Lemma 1. Suppose $E \subset \mathbb{R}^n$ be a measurable set and f, g be nonnegative integrable functions on E. Let's define $\omega_f(t) = m\{x \in E \mid f(x) > t\}$ and ω_g likewise. Also, suppose there is t_0 such that $\omega_f - \omega_g \leq 0$ on $(-\infty, t_0)$ and $\omega_f - \omega_g \geq 0$ on (t_0, ∞) . If $\int_E f^{p_0} \geq \int_E g^{p_0}$ for some $p_0 > 0$, then $\int_E f^p \geq \int_E g^p$ for all $p > p_0$ satisfying $f^p, g^p \in L(E)$. Strict inequality holds if $|\omega_f - \omega_g| \neq 0$ on a set with positive measure.

proof. It is clear if $t_0 \leq 0$. So we may assume $t_0 > 0$. From the general measure theory, we know that

$$\int_E f^p = p \int_0^\infty t^{p-1} \omega_f(t) \, dt$$

Then

$$\begin{split} \int_{E} f^{p} - \int_{E} g^{p} &= p \int_{0}^{\infty} t^{p-1} (\omega_{f}(t) - \omega_{g}(t)) dt \\ &= p \int_{0}^{t_{0}} t^{p-1} (\omega_{f}(t) - \omega_{g}(t)) dt + p \int_{t_{0}}^{\infty} t^{p-p_{0}} t^{p_{0}-1} (\omega_{f}(t) - \omega_{g}(t)) dt \\ &\geq p \int_{0}^{t_{0}} t^{p-1} (\omega_{f}(t) - \omega_{g}(t)) dt + p \int_{t_{0}}^{\infty} t^{p-p_{0}}_{0} t^{p_{0}-1} (\omega_{f}(t) - \omega_{g}(t)) dt \qquad (1) \\ &\geq p \int_{0}^{t_{0}} t^{p-1} (\omega_{f}(t) - \omega_{g}(t)) dt - p \int_{0}^{t_{0}} t^{p-p_{0}}_{0} t^{p_{0}-1} (\omega_{f}(t) - \omega_{g}(t)) dt \\ &= p \int_{0}^{t_{0}} (t^{p-p_{0}} - t^{p-p_{0}}_{0}) t^{p_{0}-1} (\omega_{f}(t) - \omega_{g}(t)) dt \\ &\geq 0. \end{split}$$

Inequality (1) or (2) can be modified to be strict if $|\omega_f - \omega_g| \neq 0$ on a set with positive measure. \Box

From now on, we fix $E = [0, \infty)$ and

$$f(x) = e^{-x^2/2\pi}, \qquad g(x) = \left|\frac{\sin x}{x}\right|.$$

Lemma 2. $\int_0^{\infty} f^p = \pi/\sqrt{2p}$ and for $0 < x < \pi$, g(x) < f(x).

proof. The first equality is an easy consequence of the Gaussian integral. To show the inequality, note that $e^x > 1 + x$ for any nonzero real x. Then for $0 < x < \pi$,

$$g(x) = \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2 \pi^2} \right) < \prod_{n=1}^{\infty} e^{-x^2/(n\pi)^2} = e^{-x^2/6} < f(x).$$

Now we are ready to prove the main theorem.

Theorem. For $p \ge 2$,

$$\int_0^\infty \left| \frac{\sin x}{x} \right|^p \, dx \le \frac{\pi}{\sqrt{2p}}$$

with equality holds if and only if p = 2.

proof. It is easy to see that equality holds if p = 2. By noting that the right hand side of the given inequality coincides the integral of f^p on $(0, \infty)$, the inequality that we have to prove recudes to $\int_0^\infty f^p > \int_0^\infty g^p$ for p > 2. For this, it is enough to show that $\omega_f - \omega_g$ satisfies the conditions given in Lemma 1.

First, let's determine ω_f and ω_g in explicit form. It is easy to see that $\omega_f(t) = f^{-1}(t) = \sqrt{2\pi \log(1/t)}$ on (0,1) and $\omega_f(t) = \omega_g(t) = 0$ for $t \ge 1$. An explicit form for ω_g on (0,1) is more complicated. Let $x_0 = 0$ and x_n be the *n*-th smallest local extremum of g on $(0,\infty)$. It is easy to see that $x_{2n-1} = n\pi$. Put $I_n = [x_n, x_{n+1}]$ for $n = 0, 1, 2, \cdots$ and define $g_n = g|_{I_n}$. Finally, put $t_0 = 1$ and t_n be the maximum of g on $[n\pi, (n+1)\pi]$. If $n \ge 0$ and $t_{n+1} \le t < t_n$, then we have

$$\omega_g(t) = \sum_{k=0}^{2n} (-1)^k g_k^{-1}(t).$$
(3)

The inequality in Lemma 2 yields $\omega_f - \omega_g > 0$ on $(t_1, 1)$. So if we can prove that $\omega_f - \omega_g$ is increasing on $(0, t_1)$, everything is OK. To accomplish this, it suffices to show that $|\omega'_g/\omega'_f| > 1$ on (t_{n+1}, t_n) for positive integer n. Note that from (3), we have

$$|\omega'_g(t)| = -\omega'_g(t) = \sum_{\substack{g(\alpha)=t\\\alpha>0}} \frac{1}{|g'(\alpha)|}.$$

For $t_{n+1} < t < t_n$, $g(\alpha) = t$ has exactly one solution on each I_k for $k = 0, 1, \dots, 2n$ and no solution on other I_k . Also, it is easy to show that $|g'(x)| \le 1/2$ on I_1 and $|g'(x)| \le 1/(n\pi)$ on $I_{2n-1} \cup I_{2n}$, thus

$$|\omega'_g(t)| \ge 2 + n(n+1)\pi > \pi(n+\frac{3}{2}).$$

Hence

$$\omega_g'(t)/\omega_f'(t)| > \pi (n+\frac{3}{2})t \sqrt{\frac{2}{\pi} \ln\left(\frac{1}{t}\right)}.$$
(4)

By simple observation, we have

$$\frac{1}{(n+\frac{1}{2})\pi} \le t_n \le \frac{1}{n\pi}.$$

Since $t\sqrt{\log(1/t)}$ is increasing on $(0, 1/\sqrt{e})$ and $(t_{n+1}, t_n) \subset (0, 1/\sqrt{e})$ by the inequality above, we have

$$|\omega_g'(t)/\omega_f'(t)| > \pi(n+\frac{3}{2})t_{n+1}\sqrt{\frac{2}{\pi}\ln\left(\frac{1}{t_{n+1}}\right)} \ge \sqrt{\frac{2}{\pi}\ln(2\pi)} > 1,$$

completing the proof.