part 1. Using the compiler 57

58

Introduction to the banking system
SETTING UP THE LINKER FOR BANKED MODE

When linking a banked application, you must place your code segments into banks
corresponding to the available physical banks in your hardware. However, the physical
bank size and location depends on the size of your root bank which in turn is dependent
on your source code.

The simplest way to set up the code banks for the linker is to use the IAR Embedded
Workbench IDE. However, if your hardware memory configuration is very unusual, you
can instead use the linker command file to set up the bank system for the linker.

To set code bank options in the IAR Embedded Workbench IDE; choose
Project>Options>General Options>Code Bank.

Figure 6: Code Bank setup

Use the text boxes to set up for banking according to your memory configuration.

1 Specify the number of banks in the Number of banks text box.

2 The bank-switching routine is based on an SFR port being used for the bank switching.
By default, P1 is used. To set up a different SFR port, add the required port in the
Register address text box.

3 If the entire SFR is not used for selecting the active bank, specify the appropriate
bitmask in the Register mask text box to indicate the bits used. For example, specify
0x03 if only bits 0 and 1 are used.

4 In the Bank start text box, type the start address of the banked area. Correspondingly,
type the end address in the Bank End text box.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Banked functions
In the predefined linker command file, a set of symbols is predefined:

-D?CBANK=90 /* Most significant byte of a banked address */
-D_FIRST_BANK_ADDR=0x10000
-D_NR_OF_BANKS=0x10
-D_CODEBANK_START=3500 /* Start of banked segments */
-D_CODEBANK_END=FFFF /* End for banked segments */
-D?CBANK_MASK=FF /* Bits used for toggling bank, set to 1 */

If the values are not appropriate, you can simply change them to match your hardware
memory configuration. However, if the symbols are not appropriate for your
configuration, you have to adapt them according to your needs.

As a result, you may need to make a few trial passes through the linking process to
determine the optimal memory configuration setup.

Writing source code for banked memory
Writing code to be used in banked memory is not much different from writing code for
standard memory, but there are a few issues to be aware of. These primarily concern
partitioning your code into functions and source modules so that they can be most
efficiently placed into banks by the linker, and the distinction between banked versus
non-banked code.

C/C++ LANGUAGE CONSIDERATIONS

From the C/C++ language standpoint, any arbitrary C/C++ program can be compiled for
banked memory. The only restriction is the size of the function, as it cannot be larger
than the size of a bank.

BANK SIZE AND CODE SIZE

Each banked C/C++ source function that you compile will generate a separate segment
part, and all segment parts generated from banked functions will be located in the
BANKED_CODE segment. The code contained in a segment part is an indivisible unit, that
is, the linker cannot break up a segment part and place part of it in one bank and part of
it in another bank. Thus, the code produced from a banked function must always be
smaller than the bank size.

However, some optimizations require that all segment parts produced from banked
functions in the same module (source file) must be linked together as a unit. In this case,
the combined size of all banked functions in the same module must be smaller than the
bank size.
C8051-4

Part 1. Using the compiler 59

60

Writing source code for banked memory
This means that you have to consider the size of each C/C++ source file so that the
generated code will fit into your banks. If any of your code segments is larger than the
specified bank size, the linker will issue an error.

If you need to specify the location of any code individually, you can rename the code
segment for each function to a distinct name that will allow you to refer to it individually.
To assign a function to a specific segment, use the @ operator or the #pragma location
directive. See Data and function placement in segments, page 168.

For more information about segments, see the chapter Placing code and data.

BANKED VERSUS NON-BANKED FUNCTION CALLS

In the Banked code model, differentiating between the non-banked versus banked
function calls is important because non-banked function calls are faster and take up less
code space than banked function calls. Therefore, it is useful to be familiar with which
types of function declarations that result in non-banked function calls.

Note: In the Banked extended2 code model, all code is banked which means there is no
need to differentiate between non-banked versus banked function calls

In this context, a function call is the sequence of machine instructions generated by the
compiler whenever a function in your C/C++ source code calls another C/C++ function
or library routine. This also includes saving the return address and then sending the new
execution address to the hardware.

Assuming that you are using the Banked code model, there are two function call
sequences:

● Non-banked function calls: The return address and new execution address are 16-bit
values. Functions declared __near_func will have non-banked function calls.

● Banked function calls: The return address and new execution address are 24-bit
(3 bytes) values (default in the Banked code model)

In the Banked code model, all untyped functions will be located in banked memory.
However, it is possible to explicitly declare functions to be non-banked by using the
__near_func memory attribute. Such functions will not generate banked calls and will
be located in the NEAR_CODE segment instead of in the BANKED_CODE segment. The
NEAR_CODE segment must be located in the root bank when no banked call is produced.

It can often be a good idea to place frequently called functions in the root bank, to reduce
the overhead of the banked call and return.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Banked functions
Example

In this example you can see how the banked function f1 calls the non-banked function
f2:

__near_func void f2(void) /* Non-banked function */
{

/ * code here … */
}

void f1(void) /* Banked function in the Banked code model */
{

f2();
}

The actual call to f2 from within f1 is performed in the same way as an ordinary
function call (LCALL).

Note: There is a __banked_func memory attribute available, but you do not need to
use it explicitly. The attribute is available for compiler internal use only.

CODE THAT CANNOT BE BANKED

In the Banked code model, code banking is achieved by dividing the address space used
for program code into two parts: non-banked and banked code. In Figure 5, Banked code
memory layout for the extended2 core (example), page 57, the part that contains the
non-banked code is referred to as the root bank. There must always be a certain amount
of code that is non-banked. For example, interrupt service routines must always be
available, as interrupts can occur at any time.

The following selected parts must be located in non-banked memory:

● The cstartup routine, located in the CSTART segment

● Interrupt vectors, located in the INTVEC segment

● Interrupt service routines, located in the NEAR_CODE segment

● Segments containing constants. These are all segments ending with _AC, _C, and
_N, see the chapter Segment reference

● Segments containing initial values for initialized variables can be located in the root
bank or in bank 0 but in no other bank. These are all segments ending with _ID, see
the chapter Segment reference

● The assembler-written routines included in the runtime library. They are located in
the RCODE segment

● Relay functions, located in the BANK_RELAYS segment

● Bank-switching routines, that is, those routines that will perform the call and return
to and from banked routines. They are located in the CSTART segment.
C8051-4

Part 1. Using the compiler 61

62

Bank switching
Banking is not supported for functions using one of the overlay calling conventions
(__data_overlay or __idata_overlay) or for far functions (__far_func) because
only one of the function type attributes __far_func and __banked_func can be used
as keywords in the system at the same time.

Code located in non-banked memory will always be available to the processor, and will
always be located at the same address.

Note: Even though interrupt functions cannot be banked, the interrupt routine itself can
call a banked function.

Calling banked functions from assembler language

In an assembler language program, calling a C/C++ function located in another bank
requires using the same calling convention as the compiler. For information about this
calling convention, see Calling convention, page 131. To generate an example of a
banked function call, use the technique described in the section Calling assembler
routines from C, page 128.

If you are writing banked functions using assembler language, you must also consider
the calling convention.

Bank switching
For banked systems written in C or C++, you normally do not need to consider the bank
switch mechanism, as the compiler handles this for you. However, if you write banked
functions in assembler language it might be necessary to pay attention to the bank switch
mechanism in your assembler functions. Also, if you want to use a completely different
solution for bank switching, you must implement your own bank-switching routine.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Banked functions
ACCESSING BANKED CODE

To access code that resides in one of the memory banks, the compiler keeps track of the
bank number of a banked function by maintaining a 3-byte pointer to it, which has the
following form:

Figure 7: The 3-byte banked address

For further details of pointer representation, see Pointer types, page 221.

The default bank-switching code is available in the supplied assembler language source
file iar_banked_code_support.s51, which you can find in the directory
8051\src\lib.

The bank-switching mechanism differs between the two code models.

BANK SWITCHING IN THE BANKED CODE MODEL

The default bank-switching routine is based on an SFR port (P1) being used for the bank
switching. When a function—the caller—calls another function—the callee—a bank
switch is performed. The compiler does not know in which bank a function will be
placed by the linker.

More precisely, the following actions are performed:

● The caller function performs an LCALL to a relay function located in the root bank.
The return address—the current PC (the program counter)—is pushed on the idata
stack.

● The relay function performs an LCALL to a dispatch function. The relay function
contains the address of the callee.

● The call to the dispatch function implies that the current bank number (caller’s bank
number) is saved on the idata stack. The next bank number is saved in P1 as the
current bank. The address of the callee is moved to PC, which means the execution
moves to the callee function. In other words, a bank switch has been performed.

Byte 2 Byte 1 – 0

Bank number* 16-bit address

(bank code circuit) (address / data bus)

* For the Banked extended2 code model, the upper four bits hold the number of the c
whereas the lower four bits hold the number of the next bank.
C8051-4

Part 1. Using the compiler 63

64

Bank switching
Figure 8, Bank switching in the Banked code model illustrates the actions:

Figure 8: Bank switching in the Banked code model

When the callee function has executed, it performs an ?LCALL to ?BRET. In ?BRET, the
bank number of the caller function is popped from the idata stack and then a RET
instruction is executed. The execution is now back in the caller function.

BANK SWITCHING IN THE BANKED EXTENDED2 CODE
MODEL

The default bank-switching uses the MEX register, the memory extension stack, and the
MEXSP register as the stack pointer.

When a function—the caller—calls another function—the callee—a bank switch is
performed. Before the bank switch, the following actions are performed in the caller
function:

● The high byte of the 3-byte pointer—described in Figure 7, The 3-byte banked
address—is placed in the MEX.NB register (the next bank register).

● An LCALL is performed, which implies that the following steps are performed in
hardware:

● The register MEX.CB (the current bank register) is placed on the memory
extension stack.

● The return address, that is the current PC, is placed on the idata stack.

● The next bank MEX.NB is copied to the current bank MEX.CB.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Banked functions
● The two low bytes of the 3-byte pointer is copied to PC, which means the
execution moves to the callee function. In other words, a bank switch has been
performed.

When the callee function has executed, the RET instruction performs the bank-switching
procedure in reversed order, which means the execution is back in the caller function.

Note: The memory extension stack is limited to 128 bytes, which means the function
call depth cannot exceed that limit.

MODIFYING THE DEFAULT BANK-SWITCHING ROUTINE

The default bank-switching code is available in the supplied assembler language source
file iar_banked_code_support.s51, which you can find in the directory
8051\src\lib.

The bank-switching routine is based on an SFR port being used for the bank switching.
By default P1 is used. The SFR port is defined in the linker command file by the line:

-D?CBANK=PORTADDRESS

As long as you use this solution, the only thing you must do is to define the appropriate
SFR port address.

After you have modified the file, reassemble it and replace the object module in the
runtime library you are using. Simply include it in your application project and it will
be used instead of the standard module in the library.

Downloading to memory
There is a wide choice of devices and memories to use, and depending on what your
banked mode system looks like, different actions might be needed. For instance, the
memory might be a single memory circuit with more than 64 Kbytes capacity, or several
smaller memory circuits. The memory circuits can be, for instance, EPROM or flash
memory.

By default, the linker generates output in the Intel-extended format, but you can easily
change this to use any available format required by the tools you are using. If you are
using the IAR Embedded Workbench IDE, the default output format depends on the
used build configuration—Release or Debug.

When you download the code into physical memory, special considerations might be
needed.
C8051-4

Part 1. Using the compiler 65

66

Debugging banked applications
For instance, assume a banked system with two 32-Kbytes banks of ROM starting at
0x8000. If the banked code exceeds 32 Kbytes in size, when you link the project the
result will be a single output file where the banked code starts at 0x8000 and crosses the
upper bank limit. A modern EPROM programmer does not require downloading one file
to one EPROM at a time; it handles the download automatically by splitting the file and
downloading it. However, older types of programmers do not always support relocation,
or are unable to ignore the high byte of the 3-byte address. This means that you have to
edit the file manually to set the high bytes of each address to 0 so that the programmer
can locate them properly.

Debugging banked applications
For the Banked code model, the C-SPY debugger supports banked mode debugging. To
set banked mode debugging options in the IAR Embedded Workbench IDE, choose
Project>Options, select the General Options category, and click the Code Bank tab.
Type the appropriate values for the following options:

● Register address specifies the SFR address used as bank register

● Bank start specifies the bank start address

● Bank end specifies the bank end address

● Bank mask specifies the bits used for selecting the active bank

● Number of banks specifies the number of banks available on the hardware.

Banked mode debugging with other debuggers

If your emulator does not support banked mode, one common technique is to divide your
source code in smaller parts that do not exceed the size of the bank. You can then
compile, link, and debug each part using the Near or Far code model. Repeat this
procedure for various groupings of functions. Then, when you actually test the final
banked system on target hardware, many C/C++ programming-related issues will
already have been resolved.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Placing code and data
This chapter describes how the linker handles memory and introduces the
concept of segments. It also describes how they correspond to the memory
and function types, and how they interact with the runtime environment. The
methods for placing segments in memory, which means customizing a linker
command file, are described.

The intended readers of this chapter are the system designers that are
responsible for mapping the segments of the application to appropriate
memory areas of the hardware system.

Segments and memory
In an embedded system, there are many different types of physical memory. Also, it is
often critical where parts of your code and data are located in the physical memory. For
this reason it is important that the development tools meet these requirements.

WHAT IS A SEGMENT?

A segment is a logical entity containing a piece of data or code that should be mapped
to a physical location in memory. Each segment consists of many segment parts.
Normally, each function or variable with static storage duration is placed in a segment
part. A segment part is the smallest linkable unit, which allows the linker to include only
those units that are referred to. The segment could be placed either in RAM or in ROM.
Segments that are placed in RAM do not have any content, they only occupy space.

Note: Here, ROM memory means all types of read-only memory including flash
memory.

The 8051 IAR C/C++ Compiler has a number of predefined segments for different
purposes. Each segment has a name that describes the contents of the segment, and a
segment memory type that denotes the type of content. In addition to the predefined
segments, you can define your own segments.
C8051-4

Part 1. Using the compiler 67

68

Placing segments in memory
At compile time, the compiler assigns each segment its contents. The IAR XLINK
Linker is responsible for placing the segments in the physical memory range, in
accordance with the rules specified in the linker command file. There are ready-made
linker command files, but, if necessary, they can be easily modified according to the
requirements of your target system and application. It is important to remember that,
from the linker's point of view, all segments are equal; they are simply named parts of
memory.

For detailed information about individual segments, see the chapter Segment reference.

Segment memory type

XLINK assigns a segment memory type to each of the segments. In some cases, the
individual segments have the same name as the segment memory type they belong to,
for example CODE. Make sure not to confuse the individual segment names with the
segment memory types in those cases.

By default, the 8051 IAR C/C++ Compiler uses only the following XLINK segment
memory types:

XLINK supports a number of other segment memory types than the ones described
above. However, they exist to support other types of microcontrollers.

For more details about segments, see the chapter Segment reference.

Placing segments in memory
The placement of segments in memory is performed by the IAR XLINK Linker. It uses
a linker command file that contains command line options which specify the locations
where the segments can be placed, thereby assuring that your application fits on the
target chip. You can use the same source code with different devices just by rebuilding
the code with the appropriate linker command file.

Segment memory type Description

BIT For bit-addressable data placed in internal RAM

DATA For data placed in internal RAM; address 0–75
is the same as for IDATA, address 80–FF is the
SFR area

IDATA For data placed in internal RAM

XDATA For data placed in external RAM

CODE For executable code

CONST For data placed in ROM

Table 12: XLINK segment memory types
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Placing code and data
In particular, the linker command file specifies:

● The placement of segments in memory

● The maximum stack size

● The maximum heap size (only for the IAR DLIB runtime environment).

This section describes the methods for placing the segments in memory, which means
that you have to customize the linker command file to suit the memory layout of your
target system. For showing the methods, fictitious examples are used.

CUSTOMIZING THE LINKER COMMAND FILE

The config directory contains the following ready-made linker command files:

● lnk51.xcl is the basic, default linker command file, used on the command line

● lnk51o.xcl supports overlay calling conventions, used on the command line

● lnk51e.xcl supports the extended1 core, used on the command line

● lnk51e2.xcl supports the extended2 core, used on the command line

● lnk51ew.xcl is the linker command file used in the IAR Embedded Workbench
IDE

● lnk_base.xcl defines a basic set of symbols necessary to link your application.
All other linker command files include this file. Normally, you do not need to
customizeS the lnk_base.xcl file.

The files contain the information required by the linker, and are ready to be used. The
only change you will normally have to make to the supplied linker command file is to
customize it so it fits the target system memory map. If, for example, your application
uses additional external RAM, you need to add details about the external RAM memory
area.

As an example, we can assume that the target system has the following memory layout:

The ROM can be used for storing CONST and CODE segment memory types. The RAM
memory can contain segments of DATA, IDATA, XDATA, and CONST types. The main
purpose of customizing the linker command file is to verify that your application code
and data do not cross the memory range boundaries, which would lead to application
failure.

Range Type

0x0–0xFF Internal RAM

0x0–0x7FFF External RAM

0x0–0xFFFF ROM

Table 13: Memory layout of a target system (example)
C8051-4

Part 1. Using the compiler 69

70

Placing segments in memory
Remember not to change the original file. We recommend that you make a copy of the
file and place it in your working directory; modify the copy instead.

The contents of the linker command file

Among other things, the linker command file contains three different types of XLINK
command line options:

● The CPU used:

-cx51

This specifies your target microcontroller.

● Definitions of constants used in the file. These are defined using the XLINK option
-D.

● The placement directives (the largest part of the linker command file). Segments can
be placed using the -Z and -P options. The former will place the segment parts in
the order they are found, while the latter will try to rearrange them to make better
use of the memory. The -P option is useful when the memory where the segment
should be placed is not continuous. However, if the segment needs to be allocated in
both CODE and XDATA memory and needs to be initialized or set to zero at program
startup, the -Z option is used.

In the linker command file, all numbers are specified in hexadecimal format.

Note: The supplied linker command file includes comments explaining the contents.

See the IAR Linker and Library Tools Reference Guide for more details.

Using the -Z command for sequential placement

Use the -Z command when you need to keep a segment in one consecutive chunk, when
you need to preserve the order of segment parts in a segment, or, more unlikely, when
you need to put segments in a specific order.

The following illustrates how to use the -Z command to place the segment MYSEGMENTA
followed by the segment MYSEGMENTB in CONST memory (that is, ROM) in the memory
range 0x0-0x1FFF.

-Z(CONST)MYSEGMENTA,MYSEGMENTB=0-1FFF

Two segments of different types can be placed in the same memory area by not
specifying a range for the second segment. In the following example, the MYSEGMENTA
segment is first located in memory. Then, the rest of the memory range could be used by
MYCODE.

-Z(CONST)MYSEGMENTA=0-1FFF
-Z(CODE)MYCODE
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Placing code and data
Two memory ranges may overlap. This allows segments with different placement
requirements to share parts of the memory space; for example:

-Z(CONST)MYSMALLSEGMENT=0-7FF
-Z(CONST)MYLARGESEGMENT=0-1FFF

Normally, when you place segments sequentially with the -Z option, each segment is
placed entirety into one of the address ranges you have specified. If you use the modifier
SPLIT-, each part of the segment is placed separately in sequence, allowing address
gaps between different segment parts, for example:

-Z(SPLIT-XDATA)FAR_Z=10000-1FFFF,20000-2FFFF

In most cases, using packed segment placement (-P) is better. The only case where using
-Z(SPLIT-type) is better is when the start and end addresses of the segment are
important, for example, when the entire segment must be initialized to zero at program
startup, and individual segment parts cannot be placed at arbitrary addresses.

Even though it is not strictly required, make sure to always specify the end of each
memory range. If you do this, the IAR XLINK Linker will alert you if your segments do
not fit.

Using the -P command for packed placement

The -P command differs from -Z in that it does not necessarily place the segments (or
segment parts) sequentially. With -P it is possible to put segment parts into holes left by
earlier placements.

The following example illustrates how the XLINK -P option can be used for making
efficient use of the memory area. The command will place the data segment MYDATA in
DATA memory (that is, in RAM) in a fictitious memory range:

-P(DATA)MYDATA=0-FF,1000-3FFF

If your application has an additional RAM area in the memory range 0xF000-0xF7FF,
you just add that to the original definition:

-P(DATA)MYDATA=0-FF,F000–F7FF,10000-3FFF

Note: Copy initialization segments—BASENAME_I and BASENAME_ID—must be
placed using -Z.

Using the -P command for banked placement

The -P command is useful for banked segment placement, that is, code that should be
divided into several different memory banks. For instance, if your banked code uses the
ROM memory area 0x8000–0x9FFF, the linker directives would look like this:

// First some defines for the banks
-D_CODEBANK_START=8000
C8051-4

Part 1. Using the compiler 71

72

Data segments
-D_CODEBANK_END=9FFF
-D?CBANK=90

-P(CODE)BANKED_CODE=[_CODEBANK_START–_CODEBANK_END]*4+10000

This example divides the segment into four segment parts which are located at the
addresses:

 8000–9FFF // Bank number 0
18000–19FFF // Bank number 1
28000–29FFF // Bank number 2
38000–39FFF // Bank number 3

For more information about these symbols and how to configure for a banked system,
see Setting up the linker for banked mode, page 58.

Data segments
This section contains descriptions of the segments used for storing the different types of
data: static, stack, heap, and located.

To get a clear understanding about how the data segments work, you must be familiar
with the different memory types and the different data models available in the 8051 IAR
C/C++ Compiler. If you need to refresh these details, see the chapter Data storage.

STATIC MEMORY SEGMENTS

Static memory is memory that contains variables that are global or declared static, as
described in the chapter Data storage. Variables declared static can be divided into the
following categories:

● Variables that are initialized to a non-zero value

● Variables that are initialized to zero

● Variables that are located by use of the @ operator or the #pragma location
directive

● Variables that are declared as const and therefore can be stored in ROM

● Variables defined with the __no_init keyword, meaning that they should not be
initialized at all.

For the static memory segments it is important to be familiar with:

● The segment naming

● How the memory types correspond to segment groups and the segments that are part
of the segment groups

● Restrictions for segments holding initialized data
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Placing code and data
● The placement and size limitation of the segments of each group of static memory
segments.

Segment naming

The names of the segments consist of two parts—the segment group name and a
suffix—for instance, IDATA_Z.

The names of the segment groups are derived from the memory type and the
corresponding keyword, for example IDATA and __idata. The suffix indicates the
category of declared data. The following table summarizes the memory types and the
corresponding segment groups:

Some of the declared data is placed in non-volatile memory, for example ROM, and
some of the data is placed in RAM. For this reason, it is also important to know the
XLINK segment memory type of each segment. For more details about segment
memory types, see Segment memory type, page 68.

Memory type Segment group Segment memory type Address range

Data DATA DATA 0–7F

SFR SFR DATA 80-FF

Idata IDATA IDATA 0–FF

Bdata BDATA DATA 20–2F

Bit BIT BIT 0–FF

Pdata PDATA XDATA 0–FF

Ixdata IXDATA XDATA 0–FFFF

Xdata XDATA XDATA 0–FFFF

Far FAR XDATA 0–FFFFFF

Huge HUGE XDATA 0–FFFFFF

Code CODE CODE 0-FFFF

Far code FAR_CODE CODE 0-FFFFFF

Huge code HUGE_CODE CODE 0-FFFFFF

Xdata ROM XDATA_ROM CONST 0–FFFF

Far ROM FAR_ROM CONST 0–FFFFFF

Huge ROM HUGE_ROM CONST 0–FFFFFF

Table 14: Memory types with corresponding memory groups
C8051-4

Part 1. Using the compiler 73

74

Data segments
The following table summarizes the different suffixes, which XLINK segment memory
type they are, and which category of declared data they denote:

For a summary of all supported segments, see Summary of segments, page 295.

Examples

Assume the following examples:

Categories of declared data Segment group Suffix

Zero-initialized non-located data BDATA/DATA/IDATA/XDATA/IXDATA/

FAR/HUGE

Z

Non-zero initialized non-located data BDATA/DATA/IDATA/XDATA/IXDATA/
FAR/HUGE

I

Initializers for the above BDATA/DATA/IDATA/XDATA/IXDATA/

FAR/HUGE

ID

Initialized located constants CODE/XDATA_ROM/FAR_CODE/FAR_ROM/

HUGE_CODE/HUGE_ROM

AC

Initialized non-located constants CODE/XDATA_ROM/FAR_CODE/FAR_ROM/

HUGE_CODE/HUGE_ROM

C

Non-initialized located data SFR/CODE/FAR_CODE/HUGE_CODE/

BDATA/DATA/IDATA/XDATA/IXDATA/

FAR/HUGE

AN

Non-initialized non-located data BIT/CODE/FAR_CODE/HUGE_CODE/

BDATA/DATA/IDATA/XDATA/IXDATA/

FAR/HUGE

N

Table 15: Segment name suffixes

__xdata int j;
__xdata int i = 0;

The xdata variables that are to be initialized to
zero when the system starts will be placed in the
segment XDATA_Z.

__no_init __xdata int j; The xdata non-initialized variables will be
placed in the segment XDATA_N.

__xdata int j = 4; The xdata non-zero initialized variables will be
placed in the segment XDATA_I in RAM, and
initializer data in segment XDATA_ID in ROM.

__xdata_rom const int i = 5; The xdata_rom initialized constant will be
placed in the segment XDATA_ROM_C.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Placing code and data
Initialized data

When an application is started, the system startup code initializes static and global
variables in the following steps:

1 It clears the memory of the variables that should be initialized to zero.

2 It initializes the non-zero variables by copying a block of ROM to the location of the
variables in RAM. This means that the data in the ROM segment with the suffix ID is
copied to the corresponding I segment.

This works when both segments are placed in continuous memory. However, if one of
the segments is divided into smaller pieces, it is important that:

● The other segment is divided in exactly the same way

● It is legal to read and write the memory that represents the gaps in the sequence.

For example, if the segments are assigned the following ranges, the copy will fail:

However, in the following example, the linker will place the content of the segments in
identical order, which means that the copy will work appropriately:

The ID segment can, for all segment groups, be placed anywhere in the code memory
space, because it is not accessed using the corresponding access method. It is only used
for initializing the corresponding I segment. Note that the gap between the ranges will
also be copied.

3 Finally, global C++ objects are constructed, if any.

Data segments for static memory in the default linker command file

The IDATA segments must be placed in the theoretical memory range 0x1–0xFF. In the
example below, these segments are placed in the available RAM area 0x30–0x7F. The
segment IDATA_ID can be placed anywhere in ROM.

__code const int i = 6; The initialized constant located in code memory
space will be placed in the CODE_C segment.

XDATA_I 0x1000-0x10F2 and 0x1100-0x11E7

XDATA_ID 0x4000-0x41DA

XDATA_I 0x1000-0x10F2 and 0x1100-0x11E7

XDATA_ID 0x4000-0x40F2 and 0x4100-0x41E7
C8051-4

Part 1. Using the compiler 75

76

Data segments
The segments in the XDATA segment type must be placed in the theoretical memory
range 0x1–0xFFFFFF. In the example below, they are placed in the available RAM area,
0x1–0x7FFF. The segment XDATA_ID can be placed anywhere in ROM.

The default linker command file contains the following directives to place the static data
segments:

//The segments to be placed in ROM are defined:
-Z(CODE)IDATA_ID,XDATA_ID=0-FFFF

//The RAM data segments are placed in memory:
-Z(IDATA)IDATA_I,IDATA_Z,IDATA_N=30-FF
-Z(XDATA)XDATA_I,XDATA_Z,XDATA_N=1-FFFF

Note: Segments that contain data that can be pointed to cannot be placed on address 0,
because a pointer cannot point at address 0 as that would be a NULL pointer.

THE STACKS

You can configure the compiler to use three different stacks; one of two hardware stacks
(supported internally by the processor and used by, for example, the PUSH, POP, CALL,
and RET instructions) and two emulated stacks.

Only one hardware stack at a time is supported by the microcontroller. For standard
MCS-51 devices this is the idata stack, located in idata memory. On extended MCS-51
devices there is an option to instead use an extended hardware stack located in xdata
memory. The emulated xdata and pdata stacks have no support in the hardware; they are
instead supported by the compiler software.

The stacks are used by functions to store variables and other information that is used
locally by functions, as described in the chapter Data storage. They are continuous
blocks of memory pointed to by a stack pointer.

The data segment used for holding the stack is one of ISTACK, PSTACK, XSTACK, or
EXT_STACK. The system startup code initializes the stack pointer to the beginning or the
end of the stack segment, depending on the stack type.

Allocating a memory area for the stack is done differently when you use the command
line interface compared to when you use the IAR Embedded Workbench IDE.

Stack size allocation in the IAR Embedded Workbench IDE

Select Project>Options. In the General Options category, click the Stack/Heap tab.

Add the required stack size in the stack size text boxes.

Stack size allocation from the command line

The size of the segment is defined in the linker command file.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Placing code and data
The default linker file sets up a constant representing the size of the stack, at the
beginning of the linker file:

-D_STACK_SIZE=size

where STACK can be one of IDATA_STACK, XDATA_STACK, PDATA_STACK, or
EXTENDED_STACK

Specify an appropriate size for your application. Note that the size is written
hexadecimally.

Placement of stack segment

Further down in the linker file, the actual stack segment is defined in the memory area
available for the stack:

-Z(IDATA)ISTACK+_IDATA_STACK_SIZE=start-end
-Z(XDATA)XSTACK+_XDATA_STACK_SIZE=start-end

Note: This range does not specify the size of the stack; it specifies the range of the
available memory.

Idata stack

The idata stack is pointed to by the hardware register SP. The stack grows towards higher
addresses and cstartup initializes SP to the beginning of the idata stack segment.

Note: The idata stack and the extended stack cannot exist at the same time.

Example

-Z(IDATA)ISTACK+_IDATA_STACK_SIZE=start-end

Extended stack

On some devices, you can use the option --extended_stack to select the extended
stack in xdata memory instead of the idata stack. The extended stack is pointed to by the
register pair ?ESP:SP. The ?ESP register is defined in the linker command file. The
stack grows towards higher addresses and cstartup initializes the register pair
?ESP:SP to the beginning of the extended stack segment.

Note: The extended stack cannot exist at the same time as an idata stack or xdata stack.
It is possible, however, to use both an extended stack and a pdata stack.

Example

-Z(XDATA)EXT_STACK+_EXTENDED_STACK_SIZE=start-end
C8051-4

Part 1. Using the compiler 77

78

Data segments
Pdata stack

The pdata stack is pointed to by an 8-bit emulated stack pointer, PSP, and the stack grows
towards lower addresses. The pdata stack must be located in the pdata range of xdata
memory. The cstartup module initializes PSP to the end of the stack segment.

Note: The pdata stack can exist in parallel with all other types of stacks.

Example

-Z(XDATA)PSTACK+_PDATA_STACK_SIZE=start-end

The pdata stack pointer is a segment in itself and must be located in data memory.

Example

-Z(DATA)PSP=08-7F

Xdata stack

The xdata stack is pointed to by a 16-bit emulated stack pointer, XSP, and the stack grows
towards lower addresses. The xdata stack must be located in xdata memory. The
cstartup module initializes XSP to the end of the stack segment.

Note: The xdata stack and the extended stack cannot both exist at the same time.

Example

-Z(XDATA)XSTACK+_XDATA_STACK_SIZE=start-end

The xdata stack pointer is a segment in itself and must be located in data memory.

Example

-Z(DATA)XSP=08-7F

Summary

This table summarizes the different stacks:

Stack Maximum size Calling convention Description

Idata 256 bytes Idata reentrant Hardware stack. Grows towards
higher memory.

Pdata 256 bytes Pdata reentrant Emulated stack. Grows towards lower
memory.

Xdata 64 Kbytes Xdata reentrant Emulated stack. Grows towards lower
memory.

Table 16: Summary of stacks
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Placing code and data
The stacks are used in different ways. The idata stack is always used for register spill (or
the extended stack if you are using the --extended_stack option). It is also used for
parameters, local variables, and the return address when you use the idata or extended
stack reentrant calling convention. Devices that support xdata memory can store
function parameters, local variables and the return address on the pdata or xdata stack
by using the pdata reentrant or xdata reentrant calling convention.

Stack size considerations

The compiler uses the internal data stack, STACK, for a variety of user program
operations, and the required stack size depends heavily on the details of these
operations. If the given stack size is too large, RAM will be wasted. If the given stack
size is too small, there are two things that can happen, depending on where in memory
you have located your stack. Both alternatives are likely to result in application failure.
Either variable storage will be overwritten, leading to undefined behavior, or the stack
will fall outside of the memory area, leading to an abnormal termination of your
application.

THE HEAP

The heap contains dynamic data allocated by use of the C function malloc (or one of
its relatives) or the C++ operator new.

If your application uses dynamic memory allocation, you should be familiar with the
following:

● Linker segments used for the heap

● Allocating the heap size, which differs depending on which build interface you are
using

● Placing the heap segments in memory.

Note: Only MCS-51 devices with external data memory can have a heap.

Heap segments in DLIB

To access a heap in a specific memory, use the appropriate memory attribute as a prefix
to the standard functions malloc, free, calloc, and realloc, for example:

__xdata_malloc

Extended 64 Kbytes Extended stack reentrant Hardware stack. Grows towards
higher memory. Only for devices that
have a stack in the external data
memory space.

Stack Maximum size Calling convention Description

Table 16: Summary of stacks (Continued)
C8051-4

Part 1. Using the compiler 79

80

Data segments
If you use any of the standard functions without a prefix, the function will be mapped to
the default memory type xdata.

Each heap will reside in a segment with the name _HEAP prefixed by a memory attribute.

For information about available heaps, see Heaps, page 108.

Heap segments in the CLIB runtime environment

The memory allocated to the heap is placed in the segment HEAP, which is only included
in the application if dynamic memory allocation is actually used.

Heap size allocation in the IAR Embedded Workbench IDE

Select Project>Options. In the General Options category, click the Stack/Heap tab.

Add the required heap size in the Heap size text box.

Heap size allocation from the command line

The size of the heap segment is defined in the linker command file.

The default linker file sets up a constant, representing the size of the heap, at the
beginning of the linker file:

-D_XDATA_HEAP_SIZE=size
-D_FAR_HEAP_SIZE=size
-D_HUGE_HEAP_SIZE=size

Note: Normally, these lines are prefixed with the comment character //. To make the
directive take effect, remove the comment character.

Specify the appropriate size for your application.

Placement of heap segment

The actual heap segment is allocated in the memory area available for the heap:

-Z(DATA)HEAP+_XDATA_HEAP_SIZE=start-end

Note: This range does not specify the size of the heap; it specifies the range of the
available memory.

Heap size and standard I/O

If you have excluded FILE descriptors from the DLIB runtime environment, as in the
Normal configuration, there are no input and output buffers at all. Otherwise, as in the
Full configuration, be aware that the size of the input and output buffers is set to 512
bytes in the stdio library header file. If the heap is too small, I/O will not be buffered,
which is considerably slower than when I/O is buffered. If you execute the application
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Placing code and data
using the simulator driver of the IAR C-SPY® Debugger, you are not likely to notice the
speed penalty, but it is quite noticeable when the application runs on an MCS-51
microcontroller. If you use the standard I/O library, you should set the heap size to a
value which accommodates the needs of the standard I/O buffer.

LOCATED DATA

A variable that has been explicitly placed at an address, for example by using the
compiler @ syntax, will be placed in a segment suffixed either _AC or _AN. The former
is used for constant-initialized data, and the latter for items declared as __no_init. The
individual segment part of the segment knows its location in the memory space, and it
does not have to be specified in the linker command file.

If you create your own segments, these must also be defined in the linker command file
using the -Z or -P segment control directives.

Code segments
This section contains descriptions of the segments used for storing code, and the
interrupt vector table. For a complete list of all segments, see Summary of segments,
page 295.

Note: The symbols used in the following examples for describing memory locations
are defined in the lnk_base.xcl linker command file. Device-specific values for these
symbols are defined in the linker command file that you are using.

STARTUP CODE

The segment CSTART contains code used during system setup (cstartup), runtime
initialization (cmain), and system termination (cexit). The system setup code should
be placed at the location where the chip starts executing code after a reset. For the
MCS-51 microcontroller, this is at the address 0x0,the start of the interrupt vector.
Located at address zero there is a jump instruction that jumps to the initializing code in
CSTART. In addition, the segments must be placed into one continuous memory space,
which means the -P segment directive cannot be used.

In the default linker command file, the following line will place the CSTART segment in
code memory and the INTVEC segment at the address 0x0.The INTVEC segment starts
with a jump instruction to the CSTART segment:

-Z(CODE)INTVEC=0
-Z(CODE)CSTART=_CODE_START-_CODE_END
C8051-4

Part 1. Using the compiler 81

82

Code segments
NORMAL CODE

Functions declared without a memory attribute are placed in different segments,
depending on which code model you are using. The different segments are: NEAR_CODE,
BANKED_CODE, and FAR_CODE.

Near code

Near code—that is, all user-written code when you use the near code model, or functions
explicitly typed with the memory attribute __near_func—is placed in the NEAR_CODE
segment.

In the linker command file it can look like this:

-Z(CODE)NEAR_CODE=_CODE_START-_CODE_END

Banked code

When you use the banked code model, all user-written code is located in the
BANKED_CODE segment. Here, the -P linker directive is used for allowing XLINK to
split up the segments and pack their contents more efficiently. This is useful here,
because the memory range is non-consecutive.

In the linker command file it can look like this:

-P(CODE)BANKED_CODE=[_CODEBANK_START-_CODEBANK_END]*4+10000

Here four code banks are declared. If for example _CODEBANK_START is 4000 and
_CODEBANK_END is 7FFF, the following banks are created: 0x4000-0x7FFF,
0x14000-0x17FFF, 0x24000-0x27FFF, 0x34000-0x37FFF.

Far code

Far code—that is, all user-written code when you use the far code model, or functions
explicitly typed with the memory attribute __far_func—is placed in the FAR_CODE
segment.

In the linker command file it can look like this:

-Z(CODE)FAR_CODE=_CODE_START-_CODE_END
-P(CODE)FAR_CODE=[_FAR_CODE_START-_FAR_CODE_END]/10000

INTERRUPT VECTORS

The interrupt vectors are typically placed in the segment INTVEC. The location of this
segment is chip-dependent. For the MCS-51 microcontrollers, it must be placed at
address 0x0:

-Z(CODE)INTVEC=0
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Placing code and data
C++ dynamic initialization
In C++, all global objects will be created before the main function is called. The creation
of objects can involve the execution of a constructor.

The DIFUNCT segment contains a vector of addresses that point to initialization code.
All entries in the vector will be called when the system is initialized.

For example:

-Z(CONST)DIFUNCT=_CODE_START-_CODE_END

For additional information, see DIFUNCT, page 306.

Verifying the linked result of code and data placement
The linker has several features that help you to manage code and data placement, for
example, messages at link time and the linker map file.

SEGMENT TOO LONG ERRORS AND RANGE ERRORS

All code or data that is placed in relocatable segments will have its absolute addresses
resolved at link time. It is also at link time it is known whether all segments will fit in
the reserved memory ranges. If the contents of a segment do not fit in the address range
defined in the linker command file, XLINK will issue a segment too long error.

Some instructions do not work unless a certain condition holds after linking, for
example that a branch must be within a certain distance or that an address must be even.
XLINK verifies that the conditions hold when the files are linked. If a condition is not
satisfied, XLINK generates a range error or warning and prints a description of the
error.

For further information about these types of errors, see the IAR Linker and Library Tools
Reference Guide.

LINKER MAP FILE

XLINK can produce an extensive cross-reference listing, which can optionally contain
the following information:

● A segment map which lists all segments in dump order

● A module map which lists all segments, local symbols, and entries (public symbols)
for every module in the program. All symbols not included in the output can also be
listed

● Module summary which lists the contribution (in bytes) from each module

● A symbol list which contains every entry (global symbol) in every module.
C8051-4

Part 1. Using the compiler 83

84

Verifying the linked result of code and data placement
Use the option Generate linker listing in the IAR Embedded Workbench IDE, or the
option -X on the command line, and one of their suboptions to generate a linker listing.

Normally, XLINK will not generate an output file if there are any errors, such as range
errors, during the linking process. Use the option Range checks disabled in the IAR
Embedded Workbench IDE, or the option -R on the command line, to generate an output
file even if a range error was encountered.

For further information about the listing options and the linker listing, see the IAR Linker
and Library Tools Reference Guide, and the IAR Embedded Workbench® IDE User
Guide.

MANAGING MULTIPLE ADDRESS SPACES

Output formats that do not support more than one memory space—like Motorola
S-records and Intel hex—may require up to one output file per memory space. This
causes no problems if you are only producing output to one memory space (flash
memory), but if you also are placing objects in EEPROM or an external ROM in DATA
space, the output format cannot represent this, and the linker issues the following error
message:

Error[e133]: The output format Format cannot handle multiple
address spaces. Use format variants (-y -O) to specify which
address space is wanted.

To limit the output to flash, make a copy of the linker command file for the device you
are using, and put it in the project directory. Add the following line at the end of the file:

-y(CODE)

To produce output for the other memory space(s), you must generate one output file per
memory space (because the output format you have chosen does not support more than
one memory space). Use the XLINK option -O for this purpose.

For each additional output file, you have to specify format, XLINK segment type, and
file name. For example:

-Omotorola,(DATA)=external_rom.a51
-Omotorola,(XDATA)=eeprom.a51

Note: As a general rule, an output file is only necessary if you use non-volatile
memory. In other words, output from the data space is only necessary if the data space
contains external ROM.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The DLIB runtime
environment
This chapter describes the runtime environment in which an application
executes. In particular, the chapter covers the DLIB runtime library and how
you can modify it—setting options, overriding default library modules, or
building your own library—to optimize it for your application.

The chapter also covers system initialization and termination; how an
application can control what happens before the function main is called, and
how you can customize the initialization.

The chapter then describes how to configure functionality like locale and file
I/O, how to get C-SPY® runtime support, and how to prevent incompatible
modules from being linked together.

Note that the DLIB runtime environment is the default when you use the C++
language; DLIB can be used with both the C and the C++ languages. CLIB on
the other hand can only be used with the C language. For information about
the CLIB runtime environment, see the chapter The CLIB runtime environment.

Introduction to the runtime environment
The runtime environment is the environment in which your application executes. The
runtime environment depends on the target hardware, the software environment, and the
application code. The IAR DLIB runtime environment can be used as is together with
the IAR C-SPY Debugger. However, to be able to run the application on hardware, you
must adapt the runtime environment.

This section gives an overview of:

● The runtime environment and its components

● Library selection.
C8051-4

Part 1. Using the compiler 85

86

Introduction to the runtime environment
RUNTIME ENVIRONMENT FUNCTIONALITY

The runtime environment supports ISO/ANSI C and C++ including the standard
template library. The runtime environment consists of the runtime library, which
contains the functions defined by these standards, and include files that define the library
interface.

The runtime library is delivered both as prebuilt libraries and as source files, and you
can find them in the product subdirectories 8051\lib and 8051\src\lib,
respectively.

The runtime environment also consists of a part with specific support for the target
system, which includes:

● Support for hardware features:

● Direct access to low-level processor operations by means of intrinsic functions,
such as functions for register handling

● Peripheral unit registers and interrupt definitions in include files

● Runtime environment support, that is, startup and exit code and low-level interface
to some library functions.

● Special compiler support for some functions, for instance functions for
floating-point arithmetics.

The runtime environment support as well as the size of the heaps must be tailored for
the specific hardware and application requirements.

For further information about the library, see the chapter Library functions.

LIBRARY SELECTION

To configure the most code-efficient runtime environment, you must determine your
application and hardware requirements. The more functionality you need, the larger
your code will become.

IAR Embedded Workbench comes with a set of prebuilt runtime libraries. To get the
required runtime environment, you can customize it by:

● Setting library options, for example, for choosing scanf input and printf output
formatters, and for specifying the size of the stack and the heap

● Overriding certain library functions, for example cstartup.s51, with your own
customized versions

● Choosing the level of support for certain standard library functionality, for example,
locale, file descriptors, and multibyte characters, by choosing a library
configuration: normal or full.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
In addition, you can also make your own library configuration, but that requires that you
rebuild the library. This allows you to get full control of the runtime environment.

Note: Your application project must be able to locate the library, include files, and the
library configuration file.

SITUATIONS THAT REQUIRE LIBRARY BUILDING

Building a customized library is complex. You should therefore carefully consider
whether it is really necessary.

You must build your own library when:

● There is no prebuilt library available for the required combination of compiler
options or hardware support

● You want to define your own library configuration with support for locale, file
descriptors, multibyte characters, et cetera.

For information about how to build a customized library, see Building and using a
customized library, page 95.

LIBRARY CONFIGURATIONS

It is possible to configure the level of support for, for example, locale, file descriptors,
multibyte characters. The runtime library configuration is defined in the library
configuration file. It contains information about what functionality is part of the runtime
environment. The configuration file is used for tailoring a build of a runtime library, as
well as tailoring the system header files used when compiling your application. The less
functionality you need in the runtime environment, the smaller it is.

The following DLIB library configurations are available:

In addition to these configurations, you can define your own configurations, which
means that you must modify the configuration file. Note that the library configuration
file describes how a library was built and thus cannot be changed unless you rebuild the
library. For further information, see Building and using a customized library, page 95.

The prebuilt libraries are based on the default configurations, see Using a prebuilt
library, page 88. There is also a ready-made library project template that you can use if
you want to rebuild the runtime library.

Library configuration Description

Normal DLIB No locale interface, C locale, no file descriptor support, no multibyte
characters in printf and scanf, and no hex floats in strtod.

Customized DLIB User-defined library settings

Table 17: Library configurations
C8051-4

Part 1. Using the compiler 87

88

Using a prebuilt library
DEBUG SUPPORT IN THE RUNTIME LIBRARY

You can make the library provide different levels of debugging support—basic, runtime,
and I/O debugging.

The following table describes the different levels of debugging support:

If you build your application project with the XLINK options With runtime control
modules or With I/O emulation modules, certain functions in the library will be
replaced by functions that communicate with the IAR C-SPY Debugger. For further
information, see C-SPY Debugger runtime interface, page 109.

To set linker options for debug support in the IAR Embedded Workbench IDE, choose
Project>Options and select the Linker category. On the Output page, select the
appropriate Format option.

Using a prebuilt library
The prebuilt runtime libraries are configured for different combinations of the following
features:

● DLIB runtime environment

● Core variant

● Stack location

● Code model

Debugging

support

Linker option in

IDE

Linker command

line option
Description

Basic debugging Debug information
for C-SPY

-Fubrof Debug support for C-SPY without any
runtime support

Runtime debugging With runtime
control modules

-r The same as -Fubrof, but also
includes debugger support for
handling program abort, exit, and
assertions.

I/O debugging With I/O emulation
modules

-rt The same as -r, but also includes
debugger support for I/O handling,
which means that stdin and
stdout are redirected to the C-SPY
Terminal I/O window, and that it is
possible to access files on the host
computer during debugging.

Table 18: Levels of debugging support in runtime libraries
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
● Data model

● Calling convention

● Constant location

● Number of data pointers

● Data pointer visibility

● Data pointer size

● Data pointer selection method

● Library configuration: Normal.

● Library configuration—Normal and Full.

Note: A DLIB library cannot be built for the Tiny and Small data models.

For the 8051 IAR C/C++ Compiler some of these combinations are delivered as prebuilt
runtime libraries. When you need a compiler configuration for which there is no prebuilt
library, you can build your own library, see Building and using a customized library,
page 95.

The names of the libraries are constructed in the following way:

<type>-<core><stack>-<code_model><data_model><call_conv><const_lo
c>-<#_of_dptrs><dptr_vis><dptr_size><dptr_select>.r51

where

● <type> is dl for the IAR DLIB library. See the chapter Library functions.

● <core> is pl for the classic 8051 devices, e1 for the extended1 devices, or e2 for
the extended2 devices. See Basic project settings for hardware memory
configuration, page 15.

● <stack> specifies where the machine stack is located; i for an idata stack and e for
an extended stack.

● <code_model> is n, b, 2, or f for the near, banked, banked_extended2, or far code
model, respectively. See Code models for function storage, page 47.

● <data_model> is s, l, g, or f for the small, large, generic, or far data model,
respectively. See Data models, page 22.

● <call_conv> is d, o, i, p, x, or e, representing one of the available calling
conventions: data overlay (d), idata overlay (o), idata reentrant (i), pdata reentrant
(p), xdata reentrant (x), or extended stack reentrant (e). See Choosing a calling
convention, page 35.

● <const_loc> is the location for constants and strings: d or c for data or code,
respectively. See Constants and strings, page 34.

● <#_of_dptrs> is a number from 1 to 8 that represents the number of data pointers
used. See Using the DPTR register, page 17.
C8051-4

Part 1. Using the compiler 89

90

Using a prebuilt library
● <dptr_vis>: stands for DPTR visibility: h (shadowed) or e (separate)

● <dptr_size> is the size of of the used data pointer; either 16 or 24.

● <dptr_select> shows the DPTR selection method and the selection mask if the
XOR selection method is used. In that case the value is x followed by the mask in
hexadecimal representation, for example 01 for 0x01, resulting in the selection field
x01. If the INC selection method is used, the value of the field is inc. See Using the
DPTR register, page 17.

The IAR Embedded Workbench IDE will include the correct library object file and
library configuration file based on the options you select. See the IAR Embedded
Workbench® IDE User Guide for additional information.

If you build your application from the command line, you must specify the following
items to get the required runtime library:

● Specify which library object file to use on the XLINK command line, for instance:

dl-pli-nlxd-1e16x01.r51

● Specify the include paths for the compiler and assembler:

-I 8051\inc\dlib

● Specify the library configuration file for the compiler:

--dlib_config C:\...\dl8051Normal.h

Note: All modules in the library have a name that starts with the character ? (question
mark).

You can find the library object files and the library configuration files in the subdirectory
8051\lib\dlib.

CUSTOMIZING A PREBUILT LIBRARY WITHOUT REBUILDING

The prebuilt libraries delivered with the 8051 IAR C/C++ Compiler can be used as is.
However, it is possible to customize parts of a library without rebuilding it. There are
two different methods:

● Setting options for:

● Formatters used by printf and scanf

● The sizes of the heap and the stack

● Overriding library modules with your own customized versions.

The following items can be customized:

Items that can be customized Described in

Formatters for printf and scanf Choosing formatters for printf and scanf, page 91

Table 19: Customizable items
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
For a description about how to override library modules, see Overriding library
modules, page 93.

Choosing formatters for printf and scanf
To override the default formatter for all the printf- and scanf-related functions,
except for wprintf and wscanf variants, you simply set the appropriate library
options. This section describes the different options available.

Note: If you rebuild the library, it is possible to optimize these functions even further,
see Configuration symbols for printf and scanf, page 102.

CHOOSING PRINTF FORMATTER

The printf function uses a formatter called _Printf. The default version is quite
large, and provides facilities not required in many embedded applications. To reduce the
memory consumption, three smaller, alternative versions are also provided in the
standard C/EC++ library.

Startup and termination code System startup and termination, page 96

Low-level input and output Standard streams for input and output, page 100

File input and output File input and output, page 103

Low-level environment functions Environment interaction, page 106

Low-level signal functions Signal and raise, page 107

Low-level time functions Time, page 107

Size of heaps, stacks, and segments Placing code and data, page 67

Items that can be customized Described in

Table 19: Customizable items (Continued)
C8051-4

Part 1. Using the compiler 91

92

Choosing formatters for printf and scanf
The following table summarizes the capabilities of the different formatters:

† Depends on the library configuration that is used.

For information about how to fine-tune the formatting capabilities even further, see
Configuration symbols for printf and scanf, page 102.

Specifying the print formatter in the IAR Embedded Workbench
IDE

To specify the printf formatter in the IAR Embedded Workbench IDE, choose
Project>Options and select the General Options category. Select the appropriate
option on the Library options page.

Specifying printf formatter from the command line

To use any other formatter than the default (_PrintfFull), add one of the following
lines in the linker command file you are using:

-e_PrintfLarge=_Printf
-e_PrintfSmall=_Printf
-e_PrintfTiny=_Printf

CHOOSING SCANF FORMATTER

In a similar way to the printf function, scanf uses a common formatter, called
_Scanf. The default version is very large, and provides facilities that are not required
in many embedded applications. To reduce the memory consumption, two smaller,
alternative versions are also provided in the standard C/C++ library.

