
Lemma 1. Suppose E ⊂ Rn be a measurable set and f, g be nonnegative integrable functions on E.

Let’s define ωf (t) = m{x ∈ E | f(x) > t} and ωg likewise. Also, suppose there is t0 such that ωf −ωg ≤ 0

on (−∞, t0) and ωf − ωg ≥ 0 on (t0,∞). If
∫

E
fp0 ≥

∫
E

gp0 for some p0 > 0, then
∫

E
fp ≥

∫
E

gp for all

p > p0 satisfying fp, gp ∈ L(E). Strict inequality holds if |ωf − ωg| ≠ 0 on a set with positive measure.

proof. It is clear if t0 ≤ 0. So we may assume t0 > 0. From the general measure theory, we know that∫
E

fp = p

∫ ∞

0

tp−1ωf (t) dt.

Then ∫
E

fp −
∫

E

gp = p

∫ ∞

0

tp−1(ωf (t)− ωg(t)) dt

= p

∫ t0

0

tp−1(ωf (t)− ωg(t)) dt + p

∫ ∞

t0

tp−p0tp0−1(ωf (t)− ωg(t)) dt

≥ p

∫ t0

0

tp−1(ωf (t)− ωg(t)) dt + p

∫ ∞

t0

tp−p0
0 tp0−1(ωf (t)− ωg(t)) dt (1)

≥ p

∫ t0

0

tp−1(ωf (t)− ωg(t)) dt− p

∫ t0

0

tp−p0
0 tp0−1(ωf (t)− ωg(t)) dt

= p

∫ t0

0

(tp−p0 − tp−p0
0 )tp0−1(ωf (t)− ωg(t)) dt

≥ 0. (2)

Inequality (1) or (2) can be modified to be strict if |ωf − ωg| ≠ 0 on a set with positive measure. �

From now on, we fix E = [0,∞) and

f(x) = e−x2/2π, g(x) =
∣∣∣∣ sin x

x

∣∣∣∣ .

Lemma 2.
∫∞
0

fp = π/
√

2p and for 0 < x < π, g(x) < f(x).

proof. The first equality is an easy consequence of the Gaussian integral. To show the inequality, note

that ex > 1 + x for any nonzero real x. Then for 0 < x < π,

g(x) =
∞∏

n=1

(
1− x2

n2π2

)
<

∞∏
n=1

e−x2/(nπ)2 = e−x2/6 < f(x).

�

Now we are ready to prove the main theorem.

Theorem. For p ≥ 2, ∫ ∞

0

∣∣∣∣ sin x

x

∣∣∣∣p dx ≤ π√
2p

1



with equality holds if and only if p = 2.

proof. It is easy to see that equality holds if p = 2. By noting that the right hand side of the

given inequality coincides the integral of fp on (0,∞), the inequality that we have to prove recudes to∫∞
0

fp >
∫∞
0

gp for p > 2. For this, it is enough to show that ωf − ωg satisfies the conditions given in

Lemma 1.

First, let’s determine ωf and ωg in explicit form. It is easy to see that ωf (t) = f−1(t) =
√

2π log(1/t)

on (0, 1) and ωf (t) = ωg(t) = 0 for t ≥ 1. An explicit form for ωg on (0, 1) is more complicated. Let

x0 = 0 and xn be the n-th smallest local extremum of g on (0,∞). It is easy to see that x2n−1 = nπ.

Put In = [xn, xn+1] for n = 0, 1, 2, · · · and define gn = g|In . Finally, put t0 = 1 and tn be the maximum

of g on [nπ, (n + 1)π]. If n ≥ 0 and tn+1 ≤ t < tn, then we have

ωg(t) =
2n∑

k=0

(−1)kg−1
k (t). (3)

The inequality in Lemma 2 yields ωf −ωg > 0 on (t1, 1). So if we can prove that ωf −ωg is increasing

on (0, t1), everything is OK. To accomplish this, it suffices to show that |ω′g/ω′f | > 1 on (tn+1, tn) for

positive integer n. Note that from (3), we have

|ω′g(t)| = −ω′g(t) =
∑

g(α)=t
α>0

1
|g′(α)|

.

For tn+1 < t < tn, g(α) = t has exactly one solution on each Ik for k = 0, 1, · · · , 2n and no solution on

other Ik. Also, it is easy to show that |g′(x)| ≤ 1/2 on I1 and |g′(x)| ≤ 1/(nπ) on I2n−1 ∪ I2n, thus

|ω′g(t)| ≥ 2 + n(n + 1)π > π(n + 3
2 ).

Hence

|ω′g(t)/ω′f (t)| > π(n + 3
2 )t

√
2
π

ln
(

1
t

)
. (4)

By simple observation, we have
1

(n + 1
2 )π

≤ tn ≤
1

nπ
.

Since t
√

log(1/t) is increasing on (0, 1/
√

e) and (tn+1, tn) ⊂ (0, 1/
√

e) by the inequality above, we have

|ω′g(t)/ω′f (t)| > π(n + 3
2 )tn+1

√
2
π

ln
(

1
tn+1

)
≥

√
2
π

ln(2π) > 1,

completing the proof. �
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