APACHE 2

Performance & Resource Tuning

OSCOM.4

Erik Abele

" Apache Software Foundation
== http://www.apache.org/




Apache History

1994 NCSA HTTPd (University of Illinois)

1995 A "patchy server" is born
— April: Apache 0.6.2 - first public release
— December: Apache 1.0

1997 Apache 1.2.0

1998 Apache 1.3.0

1999 Incorporation of the ASF
2000 Apache 2.0 Alpha 1
2002 Apache 2.0 GA

2004 Apache 2.1 Beta 1 ?



Apache 2: New Features

Based on the Apache Portable Runtime
MPMs (Multi-processing modules)
Filtering, IPv6 and Multi-protocol support

Built-in SSL and improved Authn/Authz
mechanisms (e.g. mod_auth_ldap)

Module improvements
- New: mod_dav, mod_deflate, mod_logio, ...
— Improved: mod_include, mod_negotiation, ...

Out-of-the-box XHTML-compliant, multi-
language error responses

Drastically improved module API
Active development



Apache Portable Runtime

Used by Apache HTTPD, Subversion,
Flood, Prothon and other projects

Consistent interface to underlying
platform-specific implementations

Platforms are implemented in their
native APIs instead of using the POSIX-
emulation layers

Solid foundation for Linux, Unix and non-
Unix platforms such as BeOS, 0OS/2 and
Windows



What is performance?

e Performance = throughput, measured in
successfully completed requests per second

e A statement of the speed at which the webserver
works

e The degree to which the webserver fulfills the
purposes for which it was built or acquired, or
which it is now expected to fulfill; a function of
effectiveness, reliability, and cost

= Performance tuning always means to find the
adequate balance between a variety of needs:
speed, features, flexibility, portability, stability,



Performance factors

e Performance depends on a broad and complex
spectrum of different factors:
- Hardware (RAM, CPU, HDD, ...)
— Network resources (bandwith, latency, traffic)
— Operating system
— Compile-time and run-time configuration
— Other services running on the same box

— Structure of content to be served (e.g. static vs.
dynamic pages, databases, proxied content, ...)

— Real-world conditions - end-user response time
(slow network connectivity, number of
simultaneous requests)



How to measure performance?

Monitoring local resources (server load)

- RAM, CPU, harddisk speed, network resources

- mod_status: basic server statistics (machine-readable)

— Various open-source and commercial tools, e.g. Nagios,
(n)top, mon, mrtg, OpenNMS, ...

Bechmarking speed

— Tools: ApacheBench, Flood, httperf, Autobench, ...

— Increasing number of concurrent requests

— Pages per second / seconds per request

— GET, POST, SSL, KeepAlive, simulated user-agents, ...

— Distributed tests, log replays

— Repeatable environment (e.g. isolated network, fixed
content-length, ...)



Hardware- and OS-dependent decisions

A lot of RAM - never ever swap!

— For example use MaxClients to control how many
children are forked at maximum

CPU, HDD, network card - just fast enough

Does your favourite OS support your hardware
and the desired features (sendfile, threading
libraries, ...)?

Run the latest stable release and patchlevel of
your OS

Keep your system up to date



Compile-time configuration

Choose a suitable MPM (--with-mpm=MPM)
Eliminate unused modules (--disable-module)
Disable DSO support, link modules statically

(-DDYNAMIC MODULE LIMIT=0)

— This will save RAM that's allocated only for
supporting dynamically loaded modules
Enable a faster atomic compare-and-swap (CAS)
implementation (--enable-nonportable-
atomics=yes)
— Only useful on SPARC and Linux x86 > 486

Disable mod_status in production (especially
turn off ExtendedStatus)



Multi-processing modules

e An MPM defines how the server will receive and
manage incoming requests:

Different HTTP server process models (e. g.
threaded, process-based or hybrid)

Platform- & OS-specific optimizations (e.g.
Windows, BeOS, NetWare, 0OS/2)

OS-specific features (e.g. AcceptEx,
ExceptionHooks, etc.)