Formatting capabilities _PrintfFull _PrintfLarge _PrintfSmall _PrintfTiny

Basic specifiers c, d, i, o, p, s, u, X,
x, and %

Yes Yes Yes Yes

Multibyte support † † † No

Floating-point specifiers a, and A Yes No No No

Floating-point specifiers e, E, f, F, g,
and G

Yes Yes No No

Conversion specifier n Yes Yes No No

Format flag space, +, -, #, and 0 Yes Yes Yes No

Length modifiers h, l, L, s, t, and Z Yes Yes Yes No

Field width and precision, including * Yes Yes Yes No

long long support Yes Yes No No

Table 20: Formatters for printf
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
The following table summarizes the capabilities of the different formatters:

† Depends on the library configuration that is used.

For information about how to fine-tune the formatting capabilities even further, see
Configuration symbols for printf and scanf, page 102.

Specifying scanf formatter in the IAR Embedded Workbench IDE

To specify the printf formatter in the IAR Embedded Workbench IDE, choose
Project>Options and select the General Options category. Select the appropriate
option on the Library options page.

Specifying scanf formatter from the command line

To use any other variant than the default (_ScanfFull), add one of the following lines
in the linker command file you are using:

-e_ScanfLarge=_Scanf
-e_ScanfSmall=_Scanf

Overriding library modules
The library contains modules which you probably need to override with your own
customized modules, for example functions for character-based I/O and cstartup.
This can be done without rebuilding the entire library. This section describes the
procedure for including your version of the module in the application project build
process. The library files that you can override with your own versions are located in the
8051\src\lib directory.

Formatting capabilities _ScanfFull _ScanfLarge _ScanfSmall

Basic specifiers c, d, i, o, p, s, u, X,
x, and %

Yes Yes Yes

Multibyte support † † †

Floating-point specifiers a, and A Yes No No

Floating-point specifiers e, E, f, F, g,
and G

Yes No No

Conversion specifier n Yes No No

Scan set [and] Yes Yes No

Assignment suppressing * Yes Yes No

long long support Yes No No

Table 21: Formatters for scanf
C8051-4

Part 1. Using the compiler 93

94

Overriding library modules
Note: If you override a default I/O library module with your own module, C-SPY
support for the module is turned off. For example, if you replace the module __write
with your own version, the C-SPY Terminal I/O window will not be supported.

Overriding library modules using the IAR Embedded Workbench
IDE

This procedure is applicable to any source file in the library, which means that
library_module.c in this example can be any module in the library.

1 Copy the appropriate library_module.c file to your project directory.

2 Make the required additions to the file (or create your own routine, using the default
file as a model), and make sure that it has the same module name as the original
module. The easiest way to achieve this is to save the new file under the same name as
the original file.

3 Add the customized file to your project.

4 Rebuild your project.

Overriding library modules from the command line

This procedure is applicable to any source file in the library, which means that
library_module.c in this example can be any module in the library.

1 Copy the appropriate library_module.c to your project directory.

2 Make the required additions to the file (or create your own routine, using the default
file as a model), and make sure that it has the same module name as the original
module. The easiest way to achieve this is to save the new file under the same name as
the original file.

3 Compile the modified file using the same options as for the rest of the project:

icc8051 library_module --core=plain --data_model=large
--calling_convention=xr --dptr=2,16,shadowed,xor(0x1)

This creates a replacement object module file named library_module.r51.

Note: The runtime model, include paths, and the library configuration file must be the
same for library_module as for the rest of your code.

4 Add library_module.r51 to the XLINK command line, either directly or by using
an extended linker command file, for example:

xlink mycode.r51 library_module dl-pli-nlxd-2h16x01.r51

Make sure that library_module is placed before the library on the command line.
This ensures that your module is used instead of the one in the library.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
Run XLINK to rebuild your application.

This will use your version of library_module.r51, instead of the one in the library.
For information about the XLINK options, see the IAR Linker and Library Tools
Reference Guide.

Building and using a customized library
In some situations, see Situations that require library building, page 87, it is necessary
to rebuild the library. In those cases you need to:

● Set up a library project

● Make the required library modifications

● Build your customized library

● Finally, make sure your application project will use the customized library.

Information about the build process is described in the IAR Embedded Workbench® IDE
User Guide.

Note: It is possible to build IAR Embedded Workbench projects from the command
line by using the IAR Command Line Build Utility (iarbuild.exe). However, no
make or batch files for building the library from the command line are provided.

SETTING UP A LIBRARY PROJECT

The IAR Embedded Workbench IDE provides a library project template which can be
used for customizing the runtime environment configuration. This library template has
Normal library configuration, see Table 17, Library configurations, page 87.

In the IAR Embedded Workbench IDE, modify the generic options in the created library
project to suit your application, see Basic project settings, page 6.

There is one important restriction on setting options. If you set an option on file level
(file level override), no options on higher levels that operate on files will affect that file.

It is easiest to build customized runtime libraries in the 8051 IAR Embedded
Workbench. It is however, also possible to build them using the 8051 IAR C/C++
Compiler and IAR XLINK Linker from the command line.

MODIFYING THE LIBRARY FUNCTIONALITY

You must modify the library configuration file and build your own library if you want
to modify support for, for example, locale, file descriptors, and multibyte characters.
This will include or exclude certain parts of the runtime environment.
C8051-4

Part 1. Using the compiler 95

96

System startup and termination
The library functionality is determined by a set of configuration symbols. The default
values of these symbols are defined in the file Dlib_defaults.h. This read-only file
describes the configuration possibilities. In addition, your library has its own library
configuration file dl8051libraryname.h (where libraryname is either Normal or
Full), which sets up that specific library with full library configuration. For more
information, see Table 19, Customizable items, page 90.

The library configuration file is used for tailoring a build of the runtime library, as well
as tailoring the system header files.

Modifying the library configuration file

In your library project, open the file dl8051libraryname.h and customize it by
setting the values of the configuration symbols according to the application
requirements.

When you are finished, build your library project with the appropriate project options.

USING A CUSTOMIZED LIBRARY

After you have built your library, you must make sure to use it in your application
project.

In the IAR Embedded Workbench IDE you must perform the following steps:

1 Choose Project>Options and click the Library Configuration tab in the General
Options category.

2 Choose Custom DLIB from the Library drop-down menu.

3 In the Library file text box, locate your library file.

4 In the Configuration file text box, locate your library configuration file.

System startup and termination
This section describes the runtime environment actions performed during startup and
termination of your application.

The code for handling startup and termination is located in the source files
cstartup.s51, cmain.s51, cexit.s51, and low_level_init.c located in the
8051\src\lib directory.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
SYSTEM STARTUP

During system startup, an initialization sequence is executed before the main function
is entered. This sequence performs intitializations required for the target hardware and
the C/C++ environment.

For the hardware intialization, it looks like this:

Figure 9: Target hardware initialization phase

● When the CPU is reset it will jump to the program entry label __program_start
in the system startup code

● The register bank switch register is initialized to the number specified by the symbol
?REGISTER_BANK in the linker command file

● If the idata stack is used, the stack pointer, SP, is initialized to the beginning of the
ISTACK segment. If the extended stack is used, the extended stack pointer ?ESP:SP
is initialized to the beginning of the EXT_STACK segment

● If the xdata reentrant calling convention is available, the xdata stack pointer, XSP, is
initialized to the end of the XSTACK segment

● If the pdata reentrant calling convention is available, the pdata stack pointer, PSP, is
initialized to the end of the PSTACK segment

● If code banking is used, the bank register is initialized to zero

● The PDATA page is initialized

● If multiple data pointers are available, the DPTR selector register is initialized and
the first data pointer (dptr0) is set to be the active data pointer

● The function __low_level_init is called if you have defined it, giving the
application a chance to perform early initializations.
C8051-4

Part 1. Using the compiler 97

98

System startup and termination
For the C/C++ initialization, it looks like this:

Figure 10: C/C++ initialization phase

● Static variables are initialized; this includes clearing zero-initialized memory and
copying the ROM image of the RAM memory of the rest of the initialized variables
depending on the return value of __low_level_init. For more details, see
Initialized data, page 75

● Static C++ objects are constructed

● The main function is called, which starts the application.

SYSTEM TERMINATION

The following illustration shows the different ways an embedded application can
terminate in a controlled way:

Figure 11: System termination phase
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
An application can terminate normally in two different ways:

● Return from the main function

● Call the exit function.

As the ISO/ANSI C standard states that the two methods should be equivalent, the
system startup code calls the exit function if main returns. The parameter passed to the
exit function is the return value of main.

The default exit function is written in C. It calls a small assembler function _exit that
will perform the following operations:

● Call functions registered to be executed when the application ends. This includes
C++ destructors for static and global variables, and functions registered with the
standard C function atexit

● Close all open files

● Call __exit

● When __exit is reached, stop the system.

An application can also exit by calling the abort or the _Exit function. The abort
function just calls __exit to halt the system, and does not perform any type of cleanup.
The _Exit function is equivalent to the abort function, except for the fact that _Exit
takes an argument for passing exit status information.

If you want your application to perform anything extra at exit, for example resetting the
system, you can write your own implementation of the __exit(int) function.

C-SPY interface to system termination

If your project is linked with the XLINK options With runtime control modules or
With I/O emulation modules, the normal __exit and abort functions are replaced
with special ones. C-SPY will then recognize when those functions are called and can
take appropriate actions to simulate program termination. For more information, see
C-SPY Debugger runtime interface, page 109.

Customizing system initialization
It is likely that you need to customize the code for system initialization. For example,
your application might need to initialize memory-mapped special function registers
(SFRs), or omit the default initialization of data segments performed by cstartup.

You can do this by providing a customized version of the routine __low_level_init,
which is called from cmain.s51 before the data segments are initialized. Modifying the
file cstartup directly should be avoided.
C8051-4

Part 1. Using the compiler 99

100

Standard streams for input and output
The code for handling system startup is located in the source files cstartup.s51 and
low_level_init.c, located in the 8051\src\lib directory.

Note: Normally, there is no need for customizing either of the files cmain.s51 or
cexit.s51.

If you intend to rebuild the library, the source files are available in the template library
project, see Building and using a customized library, page 95.

Note: Regardless of whether you modify the routine __low_level_init or the file
cstartup.s51, you do not have to rebuild the library.

__LOW_LEVEL_INIT

One skeleton low-level initialization file is supplied with the product—the C source file,
low_level_init.c. The only limitation using this C source version is that static
initialized variables cannot be used within the file, as variable initialization has not been
performed at this point.

The value returned by __low_level_init determines whether or not data segments
should be initialized by the system startup code. If the function returns 0, the data
segments will not be initialized.

MODIFYING THE FILE CSTARTUP.S51

As noted earlier, you should not modify the file cstartup.s51 if a customized version
of __low_level_init is enough for your needs. However, if you do need to modify
the file cstartup.s51, we recommend that you follow the general procedure for
creating a modified copy of the file and adding it to your project, see Overriding library
modules, page 93.

Standard streams for input and output
There are three standard communication channels (streams)—stdin, stdout, and
stderr—which are defined in stdio.h. If any of these streams are used by your
application, for example by the functions printf and scanf, you need to customize the
low-level functionality to suit your hardware.

There are primitive I/O functions, which are the fundamental functions through which
C and C++ performs all character-based I/O. For any character-based I/O to be available,
you must provide definitions for these functions using whatever facilities the hardware
environment provides.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
IMPLEMENTING LOW-LEVEL CHARACTER INPUT AND
OUTPUT

To implement low-level functionality of the stdin and stdout streams, you must write
the functions __read and __write, respectively. You can find template source code for
these functions in the 8051\src\lib directory.

If you intend to rebuild the library, the source files are available in the template library
project, see Building and using a customized library, page 95. Note that customizing the
low-level routines for input and output does not require you to rebuild the library.

Note: If you write your own variants of __read or __write, special considerations
for the C-SPY runtime interface are needed, see C-SPY Debugger runtime interface,
page 109.

Example of using __write and __read

The code in the following examples use memory-mapped I/O to write to an LCD
display:

__no_init volatile unsigned char LCD_IO @ address;

size_t __write(int Handle, const unsigned char * Buf,
 size_t Bufsize)
{
 size_t nChars = 0;
 /* Check for stdout and stderr
 (only necessary if FILE descriptors are enabled.) */
 if (Handle != 1 && Handle != 2)
 {
 return -1;
 }
 for (/*Empty */; Bufsize > 0; --Bufsize)
 {
 LCD_IO = * Buf++;
 ++nChars;
 }
 return nChars;
}

The code in the following example uses memory-mapped I/O to read from a keyboard:

__no_init volatile unsigned char KB_IO @ address;

size_t __read(int Handle, unsigned char *Buf, size_t BufSize)
{
 size_t nChars = 0;
 /* Check for stdin
 (only necessary if FILE descriptors are enabled) */
C8051-4

Part 1. Using the compiler 101

102

Configuration symbols for printf and scanf
 if (Handle != 0)
 {
 return -1;
 }
 for (/*Empty*/; BufSize > 0; --BufSize)
 {
 unsigned char c = KB_IO;
 if (c == 0)
 break;
 *Buf++ = c;
 ++nChars;
 }
 return nChars;
}

For information about the @ operator, see Controlling data and function placement in
memory, page 165.

Configuration symbols for printf and scanf
When you set up your application project, you typically need to consider what printf
and scanf formatting capabilities your application requires, see Choosing formatters
for printf and scanf, page 91.

If the provided formatters do not meet your requirements, you can customize the full
formatters. However, that means you need to rebuild the runtime library.

The default behavior of the printf and scanf formatters are defined by configuration
symbols in the file DLIB_Defaults.h.

The following configuration symbols determine what capabilities the function printf
should have:

Printf configuration symbols Includes support for

_DLIB_PRINTF_MULTIBYTE Multibyte characters

_DLIB_PRINTF_LONG_LONG Long long (ll qualifier)

_DLIB_PRINTF_SPECIFIER_FLOAT Floating-point numbers

_DLIB_PRINTF_SPECIFIER_A Hexadecimal floats

_DLIB_PRINTF_SPECIFIER_N Output count (%n)

_DLIB_PRINTF_QUALIFIERS Qualifiers h, l, L, v, t, and z

_DLIB_PRINTF_FLAGS Flags -, +, #, and 0

_DLIB_PRINTF_WIDTH_AND_PRECISION Width and precision

Table 22: Descriptions of printf configuration symbols
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
When you build a library, the following configurations determine what capabilities the
function scanf should have:

CUSTOMIZING FORMATTING CAPABILITIES

To customize the formatting capabilities, you need to set up a library project, see
Building and using a customized library, page 95. Define the configuration symbols
according to your application requirements.

File input and output
The library contains a large number of powerful functions for file I/O operations. If you
use any of these functions you need to customize them to suit your hardware. In order
to simplify adaptation to specific hardware, all I/O functions call a small set of primitive
functions, each designed to accomplish one particular task; for example, __open opens
a file, and __write outputs a number of characters.

Note that file I/O capability in the library is only supported by libraries with full library
configuration, see Library configurations, page 87. In other words, file I/O is supported
when the configuration symbol __DLIB_FILE_DESCRIPTOR is enabled. If not enabled,
functions taking a FILE * argument cannot be used.

_DLIB_PRINTF_CHAR_BY_CHAR Output char by char or buffered

Scanf configuration symbols Includes support for

_DLIB_SCANF_MULTIBYTE Multibyte characters

_DLIB_SCANF_LONG_LONG Long long (ll qualifier)

_DLIB_SCANF_SPECIFIER_FLOAT Floating-point numbers

_DLIB_SCANF_SPECIFIER_N Output count (%n)

_DLIB_SCANF_QUALIFIERS Qualifiers h, j, l, t, z, and L

_DLIB_SCANF_SCANSET Scanset ([*])

_DLIB_SCANF_WIDTH Width

_DLIB_SCANF_ASSIGNMENT_SUPPRESSING Assignment suppressing ([*])

Table 23: Descriptions of scanf configuration symbols

Printf configuration symbols Includes support for

Table 22: Descriptions of printf configuration symbols (Continued)
C8051-4

Part 1. Using the compiler 103

104

Locale
Template code for the following I/O files are included in the product:

The primitive functions identify I/O streams, such as an open file, with a file descriptor
that is a unique integer. The I/O streams normally associated with stdin, stdout, and
stderr have the file descriptors 0, 1, and 2, respectively.

Note: If you link your library with I/O debugging support, C-SPY variants of the
low-level I/O functions will be linked for interaction with C-SPY. For more
information, see Debug support in the runtime library, page 87.

Locale
Locale is a part of the C language that allows language- and country-specific settings for
a number of areas, such as currency symbols, date and time, and multibyte character
encoding.

Depending on what runtime library you are using you get different level of locale
support. However, the more locale support, the larger your code will get. It is therefore
necessary to consider what level of support your application needs.

The DLIB library can be used in two main modes:

● With locale interface, which makes it possible to switch between different locales
during runtime

● Without locale interface, where one selected locale is hardwired into the
application.

LOCALE SUPPORT IN PREBUILT LIBRARIES

The level of locale support in the prebuilt libraries depends on the library configuration.

● All prebuilt libraries support the C locale only

I/O function File Description

__close close.c Closes a file.

__lseek lseek.c Sets the file position indicator.

__open open.c Opens a file.

__read read.c Reads a character buffer.

__write write.c Writes a character buffer.

remove remove.c Removes a file.

rename rename.c Renames a file.

Table 24: Low-level I/O files
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
● Libraries with normal library configuration do not have support for the locale
interface.

If your application requires a different locale support, you need to rebuild the library.

CUSTOMIZING THE LOCALE SUPPORT

If you decide to rebuild the library, you can choose between the following locales:

● The standard C locale

● The POSIX locale

● A wide range of European locales.

Locale configuration symbols

The configuration symbol _DLIB_FULL_LOCALE_SUPPORT, which is defined in the
library configuration file, determines whether a library has support for a locale interface
or not. The locale configuration symbols _LOCALE_USE_LANG_REGION and
_ENCODING_USE_ENCODING define all the supported locales and encodings:

#define _DLIB_FULL_LOCALE_SUPPORT 1
#define _LOCALE_USE_C /* C locale */
#define _LOCALE_USE_EN_US /* US english */
#define _LOCALE_USE_EN_GB /* UK english */
#define _LOCALE_USE_SV_SE /* Swedish in Sweden */

See DLib_Defaults.h for a list of supported locale and encoding settings.

If you want to customize the locale support, you simply define the locale configuration
symbols required by your application. For more information, see Building and using a
customized library, page 95.

Note: If you use multibyte characters in your C or assembler source code, make sure
that you select the correct locale symbol (the local host locale).

Building a library without support for locale interface

The locale interface is not included if the configuration symbol
_DLIB_FULL_LOCALE_SUPPORT is set to 0 (zero). This means that a hardwired locale
is used—by default the standard C locale—but you can choose one of the supported
locale configuration symbols. The setlocale function is not available and can
therefore not be used for changing locales at runtime.
C8051-4

Part 1. Using the compiler 105

106

Environment interaction
Building a library with support for locale interface

Support for the locale interface is obtained if the configuration symbol
_DLIB_FULL_LOCALE_SUPPORT is set to 1. By default, the standard C locale is used,
but you can define as many configuration symbols as required. Because the setlocale
function will be available in your application, it will be possible to switch locales at
runtime.

CHANGING LOCALES AT RUNTIME

The standard library function setlocale is used for selecting the appropriate portion
of the application’s locale when the application is running.

The setlocale function takes two arguments. The first one is a locale category that is
constructed after the pattern LC_CATEGORY. The second argument is a string that
describes the locale. It can either be a string previously returned by setlocale, or it
can be a string constructed after the pattern:

lang_REGION

or

lang_REGION.encoding

The lang part specifies the language code, and the REGION part specifies a region
qualifier, and encoding specifies the multibyte character encoding that should be used.

The lang_REGION part matches the _LOCALE_USE_LANG_REGION preprocessor
symbols that can be specified in the library configuration file.

Example

This example sets the locale configuration symbols to Swedish to be used in Finland and
UTF8 multibyte character encoding:

setlocale (LC_ALL, "sv_FI.Utf8");

Environment interaction
According to the C standard, your application can interact with the environment using
the functions getenv and system.

Note: The putenv function is not required by the standard, and the library does not
provide an implementation of it.

The getenv function searches the string, pointed to by the global variable __environ,
for the key that was passed as argument. If the key is found, the value of it is returned,
otherwise 0 (zero) is returned. By default, the string is empty.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
To create or edit keys in the string, you must create a sequence of null terminated strings
where each string has the format:

key=value\0

The last string must be empty. Assign the created sequence of strings to the __environ
variable.

For example:

const char MyEnv[] = ”Key=Value\0Key2=Value2\0”;
__environ = MyEnv;

If you need a more sophisticated environment variable handling, you should implement
your own getenv, and possibly putenv function. This does not require that you rebuild
the library. You can find source templates in the files getenv.c and environ.c in the
8051\src\lib directory. For information about overriding default library modules, see
Overriding library modules, page 93.

If you need to use the system function, you need to implement it yourself. The system
function available in the library simply returns -1.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page 95.

Note: If you link your application with support for I/O debugging, the functions
getenv and system will be replaced by C-SPY variants. For further information, see
Debug support in the runtime library, page 87.

Signal and raise
There are default implementations of the functions signal and raise available. If
these functions do not provide the functionality that you need, you can implement your
own versions.

This does not require that you rebuild the library. You can find source templates in the
files signal.c and raise.c in the 8051\src\lib directory. For information about
overriding default library modules, see Overriding library modules, page 93.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page 95.
C8051-4

Part 1. Using the compiler 107

108

Time
Time
To make the time and date functions work, you must implement the three functions
clock, time, and __getzone.

This does not require that you rebuild the library. You can find source templates in the
files clock.c and time.c, and getzone.c in the 8051\src\lib directory. For
information about overriding default library modules, see Overriding library modules,
page 93.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page 95.

The default implementation of __getzone specifies UTC as the time zone.

Note: If you link your application with support for I/O debugging, the functions clock
and time will be replaced by C-SPY variants that return the host clock and time
respectively. For further information, see C-SPY Debugger runtime interface, page 109.

Strtod
The function strtod does not accept hexadecimal floating-point strings in libraries
with the normal library configuration. To make a library do so, you need to rebuild the
library, see Building and using a customized library, page 95. Enable the configuration
symbol _DLIB_STRTOD_HEX_FLOAT in the library configuration file.

Assert
If you have linked your application with support for runtime debugging, C-SPY will be
notified about failed asserts. If this is not the behavior you require, you must add the
source file xreportassert.c to your application project. Alternatively, you can
rebuild the library. The __ReportAssert function generates the assert notification.
You can find template code in the 8051\src\lib directory. For further information, see
Building and using a customized library, page 95. To turn off assertions, you must define
the symbol NDEBUG.

In the IAR Embedded Workbench IDE, this symbol NDEBUG is by default defined in a
Release project and not defined in a Debug project. If you build from the command line,
you must explicitly define the symbol according to your needs.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
Heaps
The runtime environment supports heaps in the following memory types:

See The heap, page 79 for information about how to set the size for each heap. To use a
specific heap, the prefix in the table is the extended keyword to use in front of malloc,
free, calloc, and realloc, for instance __far_malloc. The default functions will
use one of the specific heap variants, depending on project settings such as data model.
For information about how to use a specific heap in C++, see New and Delete operators,
page 154.

C-SPY Debugger runtime interface
To include support for runtime and I/O debugging, you must link your application
with the XLINK options With runtime control modules or With I/O emulation
modules, see Debug support in the runtime library, page 87.

In this case, C-SPY variants of the following library functions will be linked to the
application:

Memory type Segment name Extended keyword
Used by default in data

model

Xdata XDATA_HEAP __xdata Large

Far FAR_HEAP __far Far

Huge HUGE_HEAP __huge

Table 25: Heaps and memory types

Function Description

abort C-SPY notifies that the application has called abort *

clock Returns the clock on the host computer

__close Closes the associated host file on the host computer

__exit C-SPY notifies that the end of the application has been reached *

__open Opens a file on the host computer

__read stdin, stdout, and stderr will be directed to the Terminal I/O
window; all other files will read the associated host file

remove Writes a message to the Debug Log window and returns -1

rename Writes a message to the Debug Log window and returns -1

_ReportAssert Handles failed asserts *

__seek Seeks in the associated host file on the host computer

Table 26: Functions with special meanings when linked with debug info
C8051-4

Part 1. Using the compiler 109

110

C-SPY Debugger runtime interface
* The linker option With I/O emulation modules is not required for these functions.

LOW-LEVEL DEBUGGER RUNTIME INTERFACE

The low-level debugger runtime interface is used for communication between the
application being debugged and the debugger itself. The debugger provides runtime
services to the application via this interface; services that allow capabilities like file and
terminal I/O to be performed on the host computer.

These capabilities can be valuable during the early development of an application, for
example in an application using file I/O before any flash file system I/O drivers have
been implemented. Or, if you need to debug constructions in your application that use
stdin and stdout without the actual hardware device for input and output being
available. Another debugging purpose can be to produce debug trace printouts.

The mechanism used for implementing this feature works as follows:

The debugger will detect the presence of the function __DebugBreak, which will be
part of the application if you have linked it with the XLINK options for C-SPY runtime
interface. In this case, the debugger will automatically set a breakpoint at the
__DebugBreak function. When the application calls, for example open, the
__DebugBreak function is called, which will cause the application to break and
perform the necessary services. The execution will then resume.

THE DEBUGGER TERMINAL I/O WINDOW

To make the Terminal I/O window available, the application must be linked with
support for I/O debugging, see Debug support in the runtime library, page 87. This
means that when the functions __read or __write are called to perform I/O
operations on the streams stdin, stdout, or stderr, data will be sent to or read
from the C-SPY Terminal I/O window.

Note: The Terminal I/O window is not opened automatically just because __read or
__write is called; you must open it manually.

See the IAR Embedded Workbench® IDE User Guide for more information about the
Terminal I/O window.

system Writes a message to the Debug Log window and returns -1

time Returns the time on the host computer

__write stdin, stdout, and stderr will be directed to the Terminal I/O
window, all other files will write to the associated host file

Function Description

Table 26: Functions with special meanings when linked with debug info (Continued)
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
Speeding up terminal output

On some systems, terminal output might be slow because the host computer and the
target hardware must communicate for each character.

For this reason, a replacement for the __write function called __write_buffered
has been included in the DLIB library. This module buffers the output and sends it to the
debugger one line at a time, speeding up the output. Note that this function uses about
80 bytes of RAM memory.

To use this feature you can either choose Project>Options>Linker>Output and select
the option Buffered terminal output in the Embedded Workbench IDE, or add the
following to the linker command line:

-e__write_buffered=__write

Checking module consistency
This section introduces the concept of runtime model attributes, a mechanism used by
the IAR compiler, assembler, and linker to ensure module consistency.

When developing an application, it is important to ensure that incompatible modules are
not used together. For example, in the 8051 IAR C/C++ Compiler, it is possible to write
a module that only supports separate registers. If you write a routine that support
separate DPTR registers, it is possible to check that the routine is not used in an
application built for shadowed DPTR.

The tools provided by IAR Systems use a set of predefined runtime model attributes.
You can use these predefined attributes or define your own to perform any type of
consistency check.

RUNTIME MODEL ATTRIBUTES

A runtime attribute is a pair constituted of a named key and its corresponding value. Two
modules can only be linked together if they have the same value for each key that they
both define.

There is one exception: if the value of an attribute is *, then that attribute matches any
value. The reason for this is that you can specify this in a module to show that you have
considered a consistency property, and this ensures that the module does not rely on that
property.
C8051-4

Part 1. Using the compiler 111

112

Checking module consistency
Example

In the following table, the object files could (but do not have to) define the two runtime
attributes color and taste. In this case, file1 cannot be linked with any of the other
files, since the runtime attribute color does not match. Also, file4 and file5 cannot
be linked together, because the taste runtime attribute does not match.

On the other hand, file2 and file3 can be linked with each other, and with either
file4 or file5, but not with both.

USING RUNTIME MODEL ATTRIBUTES

Runtime model attributes can be specified in your C/C++ source code to ensure module
consistency with other object files by using the #pragma rtmodel directive. For
example:

#pragma rtmodel="__rt_version", "1"

For detailed syntax information, see rtmodel, page 270.

Runtime model attributes can also be specified in your assembler source code by using
the RTMODEL assembler directive. For example:

RTMODEL "color", "red"

For detailed syntax information, see the 8051 IAR Assembler Reference Guide.

Note: The predefined runtime attributes all start with two underscores. Any attribute
names you specify yourself should not contain two initial underscores in the name, to
eliminate any risk that they will conflict with future IAR runtime attribute names.

At link time, the IAR XLINK Linker checks module consistency by ensuring that
modules with conflicting runtime attributes will not be used together. If conflicts are
detected, an error is issued.

Object file Color Taste

file1 blue not defined

file2 red not defined

file3 red *

file4 red spicy

file5 red lean

Table 27: Example of runtime model attributes
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
PREDEFINED RUNTIME ATTRIBUTES

The table below shows the predefined runtime model attributes that are available for the
8051 IAR C/C++ Compiler. These can be included in assembler code or in mixed C/C++
and assembler code.

Runtime model attribute Value Description

__calling_convention data_overlay,
idata_overlay,
idata_reentrant,
pdata_reentrant,
xdata_reentrant or
ext_stack_reentrant

Corresponds to the calling
convention used in the
project.

__code_model near, banked,
banked_ext2, or far

Corresponds to the code
model used in the project.

__core plain, extended1, or
extended2

Corresponds to the core
variant option used in the
project.

__data_model tiny, small, large,
generic, or far

Corresponds to the data
model used in the project.

__dptr_size 16 or 24 Corresponds to the size of the
data pointers used in your
application.

__dptr_visibility separate or shadowed Corresponds to the data
pointer visibility.

__extended_stack enabled or disabled Corresponds to the extended
stack option.

__location_for_constants code or data Corresponds to the option for
specifying the default location
for constants.

__number_of_dptrs a number from 1–8 Corresponds to the number
of data pointers available in
your application.

Table 28: Runtime model attributes
C8051-4

Part 1. Using the compiler 113

114

Checking module consistency
The easiest way to find the proper settings of the RTMODEL directive is to compile a C or
C++ module to generate an assembler file, and then examine the file.

If you are using assembler routines in the C or C++ code, refer to the chapter Assembler
directives in the 8051 IAR Assembler Reference Guide.

Examples

For an example of using the runtime model attribute __rt_version for checking
module consistency on used calling convention, see Hints for using a calling
convention, page 132.

The following assembler source code provides a function that counts the number of
times it has been called by increasing the register R4. The routine assumes that the
application does not use R4 for anything else, that is, the register has been locked for
usage. To ensure this, a runtime module attribute, __reg_r4, has been defined with a
value counter. This definition will ensure that this specific module can only be linked
with either other modules containing the same definition, or with modules that do not
set this attribute. Note that the compiler sets this attribute to free, unless the register is
locked.

RTMODEL "__reg_r4", "counter"
MODULE myCounter
PUBLIC myCounter
RSEG CODE:CODE:NOROOT(1)

myCounter: INC R4
RET
ENDMOD
END

If this module is used in an application that contains modules where the register R4 has
not been locked, an error is issued by the linker:

Error[e117]: Incompatible runtime models. Module myCounter
specifies that '__reg_r4' must be 'counter', but module part1
has the value 'free'

__rt_version n This runtime key is always
present in all modules
generated by the 8051 IAR
C/C++ Compiler. If a major
change in the runtime
characteristics occurs, the
value of this key changes.

Runtime model attribute Value Description

Table 28: Runtime model attributes (Continued)
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
USER-DEFINED RUNTIME MODEL ATTRIBUTES

In cases where the predefined runtime model attributes are not sufficient, you can define
your own attributes by using the RTMODEL assembler directive. For each property, select
a key and a set of values that describe the states of the property that are incompatible.
Note that key names that start with two underscores are reserved by the compiler.

For example, if you have a UART that can run in two modes, you can specify a runtime
model attribute, for example uart. For each mode, specify a value, for example mode1
and mode2. You should declare this in each module that assumes that the UART is in a
particular mode. This is how it could look like in one of the modules:

#pragma rtmodel="uart", "mode1"
C8051-4

Part 1. Using the compiler 115

116

Checking module consistency
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The CLIB runtime
environment
This chapter describes the runtime environment in which an application
executes. In particular, it covers the CLIB runtime library and how you can
optimize it for your application.

The standard library uses a small set of low-level input and output routines for
character-based I/O. This chapter describes how the low-level routines can be
replaced by your own version. The chapter also describes how you can choose
printf and scanf formatters.

The chapter then describes system initialization and termination. It presents
how an application can control what happens before the start function main is
called, and the method for how you can customize the initialization. Finally, the
C-SPY® runtime interface is covered.

Note that the CLIB runtime environment can only be used with the C
language. DLIB can be used with both the C and the C++ languages. see the
chapter The DLIB runtime environment, page 85.

For information about migrating from CLIB to DLIB, see the 8051 IAR
Embedded Workbench® Migration Guide.

Runtime environment
The CLIB runtime environment includes the C standard library. The linker will include
only those routines that are required—directly or indirectly—by your application. For
detailed reference information about the runtime libraries, see the chapter Library
functions.

The 8051 IAR Embedded Workbench comes with a set of prebuilt runtime libraries,
which are configured for different combinations of the following features:

● CLIB runtime environment

● Core variant
C8051-4

Part 1. Using the compiler 115

116

Runtime environment
● Stack location

● Code model

● Data model

● Calling convention

● Constant location

● Number of data pointers

● Data pointer visibility

● Data pointer size

● Data pointer selection method.

The number of possible combinations is high, but not all combinations are equally likely
to be useful. For this reason, only a subset of all possible runtime libraries is delivered
prebuilt with the product. The larger variants of the prebuilt libraries are also provided
for the DLIB library type. These are the libraries using the data models large or far. If
you need a library which is not delivered prebuilt, you must build it yourself, see
Building and using a customized library, page 95.

COMBINATIONS AND DEPENDENCIES

Not all combinations of core variant, code model, data model, and calling convention
are possible. The CLIB library type is default, unless you run the compiler in Embedded
C++ mode.

The runtime library names are constructed in the following way:

<type>-<core><stack>-<code_model><data_model><calling_convention>
<constants_location>-<#_of_dptrs><dptr_visibility><dptr_size>
<dptr_select>.r51

where

● <type> is cl for the IAR CLIB library, or dl for the IAR DLIB library,
respectively. See the chapter Library functions.

● <core> is pl for the plain classic devices, e1 for the extended1 devices, or e2 for
the extended2 devices. See Basic project settings for hardware memory
configuration, page 15.

● <stack> specifies where the machine stack is located; i for an idata stack and e for
an extended stack. All non-Maxim (Dallas Semiconductor) 390/400 devices should
use i, Maxim 390/400 devices can also use e.

● <code_model> is n, b, 2, or f for the near, banked, banked_extended2, or far code
model, respectively. See Code models for function storage, page 47.

● <data_model> is s, l, g, or f for the small, large, generic, or far data model,
respectively. See Data models, page 22.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The CLIB runtime environment
● <calling_convention> is d, o, i, p, x, or e, representing one of the available
calling conventions: data overlay (d), idata overlay (o), idata reentrant (i), pdata
reentrant (p), xdata reentrant (x), or extended stack reentrant (e). See Calling
convention, page 131.

● <constants_location> is the location for constants and strings: d or c for data
or code, respectively.

● <#_of_dptrs> is a number from 1 to 8 that represents the number of data pointers
used. See Using the DPTR register, page 17.

● <dptr_visibility>:how the DPTR is located in memory; at different locations:
e (separate) or at the same memory location: h (shadowed)

● <dptr_size> is the size of of the used data pointer; either 16 or 24.

● <dptr_select> shows the DPTR selection method and the selection mask if the
XOR selection method is used. In that case the value is x followed by the mask in
hexadecimal representation, for example 01 for 0x01, resulting in the selection field
x01. If the INC selection method is used, the value of the field is inc. See Using
the DPTR register, page 17.

The IAR Embedded Workbench IDE includes the correct runtime library based on the
options you select. See the IAR Embedded Workbench® IDE User Guide for additional
information.

Specify which runtime library object file to use on the XLINK command line, for
instance:

cl-pli-nsid-1e16x01.r51

Building a runtime library
It is easiest to build customized runtime libraries in the 8051 IAR Embedded Workbench
IDE. It is however, also possible to build them using the 8051 IAR C/C++ Compiler and
IAR XLINK Linker from the command line.

The standard runtime library can be customized using a set of definitions, see the source
code for details. For example, the following defines can be used to customize the IAR
CLIB C runtime library:

Symbol Description

MALLOC_BUFSIZE Specifies the size of the heap

QSORT_MAXSIZE Specifies the size of the quick sort buffer

FRMWRI_BUFSIZE Specifies the size of the formatted write buffer

Table 29: Defines used for customizing the runtime library
C8051-4

Part 1. Using the compiler 117

118

Input and output
Input and output
You can customize:

● The functions related to character-based I/O

● The formatters used by printf/sprintf and scanf/sscanf.

CHARACTER-BASED I/O

The functions putchar and getchar are the fundamental C functions for
character-based I/O. For any character-based I/O to be available, you must provide
definitions for these two functions, using whatever facilities the hardware environment
provides.

The creation of new I/O routines is based on the following files:

● putchar.c, which serves as the low-level part of functions such as printf

● getchar.c, which serves as the low-level part of functions such as scanf.

The code example below shows how memory-mapped I/O could be used to write to a
memory-mapped I/O device:

__no_init volatile unsigned char DEV_IO @ address;

 int putchar(int outchar)
 {
 DEV_IO = outchar;
 return outchar;
 }

The exact address is a design decision. For example, it can depend on the selected
processor variant.

For information about how to include your own modified version of putchar and
getchar in your project build process, see Overriding library modules, page 93.

FORMATTERS USED BY PRINTF AND SPRINTF

The printf and sprintf functions use a common formatter, called
_formatted_write. The full version of _formatted_write is very large, and
provides facilities not required in many embedded applications. To reduce the memory
consumption, two smaller, alternative versions are also provided in the standard C
library.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The CLIB runtime environment
_medium_write

The _medium_write formatter has the same functions as _formatted_write, except
that floating-point numbers are not supported. Any attempt to use a %f, %g, %G, %e, or
%E specifier will produce a runtime error:

FLOATS? wrong formatter installed!

_medium_write is considerably smaller than _formatted_write.

_small_write

The _small_write formatter works in the same way as _medium_write, except that
it supports only the %%, %d, %o, %c, %s, and %x specifiers for integer objects, and does
not support field width or precision arguments. The size of _small_write is 10–15%
that of _formatted_write.

Specifying the printf formatter in the IAR Embedded Workbench
IDE

1 Choose Project>Options and select the General Options category. Click the Library
options tab.

2 Select the appropriate Printf formatter option, which can be either Small, Medium,
or Large.

Specifying the printf formatter from the command line

To use the _small_write or _medium_write formatter, add the corresponding line in
the linker command file:

-e_small_write=_formatted_write

or

-e_medium_write=_formatted_write

To use the full version, remove the line.

Customizing printf

For many embedded applications, sprintf is not required, and even printf with
_small_write provides more facilities than are justified, considering the amount of
memory it consumes. Alternatively, a custom output routine may be required to support
particular formatting needs or non-standard output devices.
C8051-4

Part 1. Using the compiler 119

120

System startup and termination
For such applications, a much reduced version of the printf function (without
sprintf) is supplied in source form in the file intwri.c. This file can be modified to
meet your requirements, and the compiled module inserted into the library in place of
the original file; see Overriding library modules, page 93.

FORMATTERS USED BY SCANF AND SSCANF

Similar to the printf and sprintf functions, scanf and sscanf use a common
formatter, called _formatted_read. The full version of _formatted_read is very
large, and provides facilities that are not required in many embedded applications. To
reduce the memory consumption, an alternative smaller version is also provided.

_medium_read

The _medium_read formatter has the same functions as the full version, except that
floating-point numbers are not supported. _medium_read is considerably smaller than
the full version.

Specifying the scanf formatter in the IAR Embedded Workbench
IDE

1 Choose Project>Options and select the General Options category. Click the Library
options tab.

2 Select the appropriate Scanf formatter option, which can be either Medium or Large.

Specifying the read formatter from the command line

To use the _medium_read formatter, add the following line in the linker command file:

-e_medium_read=_formatted_read

To use the full version, remove the line.

System startup and termination
This section describes the actions the runtime environment performs during startup and
termination of applications.

The code for handling startup and termination is located in the source files
cstartup.s51, cmain.s51, cexit.s51, and low_level_init.c located in the
8051\src\lib directory.

Note: Normally, there is no need for customizing either of the files cmain.s51 or
cexit.s51.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The CLIB runtime environment
SYSTEM STARTUP

When an application is initialized, a number of steps are performed.

For the hardware intialization, it looks like this:

Figure 12: Target hardware initialization phase

● When the cpu is reset a jump will be performed to the program entry label
__program_start in the system startup code

● If the idata stack is used, the stack pointer, SP, is initialized to the beginning of the
ISTACK segment. If the extended stack is used, the extended stack pointer ?ESP:SP
is initialized to the beginning of the EXT_STACK segment

● If the xdata reentrant calling convention is available, the xdata stack pointer, XSP, is
initialized to the end of the XSTACK segment

● If the pdata reentrant calling convention is available, the pdata stack pointer, PSP, is
initialized to the end of the PSTACK segment

● If code banking is used, the bank register is initialized to zero

● The register bank switch register is initialized to the number specified in the linker
command file (?REGISTER_BANK)

● The PDATA page is initialized

● If multiple data pointers are available, the DPTR selector register is initialized and
the first data pointer (dptr0) is set to be the active data pointer

● The custom function __low_level_init is called, giving the application a chance
to perform early initializations
C8051-4

Part 1. Using the compiler 121

122

System startup and termination
For the C initialization, it looks like this:

Figure 13: C initialization phase

● Static variables are initialized; this includes clearing zero-initialized memory and
copying the ROM image of the RAM memory of the remaining initialized variables

● The main function is called, which starts the application.

Note that the system startup code contains code for more steps than described here. The
other steps are applicable to the DLIB runtime environment.

SYSTEM TERMINATION

An application can terminate normally in two different ways:

● Return from the main function

● Call the exit function.

Because the ISO/ANSI C standard states that the two methods should be equivalent, the
cstartup code calls the exit function if main returns. The parameter passed to the
exit function is the return value of main. The default exit function is written in
assembler.

When the application is built in debug mode, C-SPY stops when it reaches the special
code label ?C_EXIT.

An application can also exit by calling the abort function. The default function just
calls __exit in order to halt the system, without performing any type of cleanup.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The CLIB runtime environment
Overriding default library modules
The IAR CLIB Library contains modules which you probably need to override with
your own customized modules, for example for character-based I/O, without rebuilding
the entire library. For information about how to override default library modules, see
Overriding library modules, page 93, in the chapter The DLIB runtime environment.

Customizing system initialization
For information about how to customize system initialization, see Customizing system
initialization, page 99.

C-SPY runtime interface
The low-level debugger interface is used for communication between the application
being debugged and the debugger itself. The interface is simple: C-SPY will place
breakpoints on certain assembler labels in the application. When code located at the
special labels is about to be executed, C-SPY will be notified and can perform an action.

THE DEBUGGER TERMINAL I/O WINDOW

When code at the labels ?C_PUTCHAR and ?C_GETCHAR is executed, data will be sent to
or read from the debugger window.

For the ?C_PUTCHAR routine, one character is taken from the output stream and written.
If everything goes well, the character itself is returned, otherwise -1 is returned.

When the label ?C_GETCHAR is reached, C-SPY returns the next character in the input
field. If no input is given, C-SPY waits until the user has typed some input and pressed
the Return key.

To make the Terminal I/O window available, the application must be linked with the
XLINK option With I/O emulation modules selected. See the IAR Embedded
Workbench® IDE User Guide.

TERMINATION

The debugger stops executing when it reaches the special label ?C_EXIT.

Checking module consistency
For information about how to check module consistency, see Checking module
consistency, page 111.
C8051-4

Part 1. Using the compiler 123

124

Checking module consistency
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Assembler language
interface
When you develop an application for an embedded system, there may be
situations where you will find it necessary to write parts of the code in
assembler, for example when using mechanisms in the MCS-51
microcontroller that require precise timing and special instruction sequences.

This chapter describes the available methods for this, as well as some C
alternatives, with their advantages and disadvantages. It also describes how to
write functions in assembler language that work together with an application
written in C or C++.

Finally, the chapter covers how functions are called in the different code
models, the different memory access methods corresponding to the
supported memory types, and how you can implement support for call frame
information in your assembler routines for use in the C-SPY® Call Stack
window.

Mixing C and assembler
The 8051 IAR C/C++ Compiler provides several ways to mix C or C++ and assembler:

● Modules written entirely in assembler

● Intrinsic functions (the C alternative)

● Inline assembler.

It might be tempting to use simple inline assembler. However, you should carefully
choose which method to use.

INTRINSIC FUNCTIONS

The compiler provides a small number of predefined functions that allow direct access
to low-level processor operations without having to use the assembler language. These
functions are known as intrinsic functions. They can be very useful in, for example,
time-critical routines.
C8051-4

Part 1. Using the compiler 125

126

Mixing C and assembler
An intrinsic function looks like a normal function call, but it is really a built-in function
that the compiler recognizes. The intrinsic functions compile into inline code, either as
a single instruction, or as a short sequence of instructions.

The advantage of an intrinsic function compared to using inline assembler is that the
compiler has all necessary information to interface the sequence properly with register
allocation and variables. The compiler also knows how to optimize functions with such
sequences; something the compiler is unable to do with inline assembler sequences. The
result is that you get the desired sequence properly integrated in your code, and that the
compiler can optimize the result.

For detailed information about the available intrinsic functions, see the chapter Intrinsic
functions.

MIXING C AND ASSEMBLER MODULES

It is possible to write parts of your application in assembler and mix them with your C
or C++ modules. There are several benefits with this compared to using inline
assembler:

● The function call mechanism is well-defined

● The code will be easy to read

● The optimizer can work with the C or C++ functions.

There will be some overhead in the form of a function call and return instruction
sequences, and the compiler will regard some registers as scratch registers. However, the
compiler will also assume that all scratch registers are destroyed by an inline assembler
instruction. In many cases, the overhead of the extra instructions is compensated by the
work of the optimizer.

On the other hand, you will have a well-defined interface between what the compiler
produces and what you write in assembler. When using inline assembler, you will not
have any guarantees that your inline assembler lines do not interfere with the compiler
generated code.

When an application is written partly in assembler language and partly in C or C++, you
are faced with a number of questions:

● How should the assembler code be written so that it can be called from C?

● Where does the assembler code find its parameters, and how is the return value
passed back to the caller?

● How should assembler code call functions written in C?

● How are global C variables accessed from code written in assembler language?

● Why does not the debugger display the call stack when assembler code is being
debugged?
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Assembler language interface
The first issue is discussed in the section Calling assembler routines from C, page 128.
The following two are covered in the section Calling convention, page 131.

The section on memory access methods, page 142, covers how data in memory is
accessed.

The answer to the final question is that the call stack can be displayed when you run
assembler code in the debugger. However, the debugger requires information about the
call frame, which must be supplied as annotations in the assembler source file. For more
information, see Call frame information, page 144.

The recommended method for mixing C or C++ and assembler modules is described in
Calling assembler routines from C, page 128, and Calling assembler routines from
C++, page 130, respectively.

INLINE ASSEMBLER

It is possible to insert assembler code directly into a C or C++ function. The asm
keyword assembles and inserts the supplied assembler statement in-line. The following
example shows how to use inline assembler to insert assembler instructions directly in
the C source code. This example also shows the risks of using inline assembler.

__no_init __bit bool flag;

void foo(void)
{
 while (!flag)
 {
 asm("MOV C,0x98.0"); /* SCON.R1 */
 asm("MOV flag,C");
 }
}

In this example, the assignment of flag is not noticed by the compiler, which means the
surrounding code cannot be expected to rely on the inline assembler statement.

The inline assembler instruction will simply be inserted at the given location in the
program flow. The consequences or side-effects the insertion may have on the
surrounding code have not been taken into consideration. If, for example, registers or
memory locations are altered, they may have to be restored within the sequence of inline
assembler instructions for the rest of the code to work properly.
C8051-4

Part 1. Using the compiler 127

128

Calling assembler routines from C
Inline assembler sequences have no well-defined interface with the surrounding code
generated from your C or C++ code. This makes the inline assembler code fragile, and
will possibly also become a maintenance problem if you upgrade the compiler in the
future. In addition, there are several limitations to using inline assembler:

● The compiler’s various optimizations will disregard any effects of the inline
sequences, which will not be optimized at all

● In general, assembler directives will cause errors or have no meaning. Data
definition directives will work as expected

● Auto variables cannot be accessed

● Labels cannot be declared.

Inline assembler is therefore often best avoided. If there is no suitable intrinsic function
available, we recommend the use of modules written in assembler language instead of
inline assembler, because the function call to an assembler routine normally causes less
performance reduction.

Calling assembler routines from C
An assembler routine that is to be called from C must:

● Conform to the calling convention

● Have a PUBLIC entry-point label

● Be declared as external before any call, to allow type checking and optional
promotion of parameters, as in the following examples:

extern int foo(void);

or

extern int foo(int i, int j);

One way of fulfilling these requirements is to create skeleton code in C, compile it, and
study the assembler list file.

CREATING SKELETON CODE

The recommended way to create an assembler language routine with the correct
interface is to start with an assembler language source file created by the C compiler.
Note that you must create skeleton code for each function prototype.

The following example shows how to create skeleton code to which you can easily add
the functional body of the routine. The skeleton source code only needs to declare the
variables required and perform simple accesses to them.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Assembler language interface
In this example, the assembler routine takes an int and a char, and then returns an int:

extern int gInt;
extern char gChar;

int func(int arg1, char arg2)
{
 int locInt = arg1;
 gInt = arg1;
 gChar = arg2;
 return locInt;
}

int main()
{
 int locInt = gInt;
 gInt = func(locInt, gChar);
 return 0;
}

Note: In this example we use a low optimization level when compiling the code to
show local and global variable access. If a higher level of optimization is used, the
required references to local variables could be removed during the optimization. The
actual function declaration is not changed by the optimization level.

COMPILING THE CODE

In the IAR Embedded Workbench IDE, specify list options on file level. Select the file
in the workspace window. Then choose Project>Options. In the C/C++ Compiler
category, select Override inherited settings. On the List page, deselect Output list
file, and instead select the Output assembler file option and its suboption Include
source. Also, be sure to specify a low level of optimization.

Use the following options to compile the skeleton code:

icc8051 skeleton -lA .

The -lA option creates an assembler language output file including C or C++ source
lines as assembler comments. The . (period) specifies that the assembler file should be
named in the same way as the C or C++ module (skeleton), but with the filename
extension s51. Also remember to specify the code model, data model, and calling
convention you are using as well as a low level of optimization and -e for enabling
language extensions.

The result is the assembler source output file skeleton.s51.

Note: The -lA option creates a list file containing call frame information (CFI)
directives, which can be useful if you intend to study these directives and how they are
C8051-4

Part 1. Using the compiler 129

130

Calling assembler routines from C++
used. If you only want to study the calling convention, you can exclude the CFI
directives from the list file. In the IAR Embedded Workbench IDE, select
Project>Options>C/C++ Compiler>List and deselect the suboption Include
compiler runtime information. On the command line, use the option -lB instead of
-lA. Note that CFI information must be included in the source code to make the C-SPY
Call Stack window work.

The output file

The output file contains the following important information:

● The calling convention

● The return values

● The global variables

● The function parameters

● How to create space on the stack (auto variables)

● Call frame information (CFI).

The CFI directives describe the call frame information needed by the Call Stack window
in the IAR C-SPY Debugger.

Calling assembler routines from C++
The C calling convention does not apply to C++ functions. Most importantly, a function
name is not sufficient to identify a C++ function. The scope and the type of the function
are also required to guarantee type-safe linkage, and to resolve overloading.

Another difference is that non-static member functions get an extra, hidden argument,
the this pointer.

