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Abstract
This paper discusses the pushing manipulation of

an object by a humanoid robot. For such a pushing
task, we show that there are two kinds of ZMPs, i.e.,
the conventional “Zero Moment Point (ZMP)” con-
sidering all sources of the force/moment acting in the
foot supporting area, and the “Generalized Zero Mo-
ment Point (GZMP)” which is an generalization of
ZMP for a humanoid robot whose hands do not con-
tact with an object. We first obtain the stable region of
the GZMP on the floor. Moreover, since the difference
between these two ZMPs corresponds to the magnitude
of contact force applied by the hands, we propose the
pushing manipulation by a humanoid robot by modify-
ing the desired ZMP trajectory for a humanoid. The
effectiveness of the proposed method is confirmed by
simulation results.

1 Introduction
Since the kinematical structure of a humanoid

robot is similar to that of a human, a humanoid robot
is expected to work instead of a human in the same
environment. Previously, the research of humanoid
robot has mainly focused on the hardware design and
the realization of some basic motions such as walking
and balancing. However, to accomplish the required
tasks under such an environment, it should be con-
sidered that a humanoid robot manipulates an object
cooperating two arms with two legs.

Fig.1 shows a situation where a humanoid robot
manipulates a relatively large object. For such a ma-
nipulation task, it becomes difficult for a humanoid
robot to handle the object by once picking it up. This
is because, if a humanoid robot picks up a large object,
the robot will easily lose the stability and fall down.
Rather, it becomes effective for a humanoid robot to
push the object on the floor, and move it to the desired
position/orientation. Based on this consideration, we
focus on the pushing manipulation of an object by a
humanoid in this paper.

Now let us focus on the ZMP(Zero Moment Point)
[9] during the pushing manipulation. The ZMP is de-
fined to be a point on the ground at which the tan-
gential component of the moment generated by the
ground reaction force/moment becomes zero. If the
ZMP is included inside of the convex hull of the foot

Convex hull of
supporting area

ZMP

(a) Manipulation with small
      pushing force

(b) Manipulation with large
      pushing force

Fig. 1: Pushing Manipulation by a Humanoid Robot

supporting area, the robot will keep the stability. As
shown in Fig.1(a), if the contact force applied by the
hands is small, the robot will easily keep the ZMP in-
side of the supporting area. Then, if the contact force
is applied more strongly as shown in Fig.1(b), the ZM-
P will shift further from the object. To keep the ZMP
inside of the convex hull of the foot supporting area,
the position of the feet should also shift further from
the object. This situation associates the human push-
ing task where a human leans on the object to push it
with strong pushing force. Moreover, since the hands
contact with an object, the robot will not always fal-
l down even if the ZMP is on the edge of the foot
supporting area. Thus, to perform the pushing ma-
nipulation by a humanoid stably, we have to take into
account the following things:

(1)The ZMP during the pushing manipulation de-
pends on the contact force applied by the hands, and
(2)We need to generalize the conventional ZMP to de-
fine the stability of the pushing manipulation.

As for (2), we propose two kinds of ZMPs where one is
the conventional Zero Moment Point, and the other is
the Generalized Zero Moment Point(GZMP) which is
an generalization of ZMP for a humanoid robot whose
hands do not contact with an object. We will obtain
the area of the GZMP on the floor where a humanoid
under pushing can keep the stability. As for (1), we
show that the difference between these two ZMPs cor-
responds to the contact force applied by the hands. By
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considering the difference between two ZMPs, we con-
struct the controller for the pushing manipulation to
be performed stably. Lastly, to show the effectiveness
of our idea, some simulation results will be shown.

2 Relevant Works
Inaba et al.[1] constructed small-sized humanoid

robots by using the remote-brained approach. Hirai
et al.[2] and Kagami et al.[3] constructed human-sized
humanoid robots and realized some basic motions. In-
oue et al.[4] organized the HRP (Humanoid Robotics
Project). Yamane et al.[5] proposed the concept of
the dynamics filter for generating the motion of a hu-
manoid robot. Inoue et al.[6] discussed the posture
of a humanoid robot maximizing the manipulability
index. Kajita et al. discussed the 2D[7] and 3D[8]
walking pattern generation of biped robots.

