
APACHE 2
Performance & Resource Tuning

OSCOM.4

Erik Abele

Apache History

• 1994 NCSA HTTPd (University of Illinois)
• 1995 A "patchy server" is born

– April: Apache 0.6.2 - first public release
– December: Apache 1.0

• 1997 Apache 1.2.0
• 1998 Apache 1.3.0
• 1999 Incorporation of the ASF
• 2000 Apache 2.0 Alpha 1
• 2002 Apache 2.0 GA
• 2004 Apache 2.1 Beta 1 ?
• ...

Apache 2: New Features
• Based on the Apache Portable Runtime
• MPMs (Multi-processing modules)
• Filtering, IPv6 and Multi-protocol support
• Built-in SSL and improved Authn/Authz

mechanisms (e.g. mod_auth_ldap)
• Module improvements

– New: mod_dav, mod_deflate, mod_logio, ...
– Improved: mod_include, mod_negotiation, ...

• Out-of-the-box XHTML-compliant, multi-
language error responses

• Drastically improved module API
• Active development

Apache Portable Runtime

• Used by Apache HTTPD, Subversion,
Flood, Prothon and other projects

• Consistent interface to underlying
platform-specific implementations

• Platforms are implemented in their
native APIs instead of using the POSIX-
emulation layers

• Solid foundation for Linux, Unix and non-
Unix platforms such as BeOS, OS/2 and
Windows

What is performance?

• Performance = throughput, measured in
successfully completed requests per second

• A statement of the speed at which the webserver
works

• The degree to which the webserver fulfills the
purposes for which it was built or acquired, or
which it is now expected to fulfill; a function of
effectiveness, reliability, and cost

➟ Performance tuning always means to find the
adequate balance between a variety of needs:
speed, features, flexibility, portability, stability,
...

Performance factors
• Performance depends on a broad and complex

spectrum of different factors:
– Hardware (RAM, CPU, HDD, ...)
– Network resources (bandwith, latency, traffic)
– Operating system
– Compile-time and run-time configuration
– Other services running on the same box
– Structure of content to be served (e.g. static vs.

dynamic pages, databases, proxied content, ...)
– Real-world conditions - end-user response time

(slow network connectivity, number of
simultaneous requests)

– ...

How to measure performance?

• Monitoring local resources (server load)
– RAM, CPU, harddisk speed, network resources
– mod_status: basic server statistics (machine-readable)
– Various open-source and commercial tools, e.g. Nagios,

(n)top, mon, mrtg, OpenNMS, ...

• Bechmarking speed
– Tools: ApacheBench, Flood, httperf, Autobench, ...
– Increasing number of concurrent requests
– Pages per second / seconds per request
– GET, POST, SSL, KeepAlive, simulated user-agents, ...
– Distributed tests, log replays
– Repeatable environment (e.g. isolated network, fixed

content-length, ...)

Hardware- and OS-dependent decisions

• A lot of RAM – never ever swap!
– For example use MaxClients to control how many

children are forked at maximum

• CPU, HDD, network card – just fast enough
• Does your favourite OS support your hardware

and the desired features (sendfile, threading
libraries, ...)?

• Run the latest stable release and patchlevel of
your OS

• Keep your system up to date

Compile-time configuration

• Choose a suitable MPM (--with-mpm=MPM)
• Eliminate unused modules (--disable-module)
• Disable DSO support, link modules statically

(-DDYNAMIC_MODULE_LIMIT=0)
– This will save RAM that's allocated only for

supporting dynamically loaded modules
• Enable a faster atomic compare-and-swap (CAS)

implementation (--enable-nonportable-
atomics=yes)
– Only useful on SPARC and Linux x86 > 486

• Disable mod_status in production (especially
turn off ExtendedStatus)

Multi-processing modules
• An MPM defines how the server will receive and

manage incoming requests:
– Different HTTP server process models (e. g.

threaded, process-based or hybrid)
– Platform- & OS-specific optimizations (e.g.