However, when using C linkage, the calling convention conforms to the C calling
convention. An assembler routine may therefore be called from C++ when declared in
the following manner:

extern "C"
{
 int my_routine(int x);
}

Memory access layout of non-PODs (“plain old data structures”) is not defined, and may
change between compiler versions. Therefore, we do not recommend that you access
non-PODs from assembler routines.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Assembler language interface
To achieve the equivalent to a non-static member function, the implicit this pointer has
to be made explicit:

class X;

extern "C"
{
 void doit(X *ptr, int arg);
}

It is possible to “wrap” the call to the assembler routine in a member function. Using an
inline member function removes the overhead of the extra call—provided that function
inlining is enabled:

class X
{
public:
 inline void doit(int arg) { ::doit(this, arg); }
};

Note: Support for C++ names from assembler code is extremely limited. This means
that:

● Assembler list files resulting from compiling C++ files cannot, in general, be passed
through the assembler.

● It is not possible to refer to or define C++ functions that do not have C linkage in
assembler.

Calling convention
A calling convention is the way a function in a program calls another function. The
compiler handles this automatically, but, if a function is written in assembler language,
you must know where and how its parameters can be found, how to return to the program
location from where it was called, and how to return the resulting value.

It is also important to know which registers an assembler-level routine must preserve. If
the program preserves too many registers, the program might be ineffective. If it
preserves too few registers, the result would be an incorrect program.

This section describes the calling conventions used by the 8051 IAR C/C++ Compiler.
The following items are examined:

● Choosing a calling convention

● Function declarations

● C and C++ linkage

● Preserved versus scratch registers
C8051-4

Part 1. Using the compiler 131

132

Calling convention
● Function entrance

● Function exit

● Return address handling.

At the end of the section, some examples are shown to describe the calling convention
in practice.

CHOOSING A CALLING CONVENTION

The 8051 IAR C/C++ Compiler supports different calling conventions that control how
memory is used for parameters and locally declared variables. You can specify a default
calling convention or you can explicitly declare the calling convention for each function.

The 8051 IAR C/C++ Compiler supports six different calling conventions:

● Data overlay

● Idata overlay

● Idata reentrant

● Pdata reentrant

● Xdata reentrant

● Extended stack reentrant.

For information about choosing a specific calling convention and when to use a specific
calling convention, see Auto variables—stack and static overlay, page 35.

Hints for using a calling convention

The calling convention can be very complex and if you intend to use it for your
assembler routines, you should create a list file and see how the compiler assigns the
different parameters to the available registers. For an example, see Creating skeleton
code, page 128.

If you intend to use a certain calling convention, you should also specify a value to the
runtime model attribute __rt_version using the RTMODEL assembler directive:

RTMODEL "__rt_version"="value"

The parameter value should have the same value as the one used internally by the
compiler. For information about what value to use, see the generated list file. If the
calling convention changes in future compiler versions, the runtime model value used
internally by the compiler will also change. Using this method gives a module
consistency check as the linker will produce an error if there is a mismatch between the
values.

For more information about checking module consistency, see Checking module
consistency, page 111.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Assembler language interface
FUNCTION DECLARATIONS

In C, a function must be declared in order for the compiler to know how to call it. A
declaration could look as follows:

int a_function(int first, char * second);

This means that the function takes two parameters: an integer and a pointer to a
character. The function returns a value, an integer.

In the general case, this is the only knowledge that the compiler has about a function.
Therefore, it must be able to deduce the calling convention from this information.

USING C LINKAGE IN C++ SOURCE CODE

In C++, a function can have either C or C++ linkage. To call assembler routines from
C++, it is easiest if you make the C++ function have C linkage.

The following is an example of a declaration of a function with C linkage:

extern "C"
{
 int f(int);
}

It is often practical to share header files between C and C++. The following is an
example of a declaration that declares a function with C linkage in both C and C++:

#ifdef __cplusplus
extern "C"
{
#endif

 int f(int);

#ifdef __cplusplus
}
#endif

PRESERVED VERSUS SCRATCH REGISTERS

The general MCS-51 CPU registers are divided into three separate sets, which are
described in this section.

Scratch registers

Any function is permitted to destroy the contents of a scratch register. If a function needs
the register value after a call to another function, it must store it during the call, for
example on the stack.
C8051-4

Part 1. Using the compiler 133

134

Calling convention
The following registers are scratch registers for all calling conventions: A, B, R0–R5, and
the carry flag.

In addition, the DPTR register (or the first DPTR register if there are more than one) is a
scratch register for all calling conventions except the xdata reentrant calling convention
and for banked routines. The DPTR register is also considered to be a scratch register if
a function is called indirectly, that is, via a function pointer.

Preserved registers

Preserved registers, on the other hand, are preserved across function calls. The called
function may use the register for other purposes, but must save the value prior to use and
restore it at the exit of the function.

For all calling conventions, all registers that are not scratch registers are preserved
registers. These are R6, R7, all virtual registers (V0–Vn) used by the application, the bit
register VB, and the DPTR register in the xdata reentrant calling convention and for
banked functions. However, the DPTR register (or the first DPTR register if there are more
than one) is not a preserved register if the function is called indirectly.

Note: If you are using multiple DPTR registers, all except the first one are always
preserved.

Special registers

For some registers there are certain prerequisites that you must consider:

● In the Banked code model, the default bank-switching routine uses the SFR port P1
as a bank switch register. For more details, see Bank switching in the Banked code
model, page 63.

● In the Banked extended2 code model, the default bank-switching routine uses the
MEX1 register and the memory extension stack. For more details, see Bank switching
in the Banked extended2 code model, page 64.

FUNCTION ENTRANCE

Parameters can be passed to a function using one of the following basic methods: in
registers, on the stack, or in the overlay frame. It is much more efficient to use registers
than to take a detour via memory, so all calling conventions are designed to utilize
registers as much as possible. There is only a limited number of registers that can be
used for passing parameters; when no more registers are available, the remaining
parameters are passed on the stack or overlay frame. In addition, the parameters are
passed on the stack or overlay frame—depending on calling convention—in the
following cases:

● Structure types: struct, union, and classes
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Assembler language interface
● Unnamed parameters to variable length functions; in other words, functions
declared as foo(param1, ...), for example printf.

Note: Interrupt functions cannot take any parameters.

Hidden parameters

In addition to the parameters visible in a function declaration and definition and
independently of the used calling convention there can be hidden parameters:

● If the function returns a structure, the memory location where to store the structure
is passed as the last function parameter. The size of the hidden pointer depends on
the calling convention used.

● If the function is a non-static Embedded C++ member function, then the this
pointer is passed as the first parameter. The reason for the requirement that the
member function must be non-static is that static member methods do not have a
this pointer.

Register parameters

Independently of the used calling convention, the five registers R1–R5 are available for
register parameters. Each register can contain an 8-bit value and a combination of the
registers can contain larger values. Bit parameters are passed in register B, starting with
B.0, B.1, etc. If more than eight bit parameters are required, up to eight more are passed
in the VB register.

The parameters can be passed in the following registers and register combinations:

The assignment of registers to parameters is a straightforward process. Traversing the
parameters in strict order from left to right, the first parameter is assigned to the first
available register or registers. Should there be no suitable register available, the
parameter is passed on the stack or overlay frame—depending on used calling
convention.

Parameters Passed in registers

1-bit values B.0, B.1, B.2, B.3, B.4, B.5, B.6, B.7,
VB.0, VB.1, VB.2, VB.3, VB.4, VB.5,
VB.6, or VB.7

8-bit values R1, R2, R3, R4, or R5

16-bit values R3:R2 or R5:R4

24-bit values R3:R2:R1

32-bit values R5:R4:R3:R2

Table 30: Registers used for passing parameters
C8051-4

Part 1. Using the compiler 135

136

Calling convention
Stack parameters and layout

Stack parameters are stored in memory starting at the location pointed to by the stack
pointer specified by the calling convention. The first stack parameter is stored directly
after the location pointed to by the stack pointer. The next one is stored directly after the
first one, etc.

The idata and extended stacks grow towards a higher address and the pdata and xdata
stacks grow towards a lower address.

When the stack parameters have been pushed on the stack, just before the LCALL
instruction is executed, the stack looks like this:

Figure 14: MCS-51 stacks

Note:

● Static overlay functions do not use a stack. Instead non-register parameters are
stored on the overlay frame.

● For banked function calls in the Banked extended2 code model, the most
significant byte of the return address is pushed on the memory extension stack.
The two lower bytes are pushed on the idata stack. For more details, see Bank
switching in the Banked extended2 code model, page 64.

FUNCTION EXIT

A function can return a value to the function or program that called it, or it can have the
return type void.

The return value of a function, if any, can be scalar (such as integers and pointers),
floating-point, or a structure.

The caller’s stack frame
Low
address

High
address

Stack parameter n

...

Stack parameter 2

Stack parameter 1

Free stack memory

Idata and extended stacks

Stack pointer

Free stack memory
Low
address

High
address

Stack parameter 1

Stack parameter 2

...

Stack parameter n

The caller’s stack frame

Pdata and xdata stacks

Stack pointer
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Assembler language interface
Registers used for returning values

For all calling conventions, scalar return values are passed in registers or in the carry bit.
The following registers or register combinations are used for the return value:

Returning structures

If a structure is returned, the caller passes a pointer to a location where the called
function should store the result. The pointer is passed as an implicit last argument to the
function. The called function returns the pointer to the returned value in the same way
as for other scalar results.

The location is allocated by the caller on the caller’s stack—which depends on the
current calling convention—and the called function refers to this location with a default
pointer. The default pointer being used depends on the data model. For more
information, see Choosing a calling convention, page 35.

Stack layout

It is the responsibility of the calling function to clean the stack.

For banked function calls, the return address passed on the stack, can be 3 bytes instead
of 2 bytes. For more information, see Bank switching, page 62.

Return address handling

A function written in assembler language should, when finished, return to the caller. The
location of a function’s return address will vary with the calling convention of the
function:

Return values Passed in registers

1-bit values Carry

8-bit values R1

16-bit values R3:R2

24-bit values R3:R2:R1

32-bit values R5:R4:R3:R2

Table 31: Registers used for returning values

Calling convention Location of return address Returns using †

Data overlay The MCS-51 call stack located in idata memory Assembler-written
exit routine

Table 32: Registers used for returning values
C8051-4

Part 1. Using the compiler 137

138

Calling convention
† Functions declared __monitor return in the same way as normal functions, depending on
used calling convention. Interrupt routines always returns using the RETI instruction.

EXAMPLES

The following section shows a series of declaration examples and the corresponding
calling conventions. The complexity of the examples increases towards the end.

Example 1

Assume that we have the following function declaration:

int add1(int);

This function takes one parameter in the register pair R3:R2, and the return value is
passed back to its caller in the register pair.

The following assembler routine is compatible with the declaration; it will return a value
that is one number higher than the value of its parameter:

MOV A,R2
ADD A,#1
MOV R2,A
MOV A,R3
ADDC A,#0
MOV R3,A
RET

Idata overlay The MCS-51 call stack located in idata memory Assembler-written
exit routine

Idata reentrant The MCS-51 call stack located in idata memory Assembler-written
exit routine

Pdata reentrant Moves the return address from the call stack to
the emulated pdata stack. However, very simple
pdata reentrant routines use the idata stack
instead. Interrupt routines always use the idata
stack for the return address.

Assembler-written
exit routine

Xdata reentrant Moves the return address from the call stack to
the emulated xdata stack. However, very simple
xdata reentrant routines use the idata stack
instead. Interrupt routines always use the idata
stack for the return address.

Assembler-written
exit routine

Extended stack reentrant The extended call stack located in external
memory,

Assembler-written
exit routine

Calling convention Location of return address Returns using †

Table 32: Registers used for returning values (Continued)
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Assembler language interface
Example 2

This example shows how structures are passed on the stack. Assume that we have the
following declarations:

struct a_struct { int a; int b; };
int a_function(struct a_struct x, char y);

The calling function must reserve four bytes on the top of the stack and copy the contents
of the struct to that location. The character parameter y is passed in the register R1.
The return value is passed back to its caller in the register pair R3:R2.

Example 3

The function below will return a struct.

struct a_struct { int a; };
struct a_struct a_function(int x);

It is the responsibility of the calling function to allocate a memory location for the return
value and pass a pointer to it as a hidden last parameter. The parameter x will be passed
in the register pair R3:R2 because x is the first parameter and R3:R2 the first available
register pair in the set used for 16-bit register parameters.

The hidden parameter is passed as a second argument to the function. The size of the
argument depends on the size of the pointer that refers to the temporary stack location
where the return value will be stored. For example, if the function uses the idata or pdata
reentrant calling convention, the 8-bit pointer will be located in register R1. If instead
the xdata reentrant calling convention is used, the 16-bit pointer will be passed in the
register pair R5:R4. If the extended stack reentrant calling convention is used the pointer
is passed on the stack, when some of the registers required to pass a 24-bit value
(R3:R2:R1) are already occupied.

Assume that the function instead would have been declared to return a pointer to the
structure:

struct a_struct * a_function(int x);

In this case, the return value is a scalar, so there is no hidden parameter. The parameter
x is passed in R3:R2, and the return value is returned in R1, R3:R2, or R3:R2:R1
depending on the data model used.

FUNCTION DIRECTIVES

The function directives FUNCTION, ARGFRAME, LOCFRAME, and FUNCALL are generated
by the 8051 IAR C/C++ Compiler to pass information about functions and function calls
to the IAR XLINK Linker. These directives can be seen if you use the compiler option
Assembler file (-lA) to create an assembler list file.
C8051-4

Part 1. Using the compiler 139

140

Calling functions
Note: These directives are primarily intended to support static overlay.

For reference information about the function directives, see the 8051 IAR Assembler
Reference Guide.

Calling functions
In this section, we describe how functions are called in the different code models.

There are two fundamentally different ways to call functions—directly or via a function
pointer. For each code model, we will discuss how both types of calls will be performed.

ASSEMBLER INSTRUCTIONS USED FOR CALLING
FUNCTIONS

This section presents the assembler instructions that can be used for calling and
returning from functions on the MCS-51 microcontroller.

Normally when calling a function, the LCALL assembler instruction is used:

LCALL label

The location the called function returns to (that is, the location immediately after the
LCALL instruction) is stored on the idata call stack, unless the extended stack is used in
which case the location is stored on the extended stack.

The following sections illustrates how the different code models performs function calls.

Near and Far code model

A direct call using these code models is simply:

LCALL function

Note: function is a 16-bit address in the Near code model and a 24-bit address in the
Far code model.

When a function returns control to the caller, the RET instruction is used.

When a function call is made via a function pointer in the Near code model, the
following assembler code is generated:

MOV DPL,#(func&0xFF) ; Low function address to DPL
MOV DPH,#((func>>8)&0xFF) ; High function address to DPH
LCALL ?CALL_IND ; Call library function in which

; the function call is made
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Assembler language interface
When a function call is made via a function pointer in the Far code model, the following
assembler code is generated:

MOV DPL,#(func&0xFF) ; Low function address to DPL
MOV DPH,#((func>>8)&0xFF) ; High function address to DPH
MOV DPX,#((func>>16)&0xFF) ; Highest function address to DPX
LCALL ?CALL_IND ; Call library function in which

; the function call is made

Banked code model

In the Banked code model, a direct call translates to the following assembler code:

LCALL ??function?relay

The call will also generate a relay function ??function?relay which has a 2-byte
address:

??function?relay
 LCALL ?BDISPATCH ; Call library function in which

; the function call is made
 DATA
 DC24 function ; Full 3-byte function address

A banked indirect function call translates to the following assembler code:

MOV DPL,#(??function?relay&0xFF)
MOV DPH,#((??function?relay>>8)&0xFF)
LCALL ?CALL_IND ; Call library function in which

; the function call is made

Banked extended2 code model

When using the Banked extended2 code model, a direct call translates to the following
assembler code:

MOV ?MEX1,((function>>16)&0xFF)
LCALL (function 0xFF)

An indirect function call looks like this:

MOV R1,(function&0xFF)
MOV R2,((function>>8)&0xFF)
MOV R3,((function>>16)&0xFF)
MOV DPL,R1
MOV DPH,R2
LCALL ?CALL_IND_EXT2 ; Call library function in which

; the function call is made
C8051-4

Part 1. Using the compiler 141

142

Memory access methods
Memory access methods
This section describes the different memory types presented in the chapter Data storage.
In addition to just presenting the assembler code used for accessing data, it will be used
for explaining the reason behind the different memory types.

You should be familiar with the MCS-51 instruction set, in particular the different
addressing modes used by the instructions that can access memory.

For each of the access methods described in the following sections, there will be two
examples:

● Accessing a global variable

● Accessing memory using a pointer. (This method is used when accessing local
data.)

DATA ACCESS METHOD

The data memory is the first 128 bytes of the internal data memory. This memory can
be accessed using both direct and indirect addressing modes.

Examples

Accessing the global variable x:

MOV A,x

Access through a pointer, where R0 contains a pointer referring to x:

MOV A,@R0

IDATA ACCESS METHOD

The idata memory consists of the whole internal data memory. This memory can only
be accessed using the indirect addressing mode.

Examples

Accessing the global variable x:

MOV R0,#x ; R0 is loaded with the address of x
MOV A,@R0

Access through a pointer, where R0 contains a pointer referring to x:

MOV A,@R0
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Assembler language interface
PDATA ACCESS METHOD

The pdata memory consists of a 256-byte block of external memory (xdata memory).
The data page that should be used—the high byte of the 2-byte address—can be
specified in the linker command file by redefining the symbols _PDATA_START and
_PDATA_END. The SFR register that contains the value of the data page can also be
specified in the linker command file by changing the definition of the ?PBANK symbol.
Pdata accesses can only be made using the indirect addressing mode.

Examples

Accessing the global variable x:

MOV R0,#x

Access through a pointer, where R0 contains a pointer referring to x:

MOVX A,@R0

XDATA ACCESS METHOD

The xdata memory consists of up to 64 Kbytes of the external memory. Xdata accesses
can only be made using the indirect addressing mode with the DPTR register:

MOV DPTR,#X
MOV A,@A+DPTR

FAR AND HUGE ACCESS METHODS

The far memory and the huge memory consist of up to 16 Mbytes of external memory
(extended xdata memory). Far and huge memory accesses are performed using 3-byte
data pointers in the same way as the xdata accesses. A far pointer is restricted to a 2-byte
offset; this restricts the maximum data object size to 64 Kbytes. The huge pointer has no
restrictions; it is a 3-byte pointer with a 3-byte offset.

Examples using the xdata, far, or huge access method

Accessing the global variable x:

MOV DPTR,#x
MOVX A,@DPTR

Access through a pointer, where DPTR contains a pointer referring to x:

MOVX A,@DPTR
C8051-4

Part 1. Using the compiler 143

144

Call frame information
GENERIC ACCESS METHOD

The generic access method only applies to pointers. If a __generic attribute is applied
to a non-pointer data object it will be interpreted as__xdata. When the generic data
model is used, the default pointer is __generic but the default data memory attribute
is __xdata. A generic pointer is 3 bytes in size. The most significant byte reveals if the
pointer points to idata, xdata or code memory, and the two least significant bytes specify
the address in that memory.

The most significant byte in a generic pointer is coded in the following way:

Generic pointers are very flexible and easy to use, but this flexibility comes at the price
of reduced execution speed and increased code size. Use generic pointers with caution
and only in controlled environments.

The register triplets R3:R2:R1 and R6:R5:R4 are used for accessing and manipulating
generic pointers.

Accesses to and manipulation of generic pointers are often performed by library
routines. If, for example, the register triplet R3:R2:HR1 contains a generic pointer to the
char variable x, the value of the variable is loaded into register A with a call to the
library routine ?C_GPRT_LOAD. This routine decodes the memory that should be
accessed and loads the contents into register A.

Call frame information
When debugging an application using C-SPY, it is possible to view the call stack, that
is, the chain of functions that have called the current function. The compiler makes this
possible by supplying debug information that describes the layout of the call frame, in
particular information about where the return address is stored.

If you want the call stack to be available when debugging a routine written in assembler
language, you must supply equivalent debug information in your assembler source using
the assembler directive CFI. This directive is described in detail in the 8051 IAR
Assembler Reference Guide.

Data type pointed to Coding of most significant byte

idata 0x01

xdata 0x00

code 0x80

Table 33: Coding of the most significant byte in a generic pointer
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Assembler language interface
The CFI directives will provide C-SPY with information about the state of the calling
function(s). Most important of this is the return address, and the value of the stack
pointer at the entry of the function or assembler routine. Given this information, C-SPY
can reconstruct the state for the calling function, and thereby unwind the stack.

A full description about the calling convention may require extensive call frame
information. In many cases, a more limited approach will suffice. The cstartup
routine and the assembler version of __low_level_init both include basic call
frame information sufficient to trace the call chain, but do not attempt to trace the values
of registers in calling functions. The common definitions for the call frame information
used by these routines can be found in the file iar_cfi.h, which is provided as source
code. These definitions can serve as an introduction and guide to providing call frame
information for your own assembler routines.

For an example of a complete implementation of call frame information, you may
write a C function and study the assembler language output file. See Calling
assembler routines from C, page 128.

When describing the call frame information, the following three components must be
present:

● A names block describing the available resources to be tracked

● A common block corresponding to the calling convention

● A data block describing the changes that are performed on the call frame. This
typically includes information about when the stack pointer is changed, and when
permanent registers are stored or restored on the stack.

The header file iar_cfi.m51 contains the macros CFI_names and CFI_common
which declare a typical names block and a typical common block. These two macros
declare a number of resources, both concrete and virtual. The following are of particular
interest:

Resource Description

A, B, PSW,DPS Resources located in SFR memory space

DPL0, DPH0, DPX0 Parts of the ordinary DPTR register (DPX0 only if a 3-byte DPTR is
used)

DPL1–DPL7 The low part for additional DPTR registers

DPH1–DPH7 The high part for additional DPTR registers

DPX1–DPX7 The extra part for additional DPTR registers if 3-byte DPTRs are
used

R0–R7 Register R0–R7. The locations for these registers might change at
runtime

Table 34: Resources for call-frame information
C8051-4

Part 1. Using the compiler 145

146

Call frame information
You should track at least ?RET, so that you can find your way back into the call stack.
Track R0–R7, V0–V31, and all available stack pointers to see the values of local
variables.

If your application uses more than one register bank, you must track PSW.

Example

The following is an example of an assembler routine that stores a tracked register (R4)
on the stack and uses CFI directives to annotate the changes on stack and annotate the
changes of locations of R4.

#include "iar_cfi.h"

 NAME cfiexample
 PUBLIC cfiexample
 FUNCTION cfiexample,0203H

 RSEG NEAR_CODE:CODE:NOROOT(0)
cfiexample:
 CFI BLOCK cfiexample_block USING cfi_common ; Note:
 cfi_common is defined in iar_cfi.h

VB Virtual register for holding 8-bit variables

V0–V31 Virtual registers located in DATA memory space

SP Stack pointer to the stack in IDATA memory

ESP Extended stack pointer to the stack in XDATA memory

ESP16 A concatenation of ESP and SP where SP contains the low byte and
ESP the high byte

PSP Stack pointer to the stack in PDATA memory

XSP Stack pointer to the stack in XDATA memory

?RET_EXT Third byte of the return address (for the far code model)

?RET_HIGH High byte of the return address

?RET_LOW Low byte of the return address

?RET A concatenation of ?RET_LOW, ?RET_HIGH and—if the far code
model is used—?RET_EXT

C, BR0, BR1, BR2, BR3,
BR4, BR5, BR6, BR7, BR8,
BR9, BR10, BR11, BR12,
BR13, BR14, BR15

Bit registers

Resource Description

Table 34: Resources for call-frame information (Continued)
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Assembler language interface
 CFI Function cfiexample

 MOV A,R4
 CFI R4 A

 PUSH A
 CFI R4 Frame(CFA_MACHINE,3,1)
 CFI CFA_MACHINE MACHINE_SP - 3

 /* Perform som actions to demonstrate the call stack.*/

 MOV R4,#0xa
 MOV A,#0x0
 MOV R3,A
 MOV A,R4
 MOV R2,A

 POP A
 CFI CFA_MACHINE MACHINE_SP - 2
 CFI R4 A

 MOV R4,A
 CFI R4 SAMEVALUE
 RET
 CFI EndBlock cfiexample_block
 END
C8051-4

Part 1. Using the compiler 147

148

Call frame information
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Using C++
IAR Systems supports two levels of the C++ language: The industry-standard
Embedded C++ and IAR Extended Embedded C++. They are described in this
chapter.

Overview
Embedded C++ is a subset of the C++ programming language which is intended for
embedded systems programming. It was defined by an industry consortium, the
Embedded C++ Technical Committee. Performance and portability are particularly
important in embedded systems development, which was considered when defining the
language.

STANDARD EMBEDDED C++

The following C++ features are supported:

● Classes, which are user-defined types that incorporate both data structure and
behavior; the essential feature of inheritance allows data structure and behavior to
be shared among classes

● Polymorphism, which means that an operation can behave differently on different
classes, is provided by virtual functions

● Overloading of operators and function names, which allows several operators or
functions with the same name, provided that there is a sufficient difference in their
argument lists

● Type-safe memory management using the operators new and delete

● Inline functions, which are indicated as particularly suitable for inline expansion.

C++ features which have been excluded are those that introduce overhead in execution
time or code size that are beyond the control of the programmer. Also excluded are
recent additions to the ISO/ANSI C++ standard. This is because they represent potential
portability problems, due to the fact that few development tools support the standard.
Embedded C++ thus offers a subset of C++ which is efficient and fully supported by
existing development tools.

Standard Embedded C++ lacks the following features of C++:

● Templates

● Multiple and virtual inheritance

● Exception handling
C8051-4

Part 1. Using the compiler 149

150

Overview
● Runtime type information

● New cast syntax (the operators dynamic_cast, static_cast,
reinterpret_cast, and const_cast)

● Namespaces

● The mutable attribute.

The exclusion of these language features makes the runtime library significantly more
efficient. The Embedded C++ library furthermore differs from the full C++ library in
that:

● The standard template library (STL) is excluded

● Streams, strings, and complex numbers are supported without the use of templates

● Library features which relate to exception handling and runtime type information
(the headers except, stdexcept, and typeinfo) are excluded.

Note: The library is not in the std namespace, because Embedded C++ does not
support namespaces.

EXTENDED EMBEDDED C++

IAR Systems’ Extended EC++ is a slightly larger subset of C++ which adds the
following features to the standard EC++:

● Full template support

● Namespace support

● The mutable attribute

● The cast operators static_cast, const_cast, and reinterpret_cast.

All these added features conform to the C++ standard.

To support Extended EC++, this product includes a version of the standard template
library (STL), in other words, the C++ standard chapters utilities, containers, iterators,
algorithms, and some numerics. This STL has been tailored for use with the Extended
EC++ language, which means that there are no exceptions, no multiple inheritance, and
no support for runtime type information (rtti). Moreover, the library is not in the std
namespace.

Note: A module compiled with Extended EC++ enabled is fully link-compatible with
a module compiled without Extended EC++ enabled.

ENABLING C++ SUPPORT

In the 8051 IAR C/C++ Compiler, the default language is C. To be able to compile files
written in Embedded C++, you must use the --ec++ compiler option. See --ec++, page
201. You must also use the IAR DLIB runtime library.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Using C++
To take advantage of Extended Embedded C++ features in your source code, you must
use the --eec++ compiler option. See --eec++, page 201.

To set the equivalent option in the IAR Embedded Workbench IDE, select
Project>Options>C/C++ Compiler>Language.

Feature descriptions
When writing C++ source code for the 8051 IAR C/C++ Compiler, there are some
benefits and some possible quirks that you need to be aware of when mixing C++
features—such as classes, and class members—with IAR language extensions, such as
IAR-specific attributes.

CLASSES

A class type class and struct in C++ can have static and non-static data members,
and static and non-static function members. The non-static function members can be
further divided into virtual function members, non-virtual function members,
constructors, and destructors. For the static data members, static function members, and
non-static non-virtual function members the same rules apply as for statically linked
symbols outside of a class. In other words, they can have any applicable IAR-specific
type, memory, and object attribute.

The non-static virtual function members can have any applicable IAR-specific type,
memory, and object attribute as long as a pointer to the member function can be
implicitly converted to the default function pointer type. The constructors, destructors,
and non-static data members cannot have any IAR attributes.

The location operator @ can be used on static data members and on any type of function
members.

For further information about attributes, see Type qualifiers, page 225.

Example

class A {
 public:
 static __xdata __no_init int i @ 60; //Located in xdata at
 //address 60
 static __near_func void f(); //Located in code memory
 __near_func void g(); //Located in code memory
 virtual __near_func void h();//Located in code memory
};
virtual void m() const volatile @ "SPECIAL" = 0; //m() placed in
 SPECIAL
C8051-4

Part 1. Using the compiler 151

152

Feature descriptions
The this pointer

The this pointer used for referring to a class object or calling a member function of a
class object will by default have the data memory attribute for the default data pointer
type. This means that such a class object can only be defined to reside in memory from
which pointers can be implicitly converted to a default data pointer. This restriction may
also apply to objects residing on a stack, for example temporary objects and auto
objects.

Example

class B {
 public:
 void f();
 int i;
};

Class memory

To compensate for this limitation, a class can be associated with a class memory type.
The class memory type changes:

● the this pointer type in all member functions, constructors, and destructors into a
pointer to class memory

● the default memory for static storage duration variables—that is, not auto
variables—of the class type, into the specified class memory

● the pointer type used for pointing to objects of the class type, into a pointer to class
memory.

Example

class __xdata C {
 public:
 void f(); // Has a this pointer of type C __xdata *
 void f() const; // Has a this pointer of type
 // C __xdata const *
 C(); // Has a this pointer pointing into xdata
 // memory
 C(C const &); // Takes a parameter of type C __xdata
 // const &
 // (also true of generated copy constructor)
 int i;
};
C Ca; // Resides in xdata memory instead of the
 // default memory
C __pdata Cb; // Resides in pdata memory, the 'this'
 // pointer still points into xdata memory
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Using C++
C __idata Cc; // Not allowed, __idata pointer can't be
 // implicitly converted into a __xdata
 // pointer
void h()
{
 C Cd; // Resides on the stack
}
C * Cp1; // Creates a pointer to xdata memory
C __pdata * Cp2; // Creates a pointer to pdata memory

Note: Whenever a class type associated with a class memory type, like C, must be
declared, the class memory type must be mentioned as well:

class __xdata C;

Also note that class types associated with different class memories are not compatible
types.

There is a built-in operator that returns the class memory type associated with a class,
__memory_of(class). For instance, __memory_of(C) returns __xdata.

When inheriting, the rule is that it must be possible to convert implicitly a pointer to a
subclass into a pointer to its base class. This means that a subclass can have a more
restrictive class memory than its base class, but not a less restrictive class memory.

class __xdata D : public C { // OK, same class memory
 public:
 void g();
 int j;
};

class __pdata E : public C { // OK, pdata memory is inside xdata
 public:
 void g() // Has a this pointer pointing into pdata memory
 {
 f(); // Gets a this pointer into xdata memory
 }
 int j;
};

class __idata F : public C { // Not OK, idata memory isn’t
 // inside xdata memory
 public:
 void g();
 int j;
};
C8051-4

Part 1. Using the compiler 153

154

Feature descriptions
class G : public C { // OK, will be associated with same class
 // memory as C
 public:
 void g();
 int j;
};

A new expression on the class will allocate memory in the heap residing in the class
memory. A delete expression will naturally deallocate the memory back to the same
heap. To override the default new and delete operator for a class, declare

void *operator new(size_t);
void operator delete(void *);

as member functions, just like in ordinary C++.

If a pointer to class memory cannot be implicitly casted into a default pointer type, no
temporaries can be created for that class, for instance if you have an xdata default
pointer, the following example will not work:

class __idata Foo {...}
void some_fun (Foo arg) {...}
Foo another_fun (int x) {...}

For more information about memory types, see Memory types, page 24.

FUNCTIONS

A function with extern "C" linkage is compatible with a function that has C++ linkage.

Example

extern "C" {
 typedef void (*fpC)(void); // A C function typedef
}
void (*fpCpp)(void); // A C++ function typedef

fpC f1;
fpCpp f2;
void f(fpC);

f(f1); // Always works
f(f2); // fpCpp is compatible with fpC

NEW AND DELETE OPERATORS

There are operators for new and delete for each memory that can have a heap, that is,
xdata, far, and huge memory.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Using C++
These examples assume that there is a heap in both far and huge memory.

void __huge * operator new __huge(__huge_size_t);
void __far * operator new __far (__far_size_t);
void operator delete(void __huge *);
void operator delete(void __far *);

And correspondingly for array new and delete operators:

void __huge * operator new[] __huge(__huge_size_t);
void __far * operator new[] __far (__far_size_t);
void operator delete[](void __huge *);
void operator delete[](void __far *);

Use this syntax if you want to override both global and class-specific operator new
and operator delete for any data memory.

Note that there is a special syntax to name the operator new functions for each
memory, while the naming for the operator delete functions relies on normal
overloading.

New and delete expressions

A new expression calls the operator new function for the memory of the type given. If
a class, struct, or union type with a class memory is used, the class memory will
determine the operator new function called. For example,

//Calls operator new __huge(__huge_size_t)
int __huge *p = new __huge int;

//Calls operator new __huge(__huge_size_t)
int __huge *q = new int __huge;

//Calls operator new[] __huge(__huge_size_t)
int __huge *r = new __huge int[10];

//Calls operator new __far(__far_size_t)
class __far S{...};
S *s = new S;

A delete expression calls the operator delete function that corresponds to the
argument given. For example,

delete p; //Calls operator delete(void __huge *)
delete s; //Calls operator delete(void __far *)

Note that the pointer used in a delete expression must have the correct type, that is, the
same type as that returned by the new expression. If you use a pointer to the wrong
memory, the result might be a corrupt heap.
C8051-4

Part 1. Using the compiler 155

156

Feature descriptions
For example,

int __huge * t = new __far int;
delete t; //Error: Causes a corrupt heap

TEMPLATES

Extended EC++ supports templates according to the C++ standard, except for the
support of the export keyword. The implementation uses a two-phase lookup which
means that the keyword typename has to be inserted wherever needed. Furthermore, at
each use of a template, the definitions of all possible templates must be visible. This
means that the definitions of all templates have to be in include files or in the actual
source file.

Templates and data memory attributes

For data memory attributes to work as expected in templates, two elements of the
standard C++ template handling have been changed—class template partial
specialization matching and function template parameter deduction.

In Extended Embedded C++, the class template partial specialization matching
algorithm works like this:

When a pointer or reference type is matched against a pointer or reference to a template
parameter type, the template parameter type will be the type pointed to, stripped of any
data memory attributes, if the resulting pointer or reference type is the same.

The comments in the example program sequences correspond to the template
instantiation.

Example

// Here we instantiate four different objects.
template<typename> class Z;
template<typename T> class Z<T *>;

Assume that xdata is the default data pointer:

Z<int __pdata *> zn; // T = int __pdata
Z<int __xdata *> zf; // T = int __xdata
Z<int *> zd; // T = int __xdata

Assume that pdata is instead the default pointer:

Z<int __xdata *> zh; // T = int __xdata
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Using C++
In Extended Embedded C++, the function template parameter deduction algorithm
works like this:

When function template matching is performed and an argument is used for the
deduction; if that argument is a pointer to a memory that can be implicitly converted to
a default pointer, do the parameter deduction as if it was a default pointer.

When an argument is matched against a reference, do the deduction as if the argument
and the parameter were both pointers.

Example

template<typename T> void fun(T *);

fun((int __pdata *) 0); // T = int __pdata. The result is
 // different than the analogous situation
 // with class template specializations.
fun((int *) 0); // T = int __xdata
fun((int __xdata *) 0); // T = int __xdata

Assume that pdata is instead the default pointer:

fun((int __xdata *) 0); // T = int __xdata

For templates that are matched using this modified algorithm, it is impossible to get
automatic generation of special code for pointers to small memory types. For large and
“other” memory types (memory that cannot be pointed to by a default pointer) it is
possible. In order to make it possible to write templates that are fully
memory-aware—in the rare cases where this is useful—use the
#pragma basic_template_matching directive in front of the template function
declaration. That template function will then match without the modifications described
above.

Example

#pragma basic_template_matching
template<typename T> void fun(T *);

Assume that xdata is the default pointer:

fun((int __pdata *) 0); // T = int __pdata

Non-type template parameters

It is allowed to have a reference to a memory type as a template parameter, even if
pointers to that memory type are not allowed.
C8051-4

Part 1. Using the compiler 157

158

Feature descriptions
Example

extern int __sfr x;

template<__sfr int &y>
void foo()
{
 y = 17;
}

void bar()
{
 foo<x>();
}

The standard template library

The STL (standard template library) delivered with the product is tailored for Extended
EC++, as described in Extended Embedded C++, page 150.

The containers in the STL, like vector and map, are memory attribute aware. This
means that a container can be declared to reside in a specific memory type which has the
following consequences:

● The container itself will reside in the chosen memory

● Allocations of elements in the container will use a heap for the chosen memory

● All references inside it use pointers to the chosen memory.

Example

vector<int> d; // d placed in default memory, using
 // the default heap, uses default
 // pointers
vector<int __xdata> __xdata x; // x placed in xdata memory, heap
 // allocation from xdata, uses
 // pointers to xdata memory
vector<int __xdata> __pdata y; // y placed in pdata memory, heap
 // allocation from xdata, uses
 // pointers to xdata memory
vector<int __pdata> __xdata z; // Illegal, because the heap
 // allocated in pdata uses pdata
 // pointers that cannot reach the
 // variable z, located in __xdata
 // memory
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Using C++
Note that map<key, T>, multimap<key, T>, hash_map<key, T>, and
hash_multimap<key, T> all use the memory of T. This means that the value_type
of these collections will be pair<key, const T> mem where mem is the memory type
of T. Supplying a key with a memory type is not useful.

Note that two containers that only differ by the data memory attribute they use cannot
be assigned to each other.

Example

vector<int __pdata> x;
vector<int __xdata> y;

x = y; // Illegal
y = x; // Illegal

However, the templated assign member method will work:

x.assign(y.begin(), y.end());
y.assign(x.begin(), x.end());

STL and the IAR C-SPY® Debugger

C-SPY has built-in display support for the STL containers.C-SPY has built-in display
support for the STL containers. The logical structure of containers is presented in the
watch views in a comprehensive way that is easy to understand and follow.

Note: To be able to watch STL containers with many elements in a comprehensive
way, the STL container expansion option—available by choosing
Tools>Options>Debugger—is set to display only a small number of items at first.

VARIANTS OF CASTS

In Extended EC++ the following additional C++ cast variants can be used:

 const_cast<t2>(t), static_cast<t2>(t), reinterpret_cast<t2>(t).

MUTABLE

The mutable attribute is supported in Extended EC++. A mutable symbol can be
changed even though the whole class object is const.

NAMESPACE

The namespace feature is only supported in Extended EC++. This means that you can
use namespaces to partition your code. Note, however, that the library itself is not placed
in the std namespace.
C8051-4

Part 1. Using the compiler 159

160

Feature descriptions
THE STD NAMESPACE

The std namespace is not used in either standard EC++ or in Extended EC++. If you
have code that refers to symbols in the std namespace, simply define std as nothing;
for example:

#define std // Nothing here

POINTER TO MEMBER FUNCTIONS

A pointer to a member function can only contain a default function pointer, or a function
pointer that can implicitly be casted to a default function pointer. To use a pointer to a
member function, make sure that all functions that should be pointed to reside in the
default memory or a memory contained in the default memory.

Example

class X{
public:
 __near_func void f();
};
void (__near_func X::*pmf)(void) = &X::f;

USING INTERRUPTS AND EC++ DESTRUCTORS

If interrupts are enabled and the interrupt functions use class objects that have
destructors, there may be problems if the program exits either by using exit or by
returning from main. If an interrupt occurs after an object has been destroyed, there is
no guarantee that the program will work properly.

To avoid this, make sure that interrupts are disabled when returning from main or when
calling exit or abort.

To avoid interrupts, place a call to the intrinsic function __disable_interrupt before
the call to _exit.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Using C++
C++ language extensions
When you use the compiler in C++ mode and have enabled IAR language extensions,
the following C++ language extensions are available in the compiler:

● In a friend declaration of a class, the class keyword may be omitted, for
example:

class B;
class A
{
 friend B; //Possible when using IAR language
 //extensions
 friend class B; //According to standard
};

● Constants of a scalar type may be defined within classes, for example:

class A {
 const int size = 10;//Possible when using IAR language
 //extensions
 int a[size];
};

According to the standard, initialized static data members should be used instead.

● In the declaration of a class member, a qualified name may be used, for example:

struct A {
 int A::f(); //Possible when using IAR language extensions
 int f(); //According to standard
};

● It is permitted to use an implicit type conversion between a pointer to a function
with C linkage (extern "C") and a pointer to a function with C++ linkage
(extern "C++"), for example:

extern "C" void f();//Function with C linkage
void (*pf) () //pf points to a function with C++ linkage
 = &f; //Implicit conversion of pointer.

According to the standard, the pointer must be explicitly converted.

● If the second or third operands in a construction that contains the ? operator are
string literals or wide string literals (which in C++ are constants), the operands may
be implicitly converted to char * or wchar_t *, for example:

char *P = x ? "abc" : "def"; //Possible when using IAR
 //language extensions
char const *P = x ? "abc" : "def"; //According to standard

● Default arguments may be specified for function parameters not only in the
top-level function declaration, which is according to the standard, but also in
C8051-4

Part 1. Using the compiler 161

162

C++ language extensions
typedef declarations, in pointer-to-function function declarations, and in
pointer-to-member function declarations.

● In a function that contains a non-static local variable and a class that contains a
non-evaluated expression (for example a sizeof expression), the expression may
reference the non-static local variable. However, a warning is issued.

Note: If you use any of these constructions without first enabling language extensions,
errors are issued.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Efficient coding for
embedded applications
For embedded systems, the size of the generated code and data is very
important, because using smaller external memory or on-chip memory can
significantly decrease the cost and power consumption of a system.

The topics discussed are:

● Selecting data types

● Controlling data and function placement in memory

● Controlling compiler optimizations

● Writing efficient code.

As a part of this, the chapter also demonstrates some of the more common
mistakes and how to avoid them, and gives a catalog of good coding
techniques.

Selecting data types
For efficient treatment of data, you should consider the data types used and the most
efficient placement of the variables.

USING EFFICIENT DATA TYPES

The data types you use should be considered carefully, because this can have a large
impact on code size and code speed.

● Use small and unsigned data types, (unsigned char and unsigned short)
unless your application really requires signed values.

● Bitfields with sizes other than 1 bit should be avoided because they will result in
inefficient code compared to bit operations.

● Declaring a pointer to const data tells the calling function that the data pointed to
will not change, which opens for better optimizations.
C8051-4

Part 1. Using the compiler 163

164

Selecting data types
For details about representation of supported data types, pointers, and structures types,
see the chapter Data representation.

FLOATING-POINT TYPES

The 8051 IAR C/C++ Compiler only supports the 32-bit floating-point format. The
64-bit floating-point format (double) is not supported. All types of the 64-bit
floating-point format will be treated as 32-bit floats. Also consider replacing code using
floating-point operations with code using integers because these are more efficient.

For more information about floating-point types, see Floating-point types, page 220.

USING THE BEST POINTER TYPE

The generic pointers can point to all memory spaces, which makes them simple and also
tempting to use. However, they carry a cost in that special code is needed before each
pointer access to check which memory the pointer points to and performing appropriate
actions. Use the smallest pointer type you can, and avoid any generic pointers.

ANONYMOUS STRUCTS AND UNIONS

When a structure or union is declared without a name, it becomes anonymous. The effect
is that its members will only be seen in the surrounding scope.

Anonymous structures are part of the C++ language; however, they are not part of the C
standard. In the 8051 IAR C/C++ Compiler they can be used in C if language extensions
are enabled.

In the IAR Embedded Workbench IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 200, for
additional information.

Example

In the following example, the members in the anonymous union can be accessed, in
function f, without explicitly specifying the union name:

struct s
{

char tag;
union
{

long l;
float f;

};
} st;
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Efficient coding for embedded applications
void f(void)
{

st.l = 5;
}

The member names must be unique in the surrounding scope. Having an anonymous
struct or union at file scope, as a global, external, or static variable is also allowed.
This could for instance be used for declaring I/O registers, as in the following example:

__no_init volatile
union
{

unsigned char IOPORT;
struct
{

unsigned char way: 1;
unsigned char out: 1;

};
} @ address;

This declares an I/O register byte IOPORT at address. The I/O register has 2 bits
declared, way and out. Note that both the inner structure and the outer union are
anonymous.

The following example illustrates how variables declared this way can be used:

void test(void)
{

IOPORT = 0;
way = 1;
out = 1;

}

Anonymous structures and unions are implemented in terms of objects named after the
first field, with a prefix _A_ to place the name in the implementation part of the
namespace. In this example, the anonymous union will be implemented through an
object named _A_IOPORT.

Controlling data and function placement in memory
The compiler provides different mechanisms for controlling placement of functions and
data objects in memory. To use memory efficiently, you should be familiar with these
mechanisms to know which one is best suited for different situations. You can use:

● Code and data models

Use the different compiler options for code and data models, respectively, to take
advantage of the different addressing modes available for the microcontroller and
C8051-4

Part 1. Using the compiler 165

166

Controlling data and function placement in memory
thereby also place functions and data objects in different parts of memory. To read
more about data and code models, see Data models, page 22, and Code models for
function storage, page 47, respectively.

● Memory attributes

Use memory attributes to override the default addressing mode and placement of
individual functions and data objects. To read more about memory attributes for data
and functions, see Using data memory attributes, page 30, and Code models for
function storage, page 47, respectively.

● Calling convention

The 8051 IAR C/C++ Compiler provides six different calling conventions that
control how memory is used for parameters and locally declared variables. You can
specify a default calling convention or you can explicitly declare the calling
convention for each individual function. To read more, see Choosing a calling
convention, page 35.

● The @ operator and the #pragma location directive for absolute placement

Use the @ operator or the #pragma location directive to place individual global
and static variables at absolute addresses. The variables must be declared either
__no_init or const. This is useful for individual data objects that must be located
at a fixed address, for example variables with external requirements, or for
populating any hardware tables similar to interrupt vector tables. Note that it is not
possible to use this notation for absolute placement of individual functions.

● The @ operator and the #pragma location directive for segment placement

Use the @ operator or the #pragma location directive to place groups of functions
or global and static variables in named segments, without having explicit control of
each object. The variables must be declared either __no_init or const. The
segments can, for example, be placed in specific areas of memory, or initialized or
copied in controlled ways using the segment begin and end operators. This is also
useful if you want an interface between separately linked units, for example an
application project and a boot loader project. Use named segments when absolute
control over the placement of individual variables is not needed, or not useful.

At compile time, data and functions are placed in different segments as described in
Data segments, page 72, and Code segments, page 81, respectively. At link time, one of
the most important functions of the linker is to assign load addresses to the various
segments used by the application. All segments, except for the segments holding
absolute located data, are automatically allocated to memory according to the
specifications of memory ranges in the linker command file, as described in Placing
segments in memory, page 68.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Efficient coding for embedded applications
DATA PLACEMENT AT AN ABSOLUTE LOCATION

The @ operator, alternatively the #pragma location directive, can be used for placing
global and static variables at absolute addresses. The variables must be declared using
one of the following combinations of keywords:

● __no_init

● __no_init and const (whithout initializers)

● const (with initializers).

To place a variable at an absolute address, the argument to the @ operator and the
#pragma location directive should be a literal number, representing the actual
address.

Note: A variable placed in an absolute location should be defined in an include file, to
be included in every module that uses the variable. An unused definition in a module
will be ignored. A normal extern declaration—one that does not use an absolute
placement directive—can refer to a variable at an absolute address; however,
optimizations based on the knowledge of the absolute address cannot be performed.

Examples

In this example, a __no_init declared variable is placed at an absolute address. This
is useful for interfacing between multiple processes, applications, etc:

__no_init volatile char alpha @ 0x80;/* OK */

In the following examples, there are two const declared objects, where the first is not
initialized, and the second is initialized to a specific value. Both objects are placed in
ROM. This is useful for configuration parameters, which are accessible from an external
interface. Note that in the second case, the compiler is not obliged to actually read from
the variable, because the value is known.

#pragma location=0x90
__no_init const int beta; /* OK */

const int gamma @ 0xA0 = 3; /* OK */

In the first case, the value is not initialized by the compiler; the value must be set by other
means. The typical use is for configurations where the values are loaded to ROM
separately, or for special function registers that are read-only.

The following example shows incorrect usage:

int delta @ 0xB0; /* Error, neither */
 /* "__no_init" nor "const".*/
C8051-4

Part 1. Using the compiler 167

168

Controlling data and function placement in memory
C++ considerations

In C++, module scoped const variables are static (module local), whereas in C they are
global. This means that each module that declares a certain const variable will contain
a separate variable with this name. If you link an application with several such modules
all containing (via a header file), for instance, the declaration:

volatile const __no_init int x @ 0x100; /* Bad in C++ */

the linker will report that there are more than one variable located at address 0x100.

To avoid this problem and make the process the same in C and C++, you should declare
these variables extern, for example:

extern volatile const __no_init int x @ 0x100; /* the extern
 keyword makes x public */

Note: C++ static member variables can be placed at an absolute address just like any
other static variable.

DATA AND FUNCTION PLACEMENT IN SEGMENTS

It is possible to place data or functions in named segments other than default. The @
operator, alternatively the #pragma location directive, can be used for placing
individual variables or individual functions in named segments. The named segment can
either be a predefined segment, or a user-defined segment. The variables must be
declared either __no_init or const. If declared const, they can have initializers.

C++ static member variables can be placed in named segments just like any other static
variable.

If you use your own segments, in addition to the predefined segments, the segments
must also be defined in the linker command file using the -Z or the -P segment control
directives.

Note: Take care when explicitly placing a variable or function in a predefined segment
other than the one used by default. This is useful in some situations, but incorrect
placement can result in anything from error messages during compilation and linking to
a malfunctioning application. Carefully consider the circumstances; there might be strict
requirements on the declaration and use of the function or variable.

For more information about segments, see the chapter Segment reference.

Examples of placing variables in named segments

In the following three examples, a data object is placed in a user-defined segment. The
segment will be allocated in default memory depending on the used data model.

__no_init int alpha @ "NOINIT"; /* OK */
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Efficient coding for embedded applications
#pragma location="CONSTANTS"
const int beta; /* OK */

const int gamma @ "CONSTANTS" = 3; /* OK */

To override the default segment allocation, you can explicitly specify a memory attribute
other than the default:

__idata __no_init int alpha @ "NOINIT";/* Placed in idata*/

The following example shows incorrect usage:

int delta @ "NOINIT"; /* Error, neither */
/* "__no_init" nor "const" */

Examples of placing functions in named segments

void f(void) @ "FUNCTIONS";

void g(void) @ "FUNCTIONS"
{
}

#pragma location="FUNCTIONS"
void h(void);

To override the default segment allocation, you can explicitly specify a memory attribute
other than the default:

__near_func void f(void) @ "FUNCTIONS";

Controlling compiler optimizations
The compiler performs many transformations on your application in order to generate
the best possible code. Examples of such transformations are storing values in registers
instead of memory, removing superfluous code, reordering computations in a more
efficient order, and replacing arithmetic operations by cheaper operations.

The linker should also be considered an integral part of the compilation system, because
there are some optimizations that are performed by the linker. For instance, all unused
functions and variables are removed and not included in the final output.
C8051-4

Part 1. Using the compiler 169

170

Controlling compiler optimizations
SCOPE FOR PERFORMED OPTIMIZATIONS

You can decide whether optimizations should be performed on your whole application
or on individual files. By default, the same types of optimizations are used for an entire
project, but you should consider using different optimization settings for individual files.
For example, put code that must execute very quickly into a separate file and compile it
for minimal execution time, and the rest of the code for minimal code size. This will give
a small program, which is still fast enough where it matters.

In addition, you can exclude individual functions from the performed optimizations. The
#pragma optimize directive allows you to either lower the optimization level, or
specify another type of optimization to be performed. Refer to optimize, page 267, for
information about the pragma directive.

OPTIMIZATION LEVELS

The 8051 IAR C/C++ Compiler supports different levels of optimizations. The
following table lists the optimizations that are performed on each level:

Note: Some of the performed optimizations can be individually enabled or disabled.
For more information about these, see Fine-tuning enabled transformations, page 171.

