
SQL Server 2000 High Availability

Volume 1
Planning

ISBN: 0-7356-1835-6

Information in this document, including URL and other Internet Web site
references, is subject to change without notice. Unless otherwise noted, the
example companies, organizations, products, domain names, e-mail addresses,
logos, people, places and events depicted herein are fictitious, and no association
with any real company, organization, product, domain name, e-mail address, logo,
person, place or event is intended or should be inferred. Complying with all
applicable copyright laws is the responsibility of the user. Without limiting the
rights under copyright, no part of this document may be reproduced, stored in or
introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Microsoft Corporation.

Microsoft, MS-DOS, Active Directory, Outlook, Visual SourceSafe, and Windows are
either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

© 2002 Microsoft Corporation. All rights reserved.

Version 1.0

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

Contents

Preface vii
System Requirements . viii
Document Conventions . ix
Acknowledgments . x

Chapter 1
Introduction to High Availability 1

Microsoft SQL Server 2000 High Availability Series . 1
Planning Guide . 3
Solution Guide . 4

Understanding High Availability . 4
Designing a High-Availability Data Center . 5

Setting High-Availability Goals . 5
Identifying and Analyzing Barriers to High Availability . 7
Determining and Evaluating High-Availability Solutions . 9

Chapter 2
Overcoming Barriers to High Availability 11

Overcoming Environmental Barriers . 12
Overcoming Hardware Barriers . 14
Overcoming Communication and Connectivity Barriers . 15
Overcoming Software Barriers . 15
Overcoming Service Barriers . 17
Overcoming Process Barriers . 18

Process Management . 18
Incident Management . 19
Change Management . 22
Maintenance Management . 23
Configuration Management . 24

Overcoming Application Design Barriers . 25
Overcoming Staffing Barriers . 26

Contentsiv

Chapter 3
Recovering a Data Center by Using Database Backups 27

Solving High-Availability Barriers Using Backups . 28
Storage Subsystem Failure . 28
Application or User Errors . 29

Developing a Backup-and-Recovery Solution . 30
Measuring Total Recovery Time . 31
Improving Total Recovery Time . 31

Using a Third-Party Backup-and-Recovery Solution . 34
Using Snapshots to Improve the Recovery Time . 34
Using Third-Party Solutions to Increase Functionality . 39

Chapter 4
Preventing Downtime by Using Redundant Components 41

Using Server-Class Hardware . 41
Using a Redundant Storage Subsystem . 42

RAID . 43
Controller Cards . 45
Data and Log File Placement . 46

Using Redundant Network Cards . 46

Chapter 5
Minimizing Downtime by Using Redundant Servers 47

Using Failover Clustering to Maintain a Redundant Server . 48
Failover Clustering Architecture . 48
Failover Clustering Advantages . 51
Failover Clustering Limitations and Disadvantages . 52

Using Log Shipping to Maintain a Redundant Server . 52
Log Shipping Architecture . 53
Firewall Considerations . 57
Log Shipping Role Change . 57
Log Shipping Advantages . 59
Log Shipping Limitations and Disadvantages . 59

Using Transactional Replication to Maintain a Redundant Server 60
Transactional Replication Architecture . 60
Firewall Considerations . 63
Transactional Replication Role Change . 63
Transactional Replication Advantages . 64
Transactional Replication Limitations and Disadvantages . 65

Redirecting Client Network Traffic to a Promoted Secondary Server 65
Choosing Among the Technology Solutions . 68
Summary . 69

Contents v

Appendix
Contents of a Run Book 71

Resource Information . 71
Contact Information . 72
Hardware Components . 72
Software Components . 73

Procedural Information . 75
Operational Tasks . 75
Emergency Tasks . 77

Index 79

Preface

The Microsoft® SQL Server 2000 High Availability Series helps you plan and
deploy a highly available data center that uses Microsoft SQL Server 2000. If you
are a consultant, designer, or systems engineer involved in designing and deploying
a SQL Server 2000 data center, this series is for you. The series is presented in two
pieces that correspond to the design and roll-out process: a Planning Guide, which
helps you design a data center to achieve the level of availability necessary for the
business environment, and a Solution Guide that helps you implement targeted
server redundancy solutions to limit unavailability caused by server failure or
planned downtime.

Specifically, the Planning Guide covers the following topics:
� Best Practices to Prevent Downtime
� Using Backups to Recover from Disaster
� Using Hardware Redundancy to Prevent Downtime
� Using Redundancy to Minimize Downtime

The Solution Guide provides information on the following topics:
� Clustering
� Log Shipping
� Replication
� Using Network Load Balancing (NLB) to Switch SQL Servers
� Stretch Clustering

Note that availability of third-party applications and scaling up are beyond the scope
of this guidance.

The SQL Server 2000 High Availability Series provides information that is both
practical and prescriptive. If you need more in-depth discussions of the concepts
behind this 2material, you should refer to resources such as the Microsoft SQL Server
2000 documentation, the Windows 2000 Resource Kit, and additional documentation
and clustering documents available from the Microsoft TechNet Web site.

The guides include information from consultants working in the field and from
organizations that have already confronted and solved issues that affect the avail-
ability of SQL Server 2000 in enterprise data centers. This series provides guidance
that is currently defined as best practice. We hope you enjoy reading this series
and that you find the material helpful, informative, and interesting.

Prefaceviii

System Requirements
Microsoft SQL Server 2000 requires the minimum system configuration shown
in Table 0.1. (For more detailed requirements, see your Microsoft SQL Server
documentation.)

Table 0.1 Microsoft SQL Server 2000 System Requirements

Component Requirement

Processor Intel Pentium or compatible 166-megahertz (MHz)

Operating System SQL Server 2000 Enterprise Edition and Standard Edition run on Microsoft
Windows® 2000 Server, Windows 2000 Advanced Server, Windows 2000
Datacenter Server operating systems, Microsoft Windows NT® Server
version 4.0 Service Pack 5 (SP5) or later, and Windows NT Server 4.0
Enterprise Edition with SP5 or later.

Memory Enterprise Edition: 64 megabytes (MB) RAM; 128 MB recommended.
Standard Edition: 64 MB.
(Additional memory may be required depending on operating system
requirements.)

Hard Disk 95–270 MB free hard-disk space for the server; 250 MB for a typical
installation.
50 MB free hard-disk space for a minimum installation of Analysis
Services; 130 MB for a typical installation.
80 MB free hard-disk space for English Query (supported on the
Windows 2000 operating system but not logo certified).
Desktop Engine requires 44 MB of available hard-disk space
(Hard disk requirements vary based on your system configuration and the
applications and features you choose to install.)

Drive CD-ROM drive

Display VGA or higher-resolution monitor

Other Devices Microsoft Internet Explorer version 5.0 or later.
Windows 95, Windows 98, Windows Me, Windows NT 4.0, Windows 2000
and Windows XP have built-in network software. Additional network
software is required if you are using Banyan VINES or AppleTalk ADSP.
Novell NetWare IPX/SPX client support is provided by the NWLink protocol
of Windows-based networking.
Client Support:
Windows 95, Windows 98, Windows Me, Windows NT Workstation 4.0,
Windows 2000 Professional, Windows XP Professional and Windows XP
Home Edition are supported.
UNIX, Apple Macintosh, and OS/2 require Open Database Connectivity
(ODBC) client software from a third-party vendor.

Preface ix

Microsoft Windows 2000 Server requires the minimum system configuration shown
in Table 0.2. (For more detailed requirements, see your Windows 2000 Server docu-
mentation.)

Table 0.2 Microsoft Windows 2000 Server Requirements

Component Requirement

Processor 133 MHz or higher Pentium-compatible CPU

Memory 256 MB of RAM recommended (minimum 128 supported; maximum 4 gigabytes
[GB] supported)

Hard Disk 2 GB hard disk with a minimum of 1.0 GB free space. Additional free hard disk
space is required if you are installing over a network.

CPU Support Windows 2000 Server supports up to four CPUs on one computer.

Document Conventions
This guidance uses the style conventions and terminology shown in Table 0.1.

Table 0.1. Document Conventions

Element Meaning

bold font Characters that you type exactly as shown, including commands and
switches. Programming elements, such as methods, functions, data types,
and data structures appear in bold font (except when part of a code
sample, in which case they appear in monospace font). User interface
elements are also bold.

Italic font Variables for which you supply a specific value. For example, Filename.ext
could refer to any valid file name for the case in question. New terminology
also appears in italic on first use.

Monospace font Code samples.

%SystemRoot% The folder in which Windows 2000 is installed.

Tip Alerts you to supplementary information that is not essential to the
completion of the task at hand.

Note Alerts you to supplementary information.

Important Alerts you to supplementary information that is essential to the completion
of a task.

Caution Alerts you to possible data loss, breaches of security, or other more
serious problems.

Warning Alerts you that failure to take or avoid a specific action might result
in physical harm to you or to the hardware.

Prefacex

Acknowledgments
We wish to thank the following people for their valuable contribution to this series:
� Roger Toren
� Carl Rabeler
� Don Vilen
� Manoj Nayar
� Vaqar Pirzada
� Scott Gaskins
� Edward Lafferty
� John Gonzalez (HP)
� Mike Tolliver (HP)
� Kim Vance (SANcastle)

1
Introduction to High Availability

Component failure, power outages, user errors, application memory leaks, and other
circumstances can make a data center unavailable. To increase the availability of a
data center, you must develop and follow procedures to prepare for and minimize
the impact of downtime. You must also perform regular backups to prepare for
catastrophic disasters and database corruption. You can prevent component failures
from causing the unavailability of a data center by deploying redundant components.
You can minimize the time a data center is unavailable due to server failures and
planned maintenance by using redundant servers.

Increasing the availability of a data center saves money by keeping a data center
available to business users and customers, and it may save a business in the event
of a catastrophic disaster. You also need to consider that the availability of a data
center can have an impact far beyond your own company, such as affecting client
accounts and medical records.

The budget for increasing the availability of a data center is dictated by the cost
of the database not being available. The higher the cost of unavailability, the more
sophisticated and expensive the solutions should be to prepare for all types of
disasters and to minimize the resulting downtime.

Microsoft SQL Server 2000 High Availability Series
The Microsoft® SQL Server™ 2000 High Availability Series helps you plan and
deploy a highly available data center that uses Microsoft SQL Server 2000. If you
are a consultant, designer, or systems engineer involved in designing and deploying
a SQL Server 2000 high-availability data center, this series is for you.

The Microsoft SQL Server 2000 High Availability Series is designed for business
decision makers, Microsoft Certified Solution Providers, Microsoft Consulting
Services, IT professionals, and developers responsible for application or infra-
structure development and deployment.

SQL Server 2000 High Availability — Volume 1: Planning2

This series assumes you have a basic understanding of the following areas of SQL
Server 2000 and Microsoft Windows® 2000 operating system:
� Windows 2000 Active Directory® service and DNS
� Microsoft Cluster Service (MSCS)
� Database design for online transaction processing (OLTP) and online analytical

processing (OLAP)
� Application design for databases
� SQL Server operational procedures
� SQL Server backup and restore procedures
� SQL Server security model
� Redundant Array of Independent Drives (RAID)
� Storage Area Networks (SANs)
� Network Load Balancing (NLB)

The series consists of a Planning Guide and a Solution Guide. The Planning Guide
helps you design a data center to achieve the level of availability needed for the
business environment. The Solution Guide helps you implement selected server
redundancy solutions to minimize unavailability caused by server failures and
planned downtime.

The series provides guidance in achieving a highly available data center, including:
� Understanding barriers to high availability
� Developing procedures to minimize the risk and length of downtime
� Using backups to recover from server failure and database corruption
� Using redundant components to prevent downtime
� Evaluating server redundancy solutions
� Implementing server redundancy solutions

Note: This documentation is not intended to replace the product documentation for Windows
2000 or SQL Server 2000.

The Planning Guide provides a solid springboard for making effective decisions
to help you build a highly available data center.

Chapter 1: Introduction to High Availability 3

Planning Guide
The Planning Guide analyzes the barriers to availability and provides solutions
to each of these barriers. It contains the following chapters:
� Chapter 1: “Introduction to High Availability” — This chapter defines high

availability, discusses setting availability goals, and lists the barriers you must
address to successfully deploy a highly available data center. By the end of this
chapter, you will understand high availability and how to set goals for achieving
the level of availability required for the business environment.

� Chapter 2: “Overcoming Barriers to High Availability” — This chapter discusses
each of the barriers to high availability and the solutions to overcome these
barriers. By the end of this chapter, you will understand the procedures that
should be part of every SQL Server 2000 high-availability data center and the
steps that you must take to prepare for, prevent, and minimize disaster.

� Chapter 3: “Recovering a Data Center by Using Database Backups” — This
chapter discusses using database backups to recover from catastrophic disaster
caused by hard-disk failure, by application or user error, or by hardware-induced
database corruption. By the end of this chapter, you will understand how the SQL
Server backups increase availability, and how third-party backup solutions
increase restoration performance and functionality.

� Chapter 4: “Preventing Downtime by Using Redundant Components” — This
chapter discusses using component redundancy to increase the availability of a
single data-center server. This redundancy includes using server-class computers
to provide component redundancy, using RAID arrays to provide storage
redundancy, and using multiple networks to provide network redundancy.
By the end of this chapter, you will understand the steps that you can take to
prevent downtime caused by the failure of a single component.

� Chapter 5: “Minimizing Downtime by Using Redundant Servers” — This
chapter discusses server redundancy solutions that minimize the time required
to recover from a server failure. By the end of this chapter, you will understand
the redundant server solutions that you can deploy to minimize downtime.
You will also be able to decide among these solutions based on the unique
requirements of the business environment.

After you read the Planning Guide, you will understand how proper procedures
increase availability, backups help recover from catastrophic disasters, redundant
components prevent downtime, and redundant servers minimize downtime.

SQL Server 2000 High Availability — Volume 1: Planning4

Solution Guide
The Solution Guide documents the steps required to implement each of the server
redundancy solutions discussed in Planning Guide Chapter 5. The Solution Guide
contains the following chapters:
� Chapter 1: “Implementing Failover Clustering” — This chapter provides the

steps to implement failover clustering, including the steps to fail over to a standby
node and to fail back to the primary node.

� Chapter 2: “Implementing Log Shipping” — This chapter provides the steps to
implement log shipping, including the steps to fail over to a standby server and
to fail back to the primary server.

� Chapter 3: “Implementing Transactional Replication” — This chapter provides
the steps to implement transactional replication for high availability, including
the steps to fail over to a subscriber and fail back to the original server.

� Chapter 4: “Implementing Network Load Balancing” — This chapter provides
the steps to implement network load balancing, including the steps to fail over
to a standby server and to fail back to the primary server.

� Chapter 5: “Implementing Remote Mirroring and Stretch Clustering” — This
chapter provides the steps to implement a stretch cluster, including the steps to
fail over to a remote standby node and to fail back to the primary node.

Understanding High Availability
In the context of this series, high availability means increasing the availability of the
data center itself. You increase the availability of a data center by:
� Developing and following well-documented procedures
� Ensuring the ability to recover from any type of disaster
� Avoiding downtime and the need for restoration by using component and server

redundancy
� Minimizing how long data is unavailable after an accident or emergency
� Providing the ability to sustain operations during a recovery period after an

accident or emergency
� Avoiding system downtime caused by planned maintenance

Even if you ensure the actual availability of the data center, users may perceive the
data center as unavailable when they cannot access it. Some reasons users may not
be able to access the data center are improper application design, inadequate
security, network failures, and DNS problems. Although this series identifies these
issues as barriers to high availability, resolving these issues is beyond the scope of
this series.