Admin can choose: Reliability vs. Scalability vs.
Performance vs. Features

More efficient ways of controlling the server
(resource limits, thread/process ratio)

Extendable with third-party MPMs



Prefork

e Each child handles one connection at a
time: much traffic, many children :)

High memory requirements

Highly tolerant of faulty modules

Highly tolerant of crashing children

Fast

Well-suited for 1 and 2-CPU systems
Tried-and-tested model from Apache 1.3
"You'll run out of memory before CPU"



Prefork model

e Each child handles one connection at a
time: many children are needed

Child | Child 2 Child 3 Child n



Worker

e Multi-threaded within each child, each
thread handles a single connection:

Low to moderate memory footprint
Moderately tolerant to faulty modules

Faulty threads can affect all threads in a child
Fast and highly scalable

Well-suited for multiple processors

Requires a mature threading library (Solaris,
AIX, Linux 2.6 and others work well)

Memory is no longer the bottleneck



Worker model

e Multi-threaded within each child: only a
few children are needed

"..-
_.-'_. __I'
= =
s S
-.~._-”- .-_,.-"‘- > ’,l' 4
g v
— /
et - P
T > /
- -~
- !
il S /
i_ i i

Child | Child 2 Child 3 Child n



Other MPMs

OS-specific MPMs:
— WIinNT

- 0S/2

- BeOS

— NetWare

Perchild (experimental)
Leader-Follower (experimental)
Threadpool (experimental)
Third-party MPMs: Metux-MPM



Choosing an MPM

e Multi-process, multi-threaded, or both?
e Compile-time decision
e Depends on a variety of factors:

— Does the OS support threads?

— Scalability vs. Stability?

— Are third-party modules with unknown, and
possibly thread-unsafe extensions (e.g. PHP,
mod_perl) used?

— How much memory is available?



Run-time configuration

e Controlling MPM parameters

MaxClients: big enough to handle the excpected number
of requests and small enough to assure that there is
enough physical RAM for all processes/threads

ServerLimit, ThreadLimit and ThreadsPerChild
limit/influence the MaxClients setting

ListenBackLog (increase when under a TCP SYN flood
attack)

MaxRequestsPerChild (decrease when dealing with
memory leaks)

ScoreBoardFile (use anonymous shared memory when
possibile or at least a RAM disk)

SendBuffersSize (increase when using high speed pipes)
Prefork: MinSpareServers / MaxSpareServers
Worker: MinSpareThreads / MaxSpareThreads



Run-time configuration

Avoid DNS lookups (HostnameLookups Off)
— Use logresolve to post-process logfiles

— Use IP addresses instead of domain names in
Allow from / Deny from directives

Disable .htaccess files (AllowOverride None)

Avoid Options SymLinksIfOwnerMatch without
Options FollowSymLinks

— Apache will have to issue extra system calls to
check up on symlinks: 1stat(2) on every path
component

Avoid content-negotiation
— Apache has to scan for suitable files
— use typemaps instead of Options MultiViews



Extreme example

e To temporarily defend against DoS attacks or to
rescue a server from being slashdotted, the
following snippet may be of help:

<LocationMatch ""/action.php">
Order Allow,Deny
Deny from all
ErrorDocument 403 "Sorry
SetEnv nokeepalive
SetEnv downgrade-1.0
SetEnv force-response-1.0
</LocationMatch>



KnNow your server

Keep an eye on the logfiles

If something goes wrong, the first place
to look is always the error_log

Temporarily increase the LoglLevel if
needed (debug)

mod_status shows what Apache is doing
http://httpd.apache.org/docs-2.0/




Keeping up to date

Apache website and Announcement list
— http://httpd.apache.org/
— announce-subscribe@httpd.apache.org

ApacheWeek

- http://www.apacheweek.com/
Vendor package updates
CERT CC, BugTraq, Full Disclosure List




That's it!
Thanks for listening!

More info and the slides are available at
http://www.apache.org/~erikabele/

You can reach me at
erikabele@apache.org

The Apache Software Foundation
<= http://www.apache.org/