Optimization level Description

None (Best debug support) Variables live through their entire scope

Low Same as above but variables only live for as long as they are
needed, not necessarily through their entire scope
Dead code elimination
Redundant label elimination
Redundant branch elimination

Medium Same as above
Live-dead analysis and optimization
Code hoisting
Register content analysis and optimization
Common subexpression elimination

High (Balanced) Same as above
Peephole optimization
Cross jumping
Cross call (when optimizing for size)
Loop unrolling
Function inlining
Code motion
Type-based alias analysis

Table 35: Compiler optimization levels
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Efficient coding for embedded applications
A high level of optimization might result in increased compile time, and will most likely
also make debugging more difficult, because it will be less clear how the generated code
relates to the source code. For example, at the low, medium, and high optimization
levels, variables do not live through their entire scope, which means processor registers
used for storing variables can be reused immediately after they were last used. Due to
this, the C-SPY Watch window might not be able to display the value of the variable
throughout its scope. At any time, if you experience difficulties when debugging your
code, try lowering the optimization level.

SPEED VERSUS SIZE

At the high optimization level, the compiler balances between size and speed
optimizations. However, it is possible to fine-tune the optimizations explicitly for either
size or speed. They only differ in what thresholds that are used; speed will trade size for
speed, whereas size will trade speed for size. Note that one optimization sometimes
enables other optimizations to be performed, and an application may in some cases
become smaller even when optimizing for speed rather than size.

FINE-TUNING ENABLED TRANSFORMATIONS

At each optimization level you can disable some of the transformations individually. To
disable a transformation, use either the appropriate option, for instance the command
line option --no_inline, alternatively its equivalent in the IAR Embedded Workbench
IDE Function inlining, or the #pragma optimize directive. The following
transformations can individually be disabled:

● Common subexpression elimination

● Loop unrolling

● Function inlining

● Code motion

● Type-based alias analysis.

Common subexpression elimination

Redundant re-evaluation of common subexpressions is by default eliminated at
optimization levels Medium and High. This optimization normally reduces both code
size and execution time. However, the resulting code might be difficult to debug.

Note: This option has no effect at optimization levels None and Low.

To read more about the command line option, see --no_cse, page 207.
C8051-4

Part 1. Using the compiler 171

172

Controlling compiler optimizations
Loop unrolling

It is possible to duplicate the loop body of a small loop, whose number of iterations can
be determined at compile time, to reduce the loop overhead.

This optimization, which can be performed at optimization level High, normally
reduces execution time, but increases code size. The resulting code might also be
difficult to debug.

The compiler heuristically decides which loops to unroll. Different heuristics are used
when optimizing for speed, size, or when balancing between size and speed.

Note: This option has no effect at optimization levels None, Low, and Medium.

To read more about the command line option, see --no_unroll, page 209.

Function inlining

Function inlining means that a simple function, whose definition is known at compile
time, is integrated into the body of its caller to eliminate the overhead of the call. This
optimization, which is performed at optimization level High, normally reduces
execution time, but increases code size. The resulting code might also be difficult to
debug.

The compiler decides which functions to inline. Different heuristics are used when
optimizing for speed, size, or when balancing between size and speed.

Note: This option has no effect at optimization levels None, Low, and Medium.

To read more about the command line option, see --no_inline, page 207.

Code motion

Evaluation of loop-invariant expressions and common subexpressions are moved to
avoid redundant re-evaluation. This optimization, which is performed at optimization
level High, normally reduces code size and execution time. The resulting code might
however be difficult to debug.

Note: This option has no effect at optimization levels None, and Low.

Type-based alias analysis

When two or more pointers reference the same memory location, these pointers are said
to be aliases for each other. The existence of aliases makes optimization more difficult
because it is not necessarily known at compile time whether a particular value is being
changed.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Efficient coding for embedded applications
Type-based alias analysis optimization assumes that all accesses to an object will take
place using its declared type or as a char type. This assumption lets the compiler detect
whether pointers may reference the same memory location or not.

Type-based alias analysis is performed at optimization level High. For ISO/ANSI
standard-conforming C or C++ application code, this optimization can reduce code size
and execution time. However, non-standard-conforming C or C++ code might result in
the compiler producing code that leads to unexpected behavior. Therefore, it is possible
to turn this optimization off.

Note: This option has no effect at optimization levels None, Low, and Medium.

To read more about the command line option, see --no_tbaa, page 208.

Example

short f(short * p1, long * p2)
{
 *p2 = 0;
 *p1 = 1;
 return *p2;
}

With type-based alias analysis, it is assumed that a write access to the short pointed to
by p1 cannot affect the long value that p2 points to. Thus, it is known at compile time
that this function returns 0. However, in non-standard-conforming C or C++ code these
pointers could overlap each other by being part of the same union. By using explicit
casts, you can also force pointers of different pointer types to point to the same memory
location.

Writing efficient code
This section contains general programming hints on how to implement functions to
make your applications robust, but at the same time facilitate compiler optimizations.

The following is a list of programming techniques that will, when followed, enable the
compiler to better optimize the application.

● Local variables—auto variables and parameters—are preferred over static or global
variables. The reason is that the optimizer must assume, for example, that called
functions may modify non-local variables. When the life spans for local variables
end, the previously occupied memory can then be reused. Globally declared
variables will occupy data memory during the whole program execution.

● Avoid taking the address of local variables using the & operator. There are two main
reasons why this is inefficient. First, the variable must be placed in memory, and
thus cannot be placed in a processor register. This results in larger and slower code.
C8051-4

Part 1. Using the compiler 173

174

Writing efficient code
Second, the optimizer can no longer assume that the local variable is unaffected
over function calls.

● Module-local variables—variables that are declared static—are preferred over
global variables. Also avoid taking the address of frequently accessed static
variables.

● The compiler is capable of inlining functions. This means that instead of calling a
function, the compiler inserts the content of the function at the location where the
function was called. The result is a faster, but often larger, application. Also,
inlining may enable further optimizations. The compiler often inlines small
functions declared static. The use of the #pragma inline directive and the C++
keyword inline gives you fine-grained control, and it is the preferred method
compared to the traditional way of using preprocessor macros. This feature can be
disabled using the --no_inline command line option; see --no_inline, page 207.

● Avoid using inline assembler. Instead, try writing the code in C or C++, use intrinsic
functions, or write a separate module in assembler language. For more details, see
Mixing C and assembler, page 125.

SAVING STACK SPACE AND RAM MEMORY

The following is a list of programming techniques that will, when followed, save
memory and stack space:

● If stack space is limited, avoid long call chains and recursive functions.

● Avoid using large non-scalar types, such as structures, as parameters or return type;
in order to save stack space, you should instead pass them as pointers or, in C++, as
references.

● Use the smallest possible data type (and signed data types only when necessary)

● Declare variables with a short life span as auto variables. When the life spans for
these variables end, the previously occupied memory can then be reused. Globally
declared variables will occupy data memory during the whole program execution.
Be careful with auto variables, though, as the stack size can exceed its limits.

CALLING CONVENTIONS

The 8051 IAR C/C++ Compiler supports several calling conventions, using different
types of stacks. Try to use the smallest possible calling convention. The data overlay,
idata overlay, and idata reentrant calling conventions generate the most efficient code.
Pdata reentrant and extended stack reentrant functions add some overhead and xdata
reentrant functions even more.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Efficient coding for embedded applications
Because the xdata stack pointer and the extended stack pointer are larger than 8 bits, they
must be updated using two instructions. To make the system interrupt safe, interrupts
must be disabled while the stack pointer is updated. This generates an overhead if you
are using an xdata or extended stack.

Normally, it is enough to use the default calling convention. However, in some cases it
is better to explicitly declare functions of another calling convention, for example:

● Some large and stack-intensive functions do not fit within the limited restrictions of
a smaller calling convention. This function can then be declared to be of a larger
calling convention

● A large system that uses a limited number of small and important routines can have
these declared with a smaller calling convention for efficiency.

Note: Some restrictions apply when you mix different calling conventions. See Mixing
calling conventions, page 38.

FUNCTION PROTOTYPES

It is possible to declare and define functions using one of two different styles:

● Prototyped

● Kernighan & Ritchie C (K&R C)

Both styles are included in the C standard; however, it is recommended to use the
prototyped style, since it makes it easier for the compiler to find problems in the code.
In addition, using the prototyped style will make it possible to generate more efficient
code, since type promotion (implicit casting) is not needed. The K&R style is only
supported for compatibility reasons.

To make the compiler verify that all functions have proper prototypes, use the compiler
option Require prototypes (--require_prototypes).

Prototyped style

In prototyped function declarations, the type for each parameter must be specified.

int test(char, int); /* declaration */
int test(char a, int b) /* definition */
{

}

Kernighan & Ritchie style

In K&R style—traditional pre-ISO/ANSI C—it is not possible to declare a function
prototyped. Instead, an empty parameter list is used in the function declaration. Also,
the definition looks different.
C8051-4

Part 1. Using the compiler 175

176

Writing efficient code
int test(); /* old declaration */
int test(a,b) /* old definition */
char a;
int b;
{

}

INTEGER TYPES AND BIT NEGATION

There are situations when the rules for integer types and their conversion lead to
possibly confusing behavior. Things to look out for are assignments or conditionals (test
expressions) involving types with different size and logical operations, especially bit
negation. Here, types also includes types of constants.

In some cases there may be warnings (for example, constant conditional or pointless
comparison), in others just a different result than what is expected. Under certain
circumstances the compiler might warn only at higher optimizations, for example, if the
compiler relies on optimizations to identify some instances of constant conditionals. In
the following example an 8-bit character, a 16-bit integer, and two’s complement is
assumed:

void f1(unsigned char c1)
{
 if (c1 == ~0x80)
 ;
}

Here, the test is always false. On the right hand side, 0x80 is 0x0080, and ~0x0080
becomes 0xFF7F. On the left hand side, c1 is an 8-bit unsigned character, so it cannot
be larger than 255. It also cannot be negative, which means that the integral promoted
value can never have the topmost 8 bits set.

PROTECTING SIMULTANEOUSLY ACCESSED VARIABLES

Variables that are accessed asynchronously, for example by interrupt routines or by code
executing in separate threads, must be properly marked and have adequate protection.
The only exception to this is a variable that is always read-only.

To mark a variable properly, use the volatile keyword. This informs the compiler,
among other things, that the variable can be changed from other threads. The compiler
will then avoid optimizing on the variable (for example, keeping track of the variable in
registers), will not delay writes to it, and be careful accessing the variable only the
number of times given in the source code. To read more about the volatile type
qualifier, see Declaring objects volatile, page 225.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Efficient coding for embedded applications
A sequence that accesses a volatile declared variable must also not be interrupted.
This can be achieved by using the __monitor keyword in interruptible code. This must
be done for both write and read sequences, otherwise you might end up reading a
partially updated variable. This is true for all variables of all sizes. Accessing a
small-sized variable can be an atomic operation, but this is not guaranteed and you
should not rely on it unless you continuously study the compiler output. It is safer to use
the __monitor keyword to ensure that the sequence is an atomic operation.

Protecting the eeprom write mechanism

A typical example of when it can be necessary to use the __monitor keyword is when
protecting the eeprom write mechanism, which can be used from two threads (for
example, main code and interrupts). Servicing an interrupt during an EEPROM write
sequence can in many cases corrupt the written data.

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for a number of MCS-51 devices are included in the 8051 IAR
C/C++ product installation. The header files are named iodevice.h and define the
processor-specific special function registers (SFRs).

Note: Each header file contains one section used by the compiler, and one section used
by the assembler.

SFRs with bitfields are declared in the header file; the following example shows how the
program status register can be declared:

__sfr __no_init volatile union
{
 unsigned char PSW;
 struct
 {
 unsigned char CY: 1;
 unsigned char AC: 1;
 unsigned char FO: 1;
 unsigned char RS: 2;
 unsigned char OV: 1;
 unsigned char : 1;
 unsigned char P : 1;
 } PSW_bit;
} @ 0xD0;

By including the appropriate include file in your code, it is possible to access either the
whole register or any individual bit (or bitfields) from C code as follows:

// whole register access
PSW = 0x12;
C8051-4

Part 1. Using the compiler 177

178

Writing efficient code
// Bitfield accesses
PSW_bit.AC = 1;
PSW_bit.RS = 3;

You can also use the header files as templates when you create new header files for other
MCS-51 devices. For details about the @ operator, see Located data, page 81.

NON-INITIALIZED VARIABLES

Normally, the runtime environment will initialize all global and static variables when the
application is started.

The compiler supports the declaration of variables that will not be initialized, using the
__no_init type modifier. They can be specified either as a keyword or using the
#pragma object_attribute directive. The compiler places such variables in
separate segment, according to the specified memory keyword. See the chapter Placing
code and data for more information.

For __no_init, the const keyword implies that an object is read-only, rather than that
the object is stored in read-only memory. It is not possible to give a __no_init object
an initial value.

Variables declared using the __no_init keyword could, for example, be large input
buffers or mapped to special RAM that keeps its content even when the application is
turned off.

For information about the __no_init keyword, see page 253. Note that to use this
keyword, language extensions must be enabled; see -e, page 200. For information about
the #pragma object_attribute, see page 267.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Part 2. Reference
information
This part of the 8051 IAR C/C++ Compiler Reference Guide contains the
following chapters:

● External interface details

● Compiler options

● Data representation

● Compiler extensions

● Extended keywords

● Pragma directives

● Intrinsic functions

● The preprocessor

● Library functions

● Segment reference

● Implementation-defined behavior.
C8051-4

179

180
C8051-4

External interface details
This chapter provides reference information about how the compiler interacts
with its environment. The chapter briefly lists and describes the invocation
syntax, methods for passing options to the tools, environment variables, the
include file search procedure, and finally the different types of compiler output.

Invocation syntax
You can use the compiler either from the IAR Embedded Workbench IDE or from the
command line. Refer to the IAR Embedded Workbench® IDE User Guide for
information about using the compiler from the IAR Embedded Workbench IDE.

COMPILER INVOCATION SYNTAX

The invocation syntax for the compiler is:

icc8051 [options] [sourcefile] [options]

For example, when compiling the source file prog.c, use the following command to
generate an object file with debug information:

icc8051 prog --debug

The source file can be a C or C++ file, typically with the filename extension c or cpp,
respectively. If no filename extension is specified, the file to be compiled must have the
extension c.

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. There is, however, one exception: when you use
the -I option, the directories are searched in the same order that they are specified on the
command line.

If you run the compiler from the command line without any arguments, the compiler
version number and all available options including brief descriptions are directed to
stdout and displayed on the screen.

PASSING OPTIONS

There are three different ways of passing options to the compiler:

● Directly from the command line

Specify the options on the command line after the icc8051 command, either before
or after the source filename; see Invocation syntax, page 181.
C8051-4

Part 2. Compiler reference 181

182

Include file search procedure
● Via environment variables

The compiler automatically appends the value of the environment variables to every
command line; see Environment variables, page 182.

● Via a text file by using the -f option; see -f, page 202.

For general guidelines for the option syntax, an options summary, and a detailed
description of each option, see the Compiler options chapter.

ENVIRONMENT VARIABLES

The following environment variables can be used with the 8051 IAR C/C++ Compiler:

Include file search procedure
This is a detailed description of the compiler’s #include file search procedure:

● If the name of the #include file is an absolute path, that file is opened.

● If the compiler encounters the name of an #include file in angle brackets, such as:

#include <stdio.h>

it searches the following directories for the file to include:

1 The directories specified with the -I option, in the order that they were
specified, see -I, page 203.

2 The directories specified using the C_INCLUDE environment variable, if any, see
Environment variables, page 182.

● If the compiler encounters the name of an #include file in double quotes, for
example:

#include "vars.h"

it searches the directory of the source file in which the #include statement occurs,
and then performs the same sequence as for angle-bracketed filenames.

If there are nested #include files, the compiler starts searching the directory of the
file that was last included, iterating upwards for each included file, searching the
source file directory last.

Environment variable Description

C_INCLUDE Specifies directories to search for include files; for example:
C_INCLUDE=c:\program files\iar systems\embedded

workbench 4.n\8051\inc;c:\headers

QCCX51 Specifies command line options; for example: QCCX51=-lA asm.lst

Table 36: Compiler environment variables
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

External interface details
For example:

src.c in directory dir\src
#include "src.h"
...

src.h in directory dir\include
#include "config.h"
...

When dir\exe is the current directory, use the following command for compilation:

icc8051 ..\src\src.c -I..\include -I..\debugconfig

Then the following directories are searched in the order listed below for the file
config.h, which in this example is located in the dir\debugconfig directory:

dir\include Current file is src.h.

dir\src File including current file (src.c).

dir\include As specified with the first -I option.

dir\debugconfig As specified with the second -I option.

Use angle brackets for standard header files, like stdio.h, and double quotes for files
that are part of your application.

Note: Both \ and / can be used as directory delimiters.

Compiler output
The compiler can produce the following output:

● A linkable object file

The object files produced by the compiler use a proprietary format called UBROF,
which stands for Universal Binary Relocatable Object Format. By default, the object
file has the filename extension r51.

● Optional list files

Different types of list files can be specified using the compiler option -l, see -l, page
203. By default, these files will have the filename extension lst.

● Optional preprocessor output files

A preprocessor output file is produced when you use the --preprocess option; by
default, the file will have the filename extension i.

● Diagnostic messages

Diagnostic messages are directed to stderr and displayed on the screen, as well as
printed in an optional list file. To read more about diagnostic messages, see
Diagnostics, page 184.
C8051-4

Part 2. Compiler reference 183

184

Diagnostics
● Error return codes

These codes provide status information to the operating system which can be tested
in a batch file, see Error return codes, page 184.

● Size information

Information about the generated amount of bytes for functions and data for each
memory is directed to stdout and displayed on the screen. Some of the bytes might
be reported as shared.

Shared objects are functions or data objects that are shared between modules. If any
of these occur in more than one module, only one copy will be retained. For example,
in some cases inline functions are not inlined, which means that they are marked as
shared, because only one instance of each function will be included in the final
application. This mechanism is sometimes also used for compiler-generated code or
data not directly associated with a particular function or variable, and when only one
instance is required in the final application.

Error return codes

The 8051 IAR C/C++ Compiler returns status information to the operating system that
can be tested in a batch file.

The following command line error codes are supported:

Diagnostics
This section describes the format of the diagnostic messages and explains how
diagnostic messages are divided into different levels of severity.

MESSAGE FORMAT

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from the compiler is produced in the form:

filename,linenumber level[tag]: message

Code Description

0 Compilation successful, but there may have been warnings.

1 There were warnings and the option --warnings_affect_exit_code was
used.

2 There were errors.

3 There were fatal errors making the compiler abort.

4 There were internal errors making the compiler abort.

Table 37: Error return codes
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

External interface details
with the following elements:

Diagnostic messages are displayed on the screen, as well as printed in the optional list
file.

Use the option --diagnostics_tables to list all possible compiler diagnostic
messages.

SEVERITY LEVELS

The diagnostic messages are divided into different levels of severity:

Remark

A diagnostic message that is produced when the compiler finds a source code
construction that can possibly lead to erroneous behavior in the generated code.
Remarks are by default not issued, but can be enabled, see --remarks, page 214.

Warning

A diagnostic message that is produced when the compiler finds a programming error or
omission which is of concern, but not so severe as to prevent the completion of
compilation. Warnings can be disabled by use of the command line option
--no_warnings, see page 209.

Error

A diagnostic message that is produced when the compiler has found a construction
which clearly violates the C or C++ language rules, such that code cannot be produced.
An error will produce a non-zero exit code.

Fatal error

A diagnostic message that is produced when the compiler has found a condition that not
only prevents code generation, but which makes further processing of the source code
pointless. After the message has been issued, compilation terminates. A fatal error will
produce a non-zero exit code.

filename The name of the source file in which the issue was encountered

linenumber The line number at which the compiler detected the issue

level The level of seriousness of the issue

tag A unique tag that identifies the diagnostic message

message An explanation, possibly several lines long
C8051-4

Part 2. Compiler reference 185

186

Diagnostics
SETTING THE SEVERITY LEVEL

The diagnostic messages can be suppressed or the severity level can be changed for all
diagnostics messages, except for fatal errors and some of the regular errors.

See Summary of compiler options, page 190, for a description of the compiler options
that are available for setting severity levels.

See the chapter Pragma directives, for a description of the pragma directives that are
available for setting severity levels.

INTERNAL ERROR

An internal error is a diagnostic message that signals that there has been a serious and
unexpected failure due to a fault in the compiler. It is produced using the following form:

Internal error: message

where message is an explanatory message. If internal errors occur, they should be
reported to your software distributor or IAR Systems Technical Support. Include enough
information to reproduce the problem, typically:

● The product name

● The version number of the compiler, which can be seen in the header of the list files
generated by the compiler

● Your license number

● The exact internal error message text

● The source file of the application that generated the internal error

● A list of the options that were used when the internal error occurred.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Compiler options
This chapter describes the syntax of compiler options and the general syntax
rules for specifying option parameters, and gives detailed reference
information about each option.

Options syntax
Compiler options are parameters you can specify to change the default behavior of the
compiler. You can specify options from the command line—which is described in more
detail in this section—and from within the IAR Embedded Workbench IDE.

Refer to the IAR Embedded Workbench® IDE User Guide for information about the
compiler options available in the IAR Embedded Workbench IDE and how to set them.

TYPES OF OPTIONS

There are two types of names for command line options, short names and long names.
Some options have both.

● A short option name consists of one character, and it may have parameters. You
specify it with a single dash, for example -e

● A long option name consists of one or several words joined by underscores, and it
may have parameters. You specify it with double dashes, for example
--char_is_signed.

For information about the different methods for passing options, see Passing options,
page 182.

RULES FOR SPECIFYING PARAMETERS

There are some general syntax rules for specifying option parameters. First, the rules
depending on whether the parameter is optional or mandatory, and whether the option
has a short or a long name, are described. Then, the rules for specifying filenames and
directories are listed. Finally, the remaining rules are listed.

Rules for optional parameters

For options with a short name and an optional parameter, any parameter should be
specified without a preceding space, for example:

-O or -Oh
C8051-4

Part 2. Compiler reference 187

188

Options syntax
For options with a long name and an optional parameter, any parameter should be
specified with a preceding equal sign (=), for example:

--misrac=n

Rules for mandatory parameters

For options with a short name and a mandatory parameter, the parameter can be
specified either with or without a preceding space, for example:

-I..\src or -I ..\src\

For options with a long name and a mandatory parameter, the parameter can be specified
either with a preceding equal sign (=) or with a preceding space, for example:

--diagnostics_tables=filename

or

--diagnostics_tables filename

Rules for options with both optional and mandatory parameters

For options taking both optional and mandatory parameters, the rules for specifying the
parameters are:

● For short options, optional parameters are specified without a preceding space

● For long options, optional parameters are specified with a preceding equal sign (=)

● For short and long options, mandatory parameters are specified with a preceding
space.

For example, a short option with an optional parameter followed by a mandatory
parameter:

-lA filename

For example, a long option with an optional parameter followed by a mandatory
parameter:

--preprocess=n filename

Rules for specifying a filename or directory as parameters

The following rules apply for options taking a filename or directory as parameters:

● Options that take a filename as a parameter can optionally also take a path. The path
can be relative or absolute. For example, to generate a listing to the file list.lst
in the directory ..\listings\:

icc8051 prog -l ..\listings\list.lst
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Compiler options
● For options that take a filename as the destination for output, the parameter can be
specified as a path without a specified filename. The compiler stores the output in
that directory, in a file with an extension according to the option. The filename will
be the same as the name of the compiled source file, unless a different name has
been specified with the option -o, in which case that name will be used. For
example:

icc8051 prog -l ..\listings\

The produced list file will have the default name ..\listings\prog.lst

● The current directory is specified with a period (.). For example:

icc8051 prog -l .

● / can be used instead of \ as the directory delimiter.

● By specifying -, input files and output files can be redirected to stdin and stdout,
respectively. For example:

icc8051 prog -l -

Additional rules

In addition, the following rules apply:

● When an option takes a parameter, the parameter cannot start with a dash (-)
followed by another character. Instead, you can prefix the parameter with two
dashes; the following example will create a list file called -r:

icc8051 prog -l ---r

● For options that accept multiple arguments of the same type, the arguments can be
provided as a comma-separated list (without a space), for example:

--diag_warning=Be0001,Be0002

Alternatively, the option may be repeated for each argument, for example:

--diag_warning=Be0001
--diag_warning=Be0002
C8051-4

Part 2. Compiler reference 189

190

Summary of compiler options
Summary of compiler options
The following table summarizes the compiler command line options:

Command line option Description

--calling_convention Specifies the calling convention

--char_is_signed Treats char as signed

--code_model Specifies the code model

--core Specifies a CPU core

-D Defines preprocessor symbols

--data_model Specifies the data model

--debug Generates debug information

--dependencies Lists file dependencies

--diag_error Treats these as errors

--diag_remark Treats these as remarks

--diag_suppress Suppresses these diagnostics

--diag_warning Treats these as warnings

--diagnostics_tables Lists all diagnostic messages

--dlib_config Determines the library configuration file

--dptr Enables support for multiple data pointers

-e Enables language extensions

--ec++ Enables Embedded C++ syntax

--eec++ Enables Extended Embedded C++ syntax

--enable_multibytes Enables support for multibyte characters in source
files

--error_limit Specifies the allowed number of errors before
compilation stops

--extended_stack Specifies use of an extended stack

-f Extends the command line

--header_context Lists all referred source files and header files

-I Specifies include file path

-l Creates a list file

--library_module Creates a library module

--migration_preprocessor

_extensions

Extends the preprocessor

Table 38: Compiler options summary
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Compiler options
--misrac Enables MISRA C-specific error messages

--misrac_verbose Enables verbose logging of MISRA C checking

--module_name Sets the object module name

--no_code_motion Disables code motion optimization

--no_cse Disables common subexpression elimination

--no_inline Disables function inlining

--no_path_in_file_macros Removes the path from the return value of the
symbols __FILE__ and __BASE_FILE__

--no_tbaa Disables type-based alias analysis

--no_typedefs_in_diagnostics Disables the use of typedef names in diagnostics

--no_unroll Disables loop unrolling

--no_warnings Disables all warnings

--no_wrap_diagnostics Disables wrapping of diagnostic messages

--nr_virtual_regs Sets the work area size

-O Sets the optimization level

-o Sets the object filename

--omit_types Excludes type information

--only_stdout Uses standard output only

--output Sets the object filename

--place_constants Specifies the location of constants and strings

--preinclude Includes an include file before reading the source
file

--preprocess Generates preprocessor output

--public_equ Defines a global named assembler label

-r Generates debug information

--remarks Enables remarks

--require_prototypes Verifies that functions are declared before they are
defined

--rom_mon_bp_padding Enables setting breakpoints on all C statements
when debugging using the generic ROM-monitor.

--silent Sets silent operation

--strict_ansi Checks for strict compliance with ISO/ANSI C

--warnings_affect_exit_code Warnings affects exit code

Command line option Description

Table 38: Compiler options summary (Continued)
C8051-4

Part 2. Compiler reference 191

192

Descriptions of options
Descriptions of options
The following section gives detailed reference information about each compiler option.

Note that if you use the options page Extra Options to specify specific command line
options, the IAR Embedded Workbench IDE does not perform an instant check for
consistency problems like conflicting options, duplication of options, or use of
irrelevant options.

--calling_convention

Syntax --calling_convention=convention

Parameters

Description Use this option to specify the default calling convention for a module. All runtime
modules in an application must use the same calling convention. However, note that it
is possible to override this for individual functions, by using keywords.

See also Choosing a calling convention, page 35.

Project>Options>General Options>Target>Calling convention

--warnings_are_errors Warnings are treated as errors

Command line option Description

Table 38: Compiler options summary (Continued)

data_overlay|do

idata_overlay|io

idata_reentrant|ir

pdata_reentrant|pr

xdata_reentrant|xr

ext_stack_reentrant|er
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Compiler options
--char_is_signed

Syntax --char_is_signed

Description By default, the compiler interprets the char type as unsigned. Use this option to make
the compiler interpret the char type as signed instead. This can be useful when you, for
example, want to maintain compatibility with another compiler.

Note: The runtime library is compiled without the --char_is_signed option. If you
use this option, you may get type mismatch warnings from the linker, because the library
uses unsigned char.

Project>Options>C/C++ Compiler>Language>Plain ‘char’ is

--code_model

Syntax --code_model={near|n|banked|b|banked_ext2|b2|far|f}

Parameters

Description Use this option to select the code model for which the code is to be generated. If you do
not choose a code model option, the compiler uses the default code model. Note that all
modules of your application must use the same code model.

See also Code models for function storage, page 47.

Project>Options>General Options>Target>Code model

--core

Syntax --core={plain|pl|extended1|e1|extended2|e2}

Description Use this option to select the MCS-51 core for which the code is to be generated. If you
do not use the option to specify a core, the compiler uses the Plain core as default.

near|n Allows for up to 64 Kbytes of ROM; default for the core variant Plain.

banked|b Allows for up to 1 Mbyte of ROM via up to sixteen 64-Kbyte banks
and one root bank; supports banked 24-bit calls.

banked_ext2|b2 Allows for up to 16 Mbytes of ROM via up to sixteen 1-Mbyte banks;
supports banked 24-bit calls. Default for the core variant Extended2.

far|f Allows for up to 16 Mbytes of ROM and supports true 24-bit calls.
Default for the core variant Extended1.
C8051-4

Part 2. Compiler reference 193

194

Descriptions of options
Note that all modules of your application must use the same core. The compiler supports
the different MCS-51 microcontroller cores and devices based on these cores. The
object code that the compiler generates for one core is not binary compatible with code
for the other cores.

See also Basic project settings for hardware memory configuration, page 15 .

Project>Options>General Options>Target>Core

-D

Syntax -D symbol[=value]

Parameters

Description Use this option to define a preprocessor symbol. If no value is specified, 1 is used. This
option can be used one or more times on the command line.

The option -D has the same effect as a #define statement at the top of the source file:

-Dsymbol

is equivalent to:

#define symbol 1

In order to get the equivalence of:

#define FOO

specify the = sign but nothing after, for example:

-DFOO=

Project>Options>C/C++ Compiler>Preprocessor>Defined symbols

--data_model

Syntax --data_model={tiny|t|small|s|large|l|far|f|generic|g}

Parameters

symbol The name of the preprocessor symbol

value The value of the preprocessor symbol

tiny|t Default memory attribute __data
Default pointer attribute __idata
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Compiler options
Description Use this option to select the data model for which the code is to be generated. If you do
not choose a data model option, the compiler uses the default data model. Note that all
modules of your application must use the same data model.

See also Data models, page 22.

Project>Options>General Options>Target>Data model

--debug, -r

Syntax --debug
-r

Description Use the --debug or -r option to make the compiler include information in the object
modules required by the IAR C-SPY® Debugger and other symbolic debuggers.

Note: Including debug information will make the object files larger than otherwise.

Project>Options>C/C++ Compiler>Output>Generate debug information

--dependencies

Syntax --dependencies[=[i|m]] {filename|directory}

Parameters

small|s Default memory attribute __idata
Default pointer attribute __idata
Default for the core variant Plain

large|l Default memory attribute __xdata
Default pointer attribute __xdata
Default for the core variant Extended2

far|f Default memory attribute __far
Default pointer attribute __far
Default for the core variant Extended1

generic|g Default memory attribute __xdata
Default pointer attribute __generic

i (default) Lists only the names of files

m Lists in makefile style
C8051-4

Part 2. Compiler reference 195

196

Descriptions of options
For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 188.

Description Use this option to make the compiler list all source and header files opened by the
compilation into a file with the default filename extension i.

Example If --dependencies or --dependencies=i is used, the name of each opened source
file, including the full path, if available, is output on a separate line. For example:

 c:\iar\product\include\stdio.h
 d:\myproject\include\foo.h

If --dependencies=m is used, the output uses makefile style. For each source file, one
line containing a makefile dependency rule is produced. Each line consists of the name
of the object file, a colon, a space, and the name of a source file. For example:

 foo.r51: c:\iar\product\include\stdio.h
 foo.r51: d:\myproject\include\foo.h

An example of using --dependencies with a popular make utility, such as gmake
(GNU make):

1 Set up the rule for compiling files to be something like:

 %.r51 : %.c
 $(ICC) $(ICCFLAGS) $< --dependencies=m $*.d

That is, in addition to producing an object file, the command also produces a
dependency file in makefile style (in this example, using the extension .d).

2 Include all the dependency files in the makefile using, for example:

 -include $(sources:.c=.d)

Because of the dash (-) it works the first time, when the .d files do not yet exist.

This option is not available in the IAR Embedded Workbench IDE.

--diag_error

Syntax --diag_error=tag[,tag,...]

Parameters
tag The number of a diagnostic message, for example the message

number Pe117
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Compiler options
Description Use this option to reclassify certain diagnostic messages as errors. An error indicates a
violation of the C or C++ language rules, of such severity that object code will not be
generated. The exit code will be non-zero. This option may be used more than once on
the command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as errors

--diag_remark

Syntax --diag_remark=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as remarks. A remark is the
least severe type of diagnostic message and indicates a source code construction that
may cause strange behavior in the generated code. This option may be used more than
once on the command line.

Note: By default, remarks are not displayed; use the --remarks option to display
them.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as remarks

--diag_suppress

Syntax --diag_suppress=tag[,tag,...]

Parameters

Description Use this option to suppress certain diagnostic messages. These messages will not be
displayed. This option may be used more than once on the command line.

Project>Options>C/C++ Compiler>Diagnostics>Suppress these diagnostics

tag The number of a diagnostic message, for example the message
number Pe177

tag The number of a diagnostic message, for example the message
number Pe117
C8051-4

Part 2. Compiler reference 197

198

Descriptions of options
--diag_warning

Syntax --diag_warning=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as warnings. A warning
indicates an error or omission that is of concern, but which will not cause the compiler
to stop before compilation is completed. This option may be used more than once on the
command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as warnings

--diagnostics_tables

Syntax --diagnostics_tables {filename|directory}

Parameters For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 188.

Description Use this option to list all possible diagnostic messages in a named file. This can be
convenient, for example if you have used a pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

This option cannot be given together with other options.

This option is not available in the IAR Embedded Workbench IDE.

 --dlib_config

Syntax --dlib_config filename

Parameters For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 188.

Description Each runtime library requires a library configuration file. Use this option to specify the
library configuration file; choose between dl8051Normal.h and dl8051Full.h
depending on which library configuration you are using.

tag The number of a diagnostic message, for example the message
number Pe826
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Compiler options
You can find the library object files and the library configuration files in the directory
8051\lib. For examples and a list of prebuilt runtime libraries, see Using a prebuilt
library, page 88.

If you build your own customized runtime library, you should also create a
corresponding customized library configuration file, which must be specified to the
compiler. For more information, see Building and using a customized library, page 95.

Note: This option only applies to the IAR DLIB runtime environment.

See also Library configurations, page 87.

To set related options, choose:

Project>Options>General Options>Library Configuration

--dptr

Syntax --dptr={[size][,number][,visibility][,select]}

Parameters
size=16|24 The pointer size in bits. For the Extended1 core, the

default value is 24, for the other cores it is 16.

number=1|2|3|4|5|6|7|8 The number of data pointers (DPTR registers). For the
Extended1 core, the default value is 2, for all other cores
it is 1.

visibility=separate|

 shadowed

If you are using 2 or more data pointers, the DPTR0
register can either hide (shadow) the other registers,
making them unavailable to the compiler, or they can all be
visible in separate special function registers. The default
visibility is separate.

select=inc|xor(mask) Specifies the method for selecting the active data pointer.
XOR uses the ORL or ANL instruction to set the active
pointer in the data pointer selection register. The bits
used are specified in a bit mask. For example, if four data
pointers are used and the selection bits are bit 0 and bit 2,
the mask should be 0x05 (00000101 in binary format).
Default (0x01) for the Plain core.
INC increments the bits in the data pointer selection
register to select the active data pointer. See Selecting the
active data pointer, page 19. Default for the Extended1
core.
C8051-4

Part 2. Compiler reference 199

200

Descriptions of options
Description Use this option to enable support for more than one data pointer; a feature in many
MCS-51 devices. You can specify the number of pointers, the size of the pointers,
whether they are visible or not, and the method for switching between them.

To use multiple DPTRs, you must specify the location of the DPTR registers and the
data pointer selection register (?DPS), either in the linker command file or in the IAR
Embedded Workbench IDE.

Example To use two 16-bit data pointers, use:

--dptr=2,16

In this case, the default value separate is used for DPTR visibility and xor(0x01) is
used for DPTR selection.

To use four 24-bit pointers, all of them visible in separate registers, to be switched
between using the XOR method, use:

--dptr=24,4,separate,xor(0x05)

or

--dptr=24 --dptr=4 --dptr=separate --dptr=xor(0x05)

See also Code models for function storage, page 47.

Project>Options>General Options>Target>Data Pointer

-e

Syntax -e

Description In the command line version of the 8051 IAR C/C++ Compiler, language extensions are
disabled by default. If you use language extensions such as extended keywords and
anonymous structs and unions in your source code, you must enable them by using this
option.

Note: The -e option and the --strict_ansi option cannot be used at the same time.

See also The chapter Compiler extensions.

Project>Options>C/C++ Compiler>Language>Allow IAR extensions

Note: By default, this option is enabled in the IAR Embedded Workbench IDE.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Compiler options
--ec++

Syntax --ec++

Description In the 8051 IAR C/C++ Compiler, the default language is C. If you use Embedded C++,
you must use this option to set the language the compiler uses to Embedded C++.

Project>Options>C/C++ Compiler>Language>Embedded C++

--eec++

Syntax --eec++

Description In the 8051 IAR C/C++ Compiler, the default language is C. If you take advantage of
Extended Embedded C++ features like namespaces or the standard template library in
your source code, you must use this option to set the language the compiler uses to
Extended Embedded C++.

See also Extended Embedded C++, page 150.

Project>Options>C/C++ Compiler>Language>Extended Embedded C++

--enable_multibytes

Syntax --enable_multibytes

Description By default, multibyte characters cannot be used in C or C++ source code. Use this option
to make multibyte characters in the source code be interpreted according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in C and C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.

Project>Options>C/C++ Compiler>Language>Enable multibyte support
C8051-4

Part 2. Compiler reference 201

202

Descriptions of options
--error_limit

Syntax --error_limit=n

Parameters

Description Use the --error_limit option to specify the number of errors allowed before the
compiler stops the compilation. By default, 100 errors are allowed.

This option is not available in the IAR Embedded Workbench IDE.

--extended_stack

Syntax --extended_stack

Description Use this option to enable the extended stack that is available if you use an MCS-51
extended device. This option is set by default if the extended stack reentrant calling
convention is used. For all other calling conventions, the extended stack option is not set
by default.

Note: The extended stack option cannot be used with the idata or xdata stacks, and by
implication, neither with the idata reentrant or xdata reentrant calling conventions.

See also Code models for function storage, page 47.

Project>Options>General Options>Target>Do not use extended stack

-f

Syntax -f filename

Parameters For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 188.

Descriptions Use this option to make the compilerread command line options from the named file,
with the default filename extension xcl.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

n The number of errors before the compiler stops the compilation. n
must be a positive integer; 0 indicates no limit.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Compiler options
Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--header_context

Syntax --header_context

Description Occasionally, to find the cause of a problem it is necessary to know which header file
that was included from which source line. Use this option to list, for each diagnostic
message, not only the source position of the problem, but also the entire include stack at
that point.

This option is not available in the IAR Embedded Workbench IDE.

-I

Syntax -I path

Parameters

Description Use this option to specify the search paths for #include files. This option may be used
more than once on the command line.

See also Include file search procedure, page 182.

Project>Options>C/C++ Compiler>Preprocessor>Additional include directories

-l

Syntax -l[a|A|b|B|c|C|D][N][H] {filename|directory}

Parameters

path The search path for #include files

a Assembler list file

A Assembler list file with C or C++ source as comments
C8051-4

Part 2. Compiler reference 203

204

Descriptions of options
* This makes the list file less useful as input to the assembler, but more useful for reading by a
human.

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 188.

Description Use this option to generate an assembler or C/C++ listing to a file. Note that this option
can be used one or more times on the command line.

To set related options, choose:

Project>Options>C/C++ Compiler>List

--library_module

Syntax --library_module

Description Use this option to make the compiler generate a library module rather than a program
module. A program module is always included during linking. A library module will
only be included if it is referenced in your program.

Project>Options>C/C++ Compiler>Output>Module type>Library Module

b Basic assembler list file. This file has the same contents as a list file
produced with -la, except that no extra compiler-generated
information (runtime model attributes, call frame information, frame
size information) is included *

B Basic assembler list file. This file has the same contents as a list file
produced with -lA, except that no extra compiler generated
information (runtime model attributes, call frame information, frame
size information) is included *

c C or C++ list file

C (default) C or C++ list file with assembler source as comments

D C or C++ list file with assembler source as comments, but without
instruction offsets and hexadecimal byte values

N No diagnostics in file

H Include source lines from header files in output. Without this
option, only source lines from the primary source file are included

a Assembler list file
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Compiler options
--migration_preprocessor_extensions

Syntax --migration_preprocessor_extensions

Description If you need to migrate code from an earlier IAR Systems C or C/C++ compiler, you may
want to use this option. Use this option to use the following in preprocessor expressions:

● Floating-point expressions

● Basic type names and sizeof

● All symbol names (including typedefs and variables).

Note: If you use this option, not only will the compiler accept code that does not
conform to the ISO/ANSI C standard, but it will also reject some code that does conform
to the standard.

Important! Do not depend on these extensions in newly written code, because support
for them may be removed in future compiler versions.

Project>Options>C/C++ Compiler>Language>Enable IAR migration
preprocessor extensions

--misrac

Syntax --misrac[={n,o-p,…|all|required}]

Parameters
--misrac=n Enables checking for the MISRA C rule with number n

--misrac=o,n Enables checking for the MISRA C rules with numbers o and n

--misrac=o-p Enables checking for all MISRA C rules with numbers from o to p

--misrac=m,n,o-p Enables checking for MISRA C rules with numbers m, n, and from o
to p

--misrac=all Enables checking for all MISRA C rules

--misrac=required Enables checking for all MISRA C rules categorized as required
C8051-4

Part 2. Compiler reference 205

206

Descriptions of options
Description Use this option to enable the compiler to check for deviations from the rules described
in the MISRA Guidelines for the Use of the C Language in Vehicle Based Software
(1998). By using one or more arguments with the option, you can restrict the checking
to a specific subset of the MISRA C rules. If the compiler is unable to check for a rule,
specifying the option for that rule has no effect. For instance, MISRA C rule 15 is a
documentation issue, and the rule is not checked by the compiler. As a consequence,
specifying --misrac=15 has no effect.

To set related options, choose:

Project>Options>General Options>MISRA C or Project>Options>C/C++
Compiler>MISRA C

--misrac_verbose

Syntax --misrac_verbose

Description Use this option to generate a MISRA C log during compilation. This is a list of the rules
that are enabled—but not necessarily checked—and a list of rules that are actually
checked.

If this option is enabled, the compiler display a text at sign-on that shows both enabled
and checked MISRA C rules.

Project>Options>General Options>MISRA C>Log MISRA C Settings

--module_name

Syntax --module_name=name

Parameters

Description Normally, the internal name of the object module is the name of the source file, without
a directory name or extension. Use this option to specify an object module name
explicitly.

This option is useful when several modules have the same filename, because the
resulting duplicate module name would normally cause a linker error; for example,
when the source file is a temporary file generated by a preprocessor.

Project>Options>C/C++ Compiler>Output>Object module name

name An explicit object module name
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Compiler options
--no_code_motion

Syntax --no_code_motion

Description Use this option to disable code motion optimizations. These optimizations, which are
performed at the optimization levels Medium and High, normally reduce code size and
execution time. However, the resulting code may be difficult to debug.

Note: This option has no effect at optimization levels below Medium.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Code motion

--no_cse

Syntax --no_cse

Description Use this option to disable common subexpression elimination. At the optimization
levels Medium and High, the compiler avoids calculating the same expression more than
once. This optimization normally reduces both code size and execution time. However,
the resulting code may be difficult to debug.

Note: This option has no effect at optimization levels below Medium.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Common subexpression elimination

--no_inline

Syntax --no_inline

Description Use this option to disable function inlining. Function inlining means that a simple
function, whose definition is known at compile time, is integrated into the body of its
caller to eliminate the overhead of the call.

This optimization, which is performed at optimization level High, normally reduces
execution time and increases code size. The resulting code may also be difficult to
debug.

The compiler heuristically decides which functions to inline. Different heuristics are
used when optimizing for speed than for size.
C8051-4

Part 2. Compiler reference 207

208

Descriptions of options
Note: This option has no effect at optimization levels below High.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Function inlining

--no_path_in_file_macros

Syntax --no_path_in_file_macros

Description Use this option to exclude the path from the return value of the predefined preprocessor
symbols __FILE__ and __BASE_FILE__.

See also Descriptions of predefined preprocessor symbols, page 278.

This option is not available in the IAR Embedded Workbench IDE.

--no_tbaa

Syntax --no_tbaa

Description Use this option to disable type-based alias analysis. When this options is not used, the
compiler is free to assume that objects are only accessed through the declared type or
through unsigned char.

See also Type-based alias analysis, page 172.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Type-based alias analysis

--no_typedefs_in_diagnostics

Syntax --no_typedefs_in_diagnostics

Description Use this option to disable the use of typedef names in diagnostics. Normally, when a
type is mentioned in a message from the compiler, most commonly in a diagnostic
message of some kind, the typedef names that were used in the original declaration are
used whenever they make the resulting text shorter.

Example typedef int (*MyPtr)(char const *);
MyPtr p = "foo";
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Compiler options
will give an error message like the following:

Error[Pe144]: a value of type "char *" cannot be used to
initialize an entity of type "MyPtr"

If the --no_typedefs_in_diagnostics option is used, the error message will be like
this:

Error[Pe144]: a value of type "char *" cannot be used to
initialize an entity of type "int (*)(char const *)"

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_unroll

Syntax --no_unroll

Description Use this option to disable loop unrolling. The code body of a small loop, whose number
of iterations can be determined at compile time, is duplicated to reduce the loop
overhead.

For small loops, the overhead required to perform the looping can be large compared
with the work performed in the loop body.

The loop unrolling optimization duplicates the body several times, reducing the loop
overhead. The unrolled body also opens up for other optimization opportunities.

This optimization, which is performed at optimization level High, normally reduces
execution time, but increases code size. The resulting code may also be difficult to
debug.

The compiler heuristically decides which loops to unroll. Different heuristics are used
when optimizing for speed and size.

Note: This option has no effect at optimization levels below High.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Loop unrolling

--no_warnings

Syntax --no_warnings

Description By default, the compiler issues warning messages. Use this option to disable all warning
messages.
C8051-4

Part 2. Compiler reference 209

210

Descriptions of options
This option is not available in the IAR Embedded Workbench IDE.

--no_wrap_diagnostics

Syntax --no_wrap_diagnostics

Description By default, long lines in diagnostic messages are broken into several lines to make the
message easier to read. Use this option to disable line wrapping of diagnostic messages.

This option is not available in the IAR Embedded Workbench IDE.

--nr_virtual_regs

Syntax --nr_virtual_regs=n

Parameter

Description Use this option to specify the size of the work area. The virtual registers are located in
data memory.

See also Virtual registers, page 44.

Project>Options>General Options>Target>Number of virtual registers

-O

Syntax -O[n|l|m|h|hs|hz]

Parameters

*The most important difference between None and Low is that at None, all non-static variables
will live during their entire scope.

n The size of the work area; a value between 8 and 32.

n None* (Best debug support)

l (default) Low*

m Medium

h High, balanced

hs High, favoring speed

hz High, favoring size
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Compiler options
Description Use this option to set the optimization level to be used by the compiler when optimizing
the code. If no optimization option is specified, the optimization level Low is used by
default. If only -O is used without any parameter, the optimization level High balanced
is used.

A low level of optimization makes it relatively easy to follow the program flow in the
debugger, and, conversely, a high level of optimization makes it relatively hard.

See also Controlling compiler optimizations, page 169.

Project>Options>C/C++ Compiler>Optimizations

-o, --output

Syntax -o {filename|directory}
--output {filename|directory}

Parameters For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 188.

Description By default, the object code output produced by the compiler is located in a file with the
same name as the source file, but with the extension r51. Use this option to explicitly
specify a different output filename for the object code output.

This option is not available in the IAR Embedded Workbench IDE.

--omit_types

Syntax --omit_types

Description By default, the compiler includes type information about variables and functions in the
object output. Use this option if you do not want the compiler to include this type
information in the output, which is useful when you build a library that should not
contain type information. The object file will then only contain type information that is
a part of a symbol’s name. This means that the linker cannot check symbol references
for type correctness.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.
C8051-4

Part 2. Compiler reference 211

212

Descriptions of options
--only_stdout

Syntax --only_stdout

Description Use this option to make the compiler use the standard output stream (stdout) also for
messages that are normally directed to the error output stream (stderr).

This option is not available in the IAR Embedded Workbench IDE.

--output, -o

Syntax --output {filename|directory}
-o {filename|directory}

Parameters For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 188.

Description By default, the object code output produced by the compiler is located in a file with the
same name as the source file, but with the extension r51. Use this option to explicitly
specify a different output filename for the object code output.

This option is not available in the IAR Embedded Workbench IDE.

--place_constants

Syntax --place_constants={data|data_rom|code}

Parameters

Description Use this option to specify the default location for constants and strings. The default
location can be overridden for individual constants and strings by use of keywords.

data (default) Copies constants and strings from code memory to data memory.
The specific data memory depends on the default data model.

data_rom Places constants and strings in xdata or far memory, depending on
the data model, in a range where ROM is located. In the xdata data
model the objects are placed in xdata memory and in the far data
model they are placed in far memory. In the rest of the data models,
the data_rom modifier is not allowed.

code Places constants and strings in code memory. In this case, the
prebuilt runtime libraries cannot be used as is.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Compiler options
See also Constants and strings, page 34.

Project>Options>General Options>Target>Location for constants and strings

--preinclude

Syntax --preinclude includefile

Parameters For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 188.

Description Use this option to make the compiler include the specified include file before it starts to
read the source file. This is useful if you want to change something in the source code
for the entire application, for instance if you want to define a new symbol.

Project>Options>C/C++ Compiler>Preprocessor>Preinclude file

--preprocess

Syntax --preprocess[=[c][n][l]] {filename|directory}

Parameters

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 188.

Description Use this option to generate preprocessed output to a named file.

Project>Options>C/C++ Compiler>Preprocessor>Preprocessor output to file

--public_equ

Syntax --public_equ symbol[=value]

Parameters

c Preserve comments

n Preprocess only

l Generate #line directives

symbol The name of the assembler symbol to be defined

value An optional value of the defined assembler symbol
C8051-4

Part 2. Compiler reference 213

214

Descriptions of options
Description This option is equivalent to defining a label in assembler language using the EQU
directive and exporting it using the PUBLIC directive. This option may be used more
than once on the command line.

This option is not available in the IAR Embedded Workbench IDE.

-r, --debug

Syntax -r
--debug

Description Use the -r or the --debug option to make the compiler include information in the
object modules required by the IAR C-SPY Debugger and other symbolic debuggers.

Note: Including debug information will make the object files larger than otherwise.

Project>Options>C/C++ Compiler>Output>Generate debug information

--remarks

Syntax --remarks

Description The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that may cause strange behavior in the generated code. By default, the
compiler does not generate remarks. Use this option to make the compiler generate
remarks.

See also Severity levels, page 185.

Project>Options>C/C++ Compiler>Diagnostics>Enable remarks

--require_prototypes

Syntax --require_prototypes

Description Use this option to force the compiler to verify that all functions have proper prototypes.
Using this option means that code containing any of the following will generate an error:

● A function call of a function with no declaration, or with a Kernighan & Ritchie
C declaration

● A function definition of a public function with no previous prototype declaration
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Compiler options
● An indirect function call through a function pointer with a type that does not include
a prototype.

Note: This option only applies to functions in the C standard library.

Project>Options>C/C++ Compiler>Language>Require prototypes

--rom_mon_bp_padding

Syntax --rom_monitor_bp_padding

Description Use this option to enable setting breakpoints on all C statements when using the generic
C-SPY ROM-monitor debugger.

When the C-SPY ROM-monitor sets a breakpoint, it replaces the original instruction
with the 3-byte instruction LCALL monitor. For those cases where the original
instruction has a different size than three bytes, the compiler will insert extra NOP
instructions (pads) to ensure that all jumps to this destination are correctly aligned.

Note: This mechanism is only supported for breakpoints that you set on C-statement
level. For breakpoints in assembler code, you have to add pads manually.