Windows, BeOS, NetWare, OS/2)
– OS-specific features (e.g. AcceptEx,

ExceptionHooks, etc.)
– Admin can choose: Reliability vs. Scalability vs.

Performance vs. Features
– More efficient ways of controlling the server

(resource limits, thread/process ratio)
– Extendable with third-party MPMs

Prefork

• Each child handles one connection at a
time: much traffic, many children :)
– High memory requirements
– Highly tolerant of faulty modules
– Highly tolerant of crashing children
– Fast
– Well-suited for 1 and 2-CPU systems
– Tried-and-tested model from Apache 1.3
– "You'll run out of memory before CPU"

Prefork model

• Each child handles one connection at a
time: many children are needed

Worker

• Multi-threaded within each child, each
thread handles a single connection:
– Low to moderate memory footprint
– Moderately tolerant to faulty modules
– Faulty threads can affect all threads in a child
– Fast and highly scalable
– Well-suited for multiple processors
– Requires a mature threading library (Solaris,

AIX, Linux 2.6 and others work well)
– Memory is no longer the bottleneck

Worker model

• Multi-threaded within each child: only a
few children are needed

Other MPMs

• OS-specific MPMs:
– WinNT
– OS/2
– BeOS
– NetWare

• Perchild (experimental)
• Leader-Follower (experimental)
• Threadpool (experimental)
• Third-party MPMs: Metux-MPM

Choosing an MPM

• Multi-process, multi-threaded, or both?
• Compile-time decision
• Depends on a variety of factors:

– Does the OS support threads?
– Scalability vs. Stability?
– Are third-party modules with unknown, and

possibly thread-unsafe extensions (e.g. PHP,
mod_perl) used?

– How much memory is available?
– ...

Run-time configuration
• Controlling MPM parameters

– MaxClients: big enough to handle the excpected number
of requests and small enough to assure that there is
enough physical RAM for all processes/threads

– ServerLimit, ThreadLimit and ThreadsPerChild
limit/influence the MaxClients setting

– ListenBackLog (increase when under a TCP SYN flood
attack)

– MaxRequestsPerChild (decrease when dealing with
memory leaks)

– ScoreBoardFile (use anonymous shared memory when
possibile or at least a RAM disk)

– SendBufferSize (increase when using high speed pipes)
– Prefork: MinSpareServers / MaxSpareServers
– Worker: MinSpareThreads / MaxSpareThreads

Run-time configuration
• Avoid DNS lookups (HostnameLookups Off)

– Use logresolve to post-process logfiles
– Use IP addresses instead of domain names in

Allow from / Deny from directives
• Disable .htaccess files (AllowOverride None)
• Avoid Options SymLinksIfOwnerMatch without

Options FollowSymLinks
– Apache will have to issue extra system calls to

check up on symlinks: lstat(2) on every path
component

• Avoid content-negotiation
– Apache has to scan for suitable files
– use typemaps instead of Options MultiViews

Extreme example
• To temporarily defend against DoS attacks or to

rescue a server from being slashdotted, the
following snippet may be of help:

<LocationMatch "^/action.php">
Order Allow,Deny
Deny from all
ErrorDocument 403 "Sorry
SetEnv nokeepalive
SetEnv downgrade-1.0
SetEnv force-response-1.0

</LocationMatch>

Know your server

• Keep an eye on the logfiles
• If something goes wrong, the first place

to look is always the error_log
• Temporarily increase the LogLevel if

needed (debug)
• mod_status shows what Apache is doing
• http://httpd.apache.org/docs-2.0/

Keeping up to date

• Apache website and Announcement list
– http://httpd.apache.org/
– announce-subscribe@httpd.apache.org

• ApacheWeek
– http://www.apacheweek.com/

• Vendor package updates
• CERT CC, BugTraq, Full Disclosure List

That's it!

Thanks for listening!

More info and the slides are available at
http://www.apache.org/~erikabele/

You can reach me at
erikabele@apache.org