Chapter 1: Introduction to High Availability 5

Designing a High-Availability Data Center
To design a high-availability data center, start by doing the following:
� Set high-availability goals for scheduled and unscheduled downtime.
� Identify and analyze the actual and perceived barriers to high availability.
� Determine and evaluate the solutions that overcome each barrier to high

availability.

After completing these tasks, you are ready to implement the appropriate processes
and solutions to increase the availability of the data center.

Setting High-Availability Goals
The first step in increasing the availability of a data center is to set high-availability
goals. To do this, the decision-making group must thoroughly understand how the
end-user community uses the data center and the importance of the data center to
the profitability of the company.

Do the following when setting high-availability goals:
� Identify stakeholders — Setting high-availability goals is the responsibility of

many parties, and these goals must be appropriate to all stakeholders. The impact
of high-availability goals on database administrators as well on business users
and customers must be evaluated. For example, although business users and
customers might want 99.999-percent availability, database administrators must
make clear the cost of achieving this high-availability goal.

� Establish the value of availability — The value of availability determines the
budget for achieving that availability. To decide how much money to invest in
a high-availability data center, you must understand the value of the data center
to the business. For example, each unavailable hour might cost a heavily used
commerce Web site $100,000 in sales. This business impact can justify a major
investment to prevent and minimize downtime and to ensure continuing customer
goodwill. You must also understand that the costs of availability are nonlinear.
For example, a five-minute outage may have far wider consequences and costs
than five separate one-minute breaks in service.

� Evaluate recovery point versus recovery time — When setting high-availability
goals, you must determine if it’s more important to restore the data center to its
exact state before failure, or to recover quickly, or both. The answer to this question
is a critical factor in determining the server redundancy solution. You must
determine if a solution that results in lost transactions is inconvenient, damaging,
or catastrophic.

SQL Server 2000 High Availability — Volume 1: Planning6

� Plan when to maintain the data center — To determine the best high-availability
solution, you must understand when users need the data center. For example, if
the data center is not heavily used or is not used at all at certain times, you can
perform maintenance operations during these low-use times at reduced cost.
You must, however, pay attention to whether people in different time zones use
the data center in different time windows. If use in different time zones eliminates
a time window, you must find an alternative approach for maintenance.

The ideal data center availability is 24 x 7 x 365 availability, or 100-percent availabil-
ity. The percentage of uptime you should strive for is some variation of 99.x percent
— with an ultimate goal of five nines, or 99.999 percent. Three nines (99.9 percent)
is an achievable level of availability using a single data-center server. Achieving five
nines (99.999 percent) is unrealistic for a single data-center server because this level
of availability permits only about five total minutes of downtime in a calendar year.
Four nines (99.99 percent) is achievable, however, by using fault resilient clusters
with automatic failover. Five nines is achievable using advanced fault tolerant
computers. This guide addresses the steps required to achieve these levels of avail-
ability, including the prerequisites to these technology solutions.

Even minimal scheduled downtime — such as 2 hours a month, or 24 hours a year —
reduces availability to 99.73 percent. You can increase availability to 99.93 percent
by reducing scheduled downtime to 30 minutes a month, or 6 hours a year. If you
use the primary data center-server only for production purposes and perform
database backups, health checks, and other tasks on secondary servers that have
copies of the same data, the chances of achieving 99.999-percent availability in-
crease.

So how many nines should you realistically pursue for a data center? Table 1.1
shows the levels of availability that have been achieved by some leading companies
whose businesses depend upon high availability.

Table 1.1: Achievable levels of availability

Company Level of Description
availability

NASDAQ 99.97% Technology stock exchange with 2 million transactions a day
(200 a second)

Barnes & Noble 99.98% Electronic retailer with 5.6 million visitors a month

Quote.com 99.99% Online financial site delivers 8.6 million page views a day

Buy.com 99.99% Internet superstore with more than 2,000 concurrent visitors
per minute

Chapter 1: Introduction to High Availability 7

Because you can schedule planned system outages to have the least possible impact
on a business, planned downtime is frequently treated differently than unplanned
downtime. Whether planned downtime must be factored into the availability
equation depends on business needs. A goal of four or five nines of availability for
unplanned outages during scheduled business hours requires less of an investment
than 24 x 7 availability, which must include both planned and unplanned system
outages.

Identifying and Analyzing Barriers to High Availability
A high-availability barrier is anything that limits a data center’s availability. Be-
cause it is impossible to protect a business from every barrier that might arise, you
must estimate the effect of each barrier in advance and determine the barriers that
are cost effective to overcome. To determine an appropriate high-availability solu-
tion, you must first identify and analyze each barrier for the following:
� The probable time the system will be down or that the barrier will cause the

problem
� The probability that the barrier will occur and cause unavailability
� The estimated cost to overcome the barrier compared to the estimated cost

of the unavailability

For example, to analyze the high-availability risk that a user will accidentally delete
a portion of their data, you might do the following:
1. Estimate the time the data center will be unavailable because of this barrier

to high availability.
a. If a copy of the data exists on a redundant server (and the error is discovered

before it is duplicated to the redundant server), the deleted data can simply
be copied back to the production server.

b. If a copy of the data does not exist on a redundant server or the data deletion
has already occurred on the redundant server, you can restore the deleted
data to an alternative server. After the accidentally deleted data is restored
to the alternative server, it can be copied from that server to the production
server by using Transact-SQL.

c. If recovering from this user error requires a restoration from backup on the
primary server, the time the data center is unavailable includes the time to
restore from backup plus the time needed to resubmit the transactions that
occurred after the deletion (if these transactions are available).

2. Estimate the probability that this barrier will occur. The probability is affected
by the application design and the training provided to the data center users.

SQL Server 2000 High Availability — Volume 1: Planning8

3. Estimate the cost to overcome this barrier. The cost to prevent unavailability
resulting from this barrier depends on the solution you choose. In addition,
the cost to overcome this barrier may include additional user training and
perhaps a redesign of the application.
a. If you maintain a redundant copy of the production database on a secondary

server, the cost to overcome the barrier is measured by the cost of keeping
a redundant copy of the data plus the time it takes to restore that data to the
production server. This solution minimizes downtime, but it costs more to
implement.

b. If you rely on database backups, the cost to overcome the barrier is measured
by the time it takes to restore the data from backup plus the time it takes to
resubmit the transactions that occurred after the deletion. This solution results
in more downtime, but it costs less to implement.

Note: When you evaluate the cost to overcome a barrier, remember that a solution that
overcomes one barrier may also overcome numerous additional barriers. The cost of all of the
barriers resolved by a solution must therefore be weighed against the cost of the solution. For
example, keeping a redundant copy of the production database on a secondary server can
overcome many barriers.

Barriers to high availability can be actual barriers or perceived barriers. Actual
unavailability means that the data center is actually down. Perceived unavailability
means that the data center is functioning, but is not available to the business
user or customer because of intervening problems, such as a network, Web site,
or DNS failure.

You must carefully evaluate each process and system element to identify and
analyze actual and perceived barriers to availability. These barriers include the
following:
� Environmental issues — Problems with the data-center environment itself

can reduce availability. Environmental issues include inadequate cabling,
power outages, communication line failures, fires, and other disasters.

� Hardware issues — Problems with any piece of hardware used by the data
center can reduce availability. Hardware issues include power supply failures,
inadequate processors, memory failures, inadequate disk space, disk failures,
network card failures, and incompatible hardware.

� Communication and connectivity issues — Problems with the network can
prevent users from connecting to the data center. Communication and connec-
tivity issues include network cable failures, inadequate bandwidth, router or
switch failure, DNS configuration errors, and authentication issues.

Chapter 1: Introduction to High Availability 9

� Software issues — Software failures and upgrades can reduce the availability
of a data center. Software failure issues include downtime caused by memory
leaks, database corruption, viruses, and denial of service attacks. Software
upgrade issues include downtime caused by application software upgrades
and service pack installations.

� Service issues — Services that you obtain from outside a business can exacerbate
a failure and increase unavailability. Service issues include poorly trained staff,
slow response time, and out-of-date contact information.

� Process issues — The lack of proper processes can cause unnecessary downtime
and increase the length of downtime caused by a hardware or software failure.
Process issues include inadequate or nonexistent operational processes, inadequate
or nonexistent recovery plans, inadequate or nonexistent recovery drills, and
deploying changes without testing.

� Application design issues — Poor application design can reduce the perceived
availability of a data center. Application issues include excessive blocking and
locking, hard-coding of server names and IP addresses, and use of duplicate SQL
Server logins.

� Staffing issues — Insufficient, untrained, or unqualified staff can cause unneces-
sary downtime and lengthen the time to restore availability. Staffing issues include
insufficient training materials, inadequate training budget, insufficient time for
training, and inadequate communication skills.

This series addresses the identification and analysis of each of these barriers to high
availability.

Determining and Evaluating High-Availability Solutions
The high-availability solutions discussed in this series include procedural processes,
database backups, redundant components, and redundant servers. All these solu-
tions are required to achieve a highly available data center. The remaining chapters
in the Planning Guide discuss issues related to these solutions.

After reading the Planning Guide, see the Solution Guide to learn how to imple-
ment the server redundancy solutions presented in Planning Guide Chapter 5.

2
Overcoming Barriers
to High Availability

To achieve high availability, you must develop solutions to each barrier listed in
Chapter 1. Overcoming these barriers requires following well-established best
practices for high availability. To minimize and eliminate downtime, you must
develop processes for carrying out operational and emergency tasks and escalating
issues within your organization. You must also anticipate and plan for all types of
failures, using redundant components to prevent failure and redundant servers to
minimize downtime caused by unplanned failures.

To help organizations implement the required processes, Microsoft has developed
Microsoft Operations Framework (MOF). MOF is a collection of best practices,
principles, and models designed to help businesses achieve reliability, availability,
supportability, and manageability for mission-critical applications built using
Microsoft products and technologies. MOF divides the IT life cycle into identifiable
tasks and functions, such as change management, system administration, security
administration, and problem management. The best practices and policies discussed
in this chapter are based on the recommendations contained in MOF. For more
information, see “Better Manage Your IT Systems with the Microsoft Operations
Framework” on the Microsoft Web site at http://www.microsoft.com/MOF.

SQL Server 2000 High Availability — Volume 1: Planning12

Overcoming Environmental Barriers
You must design the data center to ensure high availability. The term data center
refers to medium and large facilities. You can increase the availability of your data
center by including the following:
� Raised floors — Raised floors provide space for the massive amounts of cable

required for a data center, simplify the process of adding and moving equipment,
and allow cool air to be pushed under raised floors and directed at servers and
other heat-sensitive equipment. Without a raised floor, staff members can more
easily trip over a cable and cause a server to fail. Also, if it is difficult for your
staff to add or move equipment, these tasks can lengthen unavailability when
equipment must be added or moved.

� Fire suppression systems — Good smoke detectors and fire extinguishers are
crucial. Use a gas-and-water system to suppress fires. Install smoke detectors
and temperature sensors throughout the data center so that you can monitor
conditions and control them in zones. Also be sure that your staff can manually
start and stop the fire suppression system.

� Temperature controls — Computer equipment reliability is better in cool
conditions. Try to keep the data center at 68 degrees Fahrenheit (20 degrees
Celsius). Although desktop computers and individual servers have fans to cool
the CPU, fans do not cool the air enough for data-center servers and other heat-
sensitive equipment. Do not rely on the centralized air conditioning in the
building. Generally it is turned off in the evenings and on weekends. Use a
dedicated, redundant cooling system to provide continuous cooling for the
data center equipment.

� Humidity controls — High humidity can cause condensation on equipment.
Very low humidity can lead to excess static electricity. Large fluctuations in
humidity can cause circuit boards to expand and contract, damaging circuitry.
Try to keep the data center between 40 to 45 percent relative humidity.

� A redundant power system — Prepare for both widespread and local power
outages to avoid a lengthy service interruption. When a power outage occurs,
a battery backup system can supply enough power for an orderly shutdown.
If systems must continue to operate, install redundant backup generators to
power-critical equipment, including the cooling system.

� Redundant power supplies — Within the data center, blown circuits or damaged
wiring can cause a power outage to a rack of equipment or to individual
components. Redundant power supplies to each rack of equipment can prevent
a blown circuit from causing downtime. If a main circuit loses power, a redun-
dant power supply automatically switches the rack to a second power supply.

Chapter 2: Overcoming Barriers to High Availability 13

� Redundant data connections — If voice and high-speed data connections to the
data center fail, users cannot access the data-center servers and the data center
staff will have difficulty communicating with standby sites. Ensure that voice and
high-speed data connections are redundant. If one communications carrier loses
service or must take its system down for maintenance, a second carrier lets users
continue accessing the information they need and allows staff to communicate
with standby sites if needed.
To prevent damage to multiple lines during construction or maintenance, the
redundant lines should enter the data center at different locations. For optimal
service and cost-effectiveness, locate the data center facility near an Internet hub.

� Backup systems — Automated backup devices that mechanically insert and
remove tapes are essential for large data centers. Ensure that your backup system
can automatically perform all backups required by your disaster recovery plan
without intervention by your staff.

� Off-site storage — If database backups are stored on site, a disaster at the data
center might destroy both the production system and all backups of the produc-
tion system. Storing backups off-site protects against this barrier. Consider storing
backups at a secondary site as well as at an off-site location near the primary site.

� Security precautions — Intruders can access data by physically entering the data
center, or they can obtain virtual access through a network connection. To stop
intruders from physically entering the data center facility, require staff and visitors
to provide credentials upon entry, and log all entries. Security cameras can also
help. To stop virtual intruders, enforce security on each server, secure the network
using a firewall, and require employees to use strong passwords that change
frequently. Ensure that your staff stays current with hacking trends.

� Space — The data center facility should provide enough room for equipment
to be organized, for growth, and for staff. Relocating equipment often causes
downtime. In addition, adequate room for employees is important for employee
productivity, which can increase availability.

� Redundant data center facilities — To provide protection against site-level
disasters, deploy redundant servers in a secondary data center facility as well
as in the primary data center. This arrangement ensures that you don’t lose the
secondary server during a catastrophe at the primary site. If all servers must
be in the same facility, place them on separate power grids to provide some
protection against localized disasters.

Ensuring that the data center itself is properly designed is a key component
to increasing the availability of the data center.

SQL Server 2000 High Availability — Volume 1: Planning14

Overcoming Hardware Barriers
A high-availability data center requires server-class hardware. Invest in high-quality
components, redundant components at every point, and hot-swappable components
whenever possible. You can overcome hardware barriers by using the following in
the data center:
� Up-to-date hardware — Out-of-date components, firmware, or software drivers

can cause software incompatibilities and result in availability problems. Installing
up-to-date components with correct firmware and software driver revisions
minimizes the risk that this barrier will reduce availability.

� Certified computers, components, and configurations — Using uncertified
computers, components, and configurations for the data center is not supported
by Microsoft Product Support Services (PSS). Use only computers, components,
and configurations that are listed on the Microsoft Hardware Compatibility
List (HCL). To search the HCL for certified computers, components, and
configurations, see the “Hardware Compatibility List” on the Microsoft Web
site at http://www.microsoft.com/hcl/default.asp.