Project>Options>C/C++ Compiler>Code>Padding for ROM-monitor
breakpoints

--silent

Syntax --silent

Description By default, the compiler issues introductory messages and a final statistics report. Use
this option to make the compiler operate without sending these messages to the standard
output stream (normally the screen).

This option does not affect the display of error and warning messages.

This option is not available in the IAR Embedded Workbench IDE.
C8051-4

Part 2. Compiler reference 215

216

Descriptions of options
--strict_ansi

Syntax --strict_ansi

Description By default, the compiler accepts a relaxed superset of ISO/ANSI C/C++, see Minor
language extensions, page 233. Use this option to ensure that the program conforms to
the ISO/ANSI C/C++ standard.

Note: The -e option and the --strict_ansi option cannot be used at the same time.

Project>Options>C/C++ Compiler>Language>Language conformances>Strict
ISO/ANSI

--warnings_affect_exit_code

Syntax --warnings_affect_exit_code

Description By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. With this option, warnings will also generate a non-zero exit code.

This option is not available in the IAR Embedded Workbench IDE.

--warnings_are_errors

Syntax --warnings_are_errors

Description Use this option to make the compiler treat all warnings as errors. If the compiler
encounters an error, no object code is generated. Warnings that have been changed into
remarks are not treated as errors.

Note: Any diagnostic messages that have been reclassified as warnings by the option
--diag_warning or the #pragma diag_warning directive will also be treated as
errors when --warnings_are_errors is used.

See also diag_warning, page 264.

Project>Options>C/C++ Compiler>Diagnostics>Treat all warnings as errors
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Data representation
This chapter describes the data types, pointers, and structure types supported
by the 8051 IAR C/C++ Compiler.

See the chapter Efficient coding for embedded applications for information about
which data types and pointers provide the most efficient code for your
application.

Alignment
Every C data object has an alignment that controls how the object can be stored in
memory. Should an object have an alignment of, for example, 4, it must be stored on an
address that is divisible by 4.

The reason for the concept of alignment is that some processors have hardware
limitations for how the memory can be accessed.

Assume that a processor can read 4 bytes of memory using one instruction, but only
when the memory read is placed on an address divisible by 4. Then, 4-byte objects, such
as long integers, will have alignment 4.

Another processor might only be able to read 2 bytes at a time; in that environment, the
alignment for a 4-byte long integer might be 2.

A structure type will have the same alignment as the structure member with the most
strict alignment. To lower the alignment requirements on the structure and its members,
use #pragma pack.

All data types must have a size that is a multiple of the alignment. Otherwise, only the
first element of an array would be placed in accordance with the alignment
requirements.

Note that with the #pragma data_alignment directive you can raise the alignment
demands on specific variables.

In the following example, the alignment of the structure is 4, under the assumption that
long has alignment 4. Its size is 8, even though only 5 bytes are effectively used.

struct str {
 long a;
 char b;
};

In standard C, the size of an object can be determined by using the sizeof operator.
C8051-4

Part 2. Compiler reference 217

218

Basic data types
ALIGNMENT ON THE MCS-51 MICROCONTROLLER

The MCS-51 microcontrollers have no alignment requirements, thus the alignment in
the 8051 IAR C/C++ Compiler is 1.

Basic data types

The compiler supports both all ISO/ANSI C basic data types and some additional types.

INTEGER TYPES

The following table gives the size and range of each integer data type:

Signed variables are represented using the two’s complement form.

Bool

The bool data type is supported by default in the C++ language. If you have enabled
language extensions, the bool type can also be used in C source code if you include the
file stdbool.h. This will also enable the boolean values false and true.

The enum type

The compiler will use the smallest type required to hold enum constants, preferring
signed rather than unsigned.

When IAR Systems language extensions are enabled, and in C++, the enum constants
and types can also be of the type long or unsigned long.

Data type Size Range Alignment

bool 1 bit 0 to 1 1

char 8 bits 0 to 255 1

signed char 8 bits -128 to 127 1

unsigned char 8 bits 0 to 255 1

signed short 16 bits -32768 to 32767 1

unsigned short 16 bits 0 to 65535 1

signed int 16 bits -32768 to 32767 1

unsigned int 16 bits 0 to 65535 1

signed long 32 bits -231 to 231-1 1

unsigned long 32 bits 0 to 232-1 1

Table 39: Integer types
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Data representation
To make the compiler use a larger type than it would automatically use, define an enum
constant with a large enough value. For example,

/* Disables usage of the char type for enum */
enum Cards{Spade1, Spade2,
 DontUseChar=257};

The char type

The char type is by default unsigned in the compiler, but the --char_is_signed
compiler option allows you to make it signed. Note, however, that the library is compiled
with the char type as unsigned.

The wchar_t type

The wchar_t data type is an integer type whose range of values can represent distinct
codes for all members of the largest extended character set specified among the
supported locals.

The wchar_t data type is supported by default in the C++ language. To use the
wchar_t type also in C source code, you must include the file stddef.h from the
runtime library.

Note: The IAR CLIB Library has only rudimentary support for wchar_t.

Bitfields

In ISO/ANSI C, int and unsigned int can be used as the base type for integer
bitfields. In the 8051 IAR C/C++ Compiler, any integer type can be used as the base type
when language extensions are enabled.

Bitfields in expressions will have the same data type as the integer base type. Note that
bitfields containing 1-bit fields will be very compact if declared in bdata memory. The
fields will also be very efficient to access.

By default, the compiler places bitfield members from the least significant to the most
significant bit in the container type.

By using the directive #pragma bitfields=reversed, the bitfield members are
placed from the most significant to the least significant bit.
C8051-4

Part 2. Compiler reference 219

220

Basic data types
FLOATING-POINT TYPES

In the 8051 IAR C/C++ Compiler, floating-point values are represented in standard
IEEE 754 format. The sizes for the different floating-point types are:

The compiler does not support subnormal numbers. All operations that should produce
subnormal numbers will instead generate zero.

Exception flags according to the IEEE 754 standard are not supported.

32-bit floating-point format

The representation of a 32-bit floating-point number as an integer is:

The exponent is 8 bits, and the mantissa is 23 bits.

The value of the number is:

(-1)S * 2(Exponent-127) * 1.Mantissa

The range of the number is:

±1.18E-38 to ±3.39E+38

The precision of the float operators (+, -, *, and /) is approximately 7 decimal digits.

Representation of special floating-point numbers

The following list describes the representation of special floating-point numbers:

● Zero is represented by zero mantissa and exponent. The sign bit signifies positive or
negative zero.

● Infinity is represented by setting the exponent to the highest value and the mantissa
to zero. The sign bit signifies positive or negative infinity.

● Not a number (NaN) is represented by setting the exponent to the highest positive
value and the mantissa to a non-zero value. The value of the sign bit is ignored.

Type Size Range (+/-) Exponent Mantissa

float 32 bits ±1.18E-38 to ±3.39E+38 8 bits 23 bits

double 32 bits ±1.18E-38 to ±3.39E+38 8 bits 23 bits

long double 32 bits ±1.18E-38 to ±3.39E+38 8 bits 23 bits

Table 40: Floating-point types

 31 30 23 22 0
S Exponent Mantissa
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Data representation
Note: The IAR CLIB Library does not fully support the special cases of floating-point
numbers, such as infinity and NaN. A library function which gets one of these special
cases of floating-point numbers as an argument may behave unexpectedly.

Pointer types
The 8051 IAR C/C++ Compiler has two basic types of pointers: function pointers and
data pointers.

FUNCTION POINTERS

Code pointers have two sizes: 16 or 24 bits. The following function pointers are
available:

DATA POINTERS

Data pointers have three sizes: 8, 16, or 24 bits. The 8-bit pointer is used for data, bdata,
idata or pdata memory, the 16-bit pointer is used for xdata or 16-bit code memory, and
the 24-bit pointer is used for extended memories and for the generic pointer type.

Pointer Size Address range Description

__near_func 2 bytes 0–0xFFFF Uses an LCALL/LJMP instruction to call
the function.

__banked_func 2 bytes 0–0xFFFFFF Calls a relay function which performs the
bank switch and jumps to the banked
function. Uses ?BRET to return from the
function. See Bank switching in the Banked
code model, page 63.

__banked_func_ext2 3 bytes 0–0xFFFFFF Uses the MEX1 register and the memory
extension stack. See Bank switching in the
Banked extended2 code model, page 64.

__far_func 3 bytes 0–0xFFFFFF Uses an extended LCALL/LJMP
instruction supporting a 24-bit destination
address to call the function. (These
instructions are only available in some
devices.)

Table 41: Function pointers
C8051-4

Part 2. Compiler reference 221

222

Pointer types
The following data pointers are available:

* The far pointer types have an index type that is smaller than the pointer size, which means
pointer arithmetic will only be performed on the lower 16 bits. This restricts the placement of
the object that the pointer points at. That is, the object can only be placed within 64-Kbyte pages.

Generic pointers

A generic pointer can access objects located in both data and code memory. These
pointers are 3 bytes in size. The most significant byte specifies which memory type the
object is located in and the two remaining bytes specify the address in that memory.
Generic pointers can therefore only address objects located in the first 64 Kbytes of code
and data memory. This means that devices that support a larger addressing range will
not be able to use generic pointers to access memory beyond the first 64 Kbytes.
Copying constant objects to data memory is a better solution for these devices.

The most significant bit in the memory specifier indicates whether data or code memory
is referred to (0=data, 1=code). The least significant bit indicates whether internal or
external data is referred to (0=xdata, 1=idata).

Pointer Address range
Pointer

size
Index type Description

__idata 0–0xFF 1 byte signed char Indirectly accessed data memory,
accessed using MOV A,@Ri

__pdata 0–0xFF 1 byte signed char Parameter data, accessed using MOVX
A,@Ri

__xdata 0–0xFFFF 2 bytes signed short Xdata memory, accessed using
MOVX A,@DPTR

__generic 0–0xFFFF 3 bytes signed short The most significant byte identifies
whether the pointer points to code or
data memory

__far* 0–0xFFFFFF 3 bytes signed short Far xdata memory, accessed using MOVX

__huge 0–0xFFFFFF 3 bytes signed long Huge xdata memory

__code 0–0xFFFF 2 bytes signed short Code memory, accessed using MOVC

__far_code* 0–0xFFFFFF 3 bytes signed short Far code memory, accessed using MOVC

__huge_code 0–0xFFFFFF 3 bytes signed long Huge code memory, accessed using
MOVC

__far_rom* 0–0xFFFFFF 3 bytes signed short Far code memory, accessed using MOVC

__huge_rom 0–0xFFFFFF 3 bytes signed long Huge code memory, accessed using
MOVC

Table 42: Data pointers
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Data representation
CASTING

Casts between pointers have the following characteristics:

● Casting a value of an integer type to a pointer of a smaller type is performed by
truncation

● Casting a value of an integer type to a pointer of a larger type is performed by zero
extension

● Casting a pointer type to a smaller integer type is performed by truncation

● Casting a pointer type to a larger integer type is performed by zero extension

● Casting a data pointer to a function pointer and vice versa is illegal

● Casting a function pointer to an integer type gives an undefined result

● Casting from a smaller pointer to a larger pointer is performed by truncation

● Casting from a larger pointer to a smaller pointer is performed by zero extension.

size_t

size_t is the unsigned integer type required to hold the maximum size of an object. In
the 8051 IAR C/C++ Compiler, the size of size_t is equal to the size of the unsigned
type corresponding to the signed index type of the data pointer in use. The index type of
data pointers is described in Table 42, Data pointers, page 222.

Note that for the small data model, this is formally a violation of the standard; the size
of size_t should actually be 16 bits.

ptrdiff_t

ptrdiff_t is the type of the signed integer required to hold the difference between two
pointers to elements of the same array. In the 8051 IAR C/C++ Compiler, the size of
ptrdiff_t is equal to the size of the index type of the data pointer in use. The index
type of data pointers is described in Table 42, Data pointers, page 222. When two
pointers of different types are subtracted, the index type of the largest type determines
the size.

Note: Subtracting the start address of an object from the end address can yield a
negative value, because the object can be larger than what the ptrdiff_t can represent.
See this example:

char buff[34000]; /* Assuming ptrdiff_t is a 16-bit */
char *p1 = buff; /* signed integer type. */
char *p2 = buff + 34000;
ptrdiff_t diff = p2 - p1;
C8051-4

Part 2. Compiler reference 223

224

Structure types
intptr_t

intptr_t is a signed integer type large enough to contain a void *. In the 8051 IAR
C/C++ Compiler, the size of intptr_t is 32 bits and the type is signed long.

uintptr_t

uintptr_t is equivalent to intptr_t, with the exception that it is unsigned.

Structure types
The members of a struct are stored sequentially in the order in which they are
declared: the first member has the lowest memory address.

GENERAL LAYOUT

Members of a struct (fields) are always allocated in the order given in the declaration.
The members are placed in memory according to the given alignment (offsets).

Example

struct {
short s; /* stored in byte 0 and 1 */
char c; /* stored in byte 2 */
long l; /* stored in byte 3, 4, 5, and 6 */
char c2; /* stored in byte 7 */

} s;

The following diagram shows the layout in memory:

The alignment of the structure is 1 byte, and its size is 8 bytes.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Data representation
Type qualifiers
According to the ISO/ANSI C standard, volatile and const are type qualifiers.

DECLARING OBJECTS VOLATILE

There are three main reasons for declaring an object volatile:

● Shared access; the object is shared between several tasks in a multitasking
environment

● Trigger access; as for a memory-mapped SFR where the fact that an access occurs
has an effect

● Modified access; where the contents of the object can change in ways not known to
the compiler.

Definition of access to volatile objects

The ISO/ANSI standard defines an abstract machine, which governs the behavior of
accesses to volatile declared objects. In general and in accordance to the abstract
machine, the compiler:

● Considers each read and write access to an object that has been declared volatile
as an access

● The unit for the access is either the entire object or, for accesses to an element in a
composite object—such as an array, struct, class, or union—the element. For
example:

char volatile a;
a = 5; /* A write access */
a += 6; /* First a read then a write access */

● An access to a bitfield is treated as an access to the underlaying type.

However, these rules are not detailed enough to handle the hardware-related
requirements. The rules specific to the 8051 IAR C/C++ Compiler are described below.

Rules for accesses

In the 8051 IAR C/C++ Compiler, accesses to volatile declared objects are subject to
the following rules:

● All accesses are preserved

● All accesses are complete, that is, the whole object is accessed

● All accesses are performed in the same order as given in the abstract machine

● All accesses are atomic, that is, they cannot be interrupted.
C8051-4

Part 2. Compiler reference 225

226

Data types in C++
The 8051 IAR C/C++ Compiler adheres to these rules for 8-bit accesses of volatile
declared objects in any data memory (RAM), and 1-bit accesses of volatile declared
objects located in bit-addressable sfr memory or in bdata memory. For all other
combinations, only the rule that states that all accesses are preserved applies.

DECLARING OBJECTS CONST

The const type qualifier is used for indicating that a data object, accessed directly or
via a pointer, is non-writable. A pointer to const declared data can point to both
constant and non-constant objects. It is good programming practice to use const
declared pointers whenever possible because this improves the compiler’s possibilities
to optimize the generated code and reduces the risk of application failure due to
erroneously modified data.

Static and global objects declared const and located in memories using the memory
attributes __code, __far_code, and __huge_code are allocated in ROM. For all
other memory attributes, the objects are allocated in RAM and initialized by the runtime
system at startup.

In C++, objects that require runtime initialization cannot be placed in ROM.

Data types in C++
In C++, all plain C data types are represented in the same way as described earlier in this
chapter. However, if any Embedded C++ features are used for a type, no assumptions
can be made concerning the data representation. This means, for example, that it is not
legal to write assembler code that accesses class members.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Compiler extensions
This chapter gives a brief overview of the 8051 IAR C/C++ Compiler
extensions to the ISO/ANSI C standard. All extensions can also be used for
the C++ programming language. More specifically the chapter describes the
available C language extensions.

Compiler extensions overview
The compiler offers the standard features of ISO/ANSI C as well as a wide set of
extensions, ranging from features specifically tailored for efficient programming in the
embedded industry to the relaxation of some minor standards issues.

You can find the extensions available as:

● C/C++ language extensions

For a summary of available language extensions, see C language extensions, page
228. For reference information about the extended keywords, see the chapter
Extended keywords. For information about C++, the two levels of support for the
language, and C++ language extensions; see the chapter Using C++.

● Pragma directives

The #pragma directive is defined by the ISO/ANSI C standard and is a mechanism
for using vendor-specific extensions in a controlled way to make sure that the source
code is still portable.

The compiler provides a set of predefined pragma directives, which can be used for
controlling the behavior of the compiler, for example how it allocates memory,
whether it allows extended keywords, and whether it outputs warning messages.
Most pragma directives are preprocessed, which means that macros are substituted
in a pragma directive. The pragma directives are always enabled in the compiler and
many of them have an equivalent C/C++ language extensions. For a list of available
pragma directives, see the chapter Pragma directives.

● Preprocessor extensions

The preprocessor of the compiler adheres to the ISO/ANSI standard. In addition, the
compiler also makes a number of preprocessor-related extensions available to you.
For more information, see the chapter The preprocessor.

● Intrinsic functions

The intrinsic functions provide direct access to low-level processor operations and
can be very useful in, for example, time-critical routines. The intrinsic functions
compile into inline code, either as a single instruction or as a short sequence of
C8051-4

Part 2. Compiler reference 227

228

C language extensions
instructions. To read more about using intrinsic functions, see Mixing C and
assembler, page 125. For a list of available functions, see the chapter Intrinsic
functions.

● Library functions

The IAR DLIB Library provides most of the important C and C++ library definitions
that apply to embedded systems. In addition, the library also provides some
extensions, partly taken from the C99 standard. For more information, see IAR DLIB
Library, page 287.

Note: Any use of these extensions, except for the pragma directives, makes your
application inconsistent with the ISO/ANSI C standard.

ENABLING LANGUAGE EXTENSIONS

In the IAR Embedded Workbench® IDE, language extensions are enabled by default.

For information about how to enable and disable language extensions from the
command line, see the compiler options -e, page 200, and --strict_ansi, page 216.

C language extensions
This section gives a brief overview of the C language extensions available in the 8051
IAR C/C++ Compiler. The compiler provides a wide set of extensions, so to help you to
find the extensions required by your application, the extensions have been grouped
according to their expected usefulness. In short, this means:

● Important language extensions—extensions specifically tailored for efficient
embedded programming, typically to meet memory restrictions

● Useful language extensions—features considered useful and typically taken from
related standards, such as C99 and C++

● Minor language extensions, that is, the relaxation of some minor standards issues
and also some useful but minor syntax extensions.

IMPORTANT LANGUAGE EXTENSIONS

The following language extensions available both in the C and the C++ programming
languages are well suited for embedded systems programming:

● Memory attributes, type attributes, and object attributes

For information about the related concepts, the general syntax rules, and for
reference information, see the chapter Extended keywords.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Compiler extensions
● Placement at an absolute address or in a named segment

The @ operator or the directive #pragma location can be used for placing global
and static variables at absolute addresses, or placing a variable or function in a named
segment. For more information about using these primitives, see Controlling data
and function placement in memory, page 165, and location, page 266.

● Alignment

Each data type has its own alignment, for more details, see Alignment, page 217. If
you want to change the alignment, the #pragma data_alignment directive is
available. If you want to check the alignment of an object, use the __ALIGNOF__()
operator.

The __ALIGNOF__ operator is used for accessing the alignment of an object. It takes
one of two forms:

● __ALIGNOF__ (type)

● __ALIGNOF__ (expression)

In the second form, the expression is not evaluated.

● Anonymous structs and unions

C++ includes a feature named anonymous unions. The compiler allows a similar
feature for both structs and unions in the C programming language. For more
information, see Anonymous structs and unions, page 164.

● Bitfields and non-standard types

In ISO/ANSI C, a bitfield must be of type int or unsigned int. Using IAR
Systems language extensions, any integer type or enumeration may be used. The
advantage is that the struct will sometimes be smaller. This matches G.5.8 in the
appendix of the ISO standard, ISO Portability Issues. For more information, see
Bitfields, page 219.

● Dedicated segment operators __segment_begin and __segment_end

The syntax for these operators is:

 void * __segment_begin(segment)
 void * __segment_end(segment)

These operators return the address of the first byte of the named segment and the
first byte after the named segment, respectively. This can be useful if you have used
the @ operator or the #pragma location directive to place a data object or a function
in a user-defined segment.

The named segment must be a string literal and segment must have been declared
earlier with the #pragma segment directive. If the segment was declared with a
memory attribute memattr, the type of the __segment_begin operator is a pointer
to memattr void. Otherwise, the type is a default pointer to void. Note that you
must have enabled language extensions to use these operators.
C8051-4

Part 2. Compiler reference 229

230

C language extensions
In the following example, the type of the __segment_begin operator is void
__huge *.

#pragma segment="MYSEGMENT" __huge
...
segment_start_address = __segment_begin("MYSECTION");

See also segment, page 271, and location, page 266.

USEFUL LANGUAGE EXTENSIONS

This section lists and briefly describes useful extensions, that is, useful features typically
taken from related standards, such as C99 and C++:

● Inline functions

The #pragma inline directive, alternatively the inline keyword, advises the
compiler that the function whose declaration follows immediately after the directive
should be inlined. This is similar to the C++ keyword inline. For more information,
see inline, page 265.

● Mixing declarations and statements

It is possible to mix declarations and statements within the same scope. This feature
is part of the C99 standard and C++.

● Declaration in for loops

It is possible to have a declaration in the initialization expression of a for loop, for
example:

for (int i = 0; i < 10; ++i)
{...}

This feature is part of the C99 standard and C++.

● The bool data type

To use the bool type in C source code, you must include the file stdbool.h. This
feature is part of the C99 standard and C++. (The bool data type is supported by
default in C++.)

● C++ style comments

C++ style comments are accepted. A C++ style comment starts with the character
sequence // and continues to the end of the line. For example:

// The length of the bar, in centimeters.
int length;

This feature is copied from the C99 standard and C++.

Inline assembler

Inline assembler can be used for inserting assembler instructions in the generated
function. This feature is part of the C99 standard and C++.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Compiler extensions
The asm and __asm extended keywords both insert an assembler instruction. However,
when compiling C source code, the asm keyword is not available when the option
--strict_ansi is used. The __asm keyword is always available.

Note: Not all assembler directives or operators can be inserted using this keyword.

The syntax is:

asm ("string");

The string can be a valid assembler instruction or a data definition assembler directive,
but not a comment. You can write several consecutive inline assembler instructions, for
example:

asm ("Label: nop\n"
 " lcall Label");

where \n (new line) separates each new assembler instruction. Note that you can define
and use local labels in inline assembler instructions.

For more information about inline assembler, see Mixing C and assembler, page 125.

Compound literals

To create compound literals you can use the following syntax:

/* Create a pointer to an anonymous array */
int *p = (int []) {1,2,3};

/* Create a pointer to an anonymous structX */
structX *px = &(structX) {5,6,7};

Note:

● A compound literal can be modified unless it is declared const

● Compound literals are not supported in Embedded C++ and Extended EC++.

● This feature is part of the C99 standard.

Incomplete arrays at end of structs

The last element of a struct may be an incomplete array. This is useful because one
chunk of memory can be allocated for the struct itself and for the array, regardless of
the size of the array.

Note: The array cannot be the only member of the struct. If that was the case, then
the size of the struct would be zero, which is not allowed in ISO/ANSI C.
C8051-4

Part 2. Compiler reference 231

232

C language extensions
Example

struct str
{
 char a;
 unsigned long b[];
};

struct str * GetAStr(int size)
{
 return malloc(sizeof(struct str) +
 sizeof(unsigned long) * size);
}

void UseStr(struct str * s)
{
 s->b[10] = 0;
}

The struct will inherit the alignment requirements from all elements, including the
alignment of the incomplete array. The array itself will not be included in the size of the
struct. However, the alignment requirements will ensure that the struct will end exactly
at the beginning of the array; this is known as padding.

Hexadecimal floating-point constants

Floating-point constants can be given in hexadecimal style. The syntax is
0xMANTp{+|-}EXP, where MANT is the mantissa in hexadecimal digits, including an
optional . (decimal point), and EXP is the exponent with decimal digits, representing an
exponent of 2. This feature is part of the C99 standard.

Examples

0x1p0 is 1

0xA.8p2 is 10.5*2^2

Designated initializers in structures and arrays

Any initialization of either a structure (struct or union) or an array can have a
designation. A designation consists of one or more designators followed by an
initializer. A designator for a structure is specified as .elementname and for an array
[constant index expression]. Using designated initializers is not supported in
C++.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Compiler extensions
Examples

The following definition shows a struct and its initialization using designators:

struct{
 int i;
 int j;
 int k;
 int l;
 short array[10];
} u = {
 .l = 6, /* initialize l to 6 */
 .j = 6, /* initialize j to 6 */
 8, /* initialize k to 8 */
 .array[7] = 2, /* initialize element 7 to 2 */
 .array[3] = 2, /* initialize element 3 to 2 */
 5, /* array[4] = 5 */
 .k = 4 /* reinitialize k to 4 */
};

Note that a designator specifies the destination element of the initialization. Note also
that if one element is initialized more than once, it is the last initialization that will be
used.

To initialize an element in a union other than the first, do like this:

union{
 int i;
 float f;
}y = {.f = 5.0};

To set the size of an array by initializing the last element, do like this:

char array[] = {[10] = ‘a’};

MINOR LANGUAGE EXTENSIONS

This section lists and briefly describes minor extensions, that is, the relaxation of some
standards issues and also some useful but minor syntax extensions:

● Arrays of incomplete types

An array may have an incomplete struct, union, or enum type as its element type.
The types must be completed before the array is used (if it is), or by the end of the
compilation unit (if it is not).

● Forward declaration of enum types

The IAR Systems language extensions allow that you first declare the name of an
enum and later resolve it by specifying the brace-enclosed list.
C8051-4

Part 2. Compiler reference 233

234

C language extensions
● Missing semicolon at end of struct or union specifier

A warning is issued if the semicolon at the end of a struct or union specifier is
missing.

● Null and void

In operations on pointers, a pointer to void is always implicitly converted to another
type if necessary, and a null pointer constant is always implicitly converted to a null
pointer of the right type if necessary. In ISO/ANSI C, some operators allow such
things, while others do not allow them.

● Casting pointers to integers in static initializers

In an initializer, a pointer constant value may be cast to an integral type if the integral
type is large enough to contain it. For more information about casting pointers, see
Casting, page 223.

● Taking the address of a register variable

In ISO/ANSI C, it is illegal to take the address of a variable specified as a register
variable. The compiler allows this, but a warning is issued.

● Duplicated size and sign specifiers

Should the size or sign specifiers be duplicated (for example, short short or
unsigned unsigned), an error is issued.

● long float means double

The type long float is accepted as a synonym for double.

● Repeated typedef declarations

Redeclarations of typedef that occur in the same scope are allowed, but a warning
is issued.

● Mixing pointer types

Assignment and pointer difference is allowed between pointers to types that are
interchangeable but not identical; for example, unsigned char * and char *. This
includes pointers to integral types of the same size. A warning is issued.

Assignment of a string constant to a pointer to any kind of character is allowed, and
no warning will be issued.

● Non-top level const

Assignment of pointers is allowed in cases where the destination type has added type
qualifiers that are not at the top level (for example, int ** to int const **).
Comparing and taking the difference of such pointers is also allowed.

● Non-lvalue arrays

A non-lvalue array expression is converted to a pointer to the first element of the
array when it is used.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Compiler extensions
● Comments at the end of preprocessor directives

This extension, which makes it legal to place text after preprocessor directives, is
enabled, unless strict ISO/ANSI mode is used. The purpose of this language
extension is to support compilation of legacy code; we do not recommend that you
write new code in this fashion.

● An extra comma at the end of enum lists

Placing an extra comma is allowed at the end of an enum list. In strict ISO/ANSI
mode, a warning is issued.

● A label preceding a }

In ISO/ANSI C, a label must be followed by at least one statement. Therefore, it is
illegal to place the label at the end of a block. In the 8051 IAR C/C++ Compiler, a
warning is issued.

Note: This also applies to the labels of switch statements.

● Empty declarations

An empty declaration (a semicolon by itself) is allowed, but a remark is issued
(provided that remarks are enabled).

● Single-value initialization

ISO/ANSI C requires that all initializer expressions of static arrays, structs, and
unions are enclosed in braces.

Single-value initializers are allowed to appear without braces, but a warning is
issued. In the 8051 IAR C/C++ Compiler, the following expression is allowed:

struct str
{
 int a;
} x = 10;

● Declarations in other scopes

External and static declarations in other scopes are visible. In the following example,
the variable y can be used at the end of the function, even though it should only be
visible in the body of the if statement. A warning is issued.

int test(int x)
{
 if (x)
 {
 extern int y;
 y = 1;
 }

 return y;
}

C8051-4

Part 2. Compiler reference 235

236

C language extensions
● Expanding function names into strings with the function as context

Use any of the symbols __func__ or __FUNCTION__ inside a function body to
make it expand into a string, with the function name as context. Use the symbol
__PRETTY_FUNCTION__ to also include the parameter types and return type. The
result might, for example, look like this if you use the __PRETTY_FUNCTION__
symbol:

"void func(char)"

These symbols are useful for assertions and other trace utilities and they require that
language extensions are enabled, see -e, page 200.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Extended keywords
This chapter describes the extended keywords that support specific features
of the MCS-51 microcontroller and the general syntax rules for the keywords.
Finally the chapter gives a detailed description of each keyword.

For information about the address ranges of the different memory areas, see
the chapter Segment reference.

General syntax rules for extended keywords
To understand the syntax rules for the extended keywords, it is important to be familiar
with some related concepts.

The 8051 IAR C/C++ Compiler provides a set of attributes that can be used on functions
or data objects to support specific features of the MCS-51 microcontroller. There are
two types of attributes—type attributes and object attributes:

● Type attributes affect the external functionality of the data object or function

● Object attributes affect the internal functionality of the data object or function.

The syntax for the keywords differs slightly depending on whether it is a type attribute
or an object attribute, and whether it is applied to a data object or a function.

For information about how to use attributes to modify data, see the chapter Data storage.
For information about how to use attributes to modify functions, see the chapter
Functions. For detailed information about each attribute, see Descriptions of extended
keywords, page 242.

Note: The extended keywords are only available when language extensions are enabled
in the 8051 IAR C/C++ Compiler.

In the IAR Embedded Workbench IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 200 for
additional information.

TYPE ATTRIBUTES

Type attributes define how a function is called, or how a data object is accessed. This
means that if you use a type attribute, it must be specified both when a function or data
object is defined and when it is declared.
C8051-4

Part 2. Compiler reference 237

238

General syntax rules for extended keywords
You can either place the type attributes directly in your source code, or use the pragma
directive #pragma type_attribute.

Type attributes can be further divided into memory attributes and general type
attributes.

Memory attributes

A memory attribute corresponds to a certain logical or physical memory in the
microcontroller.

● Available function memory attributes: __banked_func, __far_func, and
__near_func

● Available data memory attributes: __bdata, __bit, __code, __data, __far,
__far_code, __far_rom, __generic, __huge, __huge_code, __huge_rom,
__idata, __ixdata, __pdata, __sfr, __xdata, and __xdata_rom.

Data objects, functions, and destinations of pointers or C++ references always have a
memory attribute. If no attribute is explicitly specified in the declaration or by the
pragma directive #pragma type_attribute, an appropriate default attribute is used.
You can only specify one memory attribute for each level of pointer indirection.

General type attributes

The following general type attributes are available:

● Function type attributes affect how the function should be called:
__data_overlay, __ext_stack_reentrant, __idata_overlay,
__idata_reentrant, __interrupt, __monitor, __pdata_reentrant,
__task, and __xdata_reentrant

● Data type attributes: const and volatile

You can specify as many type attributes as required for each level of pointer indirection.

To read more about the type qualifiers const and volatile, see Type qualifiers, page
225.

Syntax for type attributes used on data objects

In general, type attributes for data objects follow the same syntax as the type qualifiers
const and volatile.

The following declaration assigns the __data type attribute to the variables i and j; in
other words, the variable i and j is placed in data memory. The variables k and l behave
in the same way:

__data int i, j;
int __data k, l;
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Extended keywords
Note that the attribute affects both identifiers.

The following declaration of i and j is equivalent with the previous one:

#pragma type_attribute=__data
int i, j;

The advantage of using pragma directives for specifying keywords is that it offers you a
method to make sure that the source code is portable. Note that the pragma directive has
no effect if a memory attribute is already explicitly declared.

For more examples of using memory attributes, see More examples, page 32.

An easier way of specifying storage is to use type definitions. The following two
declarations are equivalent:

typedef char __data Byte;
typedef Byte *BytePtr;
Byte b;
BytePtr bp;

and

__data char b;
char __data *bp;

Note that #pragma type_attribute can be used together with a typedef
declaration.

Syntax for type attributes on data pointers

The syntax for declaring pointers using type attributes follows the same syntax as the
type qualifiers const and volatile:

Syntax for type attributes on functions

The syntax for using type attributes on functions, differs slightly from the syntax of type
attributes on data objects. For functions, the attribute must be placed either in front of
the return type, alternatively in parentheses, for example:

__interrupt void my_handler(void);

or

void (__interrupt my_handler)(void);

int __data * p; The int object is located in __data memory.

int * __data p; The pointer is located in __data memory.

__data int * p; The pointer is located in __data memory.
C8051-4

Part 2. Compiler reference 239

240

General syntax rules for extended keywords
The following declaration of my_handler is equivalent with the previous one:

#pragma type_attribute=__interrupt
void my_handler(void);

Syntax for type attributes on function pointers

To declare a function pointer, use the following syntax:

int (__far_func * fp) (double);

After this declaration, the function pointer fp points to farfunc memory.

An easier way of specifying storage is to use type definitions:

typedef __far_func void FUNC_TYPE(int);
typedef FUNC_TYPE *FUNC_PTR_TYPE;
FUNC_TYPE func();
FUNC_PTR_TYPE funcptr;

Note that #pragma type_attribute can be used together with a typedef
declaration.

OBJECT ATTRIBUTES

Object attributes affect the internal functionality of functions and data objects, but not
how the function is called or how the data is accessed. This means that an object attribute
does not need to be present in the declaration of an object.

The following object attributes are available:

● Object attributes that can be used for variables: __no_init

● Object attributes that can be used for functions and variables: location, @, and
__root

● Object attributes that can be used for functions: __intrinsic, __noreturn, and
vector.

You can specify as many object attributes as required for a specific function or data
object.

For more information about location and @, see Controlling data and function
placement in memory, page 165. For more information about vector, see vector, page
272.

Syntax for object attributes

The object attribute must be placed in front of the type. For example, to place myarray
in memory that is not initialized at startup:

__no_init int myarray[10];
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Extended keywords
The #pragma object_attribute directive can also be used. The following
declaration is equivalent to the previous one:

#pragma object_attribute=__no_init
int myarray[10];

Note: Object attributes cannot be used in combination with the typedef keyword.

Summary of extended keywords
The following table summarizes the extended keywords:

Extended keyword Description

__banked_func Controls the storage of functions

__banked_func_ext2 Controls the storage of functions

__bdata Controls the storage of data objects

__bit Controls the storage of data objects

__code Controls the storage of data objects

__data Controls the storage of data objects

__data_overlay Controls the storage of auto data objects

__ext_stack_reentrant Controls the storage of auto data objects

__far Controls the storage of data objects

__far_code Controls the storage of constant data objects

__far_func Controls the storage of functions

__far_rom Controls the storage of constant data objects

__generic Pointer type attribute

__huge Controls the storage of data objects

__huge_code Controls the storage of constant data objects

__huge_rom Controls the storage of constant data objects

__idata Controls the storage of data objects

__idata_overlay Controls the storage of auto data objects

__idata_reentrant Controls the storage of auto data objects

__ixdata Controls the storage of data objects

__interrupt Supports interrupt functions

__intrinsic Reserved for compiler internal use only

__monitor Supports atomic execution of a function

Table 43: Extended keywords summary
C8051-4

Part 2. Compiler reference 241

242

Descriptions of extended keywords
Descriptions of extended keywords
The following sections give detailed information about each extended keyword.

__banked_func

Syntax Follows the generic syntax rules for memory type attributes that can be used on
functions, see Type attributes, page 237.

Description The __banked_func memory attribute overrides the default storage of functions given
by the selected code model and places individual functions in memory where they are
called using banked 24-bit calls. You can also use the __banked_func attribute to
create a pointer explicitly pointing to an object located in the banked memory.

Storage information ● Memory space: Code memory space

● Address range: 0–0xFFFFFF

● Maximum size: 64 Kbytes

● Pointer size: 2 bytes

● Function size: bank size

__near_func Controls the storage of functions

__no_init Supports non-volatile memory

__noreturn Informs the compiler that the declared function will not
return

__overlay_near_func Reserved for compiler internal use only

__pdata Controls the storage of data objects

__pdata_reentrant Controls the storage of auto data objects

__root Ensures that a function or variable is included in the object
code even if unused

__sfr Controls the storage of data objects

__task Allows functions to exit without restoring registers

__xdata Controls the storage of data objects

__xdata_rom Controls the storage of constant data objects

__xdata_reentrant Controls the storage of auto data objects

Extended keyword Description

Table 43: Extended keywords summary (Continued)
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Extended keywords
Note: This keyword is only available when the Banked code model is used, and in this
case functions are by default __banked_func. There are some exceptions, see Code
that cannot be banked, page 61. Overlay and extended stack functions cannot be banked.
This means that you cannot combine the __banked_func keyword with the
__data_overlay or __idata_overlay, and __ext_stack_reentrant keywords.

Example __banked_func void myfunction(void);

See also Banked functions, page 55.

__banked_func_ext2

Syntax Follows the generic syntax rules for memory type attributes that can be used on
functions, see Type attributes, page 237.

Description The __banked_func_ext2 memory attribute overrides the default storage of functions
given by the selected code model and places individual functions in memory where they
are called using banked 24-bit calls. You can also use the __banked_func_ext2
attribute to create a pointer explicitly pointing to an object located in the banked
memory.

Storage information ● Memory space: Code memory space

● Address range: 0–0xFFFFFF

● Maximum size: 64 Kbytes

● Pointer size: 3 bytes

● Function size: bank size

Note: This keyword is only available when the Banked extended2 code model is used,
and in this case all functions are by default __banked_func_ext2. Such functions
require the Xdata reentrant calling convention.

Example __banked_func_ext2 void myfunction(void);

See also Banked functions, page 55.

__bdata

Syntax Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 237.
C8051-4

Part 2. Compiler reference 243

244

Descriptions of extended keywords
Description The __bdata memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in bdata memory.

Note: There are no __bdata pointers. Bdata memory is referred to by __idata
pointers.

Storage information ● Memory space: Internal data memory space

● Address range: 0x20–0x2F

● Maximum object size: 16 bytes.

● Pointer size: 1 byte, __idata pointer

Example __bdata int x;

See also Memory types, page 24.

__bit

Syntax Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 237.

Description The __bit memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in bit addressable
memory. You cannot create a pointer to bit memory.

Storage information ● Memory space: Internal data memory space

● Address range: 0x20–0x2F

● Maximum object size: 1 bit

● Pointer size: N/A

Example __bit int x;

See also Memory types, page 24.

__code

Syntax Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 237.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Extended keywords
Description The __code memory attribute overrides the default storage of variables given by the
selected data model and places individual constants and strings in code memory. You
can also use the __code attribute to create a pointer explicitly pointing to an object
located in the code memory.

Storage information ● Memory space: Code memory space

● Address range: 0x0–0xFFFF

● Maximum object size: 64 Kbytes

● Pointer size: 2 bytes

Example __code int x;

See also Memory types, page 24.

__data

Syntax Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 237.

Description The __data memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in data memory.

Note: There are no __data pointers. Data memory is referred to by __idata pointers.

Storage information ● Memory space: Internal data memory space

● Address range: 0x0–0x7F

● Maximum object size: 64 Kbytes

● Pointer size: 1 byte, __idata pointer

Example __data int x;

See also Memory types, page 24.

__data_overlay

Syntax Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 237.

Description The __data_overlay keyword places parameters and auto variables in the data
overlay memory area.
C8051-4

Part 2. Compiler reference 245

246

Descriptions of extended keywords
Note: This keyword is only available when the Tiny or Small data model is used.

Example __data_overlay void foo(void);

See also Auto variables—stack and static overlay, page 35.

__ext_stack_reentrant

Syntax Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 237.

Description The __ext_stack_reentrant keyword places parameters and auto variables on the
extended stack.

Note: This keyword can only be used when the --extended_stack option has been
specified.

Example __ext_stack_reentrant void foo(void);

See also Auto variables—stack and static overlay, page 35, Extended stack, page 77, and
--extended_stack, page 202.

__far

Syntax Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 237.

Description The __far memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in far memory. You
can also use the __far attribute to create a pointer explicitly pointing to an object
located in the far memory.

Note: This memory attribute is only available when the Far data model is used.

Storage information ● Memory space: External data memory space

● Address range: 0–0xFFFFFF

● Maximum object size: 64 Kbytes. An object cannot cross a 64-Kbyte boundary.

● Pointer size: 3 bytes. Arithmetics is only performed on the two lower bytes, except
comparison which is always performed on the entire 24-bit address.

Example __far int x;
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Extended keywords
See also Memory types, page 24.

__far_code

Syntax Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 237.

Description The __far_code memory attribute overrides the default storage of variables given by
the selected data model and places individual constants and strings in far code memory.
You can also use the __far_code attribute to create a pointer explicitly pointing to an
object located in the far code memory.

Note: This memory attribute is only available when the Far code model is used.

Storage information ● Memory space: Code memory space

● Address range: 0–0xFFFFFF

● Maximum object size: 64 Kbytes. An object cannot cross a 64-Kbyte boundary.

● Pointer size: 3 bytes. Arithmetics is only performed on the two lower bytes, except
comparison which is always performed on the entire 24-bit address.

Example __far_code int x;

See also Memory types, page 24.

__far_func

Syntax Follows the generic syntax rules for memory type attributes that can be used on
functions, see Type attributes, page 237.

Description The __far_func memory attribute overrides the default storage of functions given by
the selected code model and places individual functions in far memory—memory where
the function is called using true 24-bit calls. You can also use the __far_func attribute
to create a pointer explicitly pointing to an object located in the far memory.

Note: This memory attribute is only available when the Far code model is used.

Storage information ● Memory space: Code memory space

● Address range: 0–0xFFFFFF

● Maximum size: 65535 bytes. A function cannot cross a 64-Kbyte boundary.

● Pointer size: 3 bytes
C8051-4

Part 2. Compiler reference 247

248

Descriptions of extended keywords
Example __far_func void myfunction(void);

See also Code models for function storage, page 47.

__far_rom

Syntax Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 237.

Description The __far_rom memory attribute overrides the default storage of variables given by the
selected data model and places individual constants and strings in ROM located in the
far memory range. You can also use the __far_rom attribute to create a pointer
explicitly pointing to an object located in the far_rom memory.

Note: This memory attribute is only available when the Far data model is used.

Storage information ● Memory space: External data memory space

● Address range: 0–0xFFFFFF

● Maximum object size: 64 Kbytes. An object cannot cross a 64-Kbyte boundary.

● Pointer size: 2 bytes. Arithmetics is only performed on the two lower bytes, except
comparison which is always performed on the entire 24-bit address.

Example __far_rom int x;

See also Memory types, page 24.

__generic

Syntax Follows the generic syntax rules for type attributes that can be used on data, see Type
attributes, page 237.

Description The __generic pointer attribute specifies a generic pointer that can access data
anywhere in the internal data memory space (idata), external data memory space
(xdata), or the code memory space.

If a variable is declared with this keyword, it will be located in the external data memory
space (xdata), in the same way as if the __xdata attribute had been used.

Note: This memory attribute is not available when the Far data model is used.

Example __int __generic * ptr;
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Extended keywords
See also Generic pointers, page 222.

__huge

Syntax Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 237.

Description The __huge memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in huge memory. You
can also use the __huge attribute to create a pointer explicitly pointing to an object
located in the huge memory.

Note: This memory attribute is only available when the Far data model is used.

Storage information ● Memory space: External data memory space

● Address range: 0–0xFFFFFF

● Maximum object size: 16 Mbytes

● Pointer size: 3 bytes

Example __huge int x;

See also Memory types, page 24.

__huge_code

Syntax Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 237.

Description The __huge_code memory attribute overrides the default storage of variables given by
the selected data model and places individual constants and strings in huge code
memory. You can also use the __huge_code attribute to create a pointer explicitly
pointing to an object located in the huge code memory.

Note: This memory attribute is only available when the Far code model is used.

Storage information ● Memory space: Code memory space

● Address range: 0–0xFFFFFF

● Maximum object size: 16 Mbytes

● Pointer size: 3 bytes

Example __huge_code int x;
C8051-4

Part 2. Compiler reference 249

250

Descriptions of extended keywords
See also Memory types, page 24.

__huge_rom

Syntax Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 237.

Description The __huge_rom memory attribute overrides the default storage of variables given by
the selected data model and places individual constants and strings in ROM located in
the far memory range. You can also use the __huge_rom attribute to create a pointer
explicitly pointing to an object located in the huge_rom memory.

Note: This memory attribute is only available when the Far data model is used.

Storage information ● Memory space: External data memory space

● Address range: 0–0xFFFFFF

● Maximum object size: 16 Mbytes

● Pointer size: 2 bytes. Arithmetics is only performed on the two lower bytes, except
comparison which is always performed on the entire 24-bit address.

Example __huge_rom int x;

See also Memory types, page 24.

__idata

Syntax Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 237.

Description The __idata memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in idata memory. You
can also use the __idata attribute to create a pointer explicitly pointing to an object
located in the idata memory.

Storage information ● Memory space: Internal data memory space

● Address range: 0x0–0xFF

● Maximum object size: 256 bytes

● Pointer size: 1 byte

Example __idata int x;
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Extended keywords
See also Memory types, page 24.

__idata_overlay

Syntax Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 237.

Description The __idata_overlay keyword places parameters and auto variables in the idata
overlay memory area.

Note: This keyword is only available when the Tiny or Small data model is used.

Example __idata_overlay void foo(void);

See also Auto variables—stack and static overlay, page 35.

__idata_reentrant

Syntax Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 237.

Description The __idata_reentrant keyword places parameters and auto variables on the idata
stack.

Note: This keyword can only be used when the --extended_stack option has been
specified.

Example __idata_reentrant void foo(void);

See also Auto variables—stack and static overlay, page 35, Extended stack, page 77, and
--extended_stack, page 202.

__ixdata

Syntax Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 237.

Description The __ixdata memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in data memory.

The __ixdata memory attribute requires a devices that supports on-chip external data
(xdata).
C8051-4

Part 2. Compiler reference 251

252

Descriptions of extended keywords
Note: There are no __ixdata pointers. Data memory is referred to by __idata
pointers.

Storage information ● Memory space: External data memory space

● Address range: 0x0–0xFFFF

● Maximum object size: 64 Kbytes

● Pointer size: 1 byte, __idata pointer

Example __ixdata int x;

See also Memory types, page 24.

__interrupt

Syntax Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 237.

Description The __interrupt keyword specifies interrupt functions. To specify one or several
interrupt vectors, use the #pragma vector directive. The range of the interrupt vectors
depends on the device used. It is possible to define an interrupt function without a vector,
but then the compiler will not generate an entry in the interrupt vector table.

An interrupt function must have a void return type and cannot have any parameters.

The header file iodevice.h, where device corresponds to the selected device,
contains predefined names for the existing interrupt vectors.

Example #pragma vector=0x13
__interrupt void my_interrupt_handler(void);

See also Interrupt functions, page 49, vector, page 272, INTVEC, page 316.

__intrinsic

Description The __intrinsic keyword is reserved for compiler internal use only.

__monitor

Syntax Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 237.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Extended keywords
Description The __monitor keyword causes interrupts to be disabled during execution of the
function. This allows atomic operations to be performed, such as operations on
semaphores that control access to resources by multiple processes. A function declared
with the __monitor keyword is equivalent to any other function in all other respects.

Example __monitor int get_lock(void);

See also Monitor functions, page 50. Read also about the intrinsic functions __disable_interrupt,
page 273, __enable_interrupt, page 274, __get_interrupt_state, page 274, and
__set_interrupt_state, page 275.

__near_func

Syntax Follows the generic syntax rules for memory type attributes that can be used on
functions, see Type attributes, page 237.

Description The __near_func memory attribute overrides the default storage of functions given by
the selected code model and places individual functions in near memory.

In the Banked code model, use the __near_func attribute to explicitly place a function
in the root area.

Storage information ● Memory space: Code memory space

● Address range: 0–0xFFFF

● Maximum size: 64 Kbytes

● Pointer size: 2 bytes

Example __near_func void myfunction(void);

See also Code models for function storage, page 47.

__no_init

Syntax Follows the generic syntax rules for object attributes, see Object attributes, page 240.

Description Use the __no_init keyword to place a data object in non-volatile memory. This means
that the initialization of the variable, for example at system startup, is suppressed.

Example __no_init int myarray[10];
C8051-4

Part 2. Compiler reference 253

254

Descriptions of extended keywords
__noreturn

Syntax Follows the generic syntax rules for object attributes, see Object attributes, page 240.

Description The __noreturn keyword can be used on a function to inform the compiler that the
function will not return. If you use this keyword on such functions, the compiler can
optimize more efficiently. Examples of functions that do not return are abort and exit.

Example __noreturn void terminate(void);

__overlay_near_func

Description The __overlay_near_func keyword is reserved for compiler internal use only.

__pdata

Syntax Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 237.

Description The __pdata memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in pdata memory. You
can also use the __pdata attribute to create a pointer explicitly pointing to an object
located in the pdata memory.

Storage information ● Memory space: External data memory space

● Address range: 0x0–0xFF

● Maximum object size: 256 bytes

● Pointer size: 1 byte

Example __pdata int x;

See also Memory types, page 24.

__pdata_reentrant

Syntax Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 237.

Description The __pdata_reentrant keyword places parameters and auto variables on the pdata
stack.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Extended keywords
Example __pdata_reentrant void foo(void);

See also Auto variables—stack and static overlay, page 35, Extended stack, page 77, and
--extended_stack, page 202.

__root

Syntax Follows the generic syntax rules for object attributes, see Object attributes, page 240.

Description A function or variable with the __root attribute is kept whether or not it is referenced
from the rest of the application, provided its module is included. Program modules are
always included and library modules are only included if needed.

Example __root int myarray[10];

See also To read more about modules, segments, and the link process, see the IAR Linker and
Library Tools Reference Guide.

__sfr

Syntax Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 237.

Description The __sfr memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in SFR memory. You
cannot create a pointer to an object located in SFR memory.

Storage information ● Memory space: Internal data memory space

● Address range: 0x80–0xFF, direct addressing

● Maximum object size: 128 bytes

● Pointer size: N/A

Example __sfr int x;

See also Memory types, page 24.

__task

Syntax Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 237.
C8051-4

Part 2. Compiler reference 255

256

Descriptions of extended keywords
Description This keyword allows functions to exit without restoring registers and it is typically used
for the main function.

By default, functions save the contents of used non-scratch registers (permanent
registers) on the stack upon entry, and restore them at exit. Functions declared __task
do not save any registers, and therefore require less stack space. Such functions should
only be called from assembler routines.

The function main may be declared __task, unless it is explicitly called from the
application. In real-time applications with more than one task, the root function of each
task may be declared __task.

Example __task void my_handler(void);

__xdata

Syntax Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 237.

Description The __xdata memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in xdata memory. You
can also use the __xdata attribute to create a pointer explicitly pointing to an object
located in the xdata memory.

Storage information ● Memory space: External data memory space

● Address range: 0–0xFFFF (64 Kbytes)

● Maximum object size: 64 Kbytes

● Pointer size: 2 bytes

Example __xdata int x;

See also Memory types, page 24.

__xdata_reentrant

Syntax Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 237.

Description The __xdata_reentrant keyword places parameters and auto variables on the xdata
stack.

Example __xdata_reentrant void foo(void);
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Extended keywords
See also Auto variables—stack and static overlay, page 35, Extended stack, page 77, and
--extended_stack, page 202.

__xdata_rom

Syntax Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 237.

Description The __xdata_rom memory attribute overrides the default storage of variables given by
the selected data model and places individual constants and strings in ROM located in
the xdata memory range. You can also use the __xdata_rom attribute to create a pointer
explicitly pointing to an object located in the xdata rom memory.