As for the stability index of a biped/quadruped
robot, Vukobratovic et al.[9] first proposed the concep-
t of the ZMP(Zero Moment Point). Yoneda et al.[11]
proposed another criterion of “Tumble Stability Crite-
rion” for integrated locomotion and manipulation sys-
tems. Goswami[10] proposed the FRI(Foot Rotation
Indicator). Kitagawa et al.[12] proposed the Enhanced
ZMP for the stand-up-motion of a humanoid.

As for the pushing manipulation, Mason et al.[14],
Lynch[15], and Harada et al.[16] researched the me-
chanics of the pushed object. However, there has
been no research on the pushing manipulation by a
humanoid robot.

3 Two ZMPs
3.1 Formulation

Fig. 2 shows the model of a humanoid pushing an
object used in this paper. ΣR and Σi denote the ref-
erence coordinate and the coordinate frame fixed to
the i-th (i = 1, · · · , n) link of the robot, respectively.
pHj(= [xHj yHj zHj ]T ), and pi(= [xi yi zi]T ) denote
the position vector of the contact point between the
j-th hand and the object, and the origin of Σi, re-
spectively. mi, Ii, and ωi denote the mass, the inertia
tensor and the angular velocity vector, respectively,
of the link i. pG(= [xG yG zG]T ) denotes the vec-
tor of the center of gravity of the robot defined by
pG =

∑n
i=1 mipi/

∑n
i=1 mi. pZ(= [xZ yZ zZ ]T ) and

pE(= [xE yE zE ]T ) denote the position of the zero
moment point and the generalized zero moment point,
respectively, defined in the following. fZ and τZ de-
note the ground reaction force/torque at the ZMP ,
and fE and τE denote the reaction force/torque at
the GZMP. We assume that the hands apply push-
ing force onto the object in the horizontal direction;
fHj = [fxj fyj 0]T .

We now define two kinds of ZMPs existing in the
pushing manipulation of a humanoid robot. First, we
redefine the conventional definition of ZMP as follows:

Definition 1 (Zero Moment Point)
The zero moment point (ZMP) is the point on the
ground at which the moment τZ = [τZx τZy τZz ]T gen-
erated by the reaction force and the reaction moment
satisfies τZx = τZy = 0, where the reaction force and
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Fig. 2: Model of the System

moment is generated by the inertial force, the gravity
force, and the hand reaction force.

Since all sources of the reaction force/moment acting
in the convex hull of the foot supporting area is con-
sidered, this definition becomes equivalent to the con-
ventional definition of ZMP(Fig. 1)[9]. The ground
reaction moment at the ZMP is given by

τZ = L̇G + M(pG − pZ) × (p̈G − g)

+
2∑

j=1

(pHj − pZ) × fHj , (1)

where M =
∑n

i=1 mi and g = [0 0 − g]T , and
LG(= [LGx LGy LGz]T ) denotes the angular momen-
tum about the center of gravity defined by LG =∑n

i=1(pi − pG) × (miṗi) + Iiωi. Substituting τZx =
τZy = 0 into eq.(1) and solving with respect to pZ ,
the position of the ZMP can be obtained as

xZ =
−L̇Gy + MxG(z̈G + g) − M(zG − zZ)ẍG

M(z̈G + g)

−
2∑

j=1

(zHj − zZ)fxj

M(z̈G + g)
, (2)

yZ =
L̇Gx + MyG(żG + g) − M(zG − zZ)ÿG

M(z̈G + g)

−
2∑

j=1

(zHj − zZ)fyj

M(z̈G + g)
. (3)

Here, since the hands apply the contact force onto
the object, we can consider the case where the con-
tact forces balance even if the ZMP is on the edge of
the convex hull of the foot supporting area. In such a
case, the robot will not lose the stability. Then, for the
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purpose of generalizing the ZMP to the tasks where
a humanoid robot applies the pushing force onto the
object, we define the following ZMP:

Definition 2 (Generalized Zero Moment Point)
The generalized zero moment point (GZMP) is the
point on the floor at which the moment τE =
[τEx τEy τEz ]T generated by the reaction force and the
reaction moment satisfies τEx = τEy = 0, where the
reaction force and moment is generated by the inertial
force and the gravity force.