� Sufficient capacity — Insufficient storage system, memory, or processor resources
can cause the perception of unavailability by causing the data center to respond
sluggishly to client requests, resulting in time-out errors. You resolve insufficient
memory resources by adding more memory. You resolve insufficient processor
resources by adding more or faster processors. You resolve insufficient storage
resources by adding more disks, more controllers, and controllers that support
multiple channels. More disks are faster than larger disks; more controllers split
the I/O to the disks; and multiple channels support multiple pipes. To further
increase the performance of the storage subsystem, use a storage area network
(SAN). A SAN consists of multiple disks connected to one or more servers using
Fibre Channel for high speed connectivity.

� Redundancy solutions — Use Microsoft® SQL Server™ database, file, and
transaction log backups to protect data against hardware failures. Use redundant
components and redundant servers to eliminate or limit downtime caused by
hardware failures.

Ensuring that only top quality hardware is used will increase the availability of the
data center. Because hardware failures do occur, however, you must also employ
redundancy solutions to limit or eliminate downtime caused by hardware failures.
For more information on redundancy solutions, see Chapter 4, “Preventing Down-
time by Using Redundant Components,” and Chapter 5, “Minimizing Downtime
by Using Redundant Servers.”

Chapter 2: Overcoming Barriers to High Availability 15

Overcoming Communication and Connectivity Barriers
The inability of clients to connect to and communicate with the data center causes
a perceived lack of availability. To avoid this problem, ensure that your network is
designed for high availability. Overcome communication and connectivity barriers
by implementing the following:
� Redundant networks and network cards — Network cards and network paths

can fail and prevent users from accessing the data center. Ensuring that the data
center is accessible over multiple network paths using multiple network cards
increases data center availability.

� Multiple data center access paths — The failure of a router or switch can prevent
users from accessing the data center and can prevent your staff from reaching
the Internet when troubleshooting a hardware or software problem. Use multiple
switches and routers to ensure that users have a redundant path to the data
center and that your staff can access the Internet.

� Multiple domain controllers — Users must be able to be authenticated by either
SQL Server or the Microsoft Windows® operating system. To ensure that Windows
users can be authenticated by the Windows operating system, use multiple
domain controllers in the Windows domain to provide redundancy.

� Multiple DNS servers — Users must be able to locate the data center to establish
a connection to the data center. On a Windows 2000 network, users find resources
by using DNS. The failure of a DNS server can prevent users from locating the
data center. Ensure that a secondary DNS server exists on the network that can
direct users to the data center if the primary DNS server fails.

Ensuring that redundant network paths and components exist ensures that network
infrastructure problems do not prevent users from communicating with the data
center. Ensuring that multiple domain controllers exists guarantees that Windows
users can establish a trusted connection to the data center.

Overcoming Software Barriers
You must ensure that the Windows operating system and the SQL Server service
remain available to users. If either becomes unavailable, users cannot access the
data center. Software barriers occur due to a variety of causes, including software
failures, upgrades and maintenance, database corruption, user or application errors,
viruses, and denial of service attacks. Use the following guidance to overcome each
of these barriers.
� Software failures — The failure of the SQL Server service because of application

errors, memory leaks, and excessive locking can cause data center unavailability.
You must ensure that the applications deployed are well-designed and tested,
that custom extended stored procedures do not cause memory leaks, and that
the application design does not generate excessive locking.

SQL Server 2000 High Availability — Volume 1: Planning16

� Upgrades and planned maintenance — SQL Server service pack installations
and planned maintenance can require that the Windows 2000 operating system
or the SQL Server service be restarted. A Windows service pack installation
requires restarting the Windows operating system. The installation of a SQL
Server service pack requires placing SQL Server into single user mode and then
restarting SQL Server. In addition, other types of planned maintenance — such
as adding additional memory, adding a hard drive, or upgrading a server
application — may require a server to be taken offline. To avoid downtime caused
by these software barriers, consider implementing either automatic failover
clustering or automatic log shipping. For more information about failover
clustering and log shipping, see Chapter 5, “Minimizing Downtime by Using
Redundant Servers.”

� Database corruption — Hardware failure can cause database corruption. To
limit the downtime caused by database corruption, ensure that you back up all
databases regularly and ensure the security of those backups. The only way to
recover from database corruption is to recover from backup.

� User error — Accidental or malicious deletion or alteration of data can jeopardize
the availability of the data center. To limit or eliminate downtime caused by user
error, ensure that the database is backed up regularly. Depending on the extent
of the error, you may be able to recover from it by using an alternative server to
recover the data and applying it to the primary server. In a severe case, you may
have to recover the primary server from backup. Without adequate backups,
you must reconstruct the data, which will severely affect the availability of the
data center.

� Viruses — Viruses can cause a data-center server to cease functioning. To reduce
the threats caused by viruses, install the latest security patches and deploy virus
protection software on all networked computers. Ensure that the virus protection
software monitors all incoming and outgoing files and data for viruses.

� Denial of service attacks — Malicious users can attack Windows 2000 services
and limit the availability of the SQL Server service by sending an overwhelming
number of requests for access. To reduce the risk of denial of service attacks,
restrict access to legitimate users only. You can use Windows authentication in
SQL Server to restrict access to authenticated Windows users only. You can
use Internet Information Services (IIS) to authenticate Internet users before
they attempt to connect to SQL Server. You can also use IIS to restrict the IP
addresses that can access SQL Server through the IIS server.

Eliminating software barriers before they cause a lack of availability is the best way
to achieve high availability for a data center. However, software barriers are not
always preventable. Application errors, user errors, and hardware subsystem failures
can cause database corruption. Because these barriers cannot always be prevented,

Chapter 2: Overcoming Barriers to High Availability 17

you must consider mitigation solutions. For more information on these solutions,
see Chapter 3, “Recovering a Data Center by Using Database Backups”; Chapter 4,
“Preventing Downtime by Using Redundant Components”; and Chapter 5
“Minimizing Downtime by Using Redundant Servers.”

Overcoming Service Barriers
Achieving a highly available data center requires services from outside hardware
and software vendors. Unresponsive vendors and poorly trained vendor staff can
reduce the availability of the data center. Your relationships with external vendors
should include the following:
� Service Level Agreements — Negotiate a Service Level Agreement (SLA) with

each of your major vendors to ensure a specific level of availability for the portion
of the data center affected by their hardware or software. An SLA guarantees
that a system will perform to specifications, support required growth, and be
available to a given standard. Be sure that you are working with responsive
vendors with well-trained staff members. Be sure that your staff is aware of
the terms of each SLA. For example, many hardware vendor SLAs have clauses
that require support personnel from the vendor or only specific, certified persons
from your staff to open the server casing to replace defective components. Failure
to comply can result in a violation of the SLA and potential nullification of
any vendor warranties or liabilities. SLAs for data centers usually include
(at minimum):
� Percentage of availability (such as 99.99 percent)
� Maximum number of concurrent users
� Number of transactions to be supported per unit of time (such as 5,000 per

second)
� Method of contacting support personnel
� Number of support calls allowable within a given period
� Response time expected on support issues

Note: Microsoft requires that an SLA be part of each Windows 2000 Datacenter Server
solution.

� Microsoft support contract — In addition to an SLA, you should also negotiate
a support contract for your Microsoft software.

� Testing vendor support — Make arrangements to periodically test escalation
procedures by conducting support-request drills. Be sure you also test pagers
and phone trees to ensure you have the most recent contact information.

SQL Server 2000 High Availability — Volume 1: Planning18

If you are unable to solve a system issue quickly on your own, the absence of an SLA
or support contract can increase the length of time the data center is unavailable.
If you cannot access the vendor’s support center or do not have necessary service
account codes, the length of your service outage can increase.

Overcoming Process Barriers
Proper processes eliminate unnecessary downtime and ensure the most rapid
recovery possible from service outages. Proper processes also ensure respect for
your staff and ensure that you have the clout necessary to make the decisions
required to protect the data center.

To overcome process barriers, you must incorporate the following:
� Process management — Develop and follow operational processes for performing

routine tasks and emergency processes for responding to each type of disaster.
Document the steps to follow for each task and disaster, and keep this document
current. This document is called a run book. For information that the run book
should contain, see Appendix A, “Contents of a Run Book.”

� Incident management — Diagnosing that a failure has occurred and responding
to the failure in a timely and proper manner is essential to achieving high
availability. Incident management also encompasses monitoring to anticipate
disaster before it occurs and to assist in diagnosing failures when they do occur.

� Change management — Establish a quality assurance (QA) environment to
test all changes before they go into production. Maintaining a duplicate environ-
ment enables you to ensure that each alteration you make to the production
environment succeeds and does not cause unnecessary downtime.

� Maintenance management — Perform periodic maintenance on the data center
to prevent problems from occurring and to detect problems before they affect
the availability of the data center.

� Configuration management — Develop a standard configuration for all data-
center servers, such as standardized drive letters, mapped directories, and share
names.

Process Management
Well-developed operational and emergency processes increase the availability of
the data center by providing your staff with tested steps for resolving issues as they
arise. Develop procedures for routine operational processes. Develop a complete
disaster recovery plan consisting of the emergency procedures to be followed for
each type of emergency. If your staff knows the precise steps that should be followed
to repair a user error or to replace a failed disk, the risk of unnecessary downtime
is diminished and necessary downtime is kept to a minimum.

Chapter 2: Overcoming Barriers to High Availability 19

Create a script library containing Transact-SQL scripts that your staff should use for
routine operations and for recovery from each type of disaster. If your staff always
performs the same procedure the same way, you will avoid problems and increase
availability.

Ensure that the run book is easily accessible to all personnel who need it. For
example, if all the blinking lights on the data-center servers suddenly go dark,
an inexperienced engineer on night watch must be enable to locate and use the run
book to follow the correct procedures. These procedures include the initial steps
that should be followed, emergency phone numbers, and escalation procedures if
service cannot be immediately restored.

As maintenance and emergency procedures change, you must update the proce-
dures in the run book. Similarly, you must update contact information in the run
book. Log all problems and their resolutions, whether trivial or major, as they occur.
The resolution of past problems may help expedite the resolution of a future problem.
If you ever have to use your disaster recovery plan, be sure to document the entire
process. To determine the right level of detail, imagine how you would explain the
sequence of events and your thought process to your peers.

Keep an up-to-date, offsite printed copy or encapsulated copy of your run book.
Avoid maintaining a run book that needs a separately installed graphical user
interface. Use a versioning tool to track changes to the run book.

Periodically test the disaster recovery plan to ensure that it works and is sufficiently
detailed. The consequences of an untested plan can be very costly. Use drills to ensure
that each member of your staff knows what they need to do in an emergency. Use
a test environment to avoid causing downtime to your production system for these
tests. Database backups and log shipping can be used to duplicate the database
environment on a test platform. Log all tests of the disaster recovery plan. Note
the day, start time, end time, whether or not it was a success, and in the event of a
failure, why it happened. Logging this information is crucial for tracking as well as
diagnosing.

Incident Management
Incident management consists of determining the cause of a failure, minimizing
the time required to respond to a failure, and monitoring to anticipate or diagnose
a failure. The availability of the data center is directly affected by how your staff
responds to service incidents.

SQL Server 2000 High Availability — Volume 1: Planning20

Diagnosing a Failure
After you have restored a server, try to determine the cause of a failure. Although
some types of failure are difficult to assess, the following measures can help you in
this effort:
� Document all of the processes that were running on the server when it failed.

This will assist you in determining any dependencies that may have contributed
to the failure.

� Back up the database and the transaction log for later analysis. Restoring the
database on an alternative server and then restoring the transaction logs may
help determine the cause of the failure.

� Document any error message that appears on the server console.
� Back up the operating system logs from the failed server, and compare them

with historical backups of these logs to isolate anomalies.
� Back up and analyze the SQL Server and SQL Server Agent error logs to see

what was going on at the SQL Server level at the time of the failure. Compare
these logs with historical backups of these logs.

� If C2 auditing is enabled in SQL Server, back up and analyze the C2 log to help
determine who or what caused the problem.

Note: The location of all log files should be standardized, well known, and documented in the
run book.

Diagnosing the cause of a failure may help you prevent a similar failure in the
future and correct the failure more quickly.

Response-Time Practices
To minimize the response time of your staff to high-availability issues, configure
each data-center server to send an alert when it detects a condition that might lead
to an error. The following practices assist in reducing response time:
� Send alert messages to a predefined group rather than to an individual. Doing

so helps to ensure that alert messages are received. Be sure to specify a fail-safe
operator in SQL Server to ensure that someone is notified if the designated
individual or group is not on duty when the alert fires.

� Forward alerts and events for each of your data-center servers to a centralized
server so that your staff can view all alerts and events from there.

� Standardize the physical appearance of all alert messages so that the appropriate
response to an alert is easy to determine.

Chapter 2: Overcoming Barriers to High Availability 21

� Clearly document the meaning, priority, and suggested resolutions (or starting
points) for each alert type. Clearly define individuals who must be notified if
your staff cannot resolve the issue without downtime.

� If you are receiving alerts through e-mail, set up server-based rules in Microsoft
Outlook® to prioritize your alerts. Forward high-priority alerts to your cell
phone or pager when you are out of the office.

� Ensure that your staff knows whom to notify to escalate the alert and whom
to contact if the first contact does not respond within a given period.

� Use a team Web site to display quick status information for each data-center
server, alert messages, and broadcasts. Permit each staff member to post alerts,
messages about upcoming projects, and system notes.

Monitoring Practices
To manage incidents, monitor the data center to anticipate disaster and to provide
assistance in diagnosing problems and failures. Monitor the data center using
Windows 2000 Performance Monitor and SQL Server Profiler. Use the following
practices to monitor the data center:
� Establish a performance baseline to determine what is normal for each data-center

server. This performance baseline shows resource usage changes over time and
helps compare when troubleshooting.
� Choose a large sample interval (more often than every 3 minutes) for a short

duration (15 to 30 minutes) to collect information periodically.
� Choose a smaller interval (every 15 seconds) to get a snapshot of how the

system performs normally at different times of the day.
� Save these samples in a drive other than the data or log file drives.
� Synchronize the time on all servers to enable you to match information

between servers when a problem occurs.
� Monitor for specific performance conditions on each data-center server, and

use alerts to warn of impending problems before they affect availability. You
can also configure an alert to initiate a job to perform additional monitoring
when a specified condition is detected.

� Perform security audits for sensitive data access and administrative changes,
and review the audit logs regularly.

� Monitor login failures to detect attacks on SQL Server. Monitor only what will
be meaningful in the long-term; eliminate monitoring that does not return value
proportionate to its cost.

SQL Server 2000 High Availability — Volume 1: Planning22

Change Management
Unmanaged change to the data center is a major cause of data center failures. You
must manage the following types of changes:
� Planned changes — Planned changes, such as hardware upgrades and changes

in software versions, can be managed using a QA environment to test all changes
before they are deployed to the production environment.

� Emergency changes — Emergency changes, which are changes necessary to
avoid or eliminate downtime, cannot be thoroughly tested. These changes should
be fully documented and then duplicated, where appropriate, to the QA envi-
ronment to ensure that the two environments remain synchronized.

Planned Changes
To manage planned changes, establish a QA environment that is an exact copy of
the production environment. For example, if your production environment is using
automatic failover clustering, the QA environment must use automatic failover
clustering. Use database backups or automatic log shipping to duplicate the
production databases to the QA environment.