Storage information ● Memory space: External data memory space

● Address range: 0–0xFFFF (64 Kbytes)

● Maximum object size: 64 Kbytes

● Pointer size: 2 bytes

Example __xdata_rom int x;

See also Memory types, page 24.
C8051-4

Part 2. Compiler reference 257

258

Descriptions of extended keywords
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Pragma directives
This chapter describes the pragma directives of the 8051 IAR C/C++
Compiler.

The #pragma directive is defined by the ISO/ANSI C standard and is a
mechanism for using vendor-specific extensions in a controlled way to make
sure that the source code is still portable.

The pragma directives control the behavior of the compiler, for example how
it allocates memory for variables and functions, whether it allows extended
keywords, and whether it outputs warning messages.

The pragma directives are always enabled in the compiler.

Summary of pragma directives
The following table lists the pragma directives of the compiler that can be used either
with the #pragma preprocessor directive or the _Pragma() preprocessor operator:

Pragma directive Description

basic_template_matching Makes a template function fully memory-attribute aware

bitfields Controls the order of bitfield members

constseg Places constant variables in a named segment

dataseg Places variables in a named segment

diag_default Changes the severity level of diagnostic messages

diag_error Changes the severity level of diagnostic messages

diag_remark Changes the severity level of diagnostic messages

diag_suppress Suppresses diagnostic messages

diag_warning Changes the severity level of diagnostic messages

include_alias Specifies an alias for an include file

inline Inlines a function

language Controls the IAR Systems language extensions

location Specifies the absolute address of a variable, or places groups
of functions or variables in named segments

Table 44: Pragma directives summary
C8051-4

Part 2. Compiler reference 259

260

Descriptions of pragma directives
Note: For portability reasons, see also Recognized pragma directives (6.8.6), page 333
and the 8051 IAR Embedded Workbench® Migration Guide.

Descriptions of pragma directives
This section gives detailed information about each pragma directive.

basic_template_matching

Syntax #pragma basic_template_matching

Description Use this pragma directive in front of a template function declaration to make the
function fully memory-attribute aware, in the rare cases where this is useful. That
template function will then match the template without the modifications described in
Templates and data memory attributes, page 156.

Example #pragma basic_template_matching
template<typename T> void fun(T *);

fun((int __huge *) 0); /* Template param T becomes int __huge */

message Prints a message

object_attribute Changes the definition of a variable or a function

optimize Specifies the type and level of an optimization

__printf_args Verifies that a function with a printf-style format string is
called with the correct arguments

register_bank Specifies the register bank to be used by an interrupt
function

required Ensures that a symbol that is needed by another symbol is
included in the linked output

rtmodel Adds a runtime model attribute to the module

__scanf_args Verifies that a function with a scanf-style format string is
called with the correct arguments

segment Declares a segment name to be used by intrinsic functions

type_attribute Changes the declaration and definitions of a variable or
function

vector Specifies the vector of an interrupt or trap function

Pragma directive Description

Table 44: Pragma directives summary (Continued)
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Pragma directives
bitfields

Syntax #pragma bitfields={reversed|default}

Parameters

Description Use this pragma directive to control the order of bitfield members.

By default, the 8051 IAR C/C++ Compiler places bitfield members from the least
significant bit to the most significant bit in the container type. Use the
#pragma bitfields=reversed directive to place the bitfield members from the
most significant to the least significant bit. This setting remains active until you turn it
off again with the #pragma bitfields=default directive.

See also Bitfields, page 219.

constseg

Syntax #pragma constseg=[__memoryattribute]{SEGMENT_NAME|default}

Parameters

Description Use this pragma directive to place constant variables in a named segment. The segment
name cannot be a segment name predefined for use by the compiler and linker. The
setting remains active until you turn it off again with the #pragma constseg=default
directive.

A constant placed in a named segment with the #pragma constseg directive must be
located in ROM memory. This is the case when constants are located in code or
data_rom. Otherwise, the memory where the segment should reside must be explicitly
specified using the appropriate memory attribute.

reversed Bitfield members are placed from the most significant bit to the
least significant bit.

default Bitfield members are placed from the least significant bit to the
most significant bit.

__memoryattribute An optional memory attribute denoting in what memory the
segment will be placed; if not specified, default memory is used.

SEGMENT_NAME A user-defined segment name; cannot be a segment name
predefined for use by the compiler and linker.

default Uses the default segment for constants.
C8051-4

Part 2. Compiler reference 261

262

Descriptions of pragma directives
Note: Non-initialized constant segments located in data memory can be placed in a
named segment with the #pragma dataseg directive.

Example #pragma constseg=__xdata_rom MY_CONSTANTS
const int factorySettings[] = {42, 15, -128, 0};
#pragma constseg=default

dataseg

Syntax #pragma dataseg=[__memoryattribute]{SEGMENT_NAME|default}

Parameters

Description Use this pragma directive to place variables in a named segment. The segment name
cannot be a segment name predefined for use by the compiler and linker. The variable
will not be initialized at startup, and can for this reason not have an initializer, which
means it must be declared __no_init. The setting remains active until you turn it off
again with the #pragma constseg=default directive.

Example #pragma dataseg=__xdata MY_SEGMENT
__no_init char myBuffer[1000];
#pragma dataseg=default

diag_default

Syntax #pragma diag_default=tag[,tag,...]

Parameters

Description Use this pragma directive to change the severity level back to default, or to the severity
level defined on the command line by using any of the options --diag_error,
--diag_remark, --diag_suppress, or --diag_warnings, for the diagnostic
messages specified with the tags.

__memoryattribute An optional memory attribute denoting in what memory the
segment will be placed; if not specified, default memory is used.

SEGMENT_NAME A user-defined segment name; cannot be a segment name
predefined for use by the compiler and linker.

default Uses the default segment.

tag The number of a diagnostic message, for example the message
number Pe117.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Pragma directives
See also Diagnostics, page 184.

diag_error

Syntax #pragma diag_error=tag[,tag,...]

Parameters

Description Use this pragma directive to change the severity level to error for the specified
diagnostics.

See also Diagnostics, page 184.

diag_remark

Syntax #pragma diag_remark=tag[,tag,...]

Parameters

Description Use this pragma directive to change the severity level to remark for the specified
diagnostic messages.

See also Diagnostics, page 184.

diag_suppress

Syntax #pragma diag_suppress=tag[,tag,...]

Parameters

Description Use this pragma directive to suppress the specified diagnostic messages.

See also Diagnostics, page 184.

tag The number of a diagnostic message, for example the message
number Pe117.

tag The number of a diagnostic message, for example the message
number Pe177.

tag The number of a diagnostic message, for example the message
number Pe117.
C8051-4

Part 2. Compiler reference 263

264

Descriptions of pragma directives
diag_warning

Syntax #pragma diag_warning=tag[,tag,...]

Parameters

Description Use this pragma directive to change the severity level to warning for the specified
diagnostic messages.

See also Diagnostics, page 184.

include_alias

Syntax #pragma include_alias ("orig_header" , "subst_header")
#pragma include_alias (<orig_header> , <subst_header>)

Parameters

Description Use this pragma directive to provide an alias for a header file. This is useful for
substituting one header file with another, and for specifying an absolute path to a relative
file.

This pragma directive must appear before the corresponding #include directives and
subst_header must match its corresponding #include directive exactly.

Example #pragma include_alias (<stdio.h> , <C:\MyHeaders\stdio.h>)
#include <stdio.h>

This example will substitute the relative file stdio.h with a counterpart located
according to the specified path.

See also Include file search procedure, page 182.

tag The number of a diagnostic message, for example the message
number Pe826.

orig_header The name of a header file for which you want to create an alias.

subst_header The alias for the original header file.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Pragma directives
inline

Syntax #pragma inline[=forced]

Parameters

Description Use this pragma directive to advise the compiler that the function whose declaration
follows immediately after the directive should be inlined—that is, expanded into the
body of the calling function. Whether the inlining actually takes place is subject to the
compiler’s heuristics.

This is similar to the C++ keyword inline, but has the advantage of being available in
C code.

Specifying #pragma inline=forced disables the compiler’s heuristics and forces
inlining. If the inlining fails for some reason, for example if it cannot be used with the
function type in question (like printf), an error message is emitted.

Note: Because specifying #pragma inline=forced disables the compiler’s
heuristics, including the inlining heuristics, the function declared immediately after the
directive will not be inlined on optimization levels None or Low. No error or warning
message will be emitted.

language

Syntax #pragma language={extended|default}

Parameters

Description Use this pragma directive to enable the compiler language extensions or for using the
language settings specified on the command line.

forced Disables the compiler’s heuristics and forces inlining.

extended Turns on the IAR Systems language extensions and turns off the
--strict_ansi command line option.

default Uses the language settings specified by compiler options.
C8051-4

Part 2. Compiler reference 265

266

Descriptions of pragma directives
location

Syntax #pragma location={address|NAME}

Parameters

Description Use this pragma directive to specify the location—the absolute address—of the global
or static variable whose declaration follows the pragma directive. The variable must be
declared either __no_init or const. Alternatively, the directive can take a string
specifying a segment for placing either a variable or a function whose declaration
follows the pragma directive.

Example #pragma location=0xFF20
__no_init volatile char PORT1; /* PORT1 is located at address
 0xFF20 */

#pragma location="foo"
char PORT1; /* PORT1 is located in segment foo */

/* A better way is to use a corresponding mechanism */
#define FLASH _Pragma("location=\"FLASH\"")
...
FLASH int i; /* i is placed in the FLASH segment */

See also Controlling data and function placement in memory, page 165.

message

Syntax #pragma message(message)

Parameters

Description Use this pragma directive to make the compiler print a message to stdout when the file
is compiled.

Example: #ifdef TESTING
#pragma message("Testing")
#endif

address The absolute address of the global or static variable for which you
want an absolute location.

NAME A user-defined segment name; cannot be a segment name
predefined for use by the compiler and linker.

message The message that you want to direct to stdout.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Pragma directives
object_attribute

Syntax #pragma object_attribute=object_attribute[,object_attribute,...]

Parameters For a list of object attributes that can be used with this pragma directive, see Object
attributes, page 240.

Description Use this pragma directive to declare a variable or a function with an object attribute. This
directive affects the definition of the identifier that follows immediately after the
directive. The object is modified, not its type. Unlike the directive #pragma
type_attribute that specifies the storing and accessing of a variable or function, it is
not necessary to specify an object attribute in declarations.

Example #pragma object_attribute=__no_init
char bar;

See also General syntax rules for extended keywords, page 237.

optimize

Syntax #pragma optimize=param[param...]

Parameters

Description Use this pragma directive to decrease the optimization level, or to turn off some specific
optimizations. This pragma directive only affects the function that follows immediately
after the directive.

The parameters speed, size, and balanced only have effect on the high optimization
level and only one of them can be used as it is not possible to optimize for speed and size
at the same time. It is also not possible to use preprocessor macros embedded in this
pragma directive. Any such macro will not be expanded by the preprocessor.

balanced|size|speed Optimizes balanced between speed and size,
optimizes for size, or optimizes for speed

none|low|medium|high Specifies the level of optimization

no_code_motion Turns off code motion

no_cse Turns off common subexpression elimination

no_inline Turns off function inlining

no_tbaa Turns off type-based alias analysis

no_unroll Turns off loop unrolling
C8051-4

Part 2. Compiler reference 267

268

Descriptions of pragma directives
Note: If you use the #pragma optimize directive to specify an optimization level that
is higher than the optimization level you specify using a compiler option, the pragma
directive is ignored.

Example #pragma optimize=speed
int small_and_used_often()
{
 ...
}

#pragma optimize=size no_inline
int big_and_seldom_used()
{
 ...
}

__printf_args

Syntax #pragma __printf_args

Description Use this pragma directive on a function with a printf-style format string. For any call to
that function, the compiler verifies that the argument to each conversion specifier (for
example %d) is syntactically correct.

Example #pragma __printf_args
int printf(char const *,...);

/* Function call */
printf("%d",x); /* Compiler checks that x is a double */

register_bank

Syntax #pragma register_bank=(0|1|2|3)

Parameters
0|1|2|3 The number of the register bank to be used.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Pragma directives
Description Use this pragma directive to specify the register bank to be used by the interrupt function
declared after the pragma directive.

When a register bank has been specified, the interrupt function switches to the specified
register bank. Because of this, registers R0–R7 do not have to be individually saved on
the stack. The result is a smaller and faster interrupt prolog and epilog.

The memory occupied by the used register banks cannot be used for other data.

Note: Interrupts that can interrupt each other cannot use the same register bank,
because that can result in registers being unintentionally destroyed.

If no register bank is specified, the default bank will be used by the interrupt function.

Example: #pragma register_bank=2
__interrupt void my_handler(void);

required

Syntax #pragma required=symbol

Parameters

Description Use this pragma directive to ensure that a symbol which is needed by a second symbol
is included in the linked output. The directive must be placed immediately before the
second symbol.

Use the directive if the requirement for a symbol is not otherwise visible in the
application, for example if a variable is only referenced indirectly through the segment
it resides in.

Example const char copyright[] = "Copyright by me";
...
#pragma required=copyright
int main()
{...}

Even if the copyright string is not used by the application, it will still be included by the
linker and available in the output.

symbol Any statically linked function or variable.
C8051-4

Part 2. Compiler reference 269

270

Descriptions of pragma directives
rtmodel

Syntax #pragma rtmodel="key","value"

Parameters

Description Use this pragma directive to add a runtime model attribute to a module, which can be
used by the linker to check consistency between modules.

This pragma directive is useful for enforcing consistency between modules. All modules
that are linked together and define the same runtime attribute key must have the same
value for the corresponding key, or the special value *. It can, however, be useful to state
explicitly that the module can handle any runtime model.

A module can have several runtime model definitions.

Note: The predefined compiler runtime model attributes start with a double underscore.
In order to avoid confusion, this style must not be used in the user-defined attributes.

Example #pragma rtmodel="I2C","ENABLED"

The linker will generate an error if a module that contains this definition is linked with
a module that does not have the corresponding runtime model attributes defined.

See also Checking module consistency, page 111.

__scanf_args

Syntax #pragma __scanf_args

Description Use this pragma directive on a function with a scanf-style format string. For any call to
that function, the compiler verifies that the argument to each conversion specifier (for
example %d) is syntactically correct.

Example #pragma __scanf_args
int printf(char const *,...);

/* Function call */
scanf("%d",x); /* Compiler checks that x is a double */

"key" A text string that specifies the runtime model attribute.

"value" A text string that specifies the value of the runtime model attribute.
Using the special value * is equivalent to not defining the attribute at
all.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Pragma directives
segment

Syntax #pragma segment="NAME" [__memoryattribute] [align]

Parameters

Description Use this pragma directive to define a segment name that can be used by the segment
operators __segment_begin and __segment_end. All segment declarations for a
specific segment must have the same memory type attribute and alignment.

If an optional memory attribute is used, the return type of the segment operators
__segment_begin and __segment_end is:

void __memoryattribute *.

Example #pragma segment="MYHUGE" __huge 4

See also Important language extensions, page 228. For more information about segments and
segment parts, see the chapter Placing code and data.

type_attribute

Syntax #pragma type_attribute=type_attribute[,type_attribute,...]

Parameters For a list of type attributes that can be used with this pragma directive, see Type
attributes, page 237.

Description Use this pragma directive to specify IAR-specific type attributes, which are not part of
the ISO/ANSI C language standard. Note however, that a given type attribute may not
be applicable to all kind of objects.

This directive affects the declaration of the identifier, the next variable, or the next
function that follows immediately after the pragma directive.

Example In the following example, an int object with the memory attribute __xdata is defined:

#pragma type_attribute=__xdata
int x;

"NAME" The name of the segment

__memoryattribute An optional memory attribute identifying the memory the segment
will be placed in; if not specified, default memory is used.

align Specifies an alignment for the segment part. The value must be a
constant integer expression to the power of two.
C8051-4

Part 2. Compiler reference 271

272

Descriptions of pragma directives
The following declaration, which uses extended keywords, is equivalent:

__xdata int x;

See also See the chapter Extended keywords for more details.

vector

Syntax #pragma vector=vector1[, vector2, vector3, ...]

Parameters

Description Use this pragma directive to specify the vector(s) of an interrupt function whose
declaration follows the pragma directive. Note that several vectors can be defined for
each function.

Example! #pragma vector=0x13
__interrupt void my_handler(void);

vector The vector number(s) of an interrupt or trap function.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Intrinsic functions
This chapter gives reference information about the intrinsic functions, a
predefined set of functions available in the compiler.

The intrinsic functions provide direct access to low-level processor operations
and can be very useful in, for example, time-critical routines. The intrinsic
functions compile into inline code, either as a single instruction or as a short
sequence of instructions.

Summary of intrinsic functions
To use intrinsic functions in an application, include the header file intrinsics.h.

Note that the intrinsic function names start with double underscores, for example:

__disable_interrupt

The following table summarizes the intrinsic functions:

Descriptions of intrinsic functions
The following section gives reference information about each intrinsic function.

__disable_interrupt

Syntax void __disable_interrupt(void);

Description Disables interrupts by clearing bit 7 in the interrupt enable (IE) register.

Intrinsic function Description

__disable_interrupt Disables interrupts

__enable_interrupt Enables interrupts

__get_interrupt_state Returns the interrupt state

__no_operation Inserts a NOP instruction

__parity Indicates the parity of the argument

__set_interrupt_state Restores the interrupt state

__tbac Atomic read, modify, write instruction

Table 45: Intrinsic functions summary
C8051-4

Part 2. Compiler reference 273

274

Descriptions of intrinsic functions
__enable_interrupt

Syntax void __enable_interrupt(void);

Description Enables interrupts by setting bit 7 in the interrupt enable (IE) register.

__get_interrupt_state

Syntax __istate_t __get_interrupt_state(void);

Description Returns the global interrupt state. The return value can be used as an argument to the
__set_interrupt_state intrinsic function, which will restore the interrupt state.

Example __istate_t s = __get_interrupt_state();
__disable_interrupt();

 /* Do something */

__set_interrupt_state(s);

The advantage of using this sequence of code compared to using
__disable_interrupt and __enable_interrupt is that the code in this example
will not enable any interrupts disabled.

__no_operation

Syntax void __no_operation(void);

Description Inserts a NOP instruction.

__parity

Syntax char __parity(char);

Description Indicates the parity of the char argument; that is, whether the argument contains an
even or an odd number of bits set to 1. If the number is even, 0 is returned and if the
number is odd, 1 is returned.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Intrinsic functions
__set_interrupt_state

Syntax void __set_interrupt_state(__istate_t);

Descriptions Restores the interrupt state by setting the value returned by the
__get_interrupt_state function.

For information about the __istate_t type, see __get_interrupt_state, page 274.

__tbac

Syntax bool __tbac(bool bitvar);

Description Use this intrinsic function to create semaphores or similar mutual-exclusion functions.
It takes a single bit variable bitvar and uses the JBC assembler instruction to carry out
an atomic read, modify, and write instruction (test bit and clear). The function returns
the original value of bitvar (0 or 1) and resets bitvar to 0.

Note: To use the bool type in C source code, see Bool, page 218.
C8051-4

Part 2. Compiler reference 275

276

Descriptions of intrinsic functions
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The preprocessor
This chapter gives a brief overview of the preprocessor, including reference
information about the different preprocessor directives, symbols, and other
related information.

Overview of the preprocessor
The preprocessor of the 8051 IAR C/C++ Compiler adheres to the ISO/ANSI standard.
The compiler also makes the following preprocessor-related features available to you:

● Predefined preprocessor symbols

These symbols allow you to inspect the compile-time environment, for example the
time and date of compilation. For details, see Descriptions of predefined
preprocessor symbols, page 278.

● User-defined preprocessor symbols defined using a compiler option

In addition to defining your own preprocessor symbols using the #define directive,
you can also use the option -D, see -D, page 194.

● Preprocessor extensions

There are several preprocessor extensions, for example many pragma directives; for
more information, see the chapter Pragma directives in this guide. Read also about
the corresponding _Pragma operator and the other extensions related to the
preprocessor, see Descriptions of miscellaneous preprocessor extensions, page 281.

● Preprocessor output

Use the option --preprocess to direct preprocessor output to a named file, see
--preprocess, page 213.

Some parts listed by the ISO/ANSI standard are implementation-defined, for example
the character set used in the preprocessor directives and inclusion of bracketed and
quoted filenames. To read more about this, see Preprocessing directives, page 332.
C8051-4

Part 2. Compiler reference 277

278

Descriptions of predefined preprocessor symbols
Descriptions of predefined preprocessor symbols
The following table describes the predefined preprocessor symbols:

Predefined symbol Identifies

__BASE_FILE__ A string that identifies the name of the base source file (that is,
not the header file), being compiled. See also __FILE__,
page 279, and --no_path_in_file_macros, page 208.

__BUILD_NUMBER__ A unique integer that identifies the build number of the
compiler currently in use. The build number does not
necessarily increase with a compiler that is released later.

__CALLING_CONVENTION__ An integer that identifies the calling convention in use. The
value reflects the --calling_convention option and is
defined to 0 for data overlay, 1 for idata overlay, 2 for idata
reentrant, 3 for pdata reentrant, 4 for xdata reentrant, and 5
for extended stack reentrant.

__CODE_MODEL__ An integer that identifies the code model in use. The symbol
reflects the --code_model option and is defined to 1 for
Near, 2 for Banked, 3 for Far, and 4 for the Banked extended2
code model.

__CONSTANT_LOCATION__ An integer that identifies the default placement of constants
and strings. The value reflects the --place_constants
option and is defined to 0 for Data, 1 for Data ROM, and 2 for
Code.

__CORE__ An integer that identifies the chip core in use. The symbol
reflects the --core option and is defined to 0 for Plain, 2 for
Extended1, and 3 for the Extended2 core.

__cplusplus An integer which is defined when the compiler runs in any of
the C++ modes, otherwise it is undefined. When defined, its
value is 199711L. This symbol can be used with #ifdef to
detect whether the compiler accepts C++ code. It is
particularly useful when creating header files that are to be
shared by C and C++ code.*

__DATA_MODEL__ An integer that identifies the data model in use. The symbol
reflects the --data_model option and can be defined to 0
for Tiny, 1 for Small, 2 for Large, 3 for Generic, and 4 for the
Far data model.

__DATE__ A string that identifies the date of compilation, which is
returned in the form "Mmm dd yyyy", for example "Oct 30

2005". *

Table 46: Predefined symbols
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The preprocessor
__embedded_cplusplus An integer which is defined to 1 when the compiler runs in
any of the C++ modes, otherwise the symbol is undefined.
This symbol can be used with #ifdef to detect whether the
compiler accepts C++ code. It is particularly useful when
creating header files that are to be shared by C and C++
code.*

__EXTENDED_DPTR__ An integer that is set to 1 when 24-bit data pointers are used.
Otherwise, when 16-bit data pointers are used, the symbol is
undefined.

__EXTENDED_STACK__ An integer that is set to 1 when the extended stack is used.
Otherwise, when the extended stack is not used, the symbol
is undefined.

__FILE__ A string that identifies the name of the file being compiled,
which can be the base source file as well as any included
header file. See also __BASE_FILE__, page 278, and
--no_path_in_file_macros, page 208.*

__func__ A string that identifies the name of the function in which the
symbol is used. This is useful for assertions and other trace
utilities. The symbol requires that language extensions are
enabled, see -e, page 200. See also
__PRETTY_FUNCTION__, page 280.

__FUNCTION__ A string that identifies the name of the function in which the
symbol is used. This is useful for assertions and other trace
utilities. The symbol requires that language extensions are
enabled, see -e, page 200. See also
__PRETTY_FUNCTION__, page 280.

__IAR_SYSTEMS_ICC__ An integer that identifies the IAR compiler platform. The
current value is 7. Note that the number could be higher in a
future version of the product. This symbol can be tested with
#ifdef to detect whether the code was compiled by a
compiler from IAR Systems.

__ICC8051__ An integer that is set to 1 when the code is compiled with the
8051 IAR C/C++ Compiler.

__INC_DPSEL_SELECT__ An integer that is set to 1 when the INC method is used for
selecting the active data pointer. Otherwise, when the XOR
method is used, the symbol is undefined.

Predefined symbol Identifies

Table 46: Predefined symbols (Continued)
C8051-4

Part 2. Compiler reference 279

280

Descriptions of predefined preprocessor symbols
* This symbol is required by the ISO/ANSI standard.

__LINE__ An integer that identifies the current source line number of
the file being compiled, which can be the base source file as
well as any included header file.*

__NUMBER_OF_DPTRS__ An integer that identifies to the number of data pointers being
used; a value between 1 and 8.

__PRETTY_FUNCTION__ A string that identifies the function name, including parameter
types and return type, of the function in which the symbol is
used, for example "void func(char)". This symbol is
useful for assertions and other trace utilities. The symbol
requires that language extensions are enabled, see -e, page
200. See also __func__, page 279.

__STDC__ An integer that is set to 1, which means the compiler adheres
to the ISO/ANSI C standard. This symbol can be tested with
#ifdef to detect whether the compiler in use adheres to
ISO/ANSI C.*

__STDC_VERSION__ An integer that identifies the version of ISO/ANSI C standard
in use. The symbols expands to 199409L. This symbol does
not apply in EC++ mode.*

__SUBVERSION__ An integer that identifies the version letter of the compiler
version number, for example the C in 4.21C, as an ASCII
character.

__TIME__ A string that identifies the time of compilation in the form
"hh:mm:ss".*

__VER__ An integer that identifies the version number of the IAR
compiler in use. The value of the number is calculated in the
following way: (100 * the major version number
+ the minor version number). For example, for
compiler version 3.34, 3 is the major version number and 34 is
the minor version number. Hence, the value of __VER__ is
334.

__XOR_DPSEL_SELECT__ An integer that is set to 1 when the XOR method is used for
selecting the active data pointer. Otherwise, when the INC
method is used, the symbol is undefined.

Predefined symbol Identifies

Table 46: Predefined symbols (Continued)
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The preprocessor
__TID__

Syntax __TID__

Description Expands to the target identifier for the 8051 IAR C/C++ Compiler. The identifier
contains the following parts:

● A number unique for each IAR compiler. For the MCS-51 microcontroller, the
target identifier is 32 (0x20).

● The value of the --core option. The value is 0, 2, or 3 for the Plain, Extended1,
and Extended2 core variant, respectively.

● The value corresponding to the --data_model option. The value is 0, 1, 2, 3, or 4
for the tiny, small, large, generic, and far data model, respectively.

● An intrinsic flag. This flag is set for 8051 because the compiler supports intrinsic
functions.

The __TID__value is constructed as:

((i << 15) | (t << 8) | (c << 4) | m)

You can extract the values as follows:

Note: The use of __TID__ is not recommended. We recommend that you use the
symbols __ICC8051__ and __CORE__ instead.

Descriptions of miscellaneous preprocessor extensions
The following section gives reference information about the preprocessor extensions
that are available in addition to the predefined symbols, pragma directives, and
ISO/ANSI directives.

NDEBUG

Description This preprocessor symbol determines whether any assert macros you have written in
your application shall be included or not in the built application.

i = (__TID__ >> 15) & 0x01; /* intrinsic flag */

t = (__TID__ >> 8) & 0x7F; /* target identifier */

c = (__TID__ >> 4) & 0x0F; /* core option */

m = __TID__ & 0x0F; /* data model */
C8051-4

Part 2. Compiler reference 281

282

Descriptions of miscellaneous preprocessor extensions
If this symbol is not defined, all assert macros are evaluated. If the symbol is defined,
all assert macros are excluded from the compilation. In other words, if the symbol is:

● defined, the assert code will not be included

● not defined, the assert code will be included

This means that if you have written any assert code and build your application, you
should define this symbol to exclude the assert code from the final application.

Note that the assert macro is defined in the assert.h standard include file.

In the IAR Embedded Workbench IDE, the NDEBUG symbol is automatically defined if
you build your application in the Release build configuration.

_Pragma()

Syntax _Pragma("string")

where string follows the syntax of the corresponding pragma directive.

Description This preprocessor operator is part of the C99 standard and can be used, for example, in
defines and has the equivalent effect of the #pragma directive.

Note: The -e option—enable language extensions—does not have to be specified.

Example #if NO_OPTIMIZE
 #define NOOPT _Pragma("optimize=none")
#else
 #define NOOPT
#endif

See also See the chapter Pragma directives.

#warning message

Syntax #warning message

where message can be any string.

Description Use this preprocessor directive to produce messages. Typically, this is useful for
assertions and other trace utilities, similar to the way the ISO/ANSI standard #error
directive is used.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

The preprocessor
__VA_ARGS__

Syntax #define P(...) __VA_ARGS__
#define P(x,y,...) x + y + __VA_ARGS__

__VA_ARGS__ will contain all variadic arguments concatenated, including the
separating commas.

Description Variadic macros are the preprocessor macro equivalents of printf style functions.
__VA_ARGS__ is part of the C99 standard.

Example #if DEBUG
 #define DEBUG_TRACE(S,...) printf(S,__VA_ARGS__)
#else
 #define DEBUG_TRACE(S,...)
#endif
...
DEBUG_TRACE("The value is:%d\n",value);

will result in:

printf("The value is:%d\n",value);
C8051-4

Part 2. Compiler reference 283

284

Descriptions of miscellaneous preprocessor extensions
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Library functions
This chapter gives an introduction to the C and C++ library functions. It also
lists the header files used for accessing library definitions.

For detailed reference information about the library functions, see the online
help system.

Introduction
The 8051 IAR C/C++ Compiler provides two different libraries:

● IAR DLIB Library is a complete ISO/ANSI C and C++ library. This library also
supports floating-point numbers in IEEE 754 format and it can be configured to
include different levels of support for locale, file descriptors, multibyte characters,
etc.

● IAR CLIB Library is a light-weight library, which is not fully compliant with
ISO/ANSI C. Neither does it fully support floating-point numbers in IEEE 754
format or does it support Embedded C++.

Note that different customization methods are normally needed for these two libraries.
For additional information, see the chapter The DLIB runtime environment and The
CLIB runtime environment, respectively.

For detailed information about the library functions, see the online documentation
supplied with the product. There is also keyword reference information for the DLIB
library functions. To obtain reference information for a function, select the function
name in the editor window and press F1.

For additional information about library functions, see the chapter
Implementation-defined behavior in this guide.

HEADER FILES

Your application program gains access to library definitions through header files, which
it incorporates using the #include directive. The definitions are divided into a number
of different header files, each covering a particular functional area, letting you include
just those that are required.

It is essential to include the appropriate header file before making any reference to its
definitions. Failure to do so can cause the call to fail during execution, or generate error
or warning messages at compile time or link time.
C8051-4

Part 2. Compiler reference 285

286

Introduction
LIBRARY OBJECT FILES

Most of the library definitions can be used without modification, that is, directly from
the library object files that are supplied with the product. For information about how to
choose a runtime library, see Basic project settings, page 6. The linker will include only
those routines that are required—directly or indirectly—by your application.

REENTRANCY

A function that can be simultaneously invoked in the main application and in any
number of interrupts is reentrant. A library function that uses statically allocated data is
therefore not reentrant.

Most parts of the DLIB library are reentrant, but the following functions and parts are
not reentrant as they need static data:

● Heap functions—malloc, free, realloc, calloc, as well as the C++ operators
new and delete

● Time functions—asctime, localtime, gmtime, mktime

● Multibyte functions—mbrlen, mbrtowc, mbsrtowc, wcrtomb, wcsrtomb,
wctomb

● The miscellaneous functions setlocale, rand, atexit, strerror, strtok

● Functions that use files in some way. This includes printf, scanf, getchar, and
putchar. The functions sprintf and sscanf are not included.

For the CLIB library, the qsort function is non-reentrant, as well as functions that use
files in some way. This includes printf, scanf, getchar, and putchar. The
functions sprintf and sscanf are not included.

In addition, some functions share the same storage for errno. These functions are not
reentrant, since an errno value resulting from one of these functions can be destroyed
by a subsequent use of the function before it has been read. Among these functions are:

exp, exp10, ldexp, log, log10, pow, sqrt, acos, asin, atan2,
cosh, sinh, strtod, strtol, strtoul

Remedies for this are:

● Do not use non-reentrant functions in interrupt service routines

● Guard calls to a non-reentrant function by a mutex, or a secure region, etc.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Library functions
IAR DLIB Library
The IAR DLIB Library provides most of the important C and C++ library definitions
that apply to embedded systems. These are of the following types:

● Adherence to a free-standing implementation of the ISO/ANSI standard for the
programming language C. For additional information, see the chapter
Implementation-defined behavior in this guide.

● Standard C library definitions, for user programs.

● Embedded C++ library definitions, for user programs.

● CSTARTUP, the module containing the start-up code. It is described in the chapter
The DLIB runtime environment in this guide.

● Runtime support libraries; for example low-level floating-point routines.

● Intrinsic functions, allowing low-level use of MCS-51 features. See the chapter
Intrinsic functions for more information.

In addition, the IAR DLIB Library includes some added C functionality, partly taken
from the C99 standard, see Added C functionality, page 290.

C HEADER FILES

This section lists the header files specific to the DLIB library C definitions. Header files
may additionally contain target-specific definitions; these are documented in the chapter
Compiler extensions.

The following table lists the C header files:

Header file Usage

assert.h Enforcing assertions when functions execute

ctype.h Classifying characters

errno.h Testing error codes reported by library functions

float.h Testing floating-point type properties

inttypes.h Defining formatters for all types defined in stdint.h

iso646.h Using Amendment 1—iso646.h standard header

limits.h Testing integer type properties

locale.h Adapting to different cultural conventions

math.h Computing common mathematical functions

setjmp.h Executing non-local goto statements

signal.h Controlling various exceptional conditions

stdarg.h Accessing a varying number of arguments

Table 47: Traditional standard C header files—DLIB
C8051-4

Part 2. Compiler reference 287

288

IAR DLIB Library
C++ HEADER FILES

This section lists the C++ header files.

Embedded C++

The following table lists the Embedded C++ header files:

stdbool.h Adds support for the bool data type in C.

stddef.h Defining several useful types and macros

stdint.h Providing integer characteristics

stdio.h Performing input and output

stdlib.h Performing a variety of operations

string.h Manipulating several kinds of strings

time.h Converting between various time and date formats

wchar.h Support for wide characters

wctype.h Classifying wide characters

Header file Usage

complex Defining a class that supports complex arithmetic

exception Defining several functions that control exception handling

fstream Defining several I/O stream classes that manipulate external files

iomanip Declaring several I/O stream manipulators that take an argument

ios Defining the class that serves as the base for many I/O streams classes

iosfwd Declaring several I/O stream classes before they are necessarily defined

iostream Declaring the I/O stream objects that manipulate the standard streams

istream Defining the class that performs extractions

new Declaring several functions that allocate and free storage

ostream Defining the class that performs insertions

sstream Defining several I/O stream classes that manipulate string containers

stdexcept Defining several classes useful for reporting exceptions

streambuf Defining classes that buffer I/O stream operations

string Defining a class that implements a string container

strstream Defining several I/O stream classes that manipulate in-memory character
sequences

Table 48: Embedded C++ header files

Header file Usage

Table 47: Traditional standard C header files—DLIB (Continued)
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Library functions
The following table lists additional C++ header files:

Extended Embedded C++ standard template library

The following table lists the Extended EC++ standard template library (STL) header
files:

Using standard C libraries in C++

The C++ library works in conjunction with 15 of the header files from the standard C
library, sometimes with small alterations. The header files come in two forms—new and
traditional—for example, cassert and assert.h.

Header file Usage

fstream.h Defining several I/O stream classes that manipulate external files

iomanip.h Declaring several I/O stream manipulators that take an argument

iostream.h Declaring the I/O stream objects that manipulate the standard streams

new.h Declaring several functions that allocate and free storage

Table 49: Additional Embedded C++ header files—DLIB

Header file Description

algorithm Defines several common operations on sequences

deque A deque sequence container

functional Defines several function objects

hash_map A map associative container, based on a hash algorithm

hash_set A set associative container, based on a hash algorithm

iterator Defines common iterators, and operations on iterators

list A doubly-linked list sequence container

map A map associative container

memory Defines facilities for managing memory

numeric Performs generalized numeric operations on sequences

queue A queue sequence container

set A set associative container

slist A singly-linked list sequence container

stack A stack sequence container

utility Defines several utility components

vector A vector sequence container

Table 50: Standard template library header files
C8051-4

Part 2. Compiler reference 289

290

IAR DLIB Library
The following table shows the new header files:

LIBRARY FUNCTIONS AS INTRINSIC FUNCTIONS

Certain C library functions will under some circumstances be handled as intrinsic
functions and will generate inline code instead of an ordinary function call, for example
memcpy, memset, and strcat.

ADDED C FUNCTIONALITY

The IAR DLIB Library includes some added C functionality, partly taken from the C99
standard.

The following include files provide these features:

● ctype.h

● inttypes.h

Header file Usage

cassert Enforcing assertions when functions execute

cctype Classifying characters

cerrno Testing error codes reported by library functions

cfloat Testing floating-point type properties

cinttypes Defining formatters for all types defined in stdint.h

climits Testing integer type properties

clocale Adapting to different cultural conventions

cmath Computing common mathematical functions

csetjmp Executing non-local goto statements

csignal Controlling various exceptional conditions

cstdarg Accessing a varying number of arguments

cstdbool Adds support for the bool data type in C.

cstddef Defining several useful types and macros

cstdint Providing integer characteristics

cstdio Performing input and output

cstdlib Performing a variety of operations

cstring Manipulating several kinds of strings

ctime Converting between various time and date formats

cwchar Support for wide characters

cwctype Classifying wide characters

Table 51: New standard C header files—DLIB
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Library functions
● math.h

● stdbool.h

● stdint.h

● stdio.h

● stdlib.h

● wchar.h

● wctype.h

ctype.h

In ctype.h, the C99 function isblank is defined.

inttypes.h

This include file defines the formatters for all types defined in stdint.h to be used by
the functions printf, scanf, and all their variants.

math.h

In math.h all functions exist in a float variant and a long double variant, suffixed
by f and l respectively. For example, sinf and sinl.

The following C99 macro symbols are defined:

HUGE_VALF, HUGE_VALL, INFINITY, NAN, FP_INFINITE, FP_NAN, FP_NORMAL,
FP_SUBNORMAL, FP_ZERO, MATH_ERRNO, MATH_ERREXCEPT, math_errhandling.

The following C99 macro functions are defined:

fpclassify, signbit, isfinite, isinf, isnan, isnormal, isgreater, isless,
islessequal, islessgreater, isunordered.

The following C99 type definitions are added:

float_t, double_t.

stdbool.h

This include file makes the bool type available if the Allow IAR extensions (-e) option
is used.

stdint.h

This include file provides integer characteristics.
C8051-4

Part 2. Compiler reference 291

292

IAR CLIB Library
stdio.h

In stdio.h, the following C99 functions are defined:

vscanf, vfscanf, vsscanf, vsnprintf, snprintf

The functions printf, scanf, and all their variants have added functionality from the
C99 standard. For reference information about these functions, see the library reference
available from the Help menu.

The following functions providing I/O functionality for libraries built without FILE
support are definded:

stdlib.h

In stdlib.h, the following C99 functions are defined:

_Exit, llabs, lldiv, strtoll, strtoull, atoll, strtof, strtold.

The function strtod has added functionality from the C99 standard. For reference
information about this functions, see the library reference available from the Help
menu.

The __qsortbbl function is defined; it provides sorting using a bubble sort algorithm.
This is useful for applications that have a limited stack.

wchar.h

In wchar.h, the following C99 functions are defined:

vfwscanf, vswscanf, vwscanf, wcstof, wcstolb.

wctype.h

In wctype.h, the C99 function iswblank is defined.

IAR CLIB Library
The IAR CLIB Library provides most of the important C library definitions that apply
to embedded systems. These are of the following types:

● Standard C library definitions available for user programs. These are documented in
this chapter.

__write_array Corresponds to fwrite on stdout.

__ungetchar Corresponds to ungetc on stdout.

__gets Corresponds to fgets on stdin.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Library functions
● The system startup code. It is described in the chapter The CLIB runtime
environment in this guide.

● Runtime support libraries; for example low-level floating-point routines.

● Intrinsic functions, allowing low-level use of MCS-51 features. See the chapter
Intrinsic functions for more information.

LIBRARY DEFINITIONS SUMMARY

This following table lists the header files specific to the CLIB library:

* The functions isxxx, toupper, and tolower declared in the header file ctype.h evaluate
their argument more than once. This is not according to the ISO/ANSI standard.

Header file Description

assert.h Assertions

ctype.h* Character handling

errno.h Error return values

float.h Limits and sizes of floating-point types

iccbutl.h Low-level routines

limits.h Limits and sizes of integral types

math.h Mathematics

setjmp.h Non-local jumps

stdarg.h Variable arguments

stdbool.h Adds support for the bool data type in C

stddef.h Common definitions including size_t, NULL,
ptrdiff_t, and offsetof

stdio.h Input/output

stdlib.h General utilities

string.h String handling

Table 52: IAR CLIB Library header files
C8051-4

Part 2. Compiler reference 293

294

IAR CLIB Library
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Segment reference
The 8051 IAR C/C++ Compiler places code and data into named segments
which are referred to by the IAR XLINK Linker. Details about the segments
are required for programming assembler language modules, and are also useful
when interpreting the assembler language output from the compiler.

For more information about segments, see the chapter Placing code and data.

Summary of segments
The table below lists the segments that are available in the 8051 IAR C/C++ Compiler:

Segment Description

BANKED_CODE Holds code declared __banked_func.

BANKED_CODE_EXT2_AC Holds located constant data, when using the Banked extended2
code model.

BANKED_CODE_EXT2_AN Holds located uninitialized data, when using the Banked extended2
code model.

BANKED_CODE_EXT2_C Holds constant data, when using the Banked extended2 code
model.

BANKED_CODE_EXT2_N Holds __no_init static and global variables, when using the
Banked extended2 code model.

BANKED_CODE_

INTERRUPTS_EXT2

Holds __interrupt functions when compiling for the extended2
core.

BANKED_EXT2 Holds springboard functions when compiling for the extended2
core.

BANK_RELAYS Holds relay functions for bank switching when compiling for the
Banked code model.

BDATA_AN Holds __bdata located uninitialized data.

BDATA_I Holds __bdata static and global initialized variables.

BDATA_ID Holds initial values for __bdata static and global variables in
BDATA_I.

BDATA_N Holds __no_init __bdata static and global variables.

BDATA_Z Holds zero-initialized __bdata static and global variables.

Table 53: Segment summary
C8051-4

Part 2. Compiler reference 295

296

Summary of segments
BIT_N Holds __no_init __bit static and global variables.

BREG Holds the compiler’s virtual bit register.

CODE_AC Holds __code located constant data.

CODE_C Holds __code constant data.

CODE_N Holds __no_init __code static and global variables.

CSTART Holds the startup code.

DATA_AN Holds __data located uninitialized data.

DATA_I Holds __data static and global initialized variables.

DATA_ID Holds initial values for __data static and global variables in
DATA_I.

DATA_N Holds __no_init __data static and global variables.

DATA_Z Holds zero-initialized __data static and global variables.

DIFUNCT Holds pointers to code, typically C++ constructors, that should be
executed by the system startup code before main is called.

DOVERLAY Holds the static data overlay area.

EXT_STACK Holds the Maxim (Dallas Semiconductor) 390/400 extended data
stack.

FAR_AN Holds __far located uninitialized data.

FAR_CODE Holds code declared __far_func.

FAR_CODE_AC Holds __far_code located constant data.

FAR_CODE_C Holds __far_code constant data.

FAR_CODE_N Holds __no_init __far_code static and global variables.

FAR_HEAP Holds the heap used for dynamically allocated far data.

FAR_I Holds __far static and global initialized variables.

FAR_ID Holds initial values for __far static and global variables in FAR_I.

FAR_N Holds __no_init __far static and global variables.

FAR_ROM_AC Holds __far_rom located constant data.

FAR_ROM_C Holds __far_rom constant data.

FAR_Z Holds zero-initialized __far static and global variables.

HUGE_AN Holds __huge located uninitialized data.

HUGE_CODE_AC Holds __huge_code located constant data.

HUGE_CODE_C Holds __huge_code constant data.

HUGE_CODE_N Holds __no_init __huge_code static and global variables.

Segment Description

Table 53: Segment summary (Continued)
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Segment reference
HUGE_HEAP Holds the heap used for dynamically allocated huge data.

HUGE_I Holds __huge static and global initialized variables.

HUGE_ID Holds initial values for __huge static and global variables in
HUGE_I.

HUGE_N Holds __no_init __huge static and global variables.

HUGE_ROM_AC Holds __huge_rom located constant data.

HUGE_ROM_C Holds __huge_rom constant data.

HUGE_Z Holds zero-initialized __huge static and global variables.

IDATA_AN Holds __idata located uninitialized data.

IDATA_I Holds __idata static and global initialized variables.

IDATA_ID Holds initial values for __idata static and global variables in
IDATA_I.

IDATA_N Holds __no_init __idata static and global variables.

IDATA_Z Holds zero-initialized __idata static and global variables.

INTVEC Contains the reset and interrupt vectors.

INTVEC_EXT2 Contains the reset and interrupt vectors when the core is
Extended2.

IOVERLAY Holds the static idata overlay area.

ISTACK Holds the internal data stack.

IXDATA_AN Holds __ixdata located uninitialized data.

IXDATA_I Holds __ixdata static and global initialized variables.

IXDATA_ID Holds initial values for __ixdata static and global variables in
IXDATA_I.

IXDATA_N Holds __no_init __ixdata static and global variables.

IXDATA_Z Holds zero-initialized __ixdata static and global variables.

NEAR_CODE Holds code declared __near_func.

PDATA_AN Holds __pdata located uninitialized data.

PDATA_I Holds __pdata static and global initialized variables.

PDATA_ID Holds initial values for __pdata static and global variables in
PDATA_I.

PDATA_N Holds __no_init __pdata static and global variables.

PDATA_Z Holds zero-initialized __pdata static and global variables.

PSP Holds the stack pointer to the pdata stack.

Segment Description

Table 53: Segment summary (Continued)
C8051-4

Part 2. Compiler reference 297

298

Descriptions of segments
Descriptions of segments
This section gives reference information about each segment.

The segments are placed in memory by using the segment placement linker directives
-Z and -P, for sequential and packed placement, respectively. Some segments cannot
use packed placement, as their contents must be continuous.

In each description, the segment memory type—CODE, CONST, or DATA—indicates
whether the segment should be placed in ROM or RAM memory; see Table 12, XLINK
segment memory types, page 68.

For information about the -Z and the -P directives, see the IAR Linker and Library Tools
Reference Guide.

For information about how to define segments in the linker command file, see
Customizing the linker command file, page 69.

For detailed information about the extended keywords mentioned here, see the chapter
Extended keywords.

PSTACK Holds the pdata stack.

RCODE Holds code declared __near_func.

SFR_AN Holds __sfr located uninitialized data.

VREG Contains the compiler’s virtual register area.

XDATA_AN Holds __xdata located uninitialized data.

XDATA_HEAP Holds the heap used for dynamically allocated data.

XDATA_I Holds __xdata static and global initialized variables.

XDATA_ID Holds initial values for __xdata static and global variables in
XDATA_I.

XDATA_N Holds __no_init __xdata static and global variables.

XDATA_ROM_AC Holds __xdata_rom located constant data.

XDATA_ROM_C Holds __xdata_rom constant data.

XDATA_Z Holds zero-initialized __xdata static and global variables.

XSP Holds the stack pointer to the xdata stack.

XSTACK Holds the xdata stack.

Segment Description

Table 53: Segment summary (Continued)
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Segment reference
BANKED_CODE

Description Holds program code declared __banked_func, which is the default in the Banked code
model.

Segment memory type CODE

Memory placement This segment can be placed anywhere in the code memory space.

Access type Read-only

BANKED_CODE_EXT2_AC

Description Holds located constant data, when using the Banked extended2 code model. The
segment also holds default-declared initialized located const objects if the compiler
option --place_constants=code has been specified.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

BANKED_CODE_EXT2_AN

Description Holds __no_init located data, when using the Banked extended2 code model. Unless
the option --place_constants=code or --place_constants=data_rom has
been specified, the segment also holds located non-initialized objects declared __data
const.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

BANKED_CODE_EXT2_C

Description Holds constant data, when using the Banked extended2 code model.

This segment also holds default-declared non-located constant data and strings if the
compiler option --place_constants=code has been specified.

Segment memory type CODE

Memory placement 0F0000–0FFFFF
C8051-4

Part 2. Compiler reference 299

300

Descriptions of segments
Access type Read/write

See also --output, -o, page 212

BANKED_CODE_EXT2_N

Description Holds static and global __no_init variables, when using the Banked extended2 code
model.

This segment also holds default-declared non-located constant data and strings if the
compiler option --place_constants=code has been specified.

Segment memory type CODE

Memory placement 0F0000–0FFFFF

Access type Read/write

See also --output, -o, page 212

BANKED_CODE_INTERRUPTS_EXT2

Description Holds __interrupt functions when compiling for the extended2 core.

Segment memory type CODE

Memory placement This segment can be placed anywhere in the code memory space but must be located in
the same bank as the segment INTVEC_EXT2.

Access type Read/write

BANKED_EXT2

Description Holds the springboard functions, that is functions that need to be copied to every bank
when compiling for the extended2 core.

Segment memory type CODE

Memory placement 10000

Access type Read-only
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Segment reference
BANK_RELAYS

Description Holds the relay functions that are used for bank switching when compiling for the
extended2 core and the Banked extended2 code model.

Segment memory type CODE

Memory placement This segment can be placed anywhere within 0x0–0xFFFF, but must be located in the
root bank.

Access type Read-only

BDATA_AN

Description Holds __no_init __bdata located data.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

BDATA_I

Description Holds __bdata static and global initialized variables initialized by copying from the
segment BDATA_ID at application startup.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type DATA

Memory placement 0x20–0x2F

Access type Read/write

BDATA_ID

Description Holds initial values for __bdata static and global variables in the BDATA_I segment.
These values are copied from BDATA_ID to BDATA_I at application startup.
C8051-4

Part 2. Compiler reference 301

302

Descriptions of segments
This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type CODE

Memory placement This segment can be placed anywhere in the code memory space.

Access type Read-only

BDATA_N

Description Holds static and global __no_init __bdata variables.

Segment memory type DATA

Memory placement 0x20–0x2F

Access type Read-only

BDATA_Z

Description Holds zero-initialized __bdata static and global variables.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type DATA

Memory placement 0x20–0x2F

Access type Read/write

BIT_N

Description Holds static and global __no_init __bit variables.

Segment memory type BIT

Memory placement 0x00–0x7F
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Segment reference
Access type Read-only

BREG

Description Holds the compiler’s virtual bit register.

Segment memory type BIT

Memory placement 0x00–0x7F

Access type Read/write

CODE_AC

Description Holds __code located constant data. The segment also holds const objects if the
compiler option --place_constants=code has been specified.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

CODE_C

Description Holds __code constant data. The segment also holds constant data and strings if the
compiler option --place_constants=code has been specified.

Segment memory type CODE

Memory placement 0–0xFFFF

Access type Read-only

See also --output, -o, page 212

CODE_N

Description Holds static and global __no_init __code variables. The segment also holds constant
data and strings if the compiler option --place_constants=code has been specified.

Segment memory type CODE
C8051-4

Part 2. Compiler reference 303

304

Descriptions of segments
Memory placement 0–0xFFFF

Access type Read-only

See also --output, -o, page 212

CSTART

Description Holds the startup code.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type CODE

Memory placement This segment must be placed at the address where the chip starts executing after reset,
which for the 8051 microcontroller is at the address zero.

Access type Read-only

DATA_AN

Description Holds __no_init __data located data. Unless the option
--place_constants=code or --place_constants=data_rom has been specified,
the segment also holds located non-initialized objects declared __data const and, in
the Tiny data model, default-declared located non-initialized constant objects.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

DATA_I

Description Holds __data static and global initialized variables initialized by copying from the
segment DATA_ID at application startup.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type DATA
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Segment reference
Memory placement 0x0–0x7F

Access type Read/write

DATA_ID

Description Holds initial values for __data static and global variables in the DATA_I segment.
These values are copied from DATA_ID to DATA_I at application startup.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type CODE

Memory placement This segment can be placed anywhere in memory.

Access type Read-only

DATA_N

Description Holds static and global __no_init __data variables.

