Lemma 1. Suppose $E \subset \mathbb{R}^{n}$ be a measurable set and f, g be nonnegative integrable functions on E. Let's define $\omega_{f}(t)=m\{x \in E \mid f(x)>t\}$ and ω_{g} likewise. Also, suppose there is t_{0} such that $\omega_{f}-\omega_{g} \leq 0$ on $\left(-\infty, t_{0}\right)$ and $\omega_{f}-\omega_{g} \geq 0$ on $\left(t_{0}, \infty\right)$. If $\int_{E} f^{p_{0}} \geq \int_{E} g^{p_{0}}$ for some $p_{0}>0$, then $\int_{E} f^{p} \geq \int_{E} g^{p}$ for all $p>p_{0}$ satisfying $f^{p}, g^{p} \in L(E)$. Strict inequality holds if $\left|\omega_{f}-\omega_{g}\right| \neq 0$ on a set with positive measure.
proof. It is clear if $t_{0} \leq 0$. So we may assume $t_{0}>0$. From the general measure theory, we know that

$$
\int_{E} f^{p}=p \int_{0}^{\infty} t^{p-1} \omega_{f}(t) d t
$$

Then

$$
\begin{align*}
\int_{E} f^{p}-\int_{E} g^{p} & =p \int_{0}^{\infty} t^{p-1}\left(\omega_{f}(t)-\omega_{g}(t)\right) d t \\
& =p \int_{0}^{t_{0}} t^{p-1}\left(\omega_{f}(t)-\omega_{g}(t)\right) d t+p \int_{t_{0}}^{\infty} t^{p-p_{0}} t^{p_{0}-1}\left(\omega_{f}(t)-\omega_{g}(t)\right) d t \\
& \geq p \int_{0}^{t_{0}} t^{p-1}\left(\omega_{f}(t)-\omega_{g}(t)\right) d t+p \int_{t_{0}}^{\infty} t_{0}^{p-p_{0}} t^{p_{0}-1}\left(\omega_{f}(t)-\omega_{g}(t)\right) d t \tag{1}\\
& \geq p \int_{0}^{t_{0}} t^{p-1}\left(\omega_{f}(t)-\omega_{g}(t)\right) d t-p \int_{0}^{t_{0}} t_{0}^{p-p_{0}} t^{p_{0}-1}\left(\omega_{f}(t)-\omega_{g}(t)\right) d t \\
& =p \int_{0}^{t_{0}}\left(t^{p-p_{0}}-t_{0}^{p-p_{0}}\right) t^{p_{0}-1}\left(\omega_{f}(t)-\omega_{g}(t)\right) d t \\
& \geq 0 \tag{2}
\end{align*}
$$

Inequality (1) or (2) can be modified to be strict if $\left|\omega_{f}-\omega_{g}\right| \neq 0$ on a set with positive measure.
From now on, we fix $E=[0, \infty)$ and

$$
f(x)=e^{-x^{2} / 2 \pi}, \quad g(x)=\left|\frac{\sin x}{x}\right|
$$

Lemma 2. $\int_{0}^{\infty} f^{p}=\pi / \sqrt{2 p}$ and for $0<x<\pi, g(x)<f(x)$.
proof. The first equality is an easy consequence of the Gaussian integral. To show the inequality, note that $e^{x}>1+x$ for any nonzero real x. Then for $0<x<\pi$,

$$
g(x)=\prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{n^{2} \pi^{2}}\right)<\prod_{n=1}^{\infty} e^{-x^{2} /(n \pi)^{2}}=e^{-x^{2} / 6}<f(x)
$$

Now we are ready to prove the main theorem.
Theorem. For $p \geq 2$,

$$
\int_{0}^{\infty}\left|\frac{\sin x}{x}\right|^{p} d x \leq \frac{\pi}{\sqrt{2 p}}
$$

with equality holds if and only if $p=2$.
proof. It is easy to see that equality holds if $p=2$. By noting that the right hand side of the given inequality coincides the integral of f^{p} on $(0, \infty)$, the inequality that we have to prove recudes to $\int_{0}^{\infty} f^{p}>\int_{0}^{\infty} g^{p}$ for $p>2$. For this, it is enough to show that $\omega_{f}-\omega_{g}$ satisfies the conditions given in Lemma 1.