Use the QA environment to test all changes before they go into production. Create
test scripts to adequately represent your production load during normal use and
to emulate peak usage time. Use the following guidelines when deploying planned
changes:
� Check all code — including schemas, scripts, and stored procedures — into a

source control product such as Microsoft Visual SourceSafe® version control
software. Doing so enables you to clearly identify each version of a script.

� Create a detailed plan for deploying completed code to the production environ-
ment, including time estimates and prerequisites such as service pack levels.
Be sure that your change process is modular. You should be able to stop and
restart (or roll back) the change at any point. Rely on scripts for making changes,
and create a rollback script for every change.

� Schedule the change, and staff accordingly. Before you implement any change
in the production environment, notify all affected parties.

� Back up the entire environment before implementing a change to ensure a rollback
will be smooth if the change must be backed out.

� List every change and all associated information. Save e-mail related to the
project, such as any mail showing discarded design ideas that you can use
if the current design does not work as planned.

� Allow changes to be made only under the auspices of your staff.

Chapter 2: Overcoming Barriers to High Availability 23

Emergency Changes
When an issue is too urgent to undergo strenuous testing, you must forgo complete
testing in the QA environment before implementing the change in the production
environment. If time permits, perform at least limited testing in the QA environment.
Never introduce a highly risky change into an unstable environment without
testing carefully. Make only one change at a time, and record your observations
before and after the change. Update the QA environment to ensure it remains in
sync with the production environment.

To avoid the worst-case scenario where change becomes uncontrolled and changes
are not tracked, follow these guidelines:
� Even in a crisis, allow time for the most recent fix to take effect before trying

an additional fix.
� Allow only highly experienced senior staff to be involved in emergency changes.
� In a crisis, require junior staff members to notify a senior staff member that they

need assistance.

Although not all changes can be controlled, they can be managed to eliminate the
risk of unnecessary downtime.

Maintenance Management
Every active database needs occasional maintenance to detect and prevent problems
before they occur. You can run DBCC (CheckDB, CheckAlloc, CheckFilegroup,
and CheckTable) and DBCC IndexDefrag online without blocking updates. The
impact is minimal with the recommended settings. Running tasks, such as DBCC
CheckDB with the physical_only option or DBCC IndexDefrag, do not affect
performance much.

However, running other tasks can affect availability. You must evaluate each task
to determine its affect on availability. For example, dropping and recreating an index
is faster than running DBCC IndexDefrag to perform the same task. If the index is
a vital index, however, dropping and creating an index degrades performance until
the index is rebuilt. This may be perceived as a lack of availability on a busy system.
In the case of a vital index, DBCC IndexDefrag is the better choice for availability.

Evaluate each maintenance task to determine its impact on availability. Perform
those tasks that have the highest impact on availability during off-peak hours or
on a copy of the production database maintained on a secondary server. Performing
maintenance tasks on a secondary server enables you to detect problems without
affecting the availability of the production server.

SQL Server 2000 High Availability — Volume 1: Planning24

In addition to database maintenance tasks, perform regular health checkups on the
data-center environment. Periodically check hard disks to determine whether they
need to be defragmented.

Configuration Management
Develop a standard configuration for all servers. Set guidelines specifying which
drive letters to use for particular components or applications, such as C for operating
system, S for SQL Server binaries, L for transaction logs, and D for data. Standardize
how services, applications, and users access files and directories over your network,
whether through mapped drives or shares. Never allow users to access a drive used
by the SQL Server data and log files because user access can reduce the drive’s
availability by generating competing demands for disk access.

Services
Use a well-documented (or the same) domain user account for the SQL Server and
SQL Server Agent services on all servers. Never use a real user account to run these
services. Create a dummy account, name it clearly, and note in its profile not to
delete or tamper with it.

Ensure that the password for this dummy account does not expire. Changing this
password can require a lot of planning if you employ linked servers, remote
procedure call (RPC), replication, log shipping, or clustering. If you must change
the password, use SQL Server Enterprise Manager.

If SQL Server Agent is not running, the data-center server will be unable to issue
alerts. To overcome this barrier, configure SQL Server Agent service to restart auto-
matically and use a centralized monitoring system, such as Microsoft Operations
Manager 2000 (MOM), that checks the services on each data-center server periodi-
cally. For more information, see “Get in Control of IT Operations — Microsoft Opera-
tions Management” on the Microsoft Web site at http://www.microsoft.com/mom.

Security
Secure each data-center server to ensure that only the people who need access to the
servers can access them. Ensure that all administrator accounts use strong passwords.
Allow access to critical servers only from trusted Internet Protocol (IP) addresses.

Use the same security model on all servers. For enhanced security, use Windows
Authentication mode, rather than Mixed mode. Mixed mode permits users to
connect using SQL Server login accounts, which are inherently less secure. Each
staff member should log in to SQL Server using their Windows user account rather
than the sa account. This enables auditing of all activity on each data-center server.
Never use the sa account in code; you should be able to change the sa account
password frequently, without notifying anyone or revising any code.

Chapter 2: Overcoming Barriers to High Availability 25

For more information, see:
� “SQL Server 2000 Security” on the Microsoft Web site at http://www.microsoft.com

/technet/prodtechnol/sql/maintain/security/sql2ksec.asp.
� “Security Operations Guide for Windows 2000 Server” on the Microsoft Web

site at http://www.microsoft.com/technet/treeview/default.asp?url=/TechNet/security
/prodtech/windows/windows2000/staysecure/DEFAULT.asp.

Overcoming Application Design Barriers
High-availability solutions cannot compensate for bad application design. Poorly
written application queries can cause blocking and excessive locking, which reduces
the perceived availability of the data-center server. At worst, such queries can cause
SQL Server to fail. While these application design issues can affect perceived and
actual availability, they are beyond the scope of this document. There are a number
of specific application design issues, however, that you must overcome to deploy
the redundant server solutions discussed in Chapter 5, “Minimizing Downtime by
Using Redundant Servers.” These application design issues include the following:
� Do not hard-code server names, instance names, and IP addresses into the

application. Creating n-tier applications that connect to the data center using
COM+ objects enables you to create a more flexible disaster recovery plan.

� Use the same collation across all SQL Server instances and databases in the data
center. Using a common collation enables you to easily restore a database to any
server in the data center. If different servers and databases use different collations,
you complicate your failover options because restoring a database with one
collation to a server with a different collation requires precise coding. Your
disaster recovery plan must take this into account.

� If you are using SQL Server logins, you must give application users unique
names across all SQL Server instances in the data center to prevent user name
conflicts when a failover occurs. Conflicts can occur if two applications share
the same user name with different rights and responsibilities. These conflicts
occur only when SQL Server logins are used. The uniqueness of Windows
logins is enforced by the Active Directory® service.

� Do not code an application for a specific service pack level, although you might
want to code for a minimum service pack level. If your disaster recovery plan
requires one server to host more than one application, and if the application is
not compatible with a certain service pack, the application will not be highly
available.

You should ensure that software developers incorporate these best practices in all
future development projects.

SQL Server 2000 High Availability — Volume 1: Planning26

Overcoming Staffing Barriers
Only entrust qualified and trained employees to operate the data center and carry
out the disaster recovery plan during a data center emergency. Unqualified or
untrained employees can magnify a disaster and hamper a recovery.

You can facilitate shared ownership and collective responsibility for the data center
by rotating team roles, using spare time effectively, presenting new information
during meetings and training sessions, and promoting effective communication
within the team.

The best practices for overcoming staffing barriers to high availability include the
following:
� Assigning roles — Assign specific tasks and roles to individuals, and be sure

each staff member knows what is expected to minimize confusion. Assign a
primary and at least one secondary staff member to each server.

� Rotating roles — Rotating staff members among roles allows each staff member
to learn new responsibilities and skills. You should rotate staff among projects,
among classes of servers, and among production and QA environments. As each
staff member becomes familiar with other systems, the number of issues that he
or she can handle increases. As a result, team members do not need to call each
other as frequently for answers, which can save valuable minutes when a server
is unavailable.

� Educating the staff — Use spare time to educate team members about unfamiliar
projects or systems, or about any new techniques. Provide books, journals, Web
sites, and newsgroups for continual learning. Hold short weekly lunchtime
presentations on high-availability issues. Invest in professional training and
internal cross-training for your staff.

� Increasing communication skills — Encourage the development of both
spoken and written communication skills. Increasing communication skills
might involve formal training or courses in presentation skills, technical writing,
and other communication skills. By establishing a high level of communication
among staff members, you improve the staff’s response time. Staff members must
be instantaneously available to each other by cell phone or by e-mail during
working hours — and sometimes during nonworking hours.

If your staff is well integrated, able to perform many roles, highly trained,
and possesses excellent communication skills, the availability of the data center
increases.

3
Recovering a Data Center by Using
Database Backups

Despite the best-laid plans, you cannot prevent every disaster that might befall a
data center. You must therefore ensure that you can recover the data center from
backups after a catastrophic failure, such as a user error or a hardware-induced
database corruption. This chapter discusses using database backups to ensure a
complete recovery of the data center in the event of a disaster. It focuses on tech-
niques to optimize the Microsoft® SQL Server™ 2000 recovery process and reduce
the total recovery time to meet data center availability goals. A basic understanding
of SQL Server backup and recovery procedures is assumed. For more information
about SQL Server backup and recovery procedures, see “Backing Up and Restoring
Databases” on the MSDN Web site at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/adminsql/ad_bkprst_9zcj.asp.

This chapter also discusses third-party solutions that extend the SQL Server backup
and recovery technology to provide additional performance and functionality to meet
the availability requirements of large databases.

Organizations that experience total data loss and do not have an adequate disaster-
recovery strategy experience severe disruption to their business. An organization’s
ability to recover quickly from an outage or a disaster — from a component failure
to the complete destruction of a site — directly contributes to its survival. Although
other strategies should be implemented to minimize the need for recovery from
backup, recovery from backup is the only solution to some types of failures and
errors.

SQL Server 2000 High Availability — Volume 1: Planning28

Solving High-Availability Barriers Using Backups
Recovery from database backups resolves data-center availability problems caused
by storage subsystem failures and application or user errors. Some storage sub-
system failures can also be resolved by using component redundancy, as discussed
in Chapter 4, “Preventing Downtime by Using Redundant Components.” Application
or user errors can frequently be resolved only by using backups. In addition,
catastrophic disasters, such as fires or floods, may require restoring from backup.
Although server redundancy strategies can also be employed to minimize the need
for recovery from backup when these types of disasters occur, do not overlook the
importance of a good backup and recovery plan. When all other mitigation efforts
fail, recovery from backup is the only solution.

Resolving data-center availability barriers caused by storage subsystem failures
and application or user error are discussed later in this chapter.

Storage Subsystem Failure
A storage subsystem failure can result in data being unreadable or damaged.
Using backups is the simplest and least expensive way to recover from unreadable
or damaged data. The most common database problems caused by storage sub-
system failures are inability to access data because of a complete hard-disk failure
and torn pages caused by controller failure or a partial hard-disk failure.
� Hard-disk failure — A hard-disk failure is generally reported to the operating

system as read or write errors. In the absence of redundant drives or servers,
media failure causes the data center to become partially or completely unavail-
able. Recovery from this type of error, in the absence of redundancy, requires
you to replace the failed drive. If the failed drive contains a data file, you must
recover it. If the failed drive contains a transaction log file, you may have lost the
most recent transactions. If these transactions are lost, users have to manually
resubmit them.

� Torn Pages — A torn page is an incomplete write of a page caused by the
operating system’s inability to write to all of the disk sectors comprising a page.
A page with incomplete data is a corrupted page. Torn pages are caused by
disk-drive or disk-controller failures. A page is 8 KB and must always be read
or written as a unit by the operating system on behalf of SQL Server. If an
incomplete write occurs, SQL Server 2000 detects this as a torn page.
If you experience torn pages, you must replace the device causing the error and
repair the damage. You can repair the damage directly, recover data from backup,
or fail over to an alternative server with a copy of the database that does not
have the error. If you choose to repair the damaged data directly, run DBCC
CHECKDB using the physical_only option to determine the extent of the
damage. If the damage is to only one or more indexes, you can rebuild the

Chapter 3: Recovering a Data Center by Using Database Backups 29

indexes rather than restoring them. This reduces the length of the unavailability.
If the damage affects data pages, you need to recover from backup. When
restoring from backup, identify the data files containing errors and recover
only those data files containing errors. It is faster to recover one or more data
files in a database than to recover the entire database.

Note: When recovering from torn pages, back up the tail of the transaction log before you
begin recovery. This ensures that you can recover all committed transactions.

Although you can use redundant components and redundant servers to reduce
or eliminate downtime caused by storage-system failures, sometimes database
backups are the only way to recover from this barrier to availability.

Application or User Errors
Application and user errors can result in dropped tables, deleted rows, and incorrect
updates. The error type, extent of the damage, and amount of work done before the
error was detected determine the difficulty and type of repair. Repairing application
or user errors manually and merging corrected data into the production database is
time consuming and prone to errors.

When serious errors occur or when damage is extensive, restoring the database
to a point in time before the error occurred is frequently the only solution. The SQL
Server 2000 recovery tools perform recovery to any specific point in time if the
database is using the full recovery model. If the database is using the bulk-logged
recovery model, you can recover only to the end of a transaction log backup. If
you are using the bulk-logged recovery model, performing frequent transaction
log backups enables you to recover to a point that is close to the time the error
occurred.

The primary disadvantage of recovering a database to an earlier point in time is
that all work done since the error occurred is overwritten and therefore must be
redone (or accepted as lost). The second big disadvantage is that the database
will be unavailable for the duration of the recovery. When recovering to an earlier
point, you must recover the entire database to that point. With a large database,
recovering the entire database to an earlier point can take a long time unless you
are using one of the third-party backup solutions discussed later in this chapter.

To avoid the problems associated with recovering the entire database to an earlier
point, you can recover the entire database or just the affected data files to an alter-
native server, specifying an earlier point for the recovery. This leaves the production
database available and preserves the work performed since the error occurred.
In addition, restoring just the file or filegroups affected by the error is much faster
than restoring an entire database. On the alternative server, you can then manually
extract the deleted or damaged data or tables from the new database and merge or

SQL Server 2000 High Availability — Volume 1: Planning30

insert it into the production database. Merging and inserting the damaged data into
the production database without causing further damage to the production database
is time consuming and risky. Often this type of repair is undertaken only in cases in
which it is imperative that no committed work be lost or in which the time it takes
to recover to an earlier point is too long.

Performing frequent full and differential database and transaction log backups
helps reduce the time required to recover from application or user error. Redun-
dant components and redundant servers do little to protect against this type of
barrier to high availability. Adequate application testing and user training is the
best defense against application and user errors.

Microsoft works closely with the following vendors, which offer tools that facilitate
recovery from application or user errors:
� BMC Software
� Lumigent

These third-party tools include log analyzers that provide detailed information on
the history of a database. Such tools can be used to locate the problem and identify
a point in time for recovery. In addition, these tools can generate SQL queries that
can undo an error. Other third-party tools can extract information directly from
backups, reducing the amount of data that must be restored and merged with the
current database to repair the problem.