Segment memory type DATA

Memory placement 0x0–0x7F

Access type Read/write

DATA_Z

Description Holds zero-initialized __data static and global variables.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type DATA

Memory placement 0x0–0x7F

Access type Read/write
C8051-4

Part 2. Compiler reference 305

306

Descriptions of segments
DIFUNCT

Description Holds the dynamic initialization vector used by C++.

Segment memory type CONST

Memory placement In the small data model, this segment must be placed in the first 64 Kbytes of memory.
In other data models, this segment can be placed anywhere in memory.

Access type Read-only

DOVERLAY

Description Holds the static overlay area for functions called using the data overlay calling
convention.

Segment memory type DATA

Memory placement 0x0–0x7F

Access type Read/write

EXT_STACK

Description Holds the extended data stack.

Segment memory type DATA

Memory placement 0x0–0x7F

Access type Read/write

See also The stacks, page 76.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Segment reference
FAR_AN

Description Holds __no_init __far located data. Unless the option --place_constants=code
or --place_constants=data_rom has been specified, the segment also holds
located non-initialized objects declared __far const and, in the Far data model,
default-declared located non-initialized constant objects.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

FAR_CODE

Description Holds application code declared __far_func.

Segment memory type CODE

Memory placement This segment must be placed in the code memory space.

Access type Read-only

FAR_CODE_AC

Description Holds __far_code located constant data. In the Far data model, the segment also holds
default-declared initialized located const objects, if the compiler option
--place_constants=code has been specified.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

FAR_CODE_C

Description Holds __far_code constant data. In the Far data model, the segment also holds
default-declared non-initialized constant data, if the compiler option
--place_constants=code has been specified.

Segment memory type CODE

Memory placement This segment can be placed anywhere in the code memory space.

Access type Read-only
C8051-4

Part 2. Compiler reference 307

308

Descriptions of segments
See also --output, -o, page 212

FAR_CODE_N

Description Holds static and global __no_init __far_code variables. In the Far data model, the
segment also holds default-declared non-initialized constant data, if the compiler option
--place_constants=code has been specified.

Segment memory type CODE

Memory placement This segment can be placed anywhere in the code memory space.

Access type Read-only

See also --output, -o, page 212

FAR_HEAP

Description Holds the heap used for dynamically allocated data in far memory, in other words data
allocated by far_malloc and far_free, and in C++, new and delete.

Note: This segment is only used when you use the DLIB library.

Segment memory type XDATA

Memory placement This segment can be placed anywhere in external data memory.

Access type Read/write

See also The heap, page 79 and New and Delete operators, page 154.

FAR_I

Description Holds __far static and global initialized variables initialized by copying from the
segment FAR_ID at application startup.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type XDATA
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Segment reference
Memory placement This segment must be placed in the external data memory space.

Access type Read-only

FAR_ID

Description Holds initial values for __far static and global variables in the FAR_I segment. These
values are copied from FAR_ID to FAR_I at application startup.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type CODE

Memory placement This segment can be placed anywhere in the code memory space.

Access type Read-only

FAR_N

Description Holds static and global __no_init __far variables. Unless the option
--place_constants=code or --place_constants=data_rom has been specified,
the segment also holds non-initialized objects declared __far const and, in the Far
data model, default-declared non-initialized constant objects.

Segment memory type CONST

Memory placement This segment must be placed in the external data memory space.

Access type Read-only

FAR_ROM_AC

Description Holds __far_rom located constant data. In the Far data model, the segment also holds
default-declared initialized located const objects if the compiler option
--place_constants=data_rom has been specified.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.
C8051-4

Part 2. Compiler reference 309

310

Descriptions of segments
FAR_ROM_C

Description Holds __far_rom constant data. In the Far data model, the segment also holds
default-declared non-located constant data and strings if the compiler option
--place_constants=data_rom has been specified.

Segment memory type CONST

Memory placement This segment can be placed anywhere in the external data memory space.

Access type Read-only

See also --output, -o, page 212

FAR_Z

Description Holds zero-initialized __far static and global variables. Unless the option
--place_constants=code or --place_constants=data_rom has been specified,
the segment also holds non-initialized or zero-initialized __far constants.

In the far data model, the segment also holds default-declared zero-initialized constant
objects unless the option --place_constants=code or
--place_constants=data_rom has been specified.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type XDATA

Memory placement This segment must be placed in the external data memory space.

Access type Read/write

See also --output, -o, page 212

HUGE_AN

Description Holds __no_init __huge located data. Also holds located non-initialized objects
declared __huge const unless the option --place_constants=code or
--place_constants=data_rom has been specified.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Segment reference
Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

HUGE_CODE_AC

Description Holds __huge_code located constant data.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

HUGE_CODE_C

Description Holds __huge_code constant data.

Segment memory type CODE

Memory placement This segment can be placed anywhere in the code memory space.

Access type Read-only

HUGE_CODE_N

Description Holds static and global __no_init __huge_code variables.

Segment memory type CODE

Memory placement This segment can be placed anywhere in the code memory space.

Access type Read-only

HUGE_HEAP

Description Holds the heap used for dynamically allocated data in huge memory, in other words data
allocated by huge_malloc and huge_free, and in C++, new and delete.

Note: This segment is only used when you use the DLIB library.

Segment memory type XDATA
C8051-4

Part 2. Compiler reference 311

312

Descriptions of segments
Memory placement This segment can be placed anywhere in the external data memory space.

Access type Read/write

See also The heap, page 79 and New and Delete operators, page 154.

HUGE_I

Description Holds __huge static and global initialized variables initialized by copying from the
segment HUGE_ID at application startup.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type XDATA

Memory placement This segment can be placed anywhere in the external data memory space.

Access type Read/write

HUGE_ID

Description Holds initial values for __huge static and global variables in the HUGE_I segment.
These values are copied from HUGE_ID to HUGE_I at application startup.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type CODE

Memory placement This segment can be placed anywhere in the code memory space.

Access type Read-only
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Segment reference
HUGE_N

Description Holds static and global __no_init __huge variables.

Unless the option --place_constants=code or --place_constants=data_rom
has been specified, the segment also holds non-initialized objects declared __huge
const.

Segment memory type XDATA

Memory placement This segment can be placed anywhere in the external data memory space.

Access type Read-only

HUGE_ROM_AC

Description Holds __huge_rom located constant data.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

HUGE_ROM_C

Description Holds __huge_rom constant data.

Segment memory type CONST

Memory placement This segment can be placed anywhere in the external data memory space.

Access type Read-only

HUGE_Z

Description Holds zero-initialized __huge static and global variables. Unless the option
--place_constants=code or --place_constants=data_rom has been specified,
the segment also holds non-initialized or zero-initialized __huge constants.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.
C8051-4

Part 2. Compiler reference 313

314

Descriptions of segments
Segment memory type XDATA

Memory placement This segment can be placed anywhere in the external data memory space.

Access type Read/write

IDATA_AN

Description Holds __no_init __idata located data. Unless the option
--place_constants=code or --place_constants=data_rom has been specified,
the segment also holds located non-initialized objects declared __idata const and, in
the small data model, default-declared located non-initialized constant objects.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

IDATA_I

Description Holds __idata static and global initialized variables initialized by copying from the
segment IDATA_ID at application startup.

Unless the option --place_constants=code or --place_constants=data_rom
has been specified, the segment also holds initialized objects declared __idata const
and, in the small data model, default-declared initialized constant objects.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type DATA

Memory placement 0–0xFF

Access type Read-only

IDATA_ID

Description Holds initial values for __idata static and global variables in the IDATA_I segment.
These values are copied from IDATA_ID to IDATA_I at application startup.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Segment reference
This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type CODE

Memory placement This segment can be placed anywhere in the code memory space.

Access type Read-only

IDATA_N

Description Holds static and global __no_init __idata variables.

Segment memory type DATA

Memory placement 0–0xFF

Access type Read/write

IDATA_Z

Description Holds zero-initialized __idata static and global variables.

Also holds, in the small data model, default-declared zero-initialized constant objects
unless the option --place_constants=code or --place_constants=data_rom
has been specified.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type IDATA

Memory placement 0x0–0xFF

Access type Read/write
C8051-4

Part 2. Compiler reference 315

316

Descriptions of segments
INTVEC

Description Holds the interrupt vector table generated by the use of the __interrupt extended
keyword in combination with the #pragma vector directive.

Segment memory type CODE

Memory placement 0x0

Access type Read-only

INTVEC_EXT2

Description When compiling for the extended2 core, this segment holds the interrupt vector table
generated by the use of the __interrupt extended keyword in combination with the
#pragma vector directive.

Segment memory type CODE

Memory placement This segment can be placed anywhere in the code memory space but must be located in
the same bank as the segment BANKED_CODE_INTERRUPTS_EXT2.

Access type Read-only

IOVERLAY

Description Holds the static overlay area for functions called using the idata overlay calling
convention.

Segment memory type DATA

Memory placement 0x0–0xFF

Access type Read/write

ISTACK

Description Holds the internal data stack.

Segment memory type IDATA
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Segment reference
Memory placement 0x0–0xFF

Access type Read/write

See also The stacks, page 76.

IXDATA_AN

Description Holds __no_init __ixdata located data.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

IXDATA_I

Description Holds __ixdata static and global initialized variables initialized by copying from the
segment IXDATA_ID at application startup.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type XDATA

Memory placement 0–0xFFFF

Access type Read-only

IXDATA_ID

Description Holds initial values for __ixdata static and global variables in the IXDATA_I
segment. These values are copied from IXDATA_ID to IXDATA_I at application
startup.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type CODE

Memory placement This segment can be placed anywhere in the code memory space.
C8051-4

Part 2. Compiler reference 317

318

Descriptions of segments
Access type Read-only

IXDATA_N

Description Holds static and global __no_init __ixdata variables.

Segment memory type XDATA

Memory placement 0–0xFFFF

Access type Read/write

IXDATA_Z

Description Holds zero-initialized __ixdata static and global variables.

Also holds, in the small data model, default-declared zero-initialized constant objects
unless the option --place_constants=code or --place_constants=data_rom
has been specified.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type XDATA

Memory placement 0x0–0xFFFF

Access type Read-only

NEAR_CODE

Description Holds program code declared __near_func.

Segment memory type CODE

Memory placement 0–0xFFFF

Access type Read-only
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Segment reference
PDATA_AN

Description Holds __no_init __pdata located data.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

PDATA_I

Description Holds __pdata static and global initialized variables initialized by copying from the
segment PDATA_ID at application startup.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type XDATA

Memory placement 0–0xnnFF (xdata memory)

0–0xnnnnFF (far memory)

This segment must be placed in one 256-byte page of xdata or far memory. Thus, nn can
be anything from 00 to FF (xdata) and nnnn can be anything from 0000 to FFFF (far).

Access type Read/write

PDATA_ID

Description Holds initial values for __pdata static and global variables in the PDATA_I segment.
These values are copied from PDATA_ID to PDATA_I at application startup.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type CODE

Memory placement This segment can be placed anywhere in the code memory space.

Access type Read-only
C8051-4

Part 2. Compiler reference 319

320

Descriptions of segments
PDATA_N

Description Holds static and global __no_init __pdata variables.

Segment memory type XDATA

Memory placement 0–0xnnFF (xdata memory)

0–0xnnnnFF (far memory)

This segment must be placed in one 256-byte page of xdata or far memory. Thus, nn can
be anything from 00 to FF (xdata) and nnnn can be anything from 0000 to FFFF (far).

Access type Read/write

PDATA_Z

Description Holds zero-initialized __pdata static and global variables.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type XDATA

Memory placement 0–0xnnFF (xdata memory)

0–0xnnnnFF (far memory)

This segment must be placed in one 256-byte page of xdata or far memory. Thus, nn can
be anything from 00 to FF (xdata) and nnnn can be anything from 0000 to FFFF (far).

Access type Read/write

PSP

Description Holds the stack pointers to the pdata stack.

Segment memory type DATA

Memory placement 0–0x7F

Access type Read/write

See also System startup, page 97.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Segment reference
PSTACK

Description Holds the parameter data stack.

Segment memory type XDATA

Memory placement 0–0xnnFF (xdata memory)

0–0xnnnnFF (far memory)

This segment must be placed in one 256-byte page of xdata or far memory. Thus, nn can
be anything from 00 to FF (xdata) and nnnn can be anything from 0000 to FFFF (far).

Access type Read/write

See also The stacks, page 76.

RCODE

Description Holds assembler-written runtime library code.

Segment memory type CODE

Memory placement This segment can be placed anywhere in the code memory space.

Access type Read-only

SFR_AN

Description Holds __no_init __sfr located data.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

VREG

Description Holds the compiler’s virtual register area.

Segment memory type DATA

Memory placement 0–0x7FF
C8051-4

Part 2. Compiler reference 321

322

Descriptions of segments
Access type Read/write

XDATA_AN

Description Holds __no_init __xdata located data.

Unless the option --place_constants=code or --place_constants=data_rom
has been specified, the segment also holds located non-initialized objects declared
__xdata const and, in the large data model, default-declared located non-initialized
constant objects.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

XDATA_HEAP

Description Holds the heap used for dynamically allocated data in xdata memory, in other words data
allocated by xdata_malloc and xdata_free, and in C++, new and delete.

Note: This segment is only used when you use the DLIB library.

Segment memory type XDATA

Memory placement This segment can be placed anywhere in the external data memory space.

Access type Read/write

See also The heap, page 79 and New and Delete operators, page 154.

XDATA_I

Description Holds __xdata static and global initialized variables initialized by copying from the
segment XDATA_ID at application startup.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type XDATA

Memory placement 0–0xFFFF
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Segment reference
Access type Read/write

XDATA_ID

Description Holds initial values for __xdata static and global variables in the XDATA_I segment.
These values are copied from XDATA_ID to XDATA_I at application startup.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type CODE

Memory placement This segment can be placed anywhere in the code memory space.

Access type Read-only

XDATA_N

Description Holds static and global __no_init __xdata variables.

Unless the option --place_constants=code or --place_constants=data_rom
has been specified, the segment also holds non-initialized objects declared __xdata
const and, in the Large data model, default-declared non-initialized constant objects.

Segment memory type XDATA

Memory placement 0–0xFFFF

Access type Read/write

XDATA_ROM_AC

Description Holds __xdata_rom located constant data. In the Large data model, the segment also
holds default-declared initialized located const objects if the compiler option
--place_constants=data_rom has been specified. See --place_constants, page 212.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.
C8051-4

Part 2. Compiler reference 323

324

Descriptions of segments
XDATA_ROM_C

Description Holds __xdata_rom constant data.

Segment memory type CONST

Memory placement 0–0xFFFF

Access type Read-only

XDATA_Z

Description Holds zero-initialized __huge static and global variables. In the Large data model, the
segment also holds default-declared zero-initialized constant objects unless the option
--place_constants=code or --place_constants=data_rom has been specified.

This segment cannot be placed in memory by using the -P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -Z directive must be used.

Segment memory type XDATA

Memory placement 0–0xFFFF

Access type Read/write

See also --output, -o, page 212

XSP

Description Holds the stack pointers to the xdata stack.

Segment memory type DATA

Memory placement 0–0x7F

Access type Read/write

See also System startup, page 97.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Segment reference
XSTACK

Description Holds the xdata stack.

Segment memory type XDATA

Memory placement 0–0FFFF

Access type Read/write

See also The stacks, page 76.
C8051-4

Part 2. Compiler reference 325

326

Descriptions of segments
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Implementation-defined
behavior
This chapter describes how the 8051 IAR C/C++ Compiler handles the
implementation-defined areas of the C language.

ISO 9899:1990, the International Organization for Standardization standard -
Programming Languages - C (revision and redesign of ANSI X3.159-1989,
American National Standard), changed by the ISO Amendment 1:1994,
Technical Corrigendum 1, and Technical Corrigendum 2, contains an appendix
called Portability Issues. The ISO appendix lists areas of the C language that ISO
leaves open to each particular implementation.

Note: The 8051 IAR C/C++ Compiler adheres to a freestanding
implementation of the ISO standard for the C programming language. This
means that parts of a standard library can be excluded in the implementation.

Descriptions of implementation-defined behavior
This section follows the same order as the ISO appendix. Each item covered includes
references to the ISO chapter and section (in parenthesis) that explains the
implementation-defined behavior.

TRANSLATION

Diagnostics (5.1.1.3)

Diagnostics are produced in the form:

filename,linenumber level[tag]: message

where filename is the name of the source file in which the error was encountered,
linenumber is the line number at which the compiler detected the error, level is the
level of seriousness of the message (remark, warning, error, or fatal error), tag is a
unique tag that identifies the message, and message is an explanatory message, possibly
several lines.
C8051-4

Part 2. Compiler reference 327

328

Descriptions of implementation-defined behavior
ENVIRONMENT

Arguments to main (5.1.2.2.2.1)

The function called at program startup is called main. There is no prototype declared for
main, and the only definition supported for main is:

int main(void)

To change this behavior for the IAR DLIB runtime environment, see Customizing
system initialization, page 99. To change this behavior for the IAR CLIB runtime
environment, see Customizing system initialization, page 123.

Interactive devices (5.1.2.3)

The streams stdin and stdout are treated as interactive devices.

IDENTIFIERS

Significant characters without external linkage (6.1.2)

The number of significant initial characters in an identifier without external linkage is
200.

Significant characters with external linkage (6.1.2)

The number of significant initial characters in an identifier with external linkage is 200.

Case distinctions are significant (6.1.2)

Identifiers with external linkage are treated as case-sensitive.

CHARACTERS

Source and execution character sets (5.2.1)

The source character set is the set of legal characters that can appear in source files. The
default source character set is the standard ASCII character set. However, if you use the
command line option --enable_multibytes, the source character set will be the host
computer’s default character set.

The execution character set is the set of legal characters that can appear in the execution
environment. The default execution character set is the standard ASCII character set.
However, if you use the command line option --enable_multibytes, the execution
character set will be the host computer’s default character set. The IAR DLIB Library
needs a multibyte character scanner to support a multibyte execution character set. The
IAR CLIB Library does not support multibyte characters.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Implementation-defined behavior
See Locale, page 104.

Bits per character in execution character set (5.2.4.2.1)

The number of bits in a character is represented by the manifest constant CHAR_BIT. The
standard include file limits.h defines CHAR_BIT as 8.

Mapping of characters (6.1.3.4)

The mapping of members of the source character set (in character and string literals) to
members of the execution character set is made in a one-to-one way. In other words, the
same representation value is used for each member in the character sets except for the
escape sequences listed in the ISO standard.

Unrepresented character constants (6.1.3.4)

The value of an integer character constant that contains a character or escape sequence
not represented in the basic execution character set or in the extended character set for
a wide character constant generates a diagnostic message, and will be truncated to fit the
execution character set.

Character constant with more than one character (6.1.3.4)

An integer character constant that contains more than one character will be treated as an
integer constant. The value will be calculated by treating the leftmost character as the
most significant character, and the rightmost character as the least significant character,
in an integer constant. A diagnostic message will be issued if the value cannot be
represented in an integer constant.

A wide character constant that contains more than one multibyte character generates a
diagnostic message.

Converting multibyte characters (6.1.3.4)

The IAR C/C++ Compiler has the following levels of locale support:

● If the compiler option --enable_multibytes is not used, the ‘C’ locale is used

● If the compiler option --enable_multibytes is used, the host operating system
locale is used, but only in strings and comments.

In addition, the IAR DLIB Library can support other locales than the ‘C’ locale. You
can add support for multibyte characters by tailoring the library.

The IAR CLIB Library does not support any other locales than the ‘C’ locale.

See Locale, page 104.
C8051-4

Part 2. Compiler reference 329

330

Descriptions of implementation-defined behavior
Range of 'plain' char (6.2.1.1)

A ‘plain’ char has the same range as an unsigned char.

INTEGERS

Range of integer values (6.1.2.5)

The representation of integer values are in the two's complement form. The most
significant bit holds the sign; 1 for negative, 0 for positive and zero.

See Basic data types, page 218, for information about the ranges for the different integer
types.

Demotion of integers (6.2.1.2)

Converting an integer to a shorter signed integer is made by truncation. If the value
cannot be represented when converting an unsigned integer to a signed integer of equal
length, the bit-pattern remains the same. In other words, a large enough value will be
converted into a negative value.

Signed bitwise operations (6.3)

Bitwise operations on signed integers work the same way as bitwise operations on
unsigned integers; in other words, the sign-bit will be treated as any other bit.

Sign of the remainder on integer division (6.3.5)

The sign of the remainder on integer division is the same as the sign of the dividend.

Negative valued signed right shifts (6.3.7)

The result of a right-shift of a negative-valued signed integral type preserves the sign-bit.
For example, shifting 0xFF00 down one step yields 0xFF80.

FLOATING POINT

Representation of floating-point values (6.1.2.5)

The representation and sets of the various floating-point numbers adheres to IEEE
854–1987. A typical floating-point number is built up of a sign-bit (s), a biased
exponent (e), and a mantissa (m).

See Floating-point types, page 220, for information about the ranges and sizes for the
different floating-point types: float and double.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Implementation-defined behavior
Converting integer values to floating-point values (6.2.1.3)

When an integral number is cast to a floating-point value that cannot exactly represent
the value, the value is rounded (up or down) to the nearest suitable value.

Demoting floating-point values (6.2.1.4)

When a floating-point value is converted to a floating-point value of narrower type that
cannot exactly represent the value, the value is rounded (up or down) to the nearest
suitable value.

ARRAYS AND POINTERS

size_t (6.3.3.4, 7.1.1)

See size_t, page 223, for information about size_t.

Conversion from/to pointers (6.3.4)

See Casting, page 223, for information about casting of data pointers and function
pointers.

ptrdiff_t (6.3.6, 7.1.1)

See ptrdiff_t, page 223, for information about the ptrdiff_t.

REGISTERS

Honoring the register keyword (6.5.1)

User requests for register variables are not honored.

STRUCTURES, UNIONS, ENUMERATIONS, AND BITFIELDS

Improper access to a union (6.3.2.3)

If a union gets its value stored through a member and is then accessed using a member
of a different type, the result is solely dependent on the internal storage of the first
member.

Padding and alignment of structure members (6.5.2.1)

See the section Basic data types, page 218, for information about the alignment
requirement for data objects.
C8051-4

Part 2. Compiler reference 331

332

Descriptions of implementation-defined behavior
Sign of 'plain' bitfields (6.5.2.1)

A 'plain' int bitfield is treated as a signed int bitfield. All integer types are allowed as
bitfields.

Allocation order of bitfields within a unit (6.5.2.1)

Bitfields are allocated within an integer from least-significant to most-significant bit.

Can bitfields straddle a storage-unit boundary (6.5.2.1)

Bitfields cannot straddle a storage-unit boundary for the chosen bitfield integer type.

Integer type chosen to represent enumeration types (6.5.2.2)

The chosen integer type for a specific enumeration type depends on the enumeration
constants defined for the enumeration type. The chosen integer type is the smallest
possible.

QUALIFIERS

Access to volatile objects (6.5.3)

Any reference to an object with volatile qualified type is an access.

DECLARATORS

Maximum numbers of declarators (6.5.4)

The number of declarators is not limited. The number is limited only by the available
memory.

STATEMENTS

Maximum number of case statements (6.6.4.2)

The number of case statements (case values) in a switch statement is not limited. The
number is limited only by the available memory.

PREPROCESSING DIRECTIVES

Character constants and conditional inclusion (6.8.1)

The character set used in the preprocessor directives is the same as the execution
character set. The preprocessor recognizes negative character values if a 'plain' character
is treated as a signed character.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Implementation-defined behavior
Including bracketed filenames (6.8.2)

For file specifications enclosed in angle brackets, the preprocessor does not search
directories of the parent files. A parent file is the file that contains the #include
directive. Instead, it begins by searching for the file in the directories specified on the
compiler command line.

Including quoted filenames (6.8.2)

For file specifications enclosed in quotes, the preprocessor directory search begins with
the directories of the parent file, then proceeds through the directories of any
grandparent files. Thus, searching begins relative to the directory containing the source
file currently being processed. If there is no grandparent file and the file has not been
found, the search continues as if the filename was enclosed in angle brackets.

Character sequences (6.8.2)

Preprocessor directives use the source character set, with the exception of escape
sequences. Thus, to specify a path for an include file, use only one backslash:

#include "mydirectory\myfile"

Within source code, two backslashes are necessary:

file = fopen("mydirectory\\myfile","rt");

Recognized pragma directives (6.8.6)

In addition to the pragma directives described in the chapter Pragma directives, the
following directives are recognized and will have an indeterminate effect:

alignment

baseaddr

building_runtime

can_instantiate

codeseg

cspy_support

define_type_info

do_not_instantiate

early_dynamic_initialization

function

hdrstop

important_typedef

instantiate

keep_definition
C8051-4

Part 2. Compiler reference 333

334

Descriptions of implementation-defined behavior
memory

module_name

no_pch

once

__printf_args

public_equ

__scanf_args

section

STDC

system_include

warnings

Default __DATE__ and __TIME__ (6.8.8)

The definitions for __TIME__ and __DATE__ are always available.

IAR DLIB LIBRARY FUNCTIONS

The information in this section is valid only if the runtime library configuration you have
chosen supports file descriptors. See the chapter The DLIB runtime environment for
more information about runtime library configurations.

NULL macro (7.1.6)

The NULL macro is defined to 0.

Diagnostic printed by the assert function (7.2)

The assert() function prints:

filename:linenr expression -- assertion failed

when the parameter evaluates to zero.

Domain errors (7.5.1)

NaN (Not a Number) will be returned by the mathematic functions on domain errors.

Underflow of floating-point values sets errno to ERANGE (7.5.1)

The mathematics functions set the integer expression errno to ERANGE (a macro in
errno.h) on underflow range errors.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Implementation-defined behavior
fmod() functionality (7.5.6.4)

If the second argument to fmod() is zero, the function returns NaN; errno is set to
EDOM.

signal() (7.7.1.1)

The signal part of the library is not supported.

Note: Low-level interface functions exist in the library, but will not perform anything.
Use the template source code to implement application-specific signal handling. See
Signal and raise, page 107.

Terminating newline character (7.9.2)

stdout stream functions recognize either newline or end of file (EOF) as the
terminating character for a line.

Blank lines (7.9.2)

Space characters written to the stdout stream immediately before a newline character
are preserved. There is no way to read the line through the stdin stream that was
written through the stdout stream.

Null characters appended to data written to binary streams (7.9.2)

No null characters are appended to data written to binary streams.

Files (7.9.3)

Whether a write operation on a text stream causes the associated file to be truncated
beyond that point, depends on the application-specific implementation of the low-level
file routines. See File input and output, page 103.

remove() (7.9.4.1)

The effect of a remove operation on an open file depends on the application-specific
implementation of the low-level file routines. See File input and output, page 103.

rename() (7.9.4.2)

The effect of renaming a file to an already existing filename depends on the
application-specific implementation of the low-level file routines. See File input and
output, page 103.
C8051-4

Part 2. Compiler reference 335

336

Descriptions of implementation-defined behavior
%p in printf() (7.9.6.1)

The argument to a %p conversion specifier, print pointer, to printf() is treated as
having the type void *. The value will be printed as a hexadecimal number, similar to
using the %x conversion specifier.

%p in scanf() (7.9.6.2)

The %p conversion specifier, scan pointer, to scanf() reads a hexadecimal number and
converts it into a value with the type void *.

Reading ranges in scanf() (7.9.6.2)

A - (dash) character is always treated as a range symbol.

File position errors (7.9.9.1, 7.9.9.4)

On file position errors, the functions fgetpos and ftell store EFPOS in errno.

Message generated by perror() (7.9.10.4)

The generated message is:

usersuppliedprefix:errormessage

Allocating zero bytes of memory (7.10.3)

The calloc(), malloc(), and realloc() functions accept zero as an argument.
Memory will be allocated, a valid pointer to that memory is returned, and the memory
block can be modified later by realloc.

Behavior of abort() (7.10.4.1)

The abort() function does not flush stream buffers, and it does not handle files,
because this is an unsupported feature.

Behavior of exit() (7.10.4.3)

The argument passed to the exit function will be the return value returned by the main
function to cstartup.

Environment (7.10.4.4)

The set of available environment names and the method for altering the environment list
is described in Environment interaction, page 106.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Implementation-defined behavior
system() (7.10.4.5)

How the command processor works depends on how you have implemented the system
function. See Environment interaction, page 106.

Message returned by strerror() (7.11.6.2)

The messages returned by strerror() depending on the argument is:

The time zone (7.12.1)

The local time zone and daylight savings time implementation is described in Time, page
107.

clock() (7.12.2.1)

From where the system clock starts counting depends on how you have implemented the
clock function. See Time, page 107.

IAR CLIB LIBRARY FUNCTIONS

NULL macro (7.1.6)

The NULL macro is defined to (void *) 0.

Diagnostic printed by the assert function (7.2)

The assert() function prints:

Assertion failed: expression, file Filename, line linenumber

when the parameter evaluates to zero.

Argument Message

EZERO no error

EDOM domain error

ERANGE range error

EFPOS file positioning error

EILSEQ multi-byte encoding error

<0 || >99 unknown error

all others error nnn

Table 54: Message returned by strerror()—IAR DLIB library
C8051-4

Part 2. Compiler reference 337

338

Descriptions of implementation-defined behavior
Domain errors (7.5.1)

HUGE_VAL, the largest representable value in a double floating-point type, will be
returned by the mathematic functions on domain errors.

Underflow of floating-point values sets errno to ERANGE (7.5.1)

The mathematics functions set the integer expression errno to ERANGE (a macro in
errno.h) on underflow range errors.

fmod() functionality (7.5.6.4)

If the second argument to fmod() is zero, the function returns zero (it does not change
the integer expression errno).

signal() (7.7.1.1)

The signal part of the library is not supported.

Terminating newline character (7.9.2)

stdout stream functions recognize either newline or end of file (EOF) as the
terminating character for a line.

Blank lines (7.9.2)

Space characters written to the stdout stream immediately before a newline character
are preserved. There is no way to read the line through the stdin stream that was
written through the stdout stream.

Null characters appended to data written to binary streams (7.9.2)

There are no binary streams implemented.

Files (7.9.3)

There are no other streams than stdin and stdout. This means that a file system is not
implemented.

remove() (7.9.4.1)

There are no other streams than stdin and stdout. This means that a file system is not
implemented.

rename() (7.9.4.2)

There are no other streams than stdin and stdout. This means that a file system is not
implemented.
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Implementation-defined behavior
%p in printf() (7.9.6.1)

The argument to a %p conversion specifier, print pointer, to printf() is treated as
having the type 'char *'. The value will be printed as a hexadecimal number, similar
to using the %x conversion specifier.

%p in scanf() (7.9.6.2)

The %p conversion specifier, scan pointer, to scanf() reads a hexadecimal number and
converts it into a value with the type 'void *'.

Reading ranges in scanf() (7.9.6.2)

A - (dash) character is always treated explicitly as a - character.

File position errors (7.9.9.1, 7.9.9.4)

There are no other streams than stdin and stdout. This means that a file system is not
implemented.

Message generated by perror() (7.9.10.4)

perror() is not supported.

Allocating zero bytes of memory (7.10.3)

The calloc(), malloc(), and realloc() functions accept zero as an argument.
Memory will be allocated, a valid pointer to that memory is returned, and the memory
block can be modified later by realloc. For more information, see Dynamic memory
on the heap, page 42.

Behavior of abort() (7.10.4.1)

The abort() function does not flush stream buffers, and it does not handle files,
because this is an unsupported feature.

Behavior of exit() (7.10.4.3)

The exit() function does not return.

Environment (7.10.4.4)

Environments are not supported.

system() (7.10.4.5)

The system() function is not supported.
C8051-4

Part 2. Compiler reference 339

340

Descriptions of implementation-defined behavior
Message returned by strerror() (7.11.6.2)

The messages returned by strerror() depending on the argument are:

The time zone (7.12.1)

The time zone function is not supported.

clock() (7.12.2.1)

The clock() function is not supported.

Argument Message

EZERO no error

EDOM domain error

ERANGE range error

<0 || >99 unknown error

all others error No.xx

Table 55: Message returned by strerror()—IAR CLIB library
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Index

Index
A
abort

implementation-defined behavior (CLIB) 339
implementation-defined behavior (DLIB) 336
system termination (DLIB) . 99

absolute location
data, placing at (@) . 167
language support for . 229
#pragma location . 266

address spaces, managing multiple 84
addressing. See memory types, data models,
and code models
algorithm (STL header file) . 289
alignment . 217

of an object (__ALIGNOF__) 229
of data types. 218

alignment (pragma directive) . 333
__ALIGNOF__ (operator) . 229
anonymous structures . 164
anonymous symbols, creating . 231
application

building, overview of . 5
startup and termination (CLIB) 120
startup and termination (DLIB) 96

ARGFRAME (assembler directive) 140
arrays

designated initializers in . 232
implementation-defined behavior. 331
incomplete at end of structs . 231
non-lvalue . 234
of incomplete types . 233
single-value initialization . 235

asm, __asm (language extension) 231
assembler code

calling from C . 128
calling from C++ . 130
inline . 127

assembler directives, using in inline assembler code. 128

assembler instructions
inserting inline . 127
used for calling functions. 140

assembler labels, making public (--public_equ) 214
assembler language interface . 125

calling convention. See assembler code
assembler list file, generating . 203
assembler output file . 130
assembler, inline . 230
asserts . 108

implementation-defined behavior of, (CLIB). 337
implementation-defined behavior of, (DLIB). 334
including in application . 281

assert.h (CLIB header file) . 293
assert.h (DLIB header file) . 287
atoll, C99 extension . 292
atomic operations . 50

__monitor . 252
attributes

object . 240
type . 237

auto variables . 35, 40
at function entrance . 134
programming hints for efficient code 173
saving stack space . 174
using in inline assembler code 128

B
bank number . 56
bank switching routine, modifying 65
banked applications, debugging . 66
banked code

downloading to memory . 65
in linker command file . 71
memory layout in banked code model 56
memory layout in banked ext2 code model 57

Banked code model
function calls . 141
C8051-4

341

342
banked code model . 56
setting up for . 57

banked extended2 (code model) . 48
banked functions, calling from assembler 62
banked systems, coding hints . 59
banked (code model). 48, 56
BANKED_CODE (segment) 59, 299
BANKED_CODE_EXT2_AC (segment) 299
BANKED_CODE_EXT2_AN (segment) 299
BANKED_CODE_EXT2_C (segment) 299
BANKED_CODE_EXT2_N (segment) 300
BANKED_CODE_INTERRUPTS_EXT2 (segment) 300
BANKED_EXT2 (segment) . 300
__banked_func (extended keyword) 242

as function pointer . 221
__banked_func_ext2 (extended keyword). 243

as function pointer . 221
BANK_RELAYS (segment) . 301
Barr, Michael . xxviii
baseaddr (pragma directive) . 333
__BASE_FILE__ (predefined symbol) 278
basic type names, using in preprocessor expressions
(--migration_preprocessor_extensions) 205
basic_template_matching (pragma directive) 260

using . 157
__bdata (extended keyword) . 244
bdata (memory type). 27
BDATA_AN (segment) . 301
BDATA_I (segment) . 301
BDATA_ID (segment). 301
BDATA_N (segment) . 302
BDATA_Z (segment) . 302
binary streams (CLIB) . 338
binary streams (DLIB) . 335
__bit (extended keyword) . 244
bit negation . 175
bit register, virtual . 44
bit (memory type) . 27
bitfields

data representation of. 219

hints . 163
implementation-defined behavior of 331
non-standard types in . 229
specifying order of members (#pragma bitfields). 261

bitfields (pragma directive) . 261
BIT_N (segment) . 302
bold style, in this guide . xxix
bool (data type) . 218

adding support for in CLIB . 293
adding support for in DLIB 288, 290
making available in C code . 291

bubble sort function, defined in stdlib.h 292
building_runtime (pragma directive). 333
__BUILD_NUMBER__ (predefined symbol) 278

C
C and C++ linkage . 133
C/C++ calling convention. See calling convention
C header files . 287
call frame information . 144

in assembler list file . 129
in assembler list file (-lA) . 204

call stack . 144
callee-save registers, stored on stack. 41
calling convention

C++, requiring C linkage . 130
in compiler. 131

__CALLING_CONVENTION__ (predefined symbol) . . 278
--calling_convention (compiler option). 192
__calling_convention (runtime model attribute) 112
calloc (library function) . 42

See also heap
implementation-defined behavior of (CLIB) 339
implementation-defined behavior of (DLIB) 336

can_instantiate (pragma directive) 333
cassert (DLIB header file). 290
cast operators

in Extended EC++ . 150
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Index
missing from Embedded C++ 150
casting

of pointers and integers . 223
?CBANK (linker symbol) . 65
cctype (DLIB header file) . 290
cerrno (DLIB header file) . 290
cexit (system termination code)

in CLIB . 120
in DLIB . 96
placement in segment. 81

CFI (assembler directive) . 145
cfloat (DLIB header file). 290
char (data type) . 218

changing default representation (--char_is_signed) . . . 193
signed and unsigned. 219

characters, implementation-defined behavior of 328
character-based I/O

in CLIB . 118
in DLIB . 101
overriding in runtime library . 93

--char_is_signed (compiler option) 193
cinttypes (DLIB header file) . 290
class memory (extended EC++) . 152
class template partial specialization
matching (extended EC++) . 156
classes. 151
CLIB. 8, 292

alternative memory allocation . 43
reference information
runtime environment . 115
summary of definitions . 293

climits (DLIB header file). 290
clocale (DLIB header file) . 290
clock (CLIB library function),
implementation-defined behavior of 340
clock (DLIB library function),
implementation-defined behavior of 337
clock.c . 107
__close (DLIB library function) . 104

cmain (system initialization code)
in CLIB . 120
in DLIB . 96
placement in segment. 81

cmath (DLIB header file) . 290
code

banked, downloading to memory 65
interruption of execution . 49
verifying linked result . 83

__code (extended keyword) . 244
as data pointer . 222

code models . 47
banked . 48, 56
banked extended 2 . 48
calling functions in. 140
far . 48
identifying (__CODE_MODEL__) 278
near . 48
setting up for banked . 57
specifying on command line (--code_model) 193

code motion (compiler transformation). 172
disabling (--no_code_motion) 207

code segments, used for placement 81
CODE (segment) . 303
codeseg (pragma directive) . 333
CODE_AC (segment) . 303
CODE_C (segment) . 303
__CODE_MODEL__ (predefined symbol). 278
--code_model (compiler option) . 193
__code_model (runtime model attribute) 112
CODE_N (segment) . 303
command line options

part of compiler invocation syntax 181
passing . 182
See also compiler options

command prompt icon, in this guide xxix
comments

after preprocessor directives. 235
C++ style, using in C code. 230
C8051-4

343

344
common block (call frame information) 145
common subexpr elimination (compiler transformation) . 171

disabling (--no_cse) . 207
compilation date

exact time of (__TIME__) . 280
identifying (__DATE__) . 278

compiler
environment variables . 182
invocation syntax . 181
output from . 183

compiler listing, generating (-l). 203
compiler object file

including debug information in (--debug, -r) 195
compiler optimization levels . 170
compiler options . 187

passing to compiler . 182
reading from file (-f) . 202
setting . 187
specifying parameters . 189
summary . 190
syntax. 187
typographic convention . xxix
-l . 129
--warnings_affect_exit_code . 184

compiler platform, identifying . 279
compiler subversion number . 280
compiler transformations . 169
compiler version number . 280
compiling

from the command line . 6
syntax. 181

complex numbers, supported in Embedded C++. 150
complex (library header file). 288
compound literals . 231
computer style, typographic convention xxix
configuration

basic project settings . 15
__low_level_init . 100

configuration symbols
in library configuration files. 96

consistency, module . 111
constants and strings . 34

in code memory . 35
constants, placing in named segment 261
__CONSTANT_LOCATION__ (predefined symbol) 278
constseg (pragma directive) . 261
const, declaring objects. 226
const_cast (cast operator) . 150
contents, of this guide . xxvi
conventions, typographic . xxix
copyright notice . ii
__CORE__ (predefined symbol). 278
core

identifying . 278
specifying on command line . 193

--core (compiler option) . 193
__core (runtime model attribute). 112
__cplusplus (predefined symbol) 278
csetjmp (DLIB header file) . 290
csignal (DLIB header file) . 290
cspy_support (pragma directive) . 333
CSTART (segment). 81, 304
cstartup (system startup code). 81, 120

customizing . 100
overriding in runtime library . 93

cstartup.s99. 96
cstdarg (DLIB header file) . 290
cstdbool (DLIB header file) . 290
cstddef (DLIB header file) . 290
cstdio (DLIB header file) . 290
cstdlib (DLIB header file) . 290
cstring (DLIB header file). 290
ctime (DLIB header file). 290
ctype.h (library header file). 287, 293

added C functionality. 291
cwctype.h (library header file) . 290
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Index
C++
See also Embedded C++ and Extended Embedded C++
absolute location . 168
calling convention . 130
dynamic initialization in . 83
features excluded from EC++ 149
header files. 288–289
language extensions . 161
special function types. 53
static member variables . 168
support for . 5
terminology . xxviii

C++ names, in assembler code . 131
C++ objects, placing in memory type 33
C++-style comments . 230
C-SPY

low-level interface . 109, 123
STL container support . 159

?C_EXIT (assembler label). 123
?C_GETCHAR (assembler label) 123
C_INCLUDE (environment variable) 182
?C_PUTCHAR (assembler label) 123
C99 standard, added functionality from 290

D
-D (compiler option) . 194
--data_model (compiler option) . 194
data . 21

alignment of. 217
different ways of storing . 21
located, declaring extern . 168
placing . 165, 262, 295

at absolute location . 167
representation of . 217
verifying linked result . 83

data (memory type). 27
__data (extended keyword) . 245
data block (call frame information). 145

data memory attributes, using . 30
data models . 22

far . 23–24
generic . 23–24
identifying (__DATA_MODEL__) 278
large . 23
memory attribute, default . 23
pointer, default . 23
small . 23
tiny. 23

Data overlay (calling convention) . 36
data pointers . 221
data pointers (DPTRs) . 17
data segments . 72
data types . 218

avoiding signed . 163
floating point . 220
in C++ . 226
integers . 218

dataseg (pragma directive) . 262
DATA_AN (segment) . 304
DATA_I (segment) . 304
DATA_ID (segment) . 305
__DATA_MODEL__ (predefined symbol) 278
__data_model (runtime model attribute) 112
DATA_N (segment) . 305
__data_overlay (extended keyword) 245
DATA_Z (segment) . 305
data24 (memory type) . 29–30
__DATE__ (predefined symbol) . 278
date (library function), configuring support for. 107
--debug (compiler option) . 195
debug information, including in object file 195, 214
declarations

empty . 235
in for loops. 230
Kernighan & Ritchie . 175
of functions . 133

declarations and statements, mixing 230
C8051-4

345

346
declarators, implementation-defined behavior 332
define_type_info (pragma directive) 333
delete operator (extended EC++) 154
delete (keyword) . 42
--dependencies (compiler option) 195
deque (STL header file) . 289
destructors and interrupts, using . 160
device description files, preconfigured 4
diagnostic messages . 184

classifying as errors . 196
classifying as remarks . 197
classifying as warnings . 198
disabling warnings . 209
disabling wrapping of . 210
enabling remarks . 214
listing all used . 198
suppressing . 197

--diagnostics_tables (compiler option) 198
diag_default (pragma directive) . 262
--diag_error (compiler option) . 196
diag_error (pragma directive) . 263
--diag_remark (compiler option). 197
diag_remark (pragma directive) . 263
--diag_suppress (compiler option) 197
diag_suppress (pragma directive) 263
--diag_warning (compiler option) 198
diag_warning (pragma directive) 264
DIFUNCT (segment) . 83, 306
directives

function for static overlay . 140
pragma . 11, 259

directory, specifying as parameter. 188
__disable_interrupt (intrinsic function). 273
disclaimer . ii
DLIB. 8, 287

building customized library . 87
configurations . 87
configuring. 86, 198
debug support. 87

reference information. See the online help system 285
runtime environment . 85

--dlib_config (compiler option). 198
Dlib_defaults.h (library configuration file) 96
dlxxxxxlibname.h . 96
document conventions. xxviii
documentation, library . 285
domain errors, implementation-defined behavior . . . 334, 338
double (data type) . 220
double_t, C99 extension . 291
DOVERLAY (segment) . 306
do_not_instantiate (pragma directive) 333
DPTR . 17
--dptr (compiler option) . 199
__dptr_size (runtime model attribute) 113
__dptr_visibility (runtime model attribute) 113
dynamic initialization . 96, 120

in C++ . 83
dynamic memory . 42

E
-e (compiler option) . 200
early_initialization (pragma directive) 333
--ec++ (compiler option). 201
EC++ header files . 288
edition, of this guide . ii
--eec++ (compiler option) . 201
Embedded C++. 149

differences from C++. 149
enabling . 201
function linkage . 133
language extensions . 149
overview . 149

Embedded C++ Technical Committee xxviii
embedded systems, IAR special support for 10
__embedded_cplusplus (predefined symbol) 279
__enable_interrupt (intrinsic function) 274
--enable_multibytes (compiler option) 201
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Index
entry label, program . 97
enumerations, implementation-defined behavior. 331
enums

data representation . 218
forward declarations of . 233

environment
implementation-defined behavior. 328
runtime (CLIB) . 115
runtime (DLIB) . 85

environment variables
C_INCLUDE . 182
QCCX51 . 182

EQU (assembler directive) . 214
errno.h (library header file) . 287, 293
error messages . 185

classifying . 196
error return codes . 184
--error_limit (compiler option) . 202
ESP:SP (stack pointer) . 36
exception handling, missing from Embedded C++ 149
exception vectors . 82
exception (library header file) . 288
_Exit (library function) . 99
exit (library function) . 99

implementation-defined behavior. 336, 339
_exit (library function) . 99
__exit (library function) . 99
export keyword, missing from Extended EC++ 156
extended command line file . 202
Extended Embedded C++ . 150

enabling . 201
standard template library (STL) 289

extended keywords . 237
enabling (-e). 200
overview . 11
summary . 241
syntax. 30

object attributes. 240
type attributes on data objects 238

type attributes on data pointers 239
type attributes on function pointers 240
type attributes on functions 239

Extended stack reentrant (calling convention). 36
__EXTENDED_DPTR__ (predefined symbol) 279
EXTENDED_STACK. 76
__EXTENDED_STACK__ (predefined symbol) 279
--extended_stack (compiler option). 202
__extended_stack (runtime model attribute) 113
extern "C" linkage. 154
EXT_STACK (segment) . 306
__ext_stack_reentrant (extended keyword) 246

F
-f (compiler option). 202
__far (extended keyword) . 246

as data pointer . 222
Far code model

function calls . 140
far ROM (memory type) . 29
far (code model) . 48
far (data model). 23
far (memory type) . 28
FAR_AN (segment) . 306
__far_calloc (memory allocation function) 43
__far_code (extended keyword) . 247

as data pointer . 222
FAR_CODE (segment) . 307
FAR_CODE_AC (segment) . 307
FAR_CODE_C (segment). 307
FAR_CODE_N (segment) . 308
__far_free (memory allocation function) 43
__far_func (extended keyword) . 247

as function pointer . 221
FAR_HEAP (segment) . 308
FAR_I (segment). 308
FAR_ID (segment) . 309
__far_malloc (memory allocation function) 43
C8051-4

347

348
FAR_N (segment) . 309
__far_realloc (memory allocation function) 43
__far_rom (extended keyword) . 248

as data pointer . 222
FAR_ROM_AC (segment) . 309
FAR_ROM_C (segment). 310
FAR_Z (segment) . 310
fatal error messages . 186
fgetpos (library function), implementation-defined
behavior . 336
field width, library support for . 119
__FILE__ (predefined symbol). 279
file dependencies, tracking . 195
file paths, specifying for #include files 203
file systems . 338
filename

specifying as parameter . 188
float (data type). 220
floating-point constants

hexadecimal notation . 232
floating-point expressions,
using in preprocessor extensions. 205
floating-point format. 220

implementation-defined behavior. 330
special cases. 220
32-bits . 220

floating-point numbers, library support for 119
float.h (library header file) . 287, 293
float_t, C99 extension . 291
fmod (library function),
implementation-defined behavior 335, 338
for loops, declarations in. 230
formats

floating-point values . 220
standard IEEE (floating point) 220

_formatted_write (library function) 91, 118
fpclassify, C99 extension . 291
FP_INFINITE, C99 extension . 291
FP_NAN, C99 extension. 291
FP_NORMAL, C99 extension . 291

FP_SUBNORMAL, C99 extension 291
FP_ZERO, C99 extension. 291
fragmentation, of heap memory . 43
free (library function). See also heap 42
FRMWRI_BUFSIZE (predefined symbol) 117
fstream (library header file) . 288
fstream.h (library header file) . 289
ftell (library function), implementation-defined behavior . 336
__func__ (predefined symbol) 236, 279
FUNCALL (assembler directive) 140
__FUNCTION__ (predefined symbol) 236, 279
function calls

Banked code model . 141
banked vs. non-banked. 60
calling convention . 131
Far code model . 140
Near code model . 140

function declarations, Kernighan & Ritchie 175
function directives for static overlay 140
function inlining (compiler transformation) 172

disabling (--no_inline) . 207
function pointers . 221
function prototypes . 175

enforcing . 214
function template parameter deduction (extended EC++) . 157
function type information, omitting in object output. 211
FUNCTION (assembler directive) 140
function (pragma directive). 333
functional (STL header file) . 289
functions . 47

alternative memory allocation . 43
banked . 55

calling from assembler . 62
calling in different code models 140
C++ and special function types 53
declaring . 133, 175
inlining. 172–173, 230, 265
interrupt . 49–50
intrinsic . 125, 174
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Index
monitor . 50
omitting type info . 211
parameters . 134
placing in memory . 165, 168
recursive

avoiding . 174
storing data on stack . 41

reentrancy (DLIB) . 286
related extensions. 47
return values from . 137
special function types. 48
verifying linked result . 83

G
__generic (extended keyword) . 248

as data pointer . 222
generic (data model) . 23
getchar (library function) . 118
getenv (library function), configuring support for 106
getzone (library function), configuring support for 107
getzone.c. 107
__get_interrupt_state (intrinsic function) 274
global variables

initialization . 75
Guidelines for the Use of the
C Language in Vehicle Based Software 205
guidelines, reading . xxv

H
Harbison, Samuel P. . xxviii
hardware support in compiler . 86
hash_map (STL header file) . 289
hash_set (STL header file) . 289
hdrstop (pragma directive) . 333
header files

C . 287
C++ . 288–289

EC++ . 288
library . 285
special function registers . 177
STL . 289
assert.h . 293
ctype.h . 293
Dlib_defaults.h. 96
dlxxxxxlibname.h . 96
errno.h . 293
float.h. 293
iccbutl.h . 293
intrinsics.h . 273
limits.h . 293
math.h . 293
setjmp.h . 293
stdarg.h . 293
stdbool.h . 218, 288, 293
stddef.h . 219, 293
stdio.h . 293
stdlib.h . 293
string.h . 293

--header_context (compiler option). 203
heap

DLIB support for multiple . 108
dynamic memory . 42
segments for. 79
storing data . 21

heap segments
CLIB . 80
DLIB . 79
FAR_HEAP (segment). 308
HUGE_HEAP (segment) . 311
placing . 80
XDATA_HEAP (segment) . 322

heap size
and standard I/O. 80
changing default. 80

HEAP (segment) . 80
C8051-4

349

350
hints
banked systems . 59

 optimization . 173
__huge (extended keyword) . 249

as data pointer . 222
huge ROM (memory type) . 29
HUGE_AN (segment). 310
__huge_code (extended keyword). 249

as data pointer . 222
HUGE_CODE_AC (segment) . 311
HUGE_CODE_C (segment) . 311
HUGE_CODE_N (segment) . 311
HUGE_HEAP (segment) . 311
HUGE_I (segment) . 312
HUGE_ID (segment) . 312
HUGE_N (segment) . 313
__huge_rom (extended keyword) 250

as data pointer . 222
HUGE_ROM_AC (segment) . 313
HUGE_ROM_C (segment) . 313
HUGE_VALF, C99 extension . 291
HUGE_VALL, C99 extension. 291
HUGE_Z (segment) . 313, 324