In the GZMP, the hand force is not considered in the
definition. The reaction torque corresponding to this
definition of the GZMP is given by

τE = L̇G + M(pG − pE) × (p̈G − g). (4)

Substituting τEx = τEy = 0 into eq.(4) and solving
with respect to pE , the position of the GZMP can be
obtained as

xE =
−L̇Gy + MxG(z̈G + g) − M(zG − zE)ẍG

M(z̈G + g)
,(5)

yE =
L̇Gx + MyG(z̈G + g) − M(zG − zE)ÿG

M(żG + g)
. (6)

Eqs.(5) and (6) are same as the definition of the ZMP
for a humanoid robot whose hands do not contact with
an object. Since eqs.(5) and (6) are independent of the
pushing force, the robot will lose the stability and fall
down if the GZMP is on the edge of the defined area
in the following.
3.2 Stable Area

We consider obtaining the stable area of the GZMP
on the ground. First, we newly define the point p̃G(=
[x̃G ỹG z̃G]T ) and consider the change of coordinates
between pG and p̃G as

−L̇Gy/M + xG(z̈G + g) − (zG − zE)ẍG

= x̃G(¨̃zG + g) − (z̃G − zE)¨̃xG (7)

L̇Gx/M + yG(z̈G + g) − (zG − zE)ÿG

= ỹG(¨̃zG + g) − (z̃G − zE)¨̃yG (8)
z̃G = zG (9)

By using this change of coordinates, eqs.(5) and (6)
become same as those of the inverted pendulum

xE =
x̃G(¨̃zG + g) − (z̃G − zE)¨̃xG

¨̃zG + g
(10)

yE =
ỹG(¨̃zG + g) − (˜̃zG − zE)¨̃yG

¨̃zG + g
(11)

As shown in Fig.3(a), the GZMP assumed on the
virtual floor can be projected on the real ground by
using the following theorem:

(a) Generalized Zero Moment Point
     (GZMP)

Stable Region
(�   )��

Convex hull of
           supporting points

�

�

(b) Stable Region of GZMP

��
~

�� = 0

��= ��	

GZMP on the Real Floor

GZMP on the Virtual Floor

Fig. 3: The Generalized Zero Moment Point

Proposition 1 (Projection of GZMP)
Draw a line including both of p̃G(zE = zG) and the
GZMP on the virtual floor. The intersection of the
line and the ground corresponds to the GZMP on the
real ground.

Proof In eqs.(10) and (11), xE = x̃G and yE = ỹG
are satisfied when zE = z̃G. Moreover, since eqs.(10)
and (11) are linear equations with respect to pE , we
confirm the theorem is correct.

For a humanoid whose hands do not contact with an
object to walk stably, the ZMP should be included in
the convex hull of the foot supporting area. Also, for a
humanoid pushing an object, we consider the convex
hull of the supporting points as shown in Fig.3(b).
While there are many edges included in the convex
hull, we extract the edge of the convex hull where a
robot will fall down by the moment around the edge.
If the convex hull can rotate around the edge, the fol-
lowing inequality should be satisfied:

d(XY )∆θ > 0 (12)

where

d(XY ) =




{(p1 − prot) × n1}T

...
{(pL − prot) × nL}T


 pX − pY

‖ pX − pY ‖ ,

prot = pX + (1 − t)pY (0 ≤ t ≤ 1),

pX , pY , and pl (l = 1, · · · , L) denote the position vec-
tors of the vertices of the convex hull, nl (l = 1, · · · , L)
denote the unit normal vector of the surface contact-
ing with the vertex, and t denotes an arbitrary scalar.
For given vertices pX and pY , if ineq.(12) is satisfied,
the convex hull can rotate around the edge including
pX and pY .