Developing a Backup-and-Recovery Solution
Understanding your availability goals and the types of problems resolved by
database restorations helps you develop a backup-and-recovery solution for your
data center. After you have determined the acceptable length of downtime from
each of the barriers that you intend to resolve by using database backups, use the
following steps to develop a backup-and-recovery solution:
1. Determine whether you can meet these availability requirement by using the

SQL Server backup-and-recovery tools. Measure the time required to recover
from backup by measuring the total time to completely or partially recover a
database from backup. If you cannot reduce the total recovery time to meet the
availability requirement using the SQL Server 2000 recovery tools, you must
either implement one of the third-party solutions discussed later in this chapter
or revise the availability requirement.

2. After you have determined the technology solution, develop a database backup
regimen consisting of full, differential, and transaction log backups that enables
you to recover the database in the allotted recovery time.

Chapter 3: Recovering a Data Center by Using Database Backups 31

3. Develop recovery procedures for each type of barrier. Include these procedures
in the run book and in the associated scripts in your script library.

Your backup-and-recovery solution must be able to recover a damaged database
in the data center in the allotted recovery time. To determine whether the SQL
Server 2000 recovery tools can meet the availability requirement, use an identical
test environment to measure the time required to recover the data center from
database backups. Test combinations of full, differential, and transaction log backups.
The longer the time between each full database backup, the longer the total recovery
time if a database fails just before the next full database backup is scheduled to occur.
Determine the best use of differential database backups between full database
backups to reduce the total recovery time.

Measuring Total Recovery Time
Total recovery time is the time required to completely restore a database from
backup, not just the time required to restore a single backup file. There are three
methods you can use to obtain the total throughput for the recovery process:
� Use the message displayed by the SQL Server recovery process. The recovery

process displays a message indicating the total number of pages transferred
and the time in seconds for the transfer. Knowing that a page is 8 KB, you can
calculate an average data rate. For small databases, the overhead involved in
starting the process can account for a significant amount of the total time. This
overhead can be ignored as insignificant for large databases, however.

� Use the length of the data-transfer phase by using messages recorded in the SQL
Server error log. Using the times reported by these messages and the number of
pages transferred, you can compute the average data rate excluding overhead.

� Use the backup throughput performance counter in System Monitor. This counter
gives the instantaneous throughput while the recovery process is running.

Use this total recovery time calculation to optimize your backup schedules to achieve
the best possible total recovery time. If this is still not sufficient to meet your
availability requirements, use a third-party solution or revise your availability
requirement.

Improving Total Recovery Time
You can take a number of steps to improve the recovery time by using the SQL
Server 2000 recovery tools. These steps include improving the write performance
of the data disk, striping the backup devices, backing up to disk rather than to tape,
and adjusting the frequency and type of database backups.

SQL Server 2000 High Availability — Volume 1: Planning32

Data Disks
During recovery from backup, SQL Server writes data from the backup device to
the disks containing the database data files. To improve the performance of the data
disks, follow these guidelines:
� Use multiple data files — To increase recovery write performance, create multiple

data files for the database and spread these data files evenly across multiple
matched disks. SQL Server automatically writes to multiple data files in parallel
for increased performance. It is approximately three times faster to recover to
three data files spread across three disks than to recovery to a single large data
file on one disk.

� Use a disk array — To improve recovery write performance even further, place
the data files on a disk array configured for either striped mirroring or striping
with parity. Striped mirroring provides the best performance for database
recovery. Striping with parity provides better performance than no array, but it
has significantly slower write performance than striped mirroring. For more
information on disk arrays, see Chapter 4, “Preventing Downtime by Using
Redundant Components.”

Use one of the above methods to increase the performance of the data disks
and to reduce the total recovery time.

Backup Devices
During recovery from backup, SQL Server reads data from the backup device and
streams the data to SQL Server, which then places it on the data disks. To improve
the performance of the backup device, follow these guidelines:
� Use a disk backup device — To increase recovery read performance, recover

from a disk backup device rather than a tape backup device. Recovering from
backup files on a disk array is faster than recovering from a backup file on a
single disk. Keeping the most recent database backups on a disk backup device
can drastically reduce the total recovery time. For fault tolerance, be sure back-
ups to disk are also archived to tape.

� Use multiple backup devices — Another way to improve recovery read perfor-
mance is to stripe the backup file across multiple backup devices. SQL Server
automatically reads from multiple backup devices in parallel for increased
performance.

� Use separate SCSI controllers — To improve read throughput, do not share
SCSI controllers between data disks and backup tape devices. This degrades
recovery performance and can stop the recovery process entirely. To maximize
read throughput, use a dedicated SCSI controller for each tape device.

Chapter 3: Recovering a Data Center by Using Database Backups 33

� Enable hardware compression — To maximize read throughput, enable hardware
compression on tape drives.

Use above methods to increase the performance of the backup device and to reduce
the total recovery time.

Adjusting the Frequency and Type of Database Backup
To recover a database to the time of failure or to a specific point in time, you must
restore the most recent full database backup, restore the most recent differential
database backup, restore all transaction log file backups that are more recent than
the last full or differential database backup, and manually initiate recovery. The
time required to fully recover a database depends on the number and size of these
backup files. To decrease the number and total size of these files and improve the
total recovery time, follow these guidelines:
� Perform more frequent full database backups — Perform a full database backup

as often as is practical to reduce the amount of data that must be recovered in
addition to the most recent full-database backup. The practical frequency of a
full database backup depends on the time required to perform a full backup and
the impact of performing it on the data center. The longer the time between each
full database backup, the more data has to be recovered from differential and
transaction log backup files if the failure occurs just before the next full database
backup. The more data that has to be recovered from differential and transaction
log backup files, the longer the total recovery time.

� Perform differential database backups — Perform one or more differential
database backups between each full database backup to reduce the number of
transaction log backups that must be recovered to restore the database to the
selected point in time. You need to recover only the transaction log backups that
are more recent than the differential backup that is restored. The time required
to perform a differential database backup is proportional to the number of extents
modified since the most recent full database backup rather than the size of the
actual database. As a result, performing a differential database backup on a large
database can be much faster than performing a full database backup. The less
frequently you perform full database backups, the more useful it is to perform
frequent differential database backups.

� Perform frequent transaction log backups — Perform frequent transaction log
backups to make it easier to recover to a specific point in time. If you use the
bulk-logged recovery model for the database, you can recover only to the end
of a transaction log file. More frequent transaction log backups give you more
points in time to choose from. If you use the full recovery model for the data-
base, you can recover to any point in time, but you can recover only to a read-
only mode to the end of a transaction log file. Recovering to a read-only mode
helps you determine when an error occurred.

SQL Server 2000 High Availability — Volume 1: Planning34

� Perform file or filegroup backups — To assist in recovering rapidly to an
alternative server, to resolve an application or a user error, or to recover to the
time of a failure resulting from a disk failure, perform file or filegroup backups
in addition to full database backups. File or filegroup backups enable you to
more quickly recover a single data file or a filegroup to the production system
or to an alternative system. Although you can recover a file or filegroup from
within a full database backup, this takes longer than recovering from a file or
filegroup backup because the recovery process must find the appropriate backup
from within the full backup file. Performing file or filegroup backups provides
the most performance benefit when used with medium and large databases. With
large databases, also use differential file or filegroup backups between each file
or filegroup backup. For more information about the benefits of differential
backups, see “Perform Differential Database Backups” earlier in this chapter.

Use the above methods to decrease the number and total size of the backup files
required to recover a database and reduce the total recovery time.

Using a Third-Party Backup-and-Recovery Solution
If you need additional performance or functionality beyond that provided by SQL
Server 2000, consider implementing a third-party backup-and-recovery solution.
Third-party solutions include support for extremely quick backups (snapshots) and
platform backups, heterogeneous operating system backups, tape silos, tape RAID,
and remote tape backups.

Using Snapshots to Improve the Recovery Time
In addition to the conventional backup technology used by the SQL Server 2000
recovery tools, SQL Server 2000 provides a high-performance backup interface
called the Virtual Device Interface for Backup (VDI), for performing high-speed
backups (snapshots) using third-party hardware and software. VDI is based on a
shared memory design, which allows data to be transferred extremely rapidly with
little overhead between SQL Server and a third-party snapshot solution. Third-party
vendors offer two types of snapshot technologies, split mirror and copy-on-write,
which accept the VDI data stream to back up a database at a very high speed.
During restore, SQL Server receives the VDI stream from the snapshot to recover
the database at a very high speed.

You can combine snapshot backups with differential, file differential, and transaction
log backups to recover a database to the point of failure or to a specific point in
time. Snapshots and conventional backups are recorded in msdb, so you can use
SQL Server Enterprise Manager to identify the backups required for a particular
restore sequence.

Chapter 3: Recovering a Data Center by Using Database Backups 35

There are many technology variations, and the technologies are evolving. Consult
with your storage and backup vendors to determine the exact features and benefits
of their solutions. All vendors offer a variation of either split mirror snapshots or
copy-on-write snapshots. The general features and functionality of these two types
of snapshots are discussed below.

Split-Mirror Snapshots
Split-mirror snapshots are based on a striped-mirror storage solution. A split-mirror
snapshot is an exact copy of a database at the time the mirror is split. This split-mirror
snapshot is referred to differently by different vendors. The most common names
are clone or business continuance volume (BCV). The backup of the database is a
split-mirror snapshot plus a small amount of descriptive data created by SQL Server
describing the snapshot.

You can use split-mirror snapshots to recover from application and user errors. You
can rapidly recover the production database to a specific point in time or recover the
snapshot to an alternative server to resolve application or user errors. You generally
do not use split-mirror snapshots to recover from storage subsystem failures because
mirroring itself, along with duplexed controllers, generally protects the database
from hard-disk and controller failures. You can also use split-mirror snapshots to
initialize a standby server for log shipping, a subscriber for transactional replication,
or a test server for the QA environment.

Split mirror snapshots work as follows:
� Splitting the mirror — You perform a backup by splitting one drive from the

mirrored array of drives. The split is a very fast operation. SQL Server suspends
writes briefly to prevent torn pages; this is the only impact on the availability
of the database. Typical split times are measured in seconds.

Note: Use a three-way mirror so that the production volumes remain fault-tolerant after
the mirror is split.

� Remirroring — In preparation for another backup, the clone volume must be
rejoined to the mirror of the production volume. During this remirroring
operation, the vendor software reconciles the clone volume with the data on
the mirror. This reconciliation process occurs in the background, and the data-
base remains fully available for updates. Some vendors copy only changed
data from the production volume to the clone volume, while other vendors
copy the entire contents of the production volume to the clone volume.

� Recovering — During recovery, the clone volume is the master and the SQL
Server reconciles the production volume with the clone volume. As part of the
recovery, the vendor software supplies SQL Server with the description of the
backup being restored. With many vendors, the data is presented to SQL Server

SQL Server 2000 High Availability — Volume 1: Planning36

immediately, and the reconciliation occurs in the background. In this case, the
restoration occurs in seconds, and the database can be recovered and made
available immediately. Users can actually use the data on the clone volume
while the reconciliation occurs. To recover to a time more recent than the time
of the snapshot, the database can be restored without recovery, and then you
can apply differential, file differential, and/or transaction log backups before
you initiate recovery.

Split-mirror snapshots eliminate the single most time-consuming phase of the
recovery process — the restoration of a full database backup. This is the single
most important benefit of split-mirror snapshots. Recovery to a different server
can also be accomplished very quickly, providing a fast way to create a copy of
the database for maintenance and reporting tasks.

The major disadvantage of this technology is its cost. Because split-mirror snapshots
are based on mirroring, the number of separate physical disks required increases
the cost of this solution. Other disadvantages include the following:
� Volume-based backup — Split mirrors work at the volume level. You must back

up or restore an entire volume at one time. This means that you cannot store
more than one database on a volume, or you will not be able to back up or restore
the databases independently. Restoring one database corrupts the mirror of the
other database.

� Time to remirror limits frequency of backup — Remirroring can take a signifi-
cant amount of time for large databases. Although the database is available to
users while the reconciliation occurs in the background, you cannot perform
another backup until the reconciliation is complete. In addition, the length of time
between backups increases the amount of data that must be rolled forward
using transaction log backups after a failure. Transaction log backups must
be applied to a snapshot to recover the database to a time more recent than
the time of the snapshot.

� Performance during remirror and recovery — There is some performance
degradation during remirroring and recovery. This degradation is typically small.

� Maintaining a backup during remirror — Remirroring destroys the snapshot,
eliminating your backup. To solve this problem, you can:
� Add a fourth mirror and create two clones. In this case, to preserve the most

recent backup, always remirror the oldest clone when preparing to make
another backup.

� Copy the snapshot to tape or to other media. If you choose this method,
consider the additional restore time required to get the copy of the clone
back on disk if it is needed in an emergency.

Chapter 3: Recovering a Data Center by Using Database Backups 37

� No reusability of a backup after restoration — Recovering a split-mirror backup
converts that backup into a database. The backup no longer exists. Consider
multiple clones or copying a clone to tape.

Microsoft works closely with the following storage vendors that offer split-mirror
backup technology:
� EMC Corporation
� Hewlett-Packard Company
� Hitachi Data Systems

These storage vendors work with a number of third-party backup software prod-
ucts, such as CommVault Systems and Veritas, to provide support for split-mirror
snapshots.

Copy-on-Write Snapshots
A copy-on-write snapshot is a copy of all the original disk blocks in a database that
changed since the snapshot was created. Copy-on-write snapshots are implemented
entirely in software and are available on all classes of storage. The copy-on-write
snapshot and the production database share the majority of their disk blocks.
They differ only in those disk blocks that have been modified since the snapshot
was created. The older the snapshot is, the more likely it is that more blocks will
change. An older snapshot also requires a larger space to maintain the snapshot.
Ultimately, the snapshot can occupy as much storage as the original if a new
snapshot is not created. Some vendors support multiple snapshots of the same
volumes at different times.

You can use copy-on-write snapshots to recover from application and user errors.
While copy-on-write snapshots are not as fast as split mirror snapshots, recovery
using copy-on-write snapshots is significantly faster than recovery using conven-
tional backups if the snapshot is recovered in place. Copy-on-write snapshots provide
no protection against storage subsystem failures. To protect the data center against
media failure, use a disk array (mirror, striping with parity, or striped mirror) or
back up the copy-on-write snapshot to a disk or to a tape backup device.

Copy-on-write snapshots work as follows:
� Creating the snapshot — To create the snapshot, the snapshot software sets

up an empty catalog of changed blocks, which takes little time. Initially, the
snapshot shares all disk blocks with the production database.

� Maintaining the snapshot — When a write to the production data occurs, the
change catalog is checked to determine whether the disk block that SQL Server
is writing has changed since the snapshot was created. This read of the change

SQL Server 2000 High Availability — Volume 1: Planning38

catalog on every write slightly degrades write performance. The action taken by
SQL Server and the performance impact depends on whether the disk block was
previously changed.
� If the disk block SQL Server is writing to has not been changed since the

snapshot was created, the original disk block is copied from the production
disk and saved to the snapshot. SQL Server then writes the change to the
production disk. Copying this original block from the production disk to
the snapshot seriously degrades write performance.

� If the disk block that SQL Server is writing to has changed, SQL Server simply
writes the change to the production disk because the original block has
already been written to the snapshot.

� Backing up the snapshot — When copying the snapshot to a backup device, the
backup process reads the change catalog to determine where to find each block
of data in the snapshot. This is a relatively slow process. Data blocks that have
not changed are read from the production disk, and data blocks that have changed
are read from the snapshot. When you back up the snapshot, ensure that a
description of the snapshot is included in the backup. Whether this occurs
automatically depends on the vendor’s implementation of this technology.