I
-I (compiler option). 203
IAR Command Line Build Utility. 95
IAR Systems Technical Support . 186
iarbuild.exe (utility) . 95
iar_banked_code_support.s51. 63
__IAR_SYSTEMS_ICC__ (predefined symbol) 279
iccbutl.h (library header file). 293
__ICC8051__ (predefined symbol). 279
icons, in this guide . xxix
__idata (extended keyword) . 250
Idata overlay (calling convention) . 36
Idata reentrant (calling convention). 36
IDATA segments, placement of. 75

idata (memory type) . 27
__idata (extended keyword)

as data pointer . 222
IDATA_AN (segment) . 314
IDATA_I (segment). 314
IDATA_ID (segment) . 314
IDATA_N (segment) . 315
__idata_overlay (extended keyword) 251
__idata_reentrant (extended keyword) 251
IDATA_STACK . 76
IDATA_Z (segment) . 315
identifiers, implementation-defined behavior 328
IE (interrupt enable register) . 273
IEEE format, floating-point values 220
implementation-defined behavior 327
important_typedef (pragma directive) 333
include files

including before source files . 213
specifying . 182

include_alias (pragma directive) . 264
__INC_DPSEL_SELECT__ (predefined symbol) . . 279–280
infinity . 220
INFINITY, C99 extension. 291
inheritance, in Embedded C++ . 149
initialization

dynamic . 96, 120
single-value . 235

initialized data segments . 75
initializers, static . 234
inline assembler . 127, 230

avoiding . 174
See also assembler language interface

inline functions . 230
in compiler. 172

inline (pragma directive) . 265
instantiate (pragma directive) . 333
integer characteristics, adding . 291
integers . 218

casting . 223
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Index
implementation-defined behavior. 330
intptr_t . 224
ptrdiff_t . 223
size_t . 223
uintptr_t . 224

integral promotion. 175
internal error . 186
__interrupt (extended keyword) 49, 252

using in pragma directives 269, 272
interrupt functions. 49

not in banked memory . 61
placement in memory. 82

interrupt state, restoring . 275
interrupt vector table . 49

in linker command file . 82
INTVEC segment . 316
INTVEC_EXT2 segment . 316

interrupt vectors, specifying with pragma directive. 272
interrupts

disabling . 252
during function execution . 50

processor state . 41
using with EC++ destructors . 160

intptr_t (integer type) . 224
__intrinsic (extended keyword). 252
intrinsic functions . 174

overview . 125
summary . 273

intrinsics.h (header file) . 273
inttypes.h (library header file). 287
inttypes.h, added C functionality 291
INTVEC (segment). 82, 316
INTVEC_EXT2 (segment) . 316
intwri.c (library source code) . 119
invocation syntax . 181
iomanip (library header file) . 288
iomanip.h (library header file) . 289
ios (library header file) . 288
iosfwd (library header file) . 288

iostream (library header file). 288
iostream.h (library header file) . 289
IOVERLAY (segment) . 316
isblank, C99 extension . 291
isfinite, C99 extension . 291
isgreater, C99 extension . 291
isinf, C99 extension . 291
islessequal, C99 extension . 291
islessgreater, C99 extension . 291
isless, C99 extension. 291
isnan, C99 extension . 291
isnormal, C99 extension . 291
ISO/ANSI C

compiler extensions . 227
C++ features excluded from EC++ 149
library compliance with . 8, 285
specifying strict usage . 216

iso646.h (library header file). 287
ISTACK (segment) . 316
istream (library header file). 288
isunordered, C99 extension. 291
iswblank, C99 extension . 292
italic style, in this guide . xxix
iterator (STL header file) . 289
__ixdata (extended keyword) . 251
ixdata (memory type) . 28
IXDATA_AN (segment) . 317
IXDATA_I (segment) . 317
IXDATA_ID (segment) . 317
IXDATA_N (segment) . 318
IXDATA_Z (segment). 318
I/O debugging, support for . 109
I/O module, overriding in runtime library 93
I/O, character-based . 118

K
keep_definition (pragma directive) 333
Kernighan & Ritchie function declarations 175
C8051-4

351

352
disallowing. 214
Kernighan, Brian W. xxviii
keywords, extended. 11

L
-l (compiler option). 129, 203
labels. 235

assembler, making public. 214
__program_start . 97

Labrosse, Jean J. xxviii
Lajoie, Josée . xxviii
language extensions

descriptions . 227
Embedded C++ . 149
enabling . 265
enabling (-e). 200

language overview . 4
language (pragma directive) . 265
large (data model) . 23
libraries

building DLIB . 87
CLIB . 115
definition of . 5
runtime. 10, 88
standard template library . 289

library configuration files
DLIB . 87
Dlib_defaults.h. 96
dlxxxxxlibname.h . 96
modifying . 96
specifying . 198

library documentation . 285
library features, missing from Embedded C++ 150
library functions . 285

reference information. xxvii
summary, CLIB . 293
summary, DLIB . 287

library header files . 285

library modules
creating . 204
overriding. 93

library object files . 286
library options, setting . 10
library project template . 8, 95
--library_module (compiler option) 204
lightbulb icon, in this guide. xxix
limits.h (library header file) 287, 293
__LINE__ (predefined symbol) . 280
linkage, C and C++ . 133
linker command files. 68

configuring banked placement . 71
customizing . 69
using the -P command . 71
using the -Z command . 70

linker map file. 83
linker segment. See segment
linking

from the command line . 6
required input. 6

Lippman, Stanley B. xxviii
list (STL header file). 289
listing, generating . 203
literals, compound. 231
literature, recommended . xxviii
llabs, C99 extension . 292
lldiv, C99 extension . 292
local variables, See auto variables
locale support

DLIB . 104
adding . 105
changing at runtime. 106
removing. 105

locale.h (library header file) . 287
located data segments . 81
located data, declaring extern . 168
location (pragma directive) . 167, 266
__location_for_constants (runtime model attribute) 113
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Index
LOCFRAME (assembler directive). 140
long float (data type), synonym for double 234
loop overhead, reducing . 209
loop unrolling (compiler transformation) 171

disabling . 209
loop-invariant expressions. 172
low-level processor operations 227, 273

accessing . 125
__low_level_init . 97

customizing . 100
low_level_init.c. 96, 120
__lseek (library function) . 104

M
macros, variadic . 283
main (function), definition . 328
malloc (library function)

 See also heap . 42
implementation-defined behavior. 336, 339

MALLOC_BUFSIZE (predefined symbol). 117
Mann, Bernhard . xxviii
map (STL header file) . 289
map, linker . 83
math.h (library header file) . 287, 293
math.h, added C functionality . 291
MATH_ERREXCEPT, C99 extension 291
math_errhandling, C99 extension 291
MATH_ERRNO, C99 extension . 291
_medium_write (library function). 119
member functions, pointers to. 160
memory

accessing . 14, 24, 142
allocating in C++ . 42
dynamic . 42
heap . 42
non-initialized . 177
RAM, saving . 174
releasing in C++. 42

stack. 35
saving . 174

used by global or static variables 21
memory allocation, alternative functions 43
memory banks. 63
memory consumption, reducing . 118
memory management, type-safe . 149
memory placement

using pragma directive . 31
using type definitions . 31, 239

memory segment. See segment
memory types . 24

C++ . 33
placing variables in . 33
pointers . 31
specifying . 30
structures . 32
summary . 26, 73

memory (pragma directive). 334
memory (STL header file). 289
message (pragma directive). 266
messages

disabling . 215
forcing . 266

--migration_preprocessor_extensions (compiler option) . . 205
MISRA C rules

checking for adherence to . 205
logging. 206

--misrac (compiler option) . 205
--misrac_verbose (compiler option) 206
module consistency. 111

rtmodel. 270
module map, in linker map file . 83
module name, specifying . 206
module summary, in linker map file 83
--module_name (compiler option) 206
module_name (pragma directive) 334
__monitor (extended keyword) 176, 252
monitor functions . 50, 252
C8051-4

353

354
multibyte character support. 201
multiple address spaces, output for 84
multiple inheritance

missing from Embedded C++ 149
multiple output files, from XLINK 84
mutable attribute, in Extended EC++ 150, 159

N
names block (call frame information) 145
namespace support

in Extended EC++ . 150, 159
missing from Embedded C++ 150

NAN, C99 extension . 291
NDEBUG (preprocessor symbol) 281
Near code model

function calls . 140
near (code model) . 48
NEAR_CODE (segment) . 60, 318
__near_func (extended keyword) 253

as function pointer . 221
new operator (extended EC++) . 154
new (keyword) . 42
new (library header file) . 288
new.h (library header file) . 289
non-initialized variables, hints for. 178
non-scalar parameters, avoiding . 174
NOP (assembler instruction) . 274
__noreturn (extended keyword) . 254
Normal DLIB (library configuration) 87
Not a number (NaN) . 220
--no_code_motion (compiler option) 207
--no_cse (compiler option) . 207
__no_init (extended keyword) 178, 253
--no_inline (compiler option) . 207
__no_operation (intrinsic function). 274
--no_path_in_file_macros (compiler option). 208
no_pch (pragma directive) . 334
--no_typedefs_in_diagnostics (compiler option) 208

--no_unroll (compiler option) . 209
--no_warnings (compiler option) 209
--no_wrap_diagnostics (compiler option) 210
--nr_virtual_regs (compiler option). 210
NULL . 293
NULL (macro), implementation-defined behavior . . 334, 337
__NUMBER_OF_DPTRS__ (predefined symbol) 280
__number_of_dptrs (runtime model attribute) 113
numeric (STL header file). 289

O
-O (compiler option) . 210
-o (compiler option) . 211
object attributes. 240
object filename, specifying . 211–212
object module name, specifying . 206
object_attribute (pragma directive) 178, 267
offsetof . 293
--omit_types (compiler option) . 211
once (pragma directive) . 334
--only_stdout (compiler option) . 212
__open (library function) . 104
operators

@ . 167, 229
__memory_of. 153

optimization
code motion, disabling . 207
common sub-expression elimination, disabling 207
configuration . 8
disabling . 171
function inlining, disabling (--no_inline) 207
hints . 173
loop unrolling, disabling . 209
specifying (-O). 210
summary . 170
techniques . 171
type-based alias analysis (compiler transformation). . . 172

disabling . 208
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Index
using inline assembler code . 128
using pragma directive . 267

optimization levels . 170
optimize (pragma directive) . 267
option parameters . 187
options, compiler. See compiler options
Oram, Andy . xxviii
ostream (library header file) . 288
--output (compiler option). 212
output files, from XLINK . 6

multiple . 84
output (preprocessor) . 213
output, supporting non-standard . 119
overhead, reducing . 171–172
__overlay_near_func (extended keyword) 254

P
parameters

function . 134
hidden . 135
non-scalar, avoiding . 174
register . 134–135
rules for specifying a file or directory 188
specifying . 189
stack. 134, 136
typographic convention . xxix

__parity (intrinsic function) . 274
part number, of this guide . ii
__pdata (extended keyword) . 254

as data pointer . 222
Pdata reentrant (calling convention) 36
pdata (memory type). 28
PDATA_AN (segment) . 319
PDATA_I (segment) . 319
PDATA_ID (segment) . 319
PDATA_N (segment) . 320
__pdata_reentrant (extended keyword) 254
PDATA_STACK . 76

PDATA_Z (segment). 320
permanent registers . 134
perror (library function),
implementation-defined behavior 336, 339
placement

code and data . 295
in named segments. 168

--place_constants (compiler option) 212
pointer types

choosing. 164
differences between . 32
mixing . 234

pointers
casting . 223
data . 221
function . 221
implementation-defined behavior. 331

polymorphism, in Embedded C++ 149
porting, code containing pragma directives. 260
_Pragma (predefined symbol) . 282
pragma directives . 11

summary . 259
basic_template_matching, using 157
bitfields . 219
for absolute located data . 167
list of all recognized. 333
type_attribute, using. 31

precision arguments, library support for 119
predefined symbols

overview . 11
summary . 278
FRMWRI_BUFSIZE . 117
MALLOC_BUFSIZE . 117
QSORT_MAXSIZE. 117

--preinclude (compiler option) . 213
--preprocess (compiler option) . 213
preprocessing directives

implementation-defined behavior. 332
preprocessor

output. 213
C8051-4

355

356
overview . 277
preprocessor extensions

compatibility . 205
#warning message . 282
__VA_ARGS__ . 283

preprocessor symbols . 278
defining . 194

preserved registers . 134
__PRETTY_FUNCTION__ (predefined symbol). 280
primitives, for special functions . 48
print formatter, selecting . 92
printf (library function) . 91, 118

choosing formatter . 91
configuration symbols . 102
customizing . 119
implementation-defined behavior. 336, 339
selecting. 119

processor operations
accessing . 125
low-level . 227, 273

program entry label. 97
programming hints . 173

banked systems . 59
__program_start (label). 97
projects, basic settings for. 15
prototypes, enforcing . 214
PSP (segment). 320
PSP (stack pointer) . 36
PSTACK (segment). 321
ptrdiff_t (integer type). 223, 293
PUBLIC (assembler directive) . 214
publication date, of this guide . ii
--public_equ (compiler option) . 213
public_equ (pragma directive) . 334
putchar (library function) . 118
putenv (library function), absent from DLIB 106

Q
QCCX51 (environment variable) 182
QSORT_MAXSIZE (predefined symbol) 117
qualifiers, implementation-defined behavior 332
queue (STL header file) . 289

R
-r (compiler option). 214
raise (library function), configuring support for 107
raise.c . 107
RAM memory, saving. 174
range errors, in linker . 83
RCODE (segment) . 321
__read (library function) . 104

customizing . 101
read formatter, selecting . 93, 120
reading guidelines. xxv
reading, recommended . xxviii
realloc (library function)

implementation-defined behavior. 336, 339
See also heap . 42

recursive functions
avoiding . 174
storing data on stack . 41

reentrancy (DLIB). 286
reference information, typographic convention. xxix
register parameters . 134–135
registered trademarks . ii
registers

assigning to parameters . 136
callee-save, stored on stack . 41
implementation-defined behavior. 331
in assembler-level routines. 131
preserved . 134
scratch . 134
virtual. 44
virtual bit register. 44
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Index
register_bank (pragma directive). 268
reinterpret_cast (cast operator) . 150
remark (diagnostic message)

classifying . 197
enabling . 214

--remarks (compiler option) . 214
remarks (diagnostic message) . 185
remove (library function) . 104

implementation-defined behavior. 335, 338
rename (library function) . 104

implementation-defined behavior. 335, 338
__ReportAssert (library function) 108
required (pragma directive). 269
--require_prototypes (compiler option) 214
return values, from functions . 137
Ritchie, Dennis M. . xxviii
--rom_monitor_bp_padding (compiler option) 215
__root (extended keyword) . 255
root area (in banked systems) . 56
routines, time-critical . 125, 227, 273
RTMODEL (assembler directive) 112
rtmodel (pragma directive) . 270
rtti support, missing from STL . 150
__rt_version (runtime model attribute) 113
runtime environment

CLIB . 115
DLIB . 85
setting options . 10

runtime libraries . 10
choosing. 9
introduction . 285
CLIB . 115

naming convention . 116
default . 116
DLIB . 88

choosing . 90
customizing without rebuilding. 90
naming convention . 89
overriding modules in . 93

runtime model attributes . 111–112
__rt_version . 113

runtime model definitions . 270
runtime type information, missing from Embedded C++ . 150

S
scanf (library function) . 120

choosing formatter . 92
configuration symbols . 102
implementation-defined behavior. 336, 339

scratch registers . 134
section (pragma directive). 334
segment group name . 73
segment memory map, in linker map file 83
segment memory types, in XLINK 68
segment names, declaring . 271
segment (pragma directive). 271
segments . 295

code . 81
data . 72
definition of . 67
initialized data . 75
introduction . 67
located data . 81
naming . 74
packing in memory . 71
placing in sequence . 70
static memory . 72
summary . 295
too long . 83
BANKED_CODE . 59
HEAP. 80
INTVEC . 82
NEAR_CODE . 60

__segment_begin (extended operator). 229
__segment_end (extended operator) 229
semaphores

C example . 50
C8051-4

357

358
C++ example . 52
operations on . 252

set (STL header file) . 289
setjmp.h (library header file). 287, 293
setlocale (library function) . 106
settings, basic for project configuration 15
__set_interrupt_state (intrinsic function) 275
severity level, of diagnostic messages 185

specifying . 186
__sfr (extended keyword) . 255
sfr (memory type) . 27
SFR (special function registers) . 177

declaring extern . 168
SFR_AN (segment). 321
shared object . 184
short (data type) . 218
signal (library function)

configuring support for . 107
implementation-defined behavior. 335

signal.c . 107
signal.h (library header file) . 287
signbit, C99 extension. 291
signed char (data type) . 218–219

specifying . 193
signed int (data type). 218
signed long (data type) . 218
signed short (data type). 218
signed values, avoiding . 163
--silent (compiler option) . 215
silent operation, specifying . 215
sizeof, using in preprocessor extensions 205
size_t (integer type) . 223, 293
skeleton code, creating for assembler language interface . 128
skeleton.s99 (assembler source output) 129
slist (STL header file) . 289
small (data model) . 23
_small_write (library function) . 119
snprintf, C99 extension . 292
source files, list all referred. 203

SP (stack pointer) . 36
special function registers (SFR) . 177
special function types . 48

overview . 11
sprintf (library function) . 91, 118

choosing formatter . 91
customizing . 119

sscanf (library function) . 120
choosing formatter . 92

sstream (library header file) . 288
stack . 35, 76

advantages and problems using 41
changing default size of . 76
contents of . 40
layout . 136
placing in memory . 77
saving space . 174
size. 79

stack parameters . 134, 136
stack pointer . 41
stack (STL header file) . 289
standard error . 212
standard input . 101
standard output . 101

specifying . 212
standard template library (STL)

in Extended EC++ . 150, 158, 289
missing from Embedded C++ 150

startup code
placement of . 81
See also CSTART

startup, system
CLIB . 121
DLIB . 97

statements, implementation-defined behavior 332
static data, in linker command file 75
static memory segments . 72
static overlay. 42, 140
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Index
static variables
initialization . 75
taking the address of . 173

static_cast (cast operator) . 150
std namespace, missing from EC++
and Extended EC++ . 160
stdarg.h (library header file) 287, 293
stdbool.h (library header file) 218, 288, 293

added C functionality. 291
__STDC__ (predefined symbol) . 280
STDC (pragma directive) . 334
__STDC_VERSION__ (predefined symbol) 280
stddef.h (library header file) 219, 288, 293
stderr. 104, 212
stdexcept (library header file) . 288
stdin . 104

implementation-defined behavior. 335, 338
stdint.h (library header file). 288, 290
stdint.h, added C functionality . 291
stdio.h (library header file) . 288, 293
stdio.h, additional C functionality 292
stdlib.h (library header file). 288, 293
stdlib.h, additional C functionality 292
stdout . 104, 212

implementation-defined behavior. 335, 338
Steele, Guy L. xxviii
STL. 158
streambuf (library header file). 288
streams, supported in Embedded C++. 150
strerror (library function)
implementation-defined behavior 337, 340
--strict_ansi (compiler option). 216
string (library header file) . 288
strings . 34

supported in Embedded C++ . 150
string.h (library header file) 288, 293
Stroustrup, Bjarne . xxviii
strstream (library header file) . 288
strtod (library function), configuring support for 108
strtod, in stdlib.h . 292

strtof, C99 extension . 292
strtold, C99 extension . 292
strtoll, C99 extension . 292
strtoull, C99 extension . 292
structs . 231

anonymous. 229
structure types, layout of. 224
structures

anonymous. 164
implementation-defined behavior. 331
placing in memory type . 32

subnormal numbers. 220
__SUBVERSION__ (predefined symbol). 280
support, technical . 186
symbol names, using in preprocessor extensions 205
symbols

anonymous, creating . 231
including in output . 269
listing in linker map file . 83
overview of predefined. 11
preprocessor, defining . 194

syntax
compiler options . 187
extended keywords. 30, 238–240

system startup
CLIB . 121
customizing . 99
DLIB . 97

system termination
CLIB . 122
C-SPY interface to . 99
DLIB . 98

system (library function)
configuring support for . 106
implementation-defined behavior. 337, 339

system_include (pragma directive) 334
C8051-4

359

360
T
__task (extended keyword) . 256
__tbac (intrinsic function). 275
technical support, IAR Systems . 186
template support

in Extended EC++ . 150, 156
missing from Embedded C++ 149

Terminal I/O window . 123
making available . 110

terminal output, speeding up. 110
termination, of system

CLIB . 122
DLIB . 98

terminology. xxviii
32-bits (floating-point format) . 220
this (pointer) . 130

class memory . 152
data type of . 33
referring to a class object . 152

__TID__ (predefined symbol). 281
__TIME__ (predefined symbol) . 280
time zone (library function)
implementation-defined behavior 337, 340
time (library function), configuring support for 107
time-critical routines . 125, 227, 273
time.c . 107
time.h (library header file) . 288
tiny (data model). 23
tips, programming. 173
tools icon, in this guide . xxix
trademarks . ii
transformations, compiler . 169
translation, implementation-defined behavior 327
trap vectors, specifying with pragma directive 272
type attributes . 237

specifying . 271
type definitions, used for specifying memory storage . 31, 239
type information, omitting . 211

type qualifiers, const and volatile 225
typedefs

excluding from diagnostics . 208
repeated . 234
using in preprocessor extensions 205

type-based alias analysis (compiler transformation) 172
disabling . 208

type-safe memory management . 149
type_attribute (pragma directive) 31, 271
typographic conventions . xxix

U
uintptr_t (integer type) . 224
underflow range errors,
implementation-defined behavior 334, 338
unions

anonymous. 164, 229
implementation-defined behavior. 331

unsigned char (data type) . 218–219
changing to signed char . 193

unsigned int (data type). 218
unsigned long (data type) . 218
unsigned short (data type) . 218
utility (STL header file) . 289

V
variable type information, omitting in object output 211
variables

auto . 35, 40, 174
defined inside a function . 35
global, placement in memory. 21
hints for choosing . 173
local. See auto variables
non-initialized . 178
omitting type info . 211
placing at absolute addresses . 168
placing in named segments . 168
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Index
static
placement in memory . 21
taking the address of . 173

static and global, initializing . 75
vector (pragma directive) . 49, 272
vector (STL header file) . 289
__VER__ (predefined symbol) . 280
version, IAR Embedded Workbench. ii
version, of compiler . 280
vfscanf, C99 extension . 292
vfwscanf, C99 extension . 292
virtual bit register . 44
virtual registers . 44
void, pointers to . 234
volatile (keyword) . 176
volatile, declaring objects . 225
VREG (segment) . 321
vscanf, C99 extension . 292
vsnprintf, C99 extension . 292
vsscanf, C99 extension . 292
vswscanf, C99 extension. 292
vwscanf, C99 extension . 292

W
#warning message (preprocessor extension) 282
warnings . 185

classifying . 198
disabling . 209
exit code. 216

warnings (pragma directive) . 334
--warnings_affect_exit_code (compiler option) 184
--warnings_are_errors (compiler option) 216
wchar.h (library header file) 288, 290
wchar.h, added C functionality . 292
wchar_t (data type), adding support for in C. 219
wcstof, C99 extension. 292
wcstolb, C99 extension . 292
wctype.h (library header file) . 288

wctype.h, added C functionality . 292
web sites, recommended . xxviii
__write (library function) . 104

customizing . 101
write formatter, selecting . 119–120

X
__xdata (extended keyword) . 256

as data pointer . 222
Xdata reentrant (calling convention) 36
xdata ROM (memory type) . 29
XDATA segments, placing of . 76
xdata (memory type). 28
XDATA_AN (segment). 322
__xdata_calloc (memory allocation function) 43
__xdata_free (memory allocation function) 43
XDATA_HEAP (segment) . 322
XDATA_I (segment) . 322
XDATA_ID (segment) . 323
__xdata_malloc (memory allocation function) 43
XDATA_N (segment) . 323
__xdata_realloc (memory allocation function) 43
__xdata_reentrant (extended keyword) 256
__xdata_rom (extended keyword). 257
XDATA_ROM_AC (segment) . 323
XDATA_ROM_C (segment) . 324
XDATA_STACK. 76
XLINK errors

range error . 83
segment too long . 83

XLINK options
-O. 84
-y . 84

XLINK output files . 6
XLINK segment memory types . 68
xreportassert.c. 108
XSP (segment) . 324
XSP (stack pointer). 36
C8051-4

361

362
XSTACK (segment) . 325

Symbols
#include files, specifying . 182, 203
#warning message (preprocessor extension) 282
-D (compiler option) . 194
-e (compiler option) . 200
-f (compiler option). 202
-I (compiler option). 203
-l (compiler option). 129, 203
-O (compiler option) . 210
-o (compiler option) . 211
-O (XLINK option). 84
-r (compiler option). 214
-y (XLINK option) . 84
--calling_convention (compiler option). 192
--char_is_signed (compiler option) 193
--code_model (compiler option) . 193
--core (compiler option) . 193
--data_model (compiler option) . 194
--debug (compiler option) . 195
--dependencies (compiler option) 195
--diagnostics_tables (compiler option) 198
--diag_error (compiler option) . 196
--diag_remark (compiler option). 197
--diag_suppress (compiler option) 197
--diag_warning (compiler option) 198
--dlib_config (compiler option). 198
--dptr (compiler option) . 199
--ec++ (compiler option). 201
--eec++ (compiler option) . 201
--enable_multibytes (compiler option) 201
--error_limit (compiler option) . 202
--extended_stack (compiler option). 202
--header_context (compiler option). 203
--library_module (compiler option) 204
--migration_preprocessor_extensions (compiler option) . . 205
--misrac (compiler option) . 205

--misrac_verbose (compiler option) 206
--module_name (compiler option) 206
--no_code_motion (compiler option) 207
--no_cse (compiler option) . 207
--no_inline (compiler option) . 207
--no_path_in_file_macros (compiler option). 208
--no_tbaa (compiler option) . 208
--no_typedefs_in_diagnostics (compiler option) 208
--no_unroll (compiler option) . 209
--no_warnings (compiler option) 209
--no_wrap_diagnostics (compiler option) 210
--nr_virtual_regs (compiler option). 210
--omit_types (compiler option) . 211
--only_stdout (compiler option) . 212
--output (compiler option). 212
--place_constants (compiler option) 212

in memory . 34
--preinclude (compiler option) . 213
--preprocess (compiler option) . 213
--remarks (compiler option) . 214
--require_prototypes (compiler option) 214
--rom_monitor_bp_padding (compiler option) 215
--silent (compiler option) . 215
--strict_ansi (compiler option). 216
--warnings_affect_exit_code (compiler option) 184, 216
--warnings_are_errors (compiler option) 216
?CBANK (linker symbol) . 65
?C_EXIT (assembler label). 123
?C_GETCHAR (assembler label) 123
?C_PUTCHAR (assembler label) 123
@ (operator) . 167, 229
_Exit (library function) . 99
_exit (library function) . 99
_Exit, C99 extension. 292
_formatted_write (library function) 91, 118
_medium_write (library function). 119
_Pragma (predefined symbol) . 282
_small_write (library function) . 119
__ALIGNOF__ (operator) . 229
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

Index
__asm (language extension) . 231
__banked_func (extended keyword) 242

as function pointer . 221
__banked_func_ext2 (extended keyword). 243

as function pointer . 221
__BASE_FILE__ (predefined symbol) 278
__bdata (extended keyword) . 244
__bit (extended keyword) . 244
__BUILD_NUMBER__ (predefined symbol) 278
__calling_convention (runtime model attribute) 112
__CALLING_CONVENTION__ (predefined symbol) . . 278
__close (library function) . 104
__code (extended keyword) . 244

as data pointer . 222
__code_model (runtime model attribute) 112
__CODE_MODEL__ (predefined symbol). 278
__CONSTANT_LOCATION__ (predefined symbol) 278
__core (runtime model attribute). 112
__CORE__ (predefined symbol). 278
__cplusplus (predefined symbol) 278
__data (extended keyword) . 245
__data_model (runtime model attribute) 112
__DATA_MODEL__ (predefined symbol) 278
__data_overlay (extended keyword) 245
__DATE__ (predefined symbol) . 278
__disable_interrupt (intrinsic function). 273
__dptr_size (runtime model attribute) 113
__dptr_visibility (runtime model attribute) 113
__embedded_cplusplus (predefined symbol) 279
__enable_interrupt (intrinsic function) 274
__exit (library function) . 99
__EXTENDED_DPTR__ (predefined symbol) 279
__extended_stack (runtime model attribute) 113
__EXTENDED_STACK__ (predefined symbol) 279
__ext_stack_reentrant (extended keyword) 246
__far (extended keyword) . 246

as data pointer . 222
__far_calloc (memory allocation function) 43
__far_code (extended keyword) . 247

as data pointer . 222
__far_free (memory allocation function) 43
__far_func (extended keyword) . 247

as function pointer . 221
__far_malloc (memory allocation function) 43
__far_realloc (memory allocation function) 43
__far_rom (extended keyword) . 248

as data pointer . 222
__FILE__ (predefined symbol). 279
__FUNCTION__ (predefined symbol) 236, 279
__func__ (predefined symbol) 236, 279
__generic (extended keyword) . 248

as data pointer . 222
__gets, in stdio.h. 292
__get_interrupt_state (intrinsic function) 274
__huge (extended keyword) . 249

as data pointer . 222
__huge_code (extended keyword). 249

as data pointer . 222
__huge_rom (extended keyword) 250

as data pointer . 222
__IAR_SYSTEMS_ICC__ (predefined symbol) 279
__ICC8051__ (predefined symbol). 279
__idata (extended keyword) . 250

as data pointer . 222
__idata_overlay (extended keyword) 251
__idata_reentrant (extended keyword) 251
__INC_DPSEL_SELECT__ (predefined symbol) . . 279–280
__interrupt (extended keyword) 49, 252

using in pragma directives 269, 272
__intrinsic (extended keyword). 252
__ixdata (extended keyword) . 251
__LINE__ (predefined symbol) . 280
__location_for_constants (runtime model attribute) 113
__low_level_init . 97
__low_level_init, customizing . 100
__lseek (library function) . 104
__memory_of, operator. 153
__monitor (extended keyword) 176, 252
C8051-4

363

364
__near_func (extended keyword) 253
as function pointer . 221

__noreturn (extended keyword) . 254
__no_init (extended keyword) 178, 253
__no_operation (intrinsic function). 274
__number_of_dptrs (runtime model attribute) 113
__NUMBER_OF_DPTRS__ (predefined symbol) 280
__open (library function) . 104
__overlay_near_func (extended keyword) 254
__parity (intrinsic function) . 274
__pdata (extended keyword) . 254

as data pointer . 222
__pdata_reentrant (extended keyword) 254
__PRETTY_FUNCTION__ (predefined symbol). 280
__printf_args (pragma directive). 268, 334
__program_start (label). 97
__qsortbbl, C99 extension. 292
__read (library function) . 104

customizing . 101
__ReportAssert (library function) 108
__root (extended keyword) . 255
__rt_version (runtime model attribute) 113
__scanf_args (pragma directive) 270, 334
__segment_begin (extended operator 229
__segment_end (extended operators) 229
__set_interrupt_state (intrinsic function) 275
__sfr (extended keyword) . 255
__STDC_VERSION__ (predefined symbol) 280
__STDC__ (predefined symbol) . 280
__SUBVERSION__ (predefined symbol). 280
__task (extended keyword) . 256
__tbac (intrinsic function). 275
__TID__ (predefined symbol). 281
__TIME__ (predefined symbol) . 280
__ungetchar, in stdio.h . 292
__VA_ARGS__ (preprocessor extension). 283
__VER__ (predefined symbol) . 280
__write (library function) . 104

customizing . 101

__write_array, in stdio.h . 292
__write_buffered (DLIB library function). 110
__xdata (extended keyword) . 256

as data pointer . 222
__xdata_calloc (memory allocation function) 43
__xdata_free (memory allocation function) 43
__xdata_malloc (memory allocation function) 43
__xdata_realloc (memory allocation function) 43
__xdata_reentrant (extended keyword) 256
__xdata_rom (extended keyword). 257

Numerics
16-bit pointers, accessing memory 23
24-bit pointers, accessing memory 23–24
32-bits (floating-point format) . 220
8051

instruction set. 142
memory configuration . 13

support for in compiler . 14
supported devices. 3
C8051-4

8051 IAR C/C++ Compiler
Reference Guide

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Part 1. Using the compiler
	Part 2. Reference information

	Other documentation
	Further reading

	Document conventions
	Typographic conventions

	Part 1. Using the compiler
	Getting started
	Device support
	Supported MCS-51 devices
	Preconfigured support files
	Header files for I/O
	Linker command files
	Device description files

	Examples for getting started

	IAR language overview
	Building applications-an overview
	Compiling
	Linking

	Basic project settings
	Optimization for speed and size
	Runtime environment
	Choosing a runtime library in the IAR Embedded Workbench IDE
	Choosing runtime environment from the command line
	Setting library and runtime environment options
	Building your own library

	Special support for embedded systems
	Extended keywords
	Pragma directives
	Predefined symbols
	Special function types
	Accessing low-level features

	Understanding memory architecture
	The MCS-51 microcontroller memory configuration
	Code memory space
	Internal data memory space
	External data memory space

	Run-time model concepts for memory configuration
	Compiler concepts
	Linker concepts

	Basic project settings for hardware memory configuration
	Classic 8051/8052 devices
	Maxim (Dallas Semiconductor) 390 and similar devices
	Devices based on Mentor Graphics M8051W/M8051EW core

	Using the DPTR register
	Location in memory
	Specifying the location in memory

	Selecting the active data pointer

	Data storage
	Different ways to store data
	Data models
	Specifying a data model
	The Tiny data model
	The Small data model
	The Large data model
	The Generic data model
	The Far data model

	Memory types
	Memory types for internal data memory space
	data
	idata
	bit/bdata
	sfr

	Memory types for external data memory space
	xdata
	pdata
	ixdata
	far
	huge
	Memory types for ROM memory in the external data memory space

	Memory types for code memory space
	code
	far code
	huge code

	Using data memory attributes
	Syntax
	Type definitions

	Pointers and memory types
	Differences between pointer types

	Structures and memory types
	More examples

	C++ and memory types
	Constants and strings
	Placing constants and strings in code memory

	Auto variables-stack and static overlay
	Choosing a calling convention
	Specifying a default calling convention
	Specifying a calling convention for individual functions
	Calling conventions and matching data models
	Mixing calling conventions
	Functions calling other functions

	The stack
	Advantages
	Potential problems

	Static overlay

	Dynamic memory on the heap
	Potential problems
	Alternative memory allocation functions

	Virtual registers
	The virtual bit register

	Functions
	Function-related extensions
	Code models for function storage
	Primitives for interrupts, concurrency, and OS-related programming
	Interrupt functions
	Register banks

	Monitor functions
	C++ and special function types

	Banked functions
	Introduction to the banking system
	Code models for banked systems
	The memory layout for the banked code model
	The memory layout for the banked extended2 code model
	Setting up the compiler for banked mode
	Setting up the linker for banked mode

	Writing source code for banked memory
	C/C++ language considerations
	Bank size and code size
	Banked versus non-banked function calls
	Code that cannot be banked
	Calling banked functions from assembler language

	Bank switching
	Accessing banked code
	Bank switching in the Banked code model
	Bank switching in the Banked extended2 code model
	Modifying the default bank-switching routine

	Downloading to memory
	Debugging banked applications
	Banked mode debugging with other debuggers

	Placing code and data
	Segments and memory
	What is a segment?
	Segment memory type

	Placing segments in memory
	Customizing the linker command file
	The contents of the linker command file
	Using the -Z command for sequential placement
	Using the -P command for packed placement
	Using the -P command for banked placement

	Data segments
	Static memory segments
	Segment naming
	Initialized data
	Data segments for static memory in the default linker command file

	The stacks
	Stack size allocation in the IAR Embedded Workbench IDE
	Stack size allocation from the command line
	Placement of stack segment
	Idata stack
	Extended stack
	Pdata stack
	Xdata stack
	Summary
	Stack size considerations

	The heap
	Heap segments in DLIB
	Heap segments in the CLIB runtime environment
	Heap size allocation in the IAR Embedded Workbench IDE
	Heap size allocation from the command line
	Placement of heap segment
	Heap size and standard I/O

	Located data

	Code segments
	Startup code
	Normal code
	Near code
	Banked code
	Far code

	Interrupt vectors

	C++ dynamic initialization
	Verifying the linked result of code and data placement
	Segment too long errors and range errors
	Linker map file
	Managing multiple address spaces

	The DLIB runtime environment
	Introduction to the runtime environment
	Runtime environment functionality
	Library selection
	Situations that require library building
	Library configurations
	Debug support in the runtime library

	Using a prebuilt library
	Customizing a prebuilt library without rebuilding

	Choosing formatters for printf and scanf
	Choosing printf formatter
	Specifying the print formatter in the IAR Embedded Workbench IDE
	Specifying printf formatter from the command line

	Choosing scanf formatter
	Specifying scanf formatter in the IAR Embedded Workbench IDE
	Specifying scanf formatter from the command line

	Overriding library modules
	Overriding library modules using the IAR Embedded Workbench IDE
	Overriding library modules from the command line

	Building and using a customized library
	Setting up a library project
	Modifying the library functionality
	Modifying the library configuration file

	Using a customized library

	System startup and termination
	System startup
	System termination
	C-SPY interface to system termination

	Customizing system initialization
	_ _low_level_init
	Modifying the file cstartup.s51

	Standard streams for input and output
	Implementing low-level character input and output
	Example of using _ _write and _ _read

	Configuration symbols for printf and scanf
	Customizing formatting capabilities

	File input and output
	Locale
	Locale support in prebuilt libraries
	Customizing the locale support
	Locale configuration symbols
	Building a library without support for locale interface
	Building a library with support for locale interface

	Changing locales at runtime
	Example

	Environment interaction
	Signal and raise
	Time
	Strtod
	Assert
	Heaps
	C-SPY Debugger runtime interface
	Low-level debugger runtime interface
	The debugger terminal I/O window
	Speeding up terminal output

	Checking module consistency
	Runtime model attributes
	Using runtime model attributes
	Predefined runtime attributes
	Examples

	User-defined runtime model attributes

	The CLIB runtime environment
	Runtime environment
	Combinations and dependencies

	Building a runtime library
	Input and output
	Character-based I/O
	Formatters used by printf and sprintf
	_medium_write
	_small_write
	Specifying the printf formatter in the IAR Embedded Workbench IDE
	Specifying the printf formatter from the command line
	Customizing printf

	Formatters used by scanf and sscanf
	_medium_read
	Specifying the scanf formatter in the IAR Embedded Workbench IDE
	Specifying the read formatter from the command line

	System startup and termination
	System startup
	System termination

	Overriding default library modules
	Customizing system initialization
	C-SPY runtime interface
	The debugger terminal I/O window
	Termination

	Checking module consistency

	Assembler language interface
	Mixing C and assembler
	Intrinsic functions
	Mixing C and assembler modules
	Inline assembler

	Calling assembler routines from C
	Creating skeleton code
	Compiling the code
	The output file

	Calling assembler routines from C++
	Calling convention
	Choosing a calling convention
	Hints for using a calling convention

	Function declarations
	Using C linkage in C++ source code
	Preserved versus scratch registers
	Scratch registers
	Preserved registers
	Special registers

	Function entrance
	Hidden parameters
	Register parameters
	Stack parameters and layout

	Function exit
	Registers used for returning values
	Returning structures
	Stack layout
	Return address handling

	Examples
	Function directives

	Calling functions
	Assembler instructions used for calling functions
	Near and Far code model
	Banked code model
	Banked extended2 code model

	Memory access methods
	Data access method
	Idata access method
	Pdata access method
	Xdata access method
	Far and huge access methods
	Generic access method

	Call frame information

	Using C++
	Overview
	Standard Embedded C++
	Extended Embedded C++
	Enabling C++ support

	Feature descriptions
	Classes
	The this pointer
	Class memory

	Functions
	New and Delete operators
	New and delete expressions

	Templates
	Templates and data memory attributes
	Non-type template parameters
	The standard template library
	STL and the IAR C-SPY® Debugger

	Variants of casts
	Mutable
	Namespace
	The STD namespace
	Pointer to member functions
	Using interrupts and EC++ destructors

	C++ language extensions

	Efficient coding for embedded applications
	Selecting data types
	Using efficient data types
	Floating-point types
	Using the best pointer type
	Anonymous structs and unions

	Controlling data and function placement in memory
	Data placement at an absolute location
	Examples
	C++ considerations

	Data and function placement in segments
	Examples of placing variables in named segments
	Examples of placing functions in named segments

	Controlling compiler optimizations
	Scope for performed optimizations
	Optimization levels
	Speed versus size
	Fine-tuning enabled transformations
	Common subexpression elimination
	Loop unrolling
	Function inlining
	Code motion
	Type-based alias analysis

	Writing efficient code
	Saving stack space and RAM memory
	Calling conventions
	Function prototypes
	Prototyped style
	Kernighan & Ritchie style

	Integer types and bit negation
	Protecting simultaneously accessed variables
	Protecting the eeprom write mechanism

	Accessing special function registers
	Non-initialized variables

	Part 2. Reference information
	External interface details
	Invocation syntax
	Compiler invocation syntax
	Passing options
	Environment variables

	Include file search procedure
	Compiler output
	Error return codes

	Diagnostics
	Message format
	Severity levels
	Remark
	Warning
	Error
	Fatal error

	Setting the severity level
	Internal error

	Compiler options
	Options syntax
	Types of options
	Rules for specifying parameters
	Rules for optional parameters
	Rules for mandatory parameters
	Rules for options with both optional and mandatory parameters
	Rules for specifying a filename or directory as parameters
	Additional rules

	Summary of compiler options
	Descriptions of options
	--calling_convention
	--char_is_signed
	--code_model
	--core
	-D
	--data_model
	--debug, -r
	--dependencies
	--diag_error
	--diag_remark
	--diag_suppress
	--diag_warning
	--diagnostics_tables
	--dlib_config
	--dptr
	-e
	--ec++
	--eec++
	--enable_multibytes
	--error_limit
	--extended_stack
	-f
	--header_context
	-I
	-l
	--library_module
	--migration_preprocessor_extensions
	--misrac
	--misrac_verbose
	--module_name
	--no_code_motion
	--no_cse
	--no_inline
	--no_path_in_file_macros
	--no_tbaa
	--no_typedefs_in_diagnostics
	--no_unroll
	--no_warnings
	--no_wrap_diagnostics
	--nr_virtual_regs
	-O
	-o, --output
	--omit_types
	--only_stdout
	--output, -o
	--place_constants
	--preinclude
	--preprocess
	--public_equ
	-r, --debug
	--remarks
	--require_prototypes
	--rom_mon_bp_padding
	--silent
	--strict_ansi
	--warnings_affect_exit_code
	--warnings_are_errors

	Data representation
	Alignment
	Alignment on the MCS-51 microcontroller

	Basic data types
	Integer types
	Bool
	The enum type
	The char type
	The wchar_t type
	Bitfields

	Floating-point types
	32-bit floating-point format
	Representation of special floating-point numbers

	Pointer types
	Function pointers
	Data pointers
	Generic pointers

	Casting
	size_t
	ptrdiff_t
	intptr_t
	uintptr_t

	Structure types
	General layout

	Type qualifiers
	Declaring objects volatile
	Definition of access to volatile objects
	Rules for accesses

	Declaring objects const

	Data types in C++

	Compiler extensions
	Compiler extensions overview
	Enabling language extensions

	C language extensions
	Important language extensions
	Useful language extensions
	Inline assembler
	Compound literals
	Incomplete arrays at end of structs
	Hexadecimal floating-point constants
	Designated initializers in structures and arrays

	Minor language extensions

	Extended keywords
	General syntax rules for extended keywords
	Type attributes
	Memory attributes
	General type attributes
	Syntax for type attributes used on data objects
	Syntax for type attributes on data pointers
	Syntax for type attributes on functions
	Syntax for type attributes on function pointers

	Object attributes
	Syntax for object attributes

	Summary of extended keywords
	Descriptions of extended keywords
	_ _banked_func
	_ _banked_func_ext2
	_ _bdata
	_ _bit
	_ _code
	_ _data
	_ _data_overlay
	_ _ext_stack_reentrant
	_ _far
	_ _far_code
	_ _far_func
	_ _far_rom
	_ _generic
	_ _huge
	_ _huge_code
	_ _huge_rom
	_ _idata
	_ _idata_overlay
	_ _idata_reentrant
	_ _ixdata
	_ _interrupt
	_ _intrinsic
	_ _monitor
	_ _near_func
	_ _no_init
	_ _noreturn
	_ _overlay_near_func
	_ _pdata
	_ _pdata_reentrant
	_ _root
	_ _sfr
	_ _task
	_ _xdata
	_ _xdata_reentrant
	_ _xdata_rom

	Pragma directives
	Summary of pragma directives
	Descriptions of pragma directives
	basic_template_matching
	bitfields
	constseg
	dataseg
	diag_default
	diag_error
	diag_remark
	diag_suppress
	diag_warning
	include_alias
	inline
	language
	location
	message
	object_attribute
	optimize
	_ _printf_args
	register_bank
	required
	rtmodel
	_ _scanf_args
	segment
	type_attribute
	vector

	Intrinsic functions
	Summary of intrinsic functions
	Descriptions of intrinsic functions
	_ _disable_interrupt
	_ _enable_interrupt
	_ _get_interrupt_state
	_ _no_operation
	_ _parity
	_ _set_interrupt_state
	_ _tbac

	The preprocessor
	Overview of the preprocessor
	Descriptions of predefined preprocessor symbols
	_ _TID_ _

	Descriptions of miscellaneous preprocessor extensions
	NDEBUG
	_Pragma()
	#warning message
	_ _VA_ARGS_ _

	Library functions
	Introduction
	Header files
	Library object files
	Reentrancy

	IAR DLIB Library
	C header files
	C++ header files
	Embedded C++
	Extended Embedded C++ standard template library
	Using standard C libraries in C++

	Library functions as intrinsic functions
	Added C functionality
	ctype.h
	inttypes.h
	math.h
	stdbool.h
	stdint.h
	stdio.h
	stdlib.h
	wchar.h
	wctype.h

	IAR CLIB Library
	Library definitions summary

	Segment reference
	Summary of segments
	Descriptions of segments
	BANKED_CODE
	BANKED_CODE_EXT2_AC
	BANKED_CODE_EXT2_AN
	BANKED_CODE_EXT2_C
	BANKED_CODE_EXT2_N
	BANKED_CODE_INTERRUPTS_EXT2
	BANKED_EXT2
	BANK_RELAYS
	BDATA_AN
	BDATA_I
	BDATA_ID
	BDATA_N
	BDATA_Z
	BIT_N
	BREG
	CODE_AC
	CODE_C
	CODE_N
	CSTART
	DATA_AN
	DATA_I
	DATA_ID
	DATA_N
	DATA_Z
	DIFUNCT
	DOVERLAY
	EXT_STACK
	FAR_AN
	FAR_CODE
	FAR_CODE_AC
	FAR_CODE_C
	FAR_CODE_N
	FAR_HEAP
	FAR_I
	FAR_ID
	FAR_N
	FAR_ROM_AC
	FAR_ROM_C
	FAR_Z
	HUGE_AN
	HUGE_CODE_AC
	HUGE_CODE_C
	HUGE_CODE_N
	HUGE_HEAP
	HUGE_I
	HUGE_ID
	HUGE_N
	HUGE_ROM_AC
	HUGE_ROM_C
	HUGE_Z
	IDATA_AN
	IDATA_I
	IDATA_ID
	IDATA_N
	IDATA_Z
	INTVEC
	INTVEC_EXT2
	IOVERLAY
	ISTACK
	IXDATA_AN
	IXDATA_I
	IXDATA_ID
	IXDATA_N
	IXDATA_Z
	NEAR_CODE
	PDATA_AN
	PDATA_I
	PDATA_ID
	PDATA_N
	PDATA_Z
	PSP
	PSTACK
	RCODE
	SFR_AN
	VREG
	XDATA_AN
	XDATA_HEAP
	XDATA_I
	XDATA_ID
	XDATA_N
	XDATA_ROM_AC
	XDATA_ROM_C
	XDATA_Z
	XSP
	XSTACK

	Implementation-defined behavior
	Descriptions of implementation-defined behavior
	Translation
	Diagnostics (5.1.1.3)

	Environment
	Arguments to main (5.1.2.2.2.1)
	Interactive devices (5.1.2.3)

	Identifiers
	Significant characters without external linkage (6.1.2)
	Significant characters with external linkage (6.1.2)
	Case distinctions are significant (6.1.2)

	Characters
	Source and execution character sets (5.2.1)
	Bits per character in execution character set (5.2.4.2.1)
	Mapping of characters (6.1.3.4)
	Unrepresented character constants (6.1.3.4)
	Character constant with more than one character (6.1.3.4)
	Converting multibyte characters (6.1.3.4)
	Range of 'plain' char (6.2.1.1)

	Integers
	Range of integer values (6.1.2.5)
	Demotion of integers (6.2.1.2)
	Signed bitwise operations (6.3)
	Sign of the remainder on integer division (6.3.5)
	Negative valued signed right shifts (6.3.7)

	Floating point
	Representation of floating-point values (6.1.2.5)
	Converting integer values to floating-point values (6.2.1.3)
	Demoting floating-point values (6.2.1.4)

	Arrays and pointers
	size_t (6.3.3.4, 7.1.1)
	Conversion from/to pointers (6.3.4)
	ptrdiff_t (6.3.6, 7.1.1)

	Registers
	Honoring the register keyword (6.5.1)

	Structures, unions, enumerations, and bitfields
	Improper access to a union (6.3.2.3)
	Padding and alignment of structure members (6.5.2.1)
	Sign of 'plain' bitfields (6.5.2.1)
	Allocation order of bitfields within a unit (6.5.2.1)
	Can bitfields straddle a storage-unit boundary (6.5.2.1)
	Integer type chosen to represent enumeration types (6.5.2.2)

	Qualifiers
	Access to volatile objects (6.5.3)

	Declarators
	Maximum numbers of declarators (6.5.4)

	Statements
	Maximum number of case statements (6.6.4.2)

	Preprocessing directives
	Character constants and conditional inclusion (6.8.1)
	Including bracketed filenames (6.8.2)
	Including quoted filenames (6.8.2)
	Character sequences (6.8.2)
	Recognized pragma directives (6.8.6)
	Default _ _DATE_ _ and _ _TIME_ _ (6.8.8)

	IAR DLIB Library functions
	NULL macro (7.1.6)
	Diagnostic printed by the assert function (7.2)
	Domain errors (7.5.1)
	Underflow of floating-point values sets errno to ERANGE (7.5.1)
	fmod() functionality (7.5.6.4)
	signal() (7.7.1.1)
	Terminating newline character (7.9.2)
	Blank lines (7.9.2)
	Null characters appended to data written to binary streams (7.9.2)
	Files (7.9.3)
	remove() (7.9.4.1)
	rename() (7.9.4.2)
	%p in printf() (7.9.6.1)
	%p in scanf() (7.9.6.2)
	Reading ranges in scanf() (7.9.6.2)
	File position errors (7.9.9.1, 7.9.9.4)
	Message generated by perror() (7.9.10.4)
	Allocating zero bytes of memory (7.10.3)
	Behavior of abort() (7.10.4.1)
	Behavior of exit() (7.10.4.3)
	Environment (7.10.4.4)
	system() (7.10.4.5)
	Message returned by strerror() (7.11.6.2)
	The time zone (7.12.1)
	clock() (7.12.2.1)

	IAR CLIB Library functions
	NULL macro (7.1.6)
	Diagnostic printed by the assert function (7.2)
	Domain errors (7.5.1)
	Underflow of floating-point values sets errno to ERANGE (7.5.1)
	fmod() functionality (7.5.6.4)
	signal() (7.7.1.1)
	Terminating newline character (7.9.2)
	Blank lines (7.9.2)
	Null characters appended to data written to binary streams (7.9.2)
	Files (7.9.3)
	remove() (7.9.4.1)
	rename() (7.9.4.2)
	%p in printf() (7.9.6.1)
	%p in scanf() (7.9.6.2)
	Reading ranges in scanf() (7.9.6.2)
	File position errors (7.9.9.1, 7.9.9.4)
	Message generated by perror() (7.9.10.4)
	Allocating zero bytes of memory (7.10.3)
	Behavior of abort() (7.10.4.1)
	Behavior of exit() (7.10.4.3)
	Environment (7.10.4.4)
	system() (7.10.4.5)
	Message returned by strerror() (7.11.6.2)
	The time zone (7.12.1)
	clock() (7.12.2.1)

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Symbols
	Numerics