First, let's determine ω_{f} and ω_{g} in explicit form. It is easy to see that $\omega_{f}(t)=f^{-1}(t)=\sqrt{2 \pi \log (1 / t)}$ on $(0,1)$ and $\omega_{f}(t)=\omega_{g}(t)=0$ for $t \geq 1$. An explicit form for ω_{g} on $(0,1)$ is more complicated. Let $x_{0}=0$ and x_{n} be the n-th smallest local extremum of g on $(0, \infty)$. It is easy to see that $x_{2 n-1}=n \pi$. Put $I_{n}=\left[x_{n}, x_{n+1}\right]$ for $n=0,1,2, \cdots$ and define $g_{n}=\left.g\right|_{I_{n}}$. Finally, put $t_{0}=1$ and t_{n} be the maximum of g on $[n \pi,(n+1) \pi]$. If $n \geq 0$ and $t_{n+1} \leq t<t_{n}$, then we have

$$
\begin{equation*}
\omega_{g}(t)=\sum_{k=0}^{2 n}(-1)^{k} g_{k}^{-1}(t) \tag{3}
\end{equation*}
$$

The inequality in Lemma 2 yields $\omega_{f}-\omega_{g}>0$ on $\left(t_{1}, 1\right)$. So if we can prove that $\omega_{f}-\omega_{g}$ is increasing on $\left(0, t_{1}\right)$, everything is OK. To accomplish this, it suffices to show that $\left|\omega_{g}^{\prime} / \omega_{f}^{\prime}\right|>1$ on $\left(t_{n+1}, t_{n}\right)$ for positive integer n. Note that from (3), we have

$$
\left|\omega_{g}^{\prime}(t)\right|=-\omega_{g}^{\prime}(t)=\sum_{\substack{g(\alpha)=t \\ \alpha>0}} \frac{1}{\left|g^{\prime}(\alpha)\right|}
$$

For $t_{n+1}<t<t_{n}, g(\alpha)=t$ has exactly one solution on each I_{k} for $k=0,1, \cdots, 2 n$ and no solution on other I_{k}. Also, it is easy to show that $\left|g^{\prime}(x)\right| \leq 1 / 2$ on I_{1} and $\left|g^{\prime}(x)\right| \leq 1 /(n \pi)$ on $I_{2 n-1} \cup I_{2 n}$, thus

$$
\left|\omega_{g}^{\prime}(t)\right| \geq 2+n(n+1) \pi>\pi\left(n+\frac{3}{2}\right)
$$

Hence

$$
\begin{equation*}
\left|\omega_{g}^{\prime}(t) / \omega_{f}^{\prime}(t)\right|>\pi\left(n+\frac{3}{2}\right) t \sqrt{\frac{2}{\pi} \ln \left(\frac{1}{t}\right)} . \tag{4}
\end{equation*}
$$

By simple observation, we have

$$
\frac{1}{\left(n+\frac{1}{2}\right) \pi} \leq t_{n} \leq \frac{1}{n \pi}
$$

Since $t \sqrt{\log (1 / t)}$ is increasing on $(0,1 / \sqrt{e})$ and $\left(t_{n+1}, t_{n}\right) \subset(0,1 / \sqrt{e})$ by the inequality above, we have

$$
\left|\omega_{g}^{\prime}(t) / \omega_{f}^{\prime}(t)\right|>\pi\left(n+\frac{3}{2}\right) t_{n+1} \sqrt{\frac{2}{\pi} \ln \left(\frac{1}{t_{n+1}}\right)} \geq \sqrt{\frac{2}{\pi} \ln (2 \pi)}>1
$$

completing the proof.