For the motion of a humanoid which can be approx-
imated by an inverted pendulum[7, 8], the reaction
torque τE normal to the ground around the GZMP
becomes small and can be neglected. In such a case,
the moment around the edge can be obtained from
the relationship between the position of the GZMP
and the line defined in the following theorem.

Theorem 1 (Stable Region of GZMP)
Approximate the motion of the humanoid robot by a
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inverted pendulum. Draw a line including both of p̃G
and the extended line of the edge of the convex hull
satisfying ineq.(12). The intersection of the line and
ground forms the edge of the stable area of the GZMP.

Here, we note that Kitagawa et al.[12] proposed the
Enhanced ZMP. Different from [12], since we consider
the GZMP on the ground, we do not need to consid-
er multiple candidate of supporting planes. Also, as
shown in the next section, the difference between two
ZMPs corresponds to the magnitude of the pushing
force. By considering the difference, we can construct
the pushing controller. It is our future work extending
our method to several cases where the hands slips on
the surface of the object, and the humanoid pulls the
object etc. An example of the stable area is shown in
the appendix.

4 Relationship of Contact Force
Subtracting eqs.(5) and (6) from eqs.(2) and (3),

respectively, yields

xE − xZ =
2∑

j=1

(zHj − zZ)fxj

M(z̈G + g)
, (13)

yE − yZ =
2∑

j=1

(zHj − zZ)fyj

M(z̈G + g)
. (14)

Eqs.(13) and (14) denote that the difference between
the ZMP and the GZMP corresponds to the magni-
tude of the contact force applied by the hands. Here,
since the equations of the GZMP shown in (5) and
(6) are same as the equations for a humanoid robot
whose hands do not contact with the object, we can
obtain the desired motion of a humanoid robot whose
hands contact with an object from eqs.(13) and (14).
As shown in Fig.4, the desired motion of a humanoid
robot whose hands contact with an object can be ob-
tained from the desired motion of a humanoid robot
without contacting the object by shifting the position
of the desired ZMP by

∆x =
2∑

j=1

(zHj − zZ)fxj

M(z̈G + g)
, (15)

∆y =
2∑

j=1

(zHj − zZ)fyj

M(z̈G + g)
. (16)

To plan the desired motion of the pushing task for
a humanoid robot, since it is difficult to predict the
amount of pushing force in advance of the actual mo-
tion, we consider setting ∆x and ∆y constant. In such
a case, with keeping the contact between the sole and
the ground, a humanoid robot can support the push-
ing force within the range of

Mg(∆x − laf )
zH1 − zZ

≤
2∑

j=1

fxj ≤ Mg(∆x + lab)
zH1 − zZ

(17)

Desired (G)ZMP

�� 
� ∆�

(a) Walking Pattern for a robot whose
      hands do not contact with an object

(b) Modification of the desired ZMP

Fig. 4: Modification of the ZMP position

GZMP

ZMP

Stable Area
of GZMP

Convex hull of
foot supporting area
(Area of ZMP)

(a) Area of two ZMPs

||�  + �  ||
�1

  ||�  - �  ||
� ��2 =  �  - ���1

  ��

ZMP

(b) Robot keeps the statical balance

Ground

Fig. 5: Relationship between ZMP and GZMP

in the x direction when zH1
∼= zH2 and z̈G

∼= 0, where
lab and laf denote the length from the desired ZMP
to the heel and the length from the desired ZMP to
the toe, respectively(Fig.4). We note that if eq.(17) is
satisfied, we confirm that the ZMP is included in the
convex hull of the foot supporting area. Even if the
ZMP is on the edge of the foot supporting area, the
robot will not always fall down if the robot is applying
the pushing force onto the object(Fig.5). When the
ZMP is in the heel, the robot will fall down if the
pushing force becomes zero and the GZMP is also in
the heel.