� Recovering — Recovering the production database directly from the snapshot is
the fastest restoration method. The original saved blocks are copied back to the
production database, restoring it to its state at the time of the snapshot. The time
to accomplish the restoration is proportional to the number of blocks that were
modified since the snapshot was created. To recover to a time more recent than
the time of the snapshot, the database can be restored without recovery, and then
you can apply differential, file differential, and/or transaction log backups before
you initiate recovery. Restoring the snapshot from a backup of the snapshot to
the same or to an alternative server is identical to restoring a database using
conventional SQL Server 2000 recovery tools.

The major advantage of copy-on-write snapshots over split-mirror snapshots is cost.
Copy-on-write snapshots are less expensive because they require no special hardware
and relatively little hard-disk space. The majority of the space in a copy-on-write
snapshot is shared with the production database. In addition, with some vendors,
you can create and maintain multiple backups simultaneously.

The major disadvantage of copy-on-write snapshots compared to split-mirror
snapshots is the time required for recovery. Restoring a copy-on-write snapshot
takes longer than a split-mirror snapshot, although it is faster than a conventional
backup. Another disadvantage of copy-on-write snapshots is the performance
degradation on disk writes. Copy-on write snapshots also provide no protection
against media failure.

Chapter 3: Recovering a Data Center by Using Database Backups 39

Using Third-Party Solutions to Increase Functionality
Third-party backup solutions also offer additional backup functionality, including
support for the following:
� Full platform backup — Although SQL Server backup supports only SQL Server

databases, third-party solutions provide the ability to back up the entire operating
system when the SQL Server databases are backed up.

� Tape silos — Third-party backup solutions support media changers, which
automatically change tapes as needed.

� Backup device sharing — Third-party backup solutions support remote tape
devices and shared central libraries. Some third-party solutions support backup
streams from many nodes to be multiplexed onto a single backup device.

� Rich media management and backup catalog — Third-party backup solutions
offer sophisticated media management and tracking, including media life cycle
management.

� Tape RAID — Some third-party party backup solutions support tape RAID
for additional reliability.

The additional functionality provided by third-party solutions increases availability
of the entire platform and the availability of the data center.

For more information, see:
� “Backup and Restore Solution” on the Microsoft Web site at http://microsoft.com

/technet/treeview/default.asp?url=/technet/ittasks/maintain/backuprest
/default.asp.

� “Microsoft Systems Architecture: Internet Data Center” on the Microsoft Web
site at http://www.microsoft.com/technet/treeview/default.asp?url=/technet
/itsolutions/idc/default.asp.

4
Preventing Downtime
by Using Redundant Components

Hardware redundancy prevents downtime caused by hardware failures by detecting
a failing component before it actually fails and bypassing a failure when it does
occur. To achieve server hardware redundancy, deploy server-class hardware, a
redundant storage subsystem, and redundant network cards. This chapter discusses
using redundant components within a server to prevent downtime. Chapter 2,
“Overcoming Barriers to High Availability” discusses the importance of redundant
network infrastructure components, such as switches and routers, to ensure
connectivity to the data center.

Using Server-Class Hardware
Server-class hardware monitors each critical server component for failure, notifies
an administrator when a failure occurs, and includes redundant components that
enable the server to work around the failure. Server-class hardware includes some
or all of the following features:
� Redundant power supplies — Redundant server and disk array power supplies

provide a secondary power supply if the primary power supply fails.
� Redundant fans — Redundant fans ensure that sufficient cooling exists inside

of the server if a cooling fan fails.
� Redundant storage subsystem — A redundant storage subsystem provides

protection against the failure of a single disk drive or controller. (See “Using
a Redundant Storage Subsystem” later in this chapter.)

� Redundant memory — Redundant memory provides memory if a memory bank
fails.

� ECC memory — Error-correcting code (ECC) memory detects and corrects
single-bit errors and takes the memory offline if a double-bit error occurs.

SQL Server 2000 High Availability — Volume 1: Planning42

� Redundant network interface cards — Using redundant network interface cards
(NICs) ensures that clients can connect to the data center if a NIC or a network
connection fails. (See “Using Redundant Network Cards” later in this chapter.)

� Power-on monitoring — When the server is initially turned on, the server
detects startup failure conditions, such as abnormal temperature conditions
or a failed fan.

� Prefailure monitoring — While the server is running, prefailure conditions are
monitored. If a component, such as a power supply, hard disk, fan, or memory,
is beginning to fail, an administrator is notified before the failure actually occurs.
For example, a failure detected by ECC memory is corrected by the ECC memory
or routed to the redundant memory, preventing a server failure. An administrator
is immediately notified to rectify the memory problem.

� Power failure monitoring — When a power failure occurs, system shutdown
software ensures a graceful shutdown if necessary in conjunction with an
uninterruptible power supply (UPS).

Advanced server-class hardware can also include the following data-protection
features:
� Lock-stepped processors, which are two processors that execute the same

instruction stream and that crosscheck each other
� End-to-end checksums on data sent to storage devices
� Parity checking on internal buses

Using server-class hardware minimizes the likelihood of hardware failures and uses
monitoring and redundancy to limit the effect of a failure on data-center availability.
Server-class hardware provides a number of notification options, including on-screen
messages, server logs, e-mail, and pager notifications. Some servers also include a
battery-powered card that stores failure information that can be accessed even when
a server has completely failed.

Using a Redundant Storage Subsystem
To ensure that your Microsoft® SQL Server™ data center is highly available,
disks containing the operating system, SQL Server system and user databases
 and applications must be supported by a redundant storage subsystem. Even if
the contents of a drive are read-only, it still takes time to replace a failed hard disk
and to restore its contents. The data files and the transaction log files for these
databases should be placed on separate disk arrays for maximum recoverability.

External disk arrays provide the best availability. The external disk array should
contain redundant power supplies, redundant cooling fans, and redundant
controllers. The disk array can be attached to the server by using either SCSI
or FibreChannel. Although SCSI is less expensive, FibreChannel provides higher
bandwidth and enhanced performance. The disk array can be managed by the

Chapter 4: Preventing Downtime by Using Redundant Components 43

server or managed independently in a storage area network (SAN) using third-
party software. A SAN is independent of any particular server or operating system
and is attached to the servers using it through a dedicated FibreChannel network.

To provide disk redundancy in the event of a site failure, third-party hardware
manufacturers provide remote mirror solutions that duplicate the locally redundant
storage system to a remote site and provide transactional consistency between the
sites. Remote mirror solutions require a SAN at each site and a dedicated fiber cable
between sites that are no more than 100 kilometers apart. Although a remote mirror
provides disk redundancy to a remote site, if you want a solution that provides
automatic failover of the data center to a remote site, deploy a stretch cluster. For
more information about stretch clusters, see Chapter 5, “Minimizing Downtime by
Using Redundant Servers.”

RAID
Configure the disks in an attached disk array or a SAN as a redundant array of
independent disks (RAID). RAID has different implementations, with different
levels of fault tolerance and performance. The most popular and common RAID
implementations are:
� Striping (Raid 0)
� Mirroring (Raid 1)
� Striping with distributed parity (Raid 5)
� Striped mirroring (Raid 10 or Raid 1+0)
� Mirrored striping (Raid 0+1)

Different vendors use different terminology for implementations of striped mirroring
and mirrored striping. Many use the terms interchangeably and incorrectly.

Note: Many manufacturers support additional RAID implementations providing advanced
capabilities. These additional implementations are referred to in different ways, including
RAID 10E, RAID 30, RAID 50, and RAID 53.

Regardless of the RAID implementation you choose, have at least one drive installed
as a hot spare so that there is continuous fault tolerance when an active drive fails.
Disk array controllers and SAN devices can automatically substitute a failed drive
with an installed spare. Replace the failed drive immediately so that you always
have a hot spare.

Striping
Striping writes logical blocks of data across two or more disks, creating a single
logical volume with no redundant information between the disks. Striping is very
fast and inexpensive, but it provides no fault tolerance. Do not use striping with
a high-availability data center.

SQL Server 2000 High Availability — Volume 1: Planning44

Mirroring
Mirroring writes all data across two or more disks, creating a single logical volume
with completely redundant information on each disk. Mirroring provides a high
level of availability; the mirrored volume can survive the failure of any disk in the
mirror. Because each disk in the mirror provides redundancy, the available capacity
of the mirrored volume is equal to the size of a single disk. (In a two-disk mirror,
50 percent of the disk capacity is used for data protection.) With mirroring, read
and write performance is asymmetrical. Read performance is very fast because data
is available from each disk in the mirror. Read performance can be even faster if the
RAID array or SAN controller supports simultaneous reads from each member of
the mirror. Writing to a mirror is slower than writing to a single drive because the
data must be written to multiple disks. If the disks are on separate I/O buses using
separate controllers — a process known as duplexing — you can achieve higher
availability by eliminating the controller as a point of failure. Mirroring requires
a minimum of two drives to implement.

Striping with Distributed Parity
Striping with distributed parity writes logical blocks of data across multiple disks,
creating a single volume with parity blocks spread equally among all disk drives.
Parity blocks enable recovery of the data on the RAID volume if a single disk fails.
If two disks fail, however, the RAID volume fails. Striping with distributed parity
is less expensive than mirroring because only the capacity equal to one disk is used
for data protection.

Read performance is faster than mirroring because the data is read simultaneously
from multiple disks. Disk writes are slower than mirroring because each write
takes four I/O operations to create and write the data and parity blocks. These I/O
operations occur consecutively; each I/O operation must wait for the previous
I/O operation to complete. Because striping with distributed parity is more
economical than mirroring, it is the most common RAID configuration. When
a disk fails, however, read and write performance immediately decreases. Every
read or write request to the failed drive initiates a verification process against all
other drives. This reduction in performance continues until the failed disk is replaced
and the system completely rebuilds the RAID volume.

Striped Mirroring
Striped mirroring writes logical blocks of data across two or more mirrored sets of
disks, creating a single volume with no redundant information between the mirrored
sets of disks. Each mirrored set of disks consists of two or more disks. Striped
mirroring provides the same high level of availability as mirroring. The available
capacity of a striped mirror is equal to that of each disk in the mirror set (in a two-
disk mirror set, 50 percent of the disk capacity is used for data protection). Unlike

Chapter 4: Preventing Downtime by Using Redundant Components 45

mirroring, however, striped mirroring provides symmetrical performance. Read
performance is very fast because data is available from each disk in the mirror.
In striped mirror implementation, RAID array and SAN controllers support
simultaneous reads from each member of the mirror, which maximizes read
performance. Write performance is also fast because writes occur simultaneously
across each mirrored set.

With striped mirroring, if a drive fails, read and write performance is slightly
reduced, but only for data stored on the mirror set containing the failed disks.
Read and write performance to and from the other mirrored sets is not affected.
Striped mirroring can survive the failure of multiple drives, provided at least
one drive in each mirrored set survives.

Striped mirroring is the best solution for a database server requiring high perfor-
mance and high availability. Capacity can be a problem, however, because of the
number of disks required and their cost.

Mirrored Striping
Mirrored striping writes logical blocks of data across two or more disks, creating a
single logical volume with no redundant information between the disks, and then
mirrors the volume. Read and write performance is very fast, but mirrored striping
is not as fault tolerant as striped mirroring. When a single disk in a stripe fails,
the data remains available in the other stripe, but the stripe is broken. With one
broken stripe, the failure of a disk in the remaining stripe causes the data to become
unavailable. In addition, when a stripe fails, read performance is slower because
only one stripe is functional.

Note: Because many vendors confuse the terms RAID 10, RAID 1+0, and RAID 0+1, use the
terms mirrored striping and striped mirroring. To maximize availability, use striped mirroring.

Controller Cards
Use multiple SCSI or Fibre Channel controller cards in the external array for
redundancy and to enhance performance through automatic load balancing.
Choose cards with enough channels to split the logical grouping of disks —
that is, data and logs — to reduce I/O contention.

Not all write caching is safe for a database server to use. Be sure that your disk
controller prevents the uncontrolled reset of the caching controller, has on-board
battery backup, and uses mirrored or ECC memory. Do not implement write caching
unless the hardware vendor guarantees that the write cache includes all features
required to prevent data loss.

If you are using failover clustering, using an internal caching controller can cause
data corruption unless the controller mirrors its cache to all nodes of the cluster.

SQL Server 2000 High Availability — Volume 1: Planning46

With an internal caching controller in a cluster, the cache in the controller on a failed
node may contain completed transactions that are unknown to the surviving node
(unless cache mirroring is used).

Data and Log File Placement
Place the data and log devices for each database on separate disks, using as many
channels as possible to ensure redundancy in case a disk or mirrored set fails.
Splitting the I/O between disks reduces performance issues caused by bottlenecks,
which users can perceive as a lack of data-center availability. Use the following
guidance when determining the type of storage redundancy for data and log files:
� Data file drives — For databases larger than a single disk, use striped mirroring

for all data files for maximum availability and maximum performance. For
databases that can be contained on a single disk, use mirroring. For very large
databases spanning many disks, use striping with distributed parity unless
the additional cost of striped mirroring can be justified.

� Transaction log file drive — Unless transaction log performance is an issue,
use mirroring for all transaction log files. Where transaction log performance
is an issue, use striped mirroring to increase performance. Do not use striping
with distributed parity because of its poor write performance.

Note: The disks containing the operating system should be separate from the data and
transaction log files. They should also be mirrored to ensure the operating system’s availability.

Using Redundant Network Cards
To ensure that users can access the data center, use redundant network interface
cards (NICs), and use NIC teaming to provide automatic failover between the NICs
in the event of a failure. NIC teaming combines two or more physical NICs into a
single logical NIC, which ensures that the data center always has an active link to
the network. To use NIC teaming, connect each NIC card to a different switch on a
different subnet. NIC teaming requires software from the NIC vendor, and each
NIC is configured to use a common virtual IP address. When all NICs are working
properly, their combined bandwidth is pooled for increased performance. When a
teamed NIC begins to fail, the software stops using the failing NIC and routes all
network communication over the remaining NIC or NICs. This failover process is
transparent to the operating system and other devices on the network.

5
Minimizing Downtime
by Using Redundant Servers

The final step in increasing the availability of a data center is to deploy one or more
redundant servers to minimize downtime when a server fails. Use a redundant
server solution only after you have followed the recommendations in the preceding
chapters. Deploying and maintaining a redundant server solution adds complexity
and cost to a data center, and if you do not follow the recommendations in the
preceding chapters, your efforts might actually decrease data center availability.
If you follow the recommendations and you deploy one or more of the redundant
server solutions discussed in this chapter, you can achieve 99.99 percent to 99.999
percent availability for the data center.

A redundant server solution can minimize downtime caused by:
� Planned maintenance that requires taking a data-center server offline
� A hardware failure that causes a data-center server to become unavailable while

the site remains available
� A disaster that causes an entire site to be unavailable, such as a regional power

failure, a natural disaster, or man-made disaster

You can minimize data-center downtime that can result from these types of
server unavailability by deploying one or more of the following server redundancy
solutions:
� Failover clustering
� Log shipping
� Transactional replication

SQL Server 2000 High Availability — Volume 1: Planning48

Note: Each of these server redundancy solutions is discussed in this chapter, followed
by a decision tree that helps you choose among them.