5 Controller
The overview of the controller for the pushing ma-

nipulation is shown in Fig.6. We assume that the dy-
namically balanced walking pattern based on the lin-
ear inverted pendulum mode[7, 8] is given as a series
of the joint trajectory and the desired ZMP trajecto-
ry. To support the pushing force, the desired ZMP is
modified by ∆x. We also implement the stabilizing
controller to compensate the error caused in the posi-
tion of the ZMP as well as the inclination of the body.

6 Simulation
We performed a simulation of pushing manipula-

tion by using the simulation software OpenHRP[17,
18] which is developed in the Humanoid Robotic-
s Project[4]. As a model of humanoid, we used
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Walking Pattern
     Generator

Modification of
  Desired ZMP

RobotStabilizing Controller

Desired Motion
such as Step Length
                       etc.

Desired Joint Trajectory
Desired ZMP

Robot State

Fig. 6: Overview of the Controller

the physical parameters of HRP-2 prototype(HRP-
2P)[19]. HRP-2P is a humanoid whose height and
the weight are H = 1.54[m] and M = 58[kg], respec-
tively. As an object to be pushed we used a box with
MO = 4[kg]. The friction coefficient between the ob-
ject and the floor is set as µ = 0.5. A series of the
simulation result is shown in Figs. 7 and 8. In Fig.7,
∆x is set as ∆x = 0.025[m], and the humanoid robot
can push the object with keeping the dynamical bal-
ance. On the other hand, when ∆x = 0, the robot
falls down backward.

7 Conclusions
In this paper, we discussed the pushing manipula-

tion by a humanoid robot. Among two kinds of ZMPs
proposed in this paper, we have obtained the stable
region of GZMP considering the contact points be-
tween the hands and the object. By shifting the de-
sired ZMP trajectory based on the difference between
the position of the ZMP and the GZMP, we proposed
the pushing controller for a humanoid robot. In the
simulation, the weight of the object was relatively low.
To deal with a heavy object with significant friction,
a humanoid robot has to walk in according to the ve-
locity of the object. The pushing manipulation of a
heavy object with significant friction is considered to
be our future research topic. A concrete analysis of
the GZMP is also considered to be our future research
topic.

Finally, we would like to express our sincere grat-
itude for Dr. Kazuhito Yokoi, Dr. Fumio Kanehiro,
and Mr. Kiyoshi Fujiwara who are the members of
the humanoid robotics group in AIST for their helpful
discussions.
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A Example on Stable Area
In this section, we briefly show an example of the

stable area outlined in the subsection 3.2. Fig.9 shows
an example of convex hull where pG = [0 0 2]T ,
p̈G = [1 1 0]T , and L̇G = . By calculating ineq.(12),
we can see that the convex hull can rotate around
the edges of BC, CD, BE, and DE, and cannot rotate
around the edges of AD, AB, AE, and EC. The result
of calculation is shown in Table 1. By projecting the
edges, we can obtain the stable area of the GZMP as
shown in Fig.9(b).

Table 1: Result of calculation

d(EA) [0.6667 − 0.6667 − 1.3333]T

d(EC) [0.2481 1.4884 − 1.2403]T

d(EB) [−0.3123 − 1.8741 − 2.1864]T

d(ED) [0.6963 2.4371 1.7408]T

d(AB) [−2 − 2 1]T

d(CD) [−2 − 2 − 1]T

d(AD) [2 2 − 2]T

d(BC) [−2 − 2 − 2]T

(a) Convex hull
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�

�
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�

�

�

E

(b) Region of GZMP
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[-1 1 0]

[-1 -1 0]

[2 1.5 1]

Fig. 9: Numerical Example
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