Using Failover Clustering to Maintain a Redundant Server
Use failover clustering to increase the availability of a data center unless you cannot
justify its financial cost or setup complexity. Failover clustering reduces the down-
time caused by a server failure to less than one minute by automatically detecting
a server failure and initiating the failover to a secondary server. Failover clustering
requires no administrative intervention during the failover, and clients connect
seamlessly to the promoted secondary server after the automatic failover.

Failover clustering uses the Microsoft Cluster Service (MSCS), which is a feature
of Microsoft® Windows® 2000 Advanced Server and Windows 2000 Datacenter
Server. MSCS allows two to four servers (nodes) to be linked in a server cluster
utilizing a private network and a shared disk array. MSCS allows cluster resources
to fail over from the primary node to one of the secondary nodes if specified cluster
resources become unavailable on the primary node. MSCS supports two node
clusters on Windows 2000 Advanced Server and four node clusters on Windows
2000 Datacenter Server.

Failover clustering allows you to install up to 16 Microsoft SQL Server™ virtual
servers on one MSCS cluster. A SQL Server virtual server is a clustered instance
of SQL Server.

Failover Clustering Architecture
Each node in an MSCS cluster is an independent computer with its own hardware
resources and operating system. Each node also shares a hard-disk array with other
nodes in the cluster. The primary node controls and uses the shared hard-disk array
until MSCS initiates a failover to a secondary node. When you install SQL Server 2000
in a cluster, SQL Server setup installs the executable files on each node and installs
the data and log files on the shared disk array. When a node fails, MSCS starts SQL
Server on the designated secondary node, and the secondary node takes control of
the shared hard disk array. SQL Server attaches the data and log files on the shared
disk array to the newly started SQL Server instance.

Chapter 5: Minimizing Downtime by Using Redundant Servers 49

Figure 5.1 illustrates the components of a SQL Server virtual server in a failover
cluster.

Public Network

Cluster Node 1 Cluster Node 2

Switch

Shared Storage

SQL Server 2000 Virtual Server

MSCS Heartbeat on Private Network Connection

Connection to Shared Storage Connection to Shared Storage

Figure 5.1
Virtual instance in a failover cluster

A SQL Server virtual server includes the following components:
� Shared storage resource — One or more disks that are part of a cluster group

and that are available to multiple nodes of a cluster, but to only one node at a time
� Private storage resource — One or more disks that are available only to each

node in the cluster and that contain the operating system and executable files
� SQL Server network name — The virtual name assigned to the virtual server

during installation, which is the name that all clients use to connect the clustered
instance of SQL Server regardless of the node on which the instance is running

� SQL Server IP address — The virtual IP address of the virtual server, which is
the IP address that all clients use to connect the clustered instance of SQL Server
regardless of the node on which the instance is running

� SQL Server resources — The clustered SQL Server resources for a SQL Server
instance include the SQL Server, SQL Server Agent, and Microsoft Search services
(the clustered resources)

SQL Server 2000 supports single-instance clusters and multiple-instance clusters.
� Single-instance clusters — In a single-instance cluster, only one virtual server

is installed in the cluster. The data and log files for the virtual server are installed
on the shared storage resource for the cluster, and the executable files for the
virtual server are installed on the private storage resource for each node. The

SQL Server 2000 High Availability — Volume 1: Planning50

virtual server is owned by the primary node, and each secondary node is in a
wait state. When the primary node fails or is demoted, a secondary node is
enabled. When the node is enabled, SQL Server resources start on this node
and take control of the data and log files in the shared storage resource. If each
node is configured with identical hardware and software resources, the virtual
server performs identically on the secondary node after the failover.

� Multiple-instance clusters — In a multiple-instance cluster, two or more virtual
servers are installed in the cluster. The data and log files for each virtual server
are installed on a shared storage resource dedicated to that virtual server. When
the primary node for a virtual server fails or is demoted, the secondary node
takes control of the shared storage resource for the virtual server. Because each
virtual server has a dedicated shared storage resource, no other virtual servers
are affected by this failover.

When determining whether to implement a multiple-instance cluster, assess the
expected load of the database applications on each node, and determine whether
a single node can handle the combined load during a failover. If a single node cannot
handle the combined workload of all virtual servers, use two single-instance clusters
instead, each with its own dedicated hardware resources.

MSCS uses a private network between nodes for monitoring. MSCS on the
primary node monitors the SQL Server resource group to determine when to
initiate a failover. MSCS on the secondary node monitors the shared storage
resource to determine when to initiate a failover. MSCS uses the following
mechanisms to determine when it should initiate a failover:
� Shared storage resource mechanism — MSCS on the primary node renews its

reservation of the shared storage resource every three seconds. MSCS on the
secondary node attempts to reserve the same shared storage resource every five
seconds. MSCS on the secondary node will never reserve the shared storage
resource if MSCS on the primary node continues to renew its reservation
of the shared storage resource. If MSCS on the primary node fails to renew
its reservation of the shared storage resource, however, MSCS on the secondary
node seizes control of the shared storage and initiates a failover.

� SQL Server resources mechanism — MSCS on the primary node runs two tests
to determine whether the SQL Server resources are functioning —a LooksAlive
check and an IsAlive check. If either check determines that the SQL Server
resources are no longer functioning, MSCS determines that a resource failure
has occurred. Depending on the failover threshold configuration for the cluster,
MSCS on the primary node either attempts to restart the failed SQL Server
resource or immediately initiates a failover to the designated secondary node.
If MSCS initiates a failover, it relinquishes its reservation of the shared storage
resource.

Chapter 5: Minimizing Downtime by Using Redundant Servers 51

If a failover occurs because the primary node fails, MSCS starts the resources in
the SQL Server resource group on the secondary node. On startup, SQL Server
initiates automatic recovery for each database, rolling forward all completed trans-
actions and rolling back all incomplete transactions. When SQL Server completes
automatic recovery, SQL Server is available to its consumers with the same virtual
server name and IP address as before the failover. The time required for the
failover is short, generally under one minute. The actual time is governed by the
number and size of the transactions that must be rolled forward or back at startup
and by the speed of the shared storage resource.

The end user, client application, Web server, and middle-tier component (such as
Microsoft Transaction Server) experiences a break in the connection to the virtual
server when a failover initiates. Cluster-aware applications detect the failover and
reconnect automatically to the virtual server, which is running on a new node. If a
SQL Server client is not cluster aware, the user must manually reconnect the client
to the virtual server.

For more information, see “SQL Server 2000 Failover Clustering” on the Microsoft
Web site at http://www.microsoft.com/SQL/techinfo/administration/2000/failovercluster.asp.

Failover Clustering Advantages
There are a number of advantages to using failover clustering rather than log
shipping or transactional replication. These advantages include the following:
� Automatic failover — Switching between nodes occurs automatically whenever

a failure is detected. Failover occurs when a SQL Server resource, the Windows
operating system, or essential hardware on the primary node fails.

� Simple manual failover — You can manually switch the virtual server from the
primary node to a secondary node. Simple manual failover enables you to perform
normal maintenance on one node while the virtual server continues to run on
another node.

� Transparent to clients — Failover is relatively transparent to the clients
consuming SQL Server resources. After a failover is complete, clients simply
reconnect to the new primary node (the promoted secondary node) with the
same virtual name and IP address to resume work. Although clients must
resubmit any incomplete transactions, they do not need to connect to a different
server name or IP address because the failover cluster uses a virtual server name
and IP address.

� Transactionally current — When MSCS initiates a failover, all committed
transactions are preserved and are available to clients when the failover
process is complete.

SQL Server 2000 High Availability — Volume 1: Planning52

� Rapid failover — Completing the failover is fast, depending upon how many
transactions need to be rolled forward or rolled back and the speed of the shared
storage resource.

These advantages make failover clustering the first choice for increasing data center
availability.

Failover Clustering Limitations and Disadvantages
There are a number of limitations and disadvantages to using failover clustering
rather than log shipping or transactional replication. These limitations and disad-
vantages include the following:
� Proximity requirement — The round-trip latency of network communication

between nodes must not exceed 500 milliseconds, or MSCS will initiate failovers
when no actual failure has occurred. This means that all cluster nodes must be
located close to one another, unless a third-party clustering solution is used to
place nodes in geographically dispersed locations (a stretch cluster). If you deploy
a stretch cluster, you must use a third-party solution that appears on the Hardware
Compatibility List. To search the HCL for certified computers, components, and
configurations, see the “Hardware Compatibility List” on the Microsoft Web site
at http://www.microsoft.com/hcl/default.asp. Microsoft Product Support Services
(PSS) does not support any clustering solutions that have not been certified. For
more information, see article Q280743, “Windows Clustering and Geographically
Separate Sites,” in the Microsoft Knowledge Base at http://support.microsoft.com/
default.aspx?scid=kb;[LN];Q280743. Third-party clustering solutions are more
expensive and more complex than MSCS.

� Hardware requirement — MSCS requires specifically certified hardware.
� Software requirement — MSCS is available only with Windows 2000 Advanced

Server and Windows 2000 Datacenter Server, and failover clustering is available
only with SQL Server 2000 Enterprise Edition.

If these disadvantages outweigh the advantages of failover clustering for a data
center, you should consider log shipping to determine whether it provides a better
high-availability solution for the data center.

Using Log Shipping to Maintain a Redundant Server
Log shipping is designed as an inexpensive high-availability solution that can be used
to protect a database against the failure of the primary server. Use log shipping
rather than failover clustering if you cannot justify the financial cost and complexity
of failover clustering. Also use log shipping with failover clustering to protect against
site-level disasters as well as local server failure. Log shipping enables you to main-
tain a copy of the production database on one or more secondary servers and to
easily promote one of the secondary servers to become the new primary server.

Chapter 5: Minimizing Downtime by Using Redundant Servers 53

Log shipping uses SQL Server backup and restore capabilities to provide database
redundancy between the production database on a primary server and a standby
database on one or more secondary (standby) servers. Log shipping requires an
administrator to detect a failure and initiate a role change. A role change promotes
a standby server to a primary server by recovering the production database on the
standby server. The role change process is not automatic and takes at least several
minutes to complete. It can take significantly longer with large databases. After a
role change, clients must connect to a different server with a different server name
and IP address. Unlike with failover clustering, virtual server names and IP addresses
are not incorporated into log shipping.

Log Shipping Architecture
SQL Server 2000 Enterprise Edition has built-in support for log shipping, whereas
SQL Server 2000 Standard Edition requires a custom implementation of log shipping.
The built-in log shipping architecture consists of a primary server, one or more
standby servers, and a monitoring server. These servers perform the following roles:
� Primary server — The primary server is a server running SQL Server 2000 and

containing the production database. You create and use a full database backup
of this database to initialize a standby database on each standby server. SQL
Server Agent jobs make periodic transaction log backups of the production
database to capture changes made to the production database.

� Standby servers — Standby servers are servers running SQL Server 2000 and
containing an unrecovered copy of the production database from the primary
server. SQL Server Agent jobs periodically copy transaction log backups from
the primary server and restore these transaction log backups, without recovery,
to each standby database. The restoration process updates the standby database
on each standby server with new transactions from the primary server. A standby
database can be recovered, and the standby server can replace the primary server
if the primary server fails or must be taken offline for maintenance.

� Monitoring server — A monitoring server is a server running SQL Server 2000
that monitors the status of the log shipping jobs on the primary server and on
each standby server. To enable you to detect a failure to the primary server or to
any standby server, use a server other than the primary server or a standby
server as the monitoring server.

To create a custom log shipping solution, create each of these roles manually.

Note: You can use a standby server to contain standby databases from multiple primary
servers and a monitoring server to monitor multiple primary server-standby server pairs.

SQL Server 2000 High Availability — Volume 1: Planning54

Figure 5.2 illustrates how log shipping works.

Query for last log shipped

Answer to query for delay

Query for delay between logs loaded

Answer to query for delay

Query for delay between logs loaded

Answer to query for delay

Query for delay between logs loaded

Answer to query for delay

Log copies
Log copies

Log copies

Log copies

Standby server

Standby server

Standby server

Primary serverMonitoring server

Figure 5.2
Log shipping

When you configure log shipping, you restore a copy of the production database
without recovery on each standby server. Thereafter, log shipping uses the following
SQL Server Agent jobs and alerts to 1) maintain an up-to-date copy of a production
database on one or more standby servers, and 2) report the success or failure of
these jobs to the monitoring server and to administrators:

Chapter 5: Minimizing Downtime by Using Redundant Servers 55

� Transaction log backup job — The transaction log backup job runs on the primary
server and backs up the transaction log of the production database on the primary
server according to a schedule. This job also records the results of each execution
in a status table on the monitoring server. To ensure that this backup remains
available if a disk fails, use a fault tolerant storage location for the backup file.
Share these backup files so that the transaction log copy job on each standby
server can copy them, but strictly limit access through this share to protect
sensitive information. Schedule the backup job to run every 1 to 15 minutes.
The more frequent the backup, the smaller the size of each backup file and the
more closely you can synchronize the standby database on each standby server.

� Transaction log backup copy job — The transaction log backup copy job runs on
a standby server and copies each transaction log backup from the network share
on the primary server to the standby server according to a schedule. This job also
records the results of each execution in a status table on the monitoring server.
Schedule this job to run with the same frequency as the transaction log backup
job. Copying each backup to a standby server as soon as it is created is important
because the purpose of log shipping is to have an up-to-date copy of the produc-
tion database on a standby server in case the primary server fails.

� Transaction log restore job — The transaction log restore job runs on a standby
server and restores transaction log backups to the standby database according
to a schedule. Restore the transaction logs without recovery to allow additional
transaction logs to be restored. To minimize the time required to complete a role
change, schedule the restore job to run with the same frequency as the copy job.
This keeps the standby database synchronized to within several minutes of the
production database. If you also want to use the standby database for reporting,
however, you cannot restore the transaction logs as frequently without interfer-
ing with its use for reporting. SQL Server requires exclusive access to the standby
database to restore transaction logs or the transaction log restore job will fail.
To ensure that the transaction log restore job does not fail, configure the restore
job to terminate all users every time it runs.
You must choose between maximum synchronicity and additional functionality.
For example, if you run the transaction log restore job once a day, users can access
the standby database for reporting, but it will take longer to recover the standby
database and bring the standby server online to replace a failed primary server.
Delaying the application of transaction log backups to the standby database
increases the likelihood that you will discover user errors, application errors,
or database corruption before the backups containing those errors are restored
to the standby database.

� Backup alert — The backup alert runs on the monitoring server and monitors the
success and failure of transaction log backup jobs on the primary server. Specify
the threshold for alerting an administrator that backup jobs are failing. To reduce
the risk of receiving false alerts, set a threshold that avoids false alerts by allowing
for large transaction log backup files.

SQL Server 2000 High Availability — Volume 1: Planning56

� Out of sync alert — The out of sync alert runs on the monitoring server and
monitors the synchronicity between the production database and the standby
database. Specify the threshold for alerting an administrator that the standby
database has exceeded a specified level of synchronicity. To reduce the risk of
receiving false alerts, set a threshold that tolerates the time required to copy large
transaction logs across the network and to restore them on the standby server.

If you are using SQL Server Enterprise Edition, use the Database Maintenance Plan
Wizard to create these jobs and alerts automatically. If you are using SQL Server
Standard Edition, create these jobs manually.

Because log shipping copies only database objects in the production database,
database objects that are stored in the master and msdb databases or in the file
system must be manually copied and recreated on a standby server either before
or when a role change is initiated. To accomplish this, copy the following objects
on the primary server:
� Server logins — Create a Data Transformation Services (DTS) job by using the

transfer logins task that transfers logins from the primary server to a standby
server. Create a separate DTS job for each standby server. Back up the sysxlogins
table by using the Bulk Copy Program (BCP) utility to capture the server-level
logins. Store this backup file on each standby server. Update this backup each
time new logins are added to the primary server.

� Other database objects — Generate Transact-SQL scripts to recreate all jobs,
alerts, and user-defined error messages on the primary server. Execute these
scripts on each standby server. Update these scripts as these objects change,
and use these scripts to update each standby server.

� DTS package — Store a copy of each DTS package on each standby server.
Update the copy of each DTS package as they change.

The log shipping jobs keep the standby database synchronized or ready to be
synchronized. Manually copying and scripting objects stored outside of the
production database ensures that the standby database can take the place of
the production database during a failure or planned maintenance.

If you are using the standby server for standby databases from multiple SQL Server
instances, the following considerations apply:
� SQL Server logins from different SQL Server instances may have identical names

with different permissions, which can create a security conflict.
� Database objects from different SQL Server instances must have different names,

or they overwrite each other.
� DTS packages from different SQL Server instances or servers must have different

names, or they overwrite each other.

If you take these considerations into account, a SQL Server instance on a standby
server will be able to contain the standby database from multiple primary servers.

Chapter 5: Minimizing Downtime by Using Redundant Servers 57

Firewall Considerations
If the primary server and a standby server are separated by a firewall, you need
to open the following ports on the firewall:
� Port 1433 — This port is required for SQL Server operations between default

instances. This port must be open in both directions. If you are using a named
instance of SQL Server, you must open the port used by the named instance.

� Port 135 — This port is required so that SQL Server Agent can copy transaction log
backup files and other synchronization files to the shared folder on the standby
server

� Ports 137, 138, and 139 or 445 — These ports are required to use Uniform Naming
Convention (UNC) shares.

These are the only ports that need to be opened for log shipping. Other Windows
services and application may require additional ports to be opened.

Log Shipping Role Change
Unlike failover clustering that supports automatic failover, changing log shipping
server roles is a manual process. You must determine when to initiate a role change
and manually execute a number of tasks to complete it. Changing log shipping
roles requires you to perform the following tasks on the selected standby server:
� Back up transaction log — If the primary server is still functioning, terminate all

user connections and perform a final backup of the transaction log to capture all
completed transactions that have not yet been backed up. Back up the transaction
log by using the No Recovery option. Doing so enables you to restore transaction
log files to log-shipped database without restoring it from a full database backup.
Disable the transaction log backup job, and restrict client access to the production
database to ensure that clients cannot change the database. SQL Server Enterprise
Edition provides the sp_change_primary_role system-stored procedure to
accomplish this task.
If the primary server fails, completed transactions that are not backed up and
copied to a standby server are lost. End users have to resubmit these transactions.

� Copy transaction log backup — If the primary server is still functioning,
copy any transaction log backup files that are not already copied to the standby
server that you want to promote. SQL Server Enterprise Edition provides the
sp_change_secondary_role system-stored procedure to accomplish this task.
If the primary server fails, you will not be able to restore to the standby database
any transaction log backup files that were not copied to a standby server before
the primary server failed.

SQL Server 2000 High Availability — Volume 1: Planning58

� Restore transaction log backups, with recovery — On the standby server, restore,
with recovery, all transaction log backup files that are not already restored to the
standby database. After recovery, the standby database on the standby server
will be able to accept client connections. SQL Server Enterprise Edition provides
the sp_change_secondary_role system-stored procedure to accomplish this task.

� Resolve SQL logins — Resolve SQL Server logins to user accounts in the
standby database. Use the sp_resolve_logins system-stored procedure to load
the saved BCP file containing logins from the primary server. This stored proce-
dure resolves the SID values between the production database and the standby
database. This task must be performed after the standby database is recovered.

When these tasks are complete, the new primary server is ready to receive client
requests. Because the production database is residing on a different server with
a different server name and IP address, however, you must manually point clients
to this new server. You accomplish this task in different ways, depending on the
design of the client applications and the use of middle-tier objects. You may be
able to change the server name or IP address in a COM+ object or in DNS, or you
may have to make a change to the Data Source Name (DSN) at each client computer.
You may also be able to create a Network Load Balancing (NLB) cluster and
virtualize the server name and IP address if the primary server and the standby
server are on the same subnet. For more information about using NLB with log
shipping, see “Redirecting Client Network Traffic to a Promoted Secondary Server”
later in this chapter.

Note: If an application has a hard-coded server name, you cannot use log shipping without
recoding the application or using an alias of the same name on the client that you redirect to
the primary server when the primary server changes.

After a log shipping role change, you can either continue to use the new primary
server as the primary server or bring the original primary server back online after
it has been repaired or the maintenance task is finished. If you continue to use the
new primary server as the primary server, enable log shipping to the original primary
server (configure it as a standby server) to provide for database redundancy if the
new primary server fails. If you want to bring the original primary server back
online, back up and copy the transaction log from the new primary server to the
old primary server, and then recover the original primary database. When these
tasks are complete, you can point clients back to this original server and re-enable
log shipping to the standby server to reinstate redundancy.

For more information about SQL Server log shipping, see article Q314515,
“Frequently Asked Questions — SQL Server 2000 — Log Shipping,” in the
Microsoft Knowledge Base at http://support.microsoft.com/default.aspx?scid=KB;EN-
US;q314515&.

Chapter 5: Minimizing Downtime by Using Redundant Servers 59

Log Shipping Advantages
There are a number of advantages to using log shipping rather than failover
clustering or transactional replication. These advantages include the following:
� Hardware requirement — Log shipping does not require specifically certified

hardware.
� Software requirement — Built-in log shipping is a standard component of

SQL Server 2000 Enterprise Edition and custom log shipping can be manually
configured with any SQL Server 2000 edition.

� Less network traffic than transactional replication — Log shipping generates
less network traffic than transactional replication does.

� Site protection — Log shipping to a remote standby server provides protection
against catastrophic site failure.

These advantages make log shipping the logical choice for a high-availability
solution if you cannot justify the financial cost and setup complexity of failover
clustering, or if you want to protect against server and site disasters in a single
solution. You can also use log shipping with failover clustering to provide an
inexpensive high-availability solution for site-level disasters with an automatic
failover solution for local server failures and routine maintenance operations.

Log Shipping Limitations and Disadvantages
There are a number of limitations and disadvantages to using log shipping rather
than failover clustering or replication. These limitations and disadvantages include
the following:
� Manual detection and role change — Log shipping requires manual interven-

tion by a database administrator (DBA) to detect a failure and to initiate a role
change. Initiating a role change requires using a number of stored procedures to
recover the standby database. In addition, you must manually ensure that re-
quired objects or files not stored in the production database are kept synchro-
nized between the primary server and the standby server.

� Dual purpose versus minimal latency — You cannot use a standby database for
secondary purposes, such as reporting or routine maintenance tasks, without
increasing the transactional latency of the standby server and increasing the time
required to bring a standby server online when the primary server fails.

� Potential transaction loss — If the primary server fails, completed transactions
that have not been backed up and copied to a standby server may be unrecov-
erable. You can reduce this risk by using fault tolerant storage for the transaction
logs, increasing the frequency of transaction log backups, using fault tolerant
storage for the transaction log backups, and immediately copying transaction
log backups to fault tolerant storage on a standby server.

SQL Server 2000 High Availability — Volume 1: Planning60

� Lack of transparency to clients — After a role change, clients must connect to a
different server with a different server name and IP address. You must manually
modify each client to connect to this new server or incorporate an intermediate
mechanism to accomplish this task for these clients. Intermediate mechanisms
include NLB, DNS, and COM+ components. Each of these intermediate mecha-
nisms requires a manual modification by a DBA to point clients to the new
server name and IP address. This lack of transparency increases the time required
to complete a role change.

If these disadvantages outweigh the advantages of log shipping for a data center, you
should consider transactional replication to determine whether it provides a better
high-availability solution for the data center. If neither log shipping nor transactional
replication provides the high-availability advantages required for the data center,
reconsider failover clustering.

Using Transactional Replication to Maintain a Redundant Server
Use transactional replication rather than failover clustering or log shipping if you
want an inexpensive solution that allows a secondary server to be used for reporting
as well as for redundancy. Transactional replication can also be used with failover
clustering to provide an inexpensive solution to site-level disasters and provide
one or more servers that can also be used for reporting. Because transactional
replication is not designed for high availability, promoting a secondary server
is not simple. In addition, reverting to the original primary server after a secondary
server is promoted requires a complete database restoration. Finally, transactional
replication requires preparation of the schema for replication. Identity columns and
triggers must be set to Not For Replication; literals must be defined with apostrophes
rather than quotation marks; primary keys must be defined for every table; and
database objects must not include unresolved references.

Transactional replication uses SQL Server Agent jobs to copy each change made
to a production database to a copy of the database on one or more secondary servers.
Transactional replication requires an administrator to detect a failure, disable
replication, and designate one of the subscribers as the new primary server. This
process is not automatic and takes at least several minutes to complete. It can take
significantly longer with a large database. After a role change, clients must connect
to a different server with a different server name and IP address. Unlike with failover
clustering, virtual server names and IP addresses are not incorporated into trans-
actional replication.

Transactional Replication Architecture
The transactional replication architecture consists of a primary server (the publisher),
a distribution server (the distributor), and one or more secondary servers (the
subscribers). These server roles perform the following functions:

Chapter 5: Minimizing Downtime by Using Redundant Servers 61

� Publisher — The publisher is the server containing the production database
(the publication database).

� Distributor — The distributor is the server containing the snapshot folder and the
distribution database. The snapshot folder contains a snapshot of the publication
database. The distribution database stores changes made to the publication
database since the snapshot was taken. In a high-availability solution, the
distributor role should be on the same server as one of the subscribers to
eliminate additional points of failure. To increase availability in the event of a
site failure, place the distributor/subscriber in a separate site from the publisher.

� Subscribers — A subscriber is a server containing a copy of the publication
database that is periodically updated from the distribution database.

Figure 5.3 illustrates how transactional replication works. This diagram illustrates
the placement of the distributor role on a subscriber. A single subscriber is shown
for the sake of exposition. In a high-availability solution, you may use multiple
subscribers, which are geographically distributed.

Subscriber/
Distributor

Production
database

Publisher

Snapshot Agent

Log Reader Agent

Inital data and schema

New transactions

History and errors

Distribution Agent

Distribution database

Snapshot
folder

Custom
application

Transaction
log

Subscriber/
Distributor

Subscription
database

Figure 5.3
Transactional replication

SQL Server 2000 High Availability — Volume 1: Planning62

SQL Server uses the following SQL Server Agent jobs (agents) to initialize and
maintain an up-to-date copy of the publication database on one or more subscribers:
� Snapshot agent — The snapshot agent creates the initial snapshot of the publication

database and stores this snapshot in a shared folder on the distributor. The
snapshot agent places a mark in the transaction log demarking the time of the
snapshot. The log reader agent uses this mark to determine the transactions
to copy to update the snapshot on subscribers.

� Log reader agent — The log reader agent monitors the transaction log for the
publication database and copies new transactions to the distribution database.
For minimum latency, run the log reader agent continuously.

� Distribution agent — The distribution agent initializes a copy of the publication
database on each subscriber by using the initial snapshot. Thereafter, the distri-
bution agent periodically copies transactions stored in the distribution database
and applies them to the publication database copy on each subscriber to keep
the database current.

Because transactional replication copies only database objects in the publication
database, database objects that are stored in the master and msdb databases or in
the file system must be manually recreated on a subscriber either before or when
a role change is initiated. To accomplish this, perform the following tasks on the
publisher:
� Server logins — Create a DTS job by using the transfer logins task that transfers

logins from the publisher to a subscriber. Create a separate DTS job for each
subscriber. Back up the sysxlogins table by using BCP to capture the server-level
logins. Store this backup file on each subscriber. Update this backup each time
new logins are added to the publisher.

� Other database objects — Generate Transact-SQL scripts to recreate all jobs,
alerts, and user-defined error messages on the primary server. Execute these
scripts on each subscriber. Update these scripts as these objects change,
and use these scripts to update each subscriber.

� DTS jobs — Store a copy of each DTS job on each subscriber. Update the copy
of each DTS job as these jobs change.

The transactional replication jobs keep the standby database synchronized. Manually
copying and scripting objects stored outside of the publication database ensures that
the database copy on a subscriber can take the place of the publication database
if a failure occurs.

Chapter 5: Minimizing Downtime by Using Redundant Servers 63

Firewall Considerations
If the publisher and the subscriber/distributor, or a subscriber and the subscriber/
distributor, are separated by a firewall, open the following ports on the firewall:
� Port 1433 — This port is required for SQL Server operations between default

instances. This port must be open in both directions. If you are using a named
instance of SQL Server, you must open the port used by the named instance.

� Ports 137, 138, and 139 or 445 — These ports are required if you are delivering
the initial snapshot by using UNC shares.

These are the only ports that need to be opened for transactional replication. Other
Windows services and application may require additional ports to be opened.

Transactional Replication Role Change
Using a subscriber as the new primary server is a manual process. You must manually
stop the replication process and resolve SQL Server logins and user accounts. When
these steps are complete, clients can connect to the new primary server. Changing
roles includes the following tasks:
� Disabling replication — If the distributor is still functioning, disable the trans-

actional replication jobs and place the publication database in single-user mode.
� Resolving SQL logins — Resolve SQL Server logins to user accounts in the

database copy on the subscriber. Use the sp_resolve_logins system-stored
procedure to load the saved BCP file containing logins from the publisher.
This stored procedure resolves the SID values between the publication
database and the database copy on the subscriber.

When these tasks are complete, the new primary server is ready to receive client
requests. Because the production database resides on a different server with a
different server name and IP address, however, you must manually point clients
to this new server. You accomplish this task in different ways, depending on the
design of the client applications and the use of middle-tier objects. You may be able
to change the server name or IP address in a COM+ object or DNS, or you may have
to make a change to the DSN at each client computer. You may also be able to use
an NLB cluster and virtualize the server name and IP address if the publisher and
the subscriber are on the same subnet. For more information about using NLB with
transactional replication, see “Redirecting Client Network Traffic to a Promoted
Secondary Server” later in this chapter.

SQL Server 2000 High Availability — Volume 1: Planning64

Note: If an application has a hard-coded server name, you cannot use transactional replication
without recoding the application or using an alias of the same name on the client that you
redirect to the primary server when the primary server changes.

After a transactional replication role change, you can either continue to use the
new primary server as the primary server or bring the original primary server back
online after it has been repaired. If you continue to use the new primary server as
the primary server, enable transactional replication to the original primary server
(configure it as a subscriber). If you want to bring the original primary server back
online, you must place the production database in single-user mode, back up the
production database on the new primary server, and restore the database backup
to the original primary server. After restoring the original primary server, you can
point clients back to this original server and re-enable transactional replication to
the original subscriber.

For more information, see “Transactional Replication Performance Tuning
and Optimization” on the MSDN Web site at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnsql2k/html/sql2k_replperf_tran4.asp.

Transactional Replication Advantages
There are a number of advantages to using transactional replication rather than fail-
over clustering or log shipping. These advantages include the following:
� Dual use — You can use the database copy on a subscriber for reporting or

routine database maintenance tasks without reducing the transactional latency
of the database copy.

� Minimal transactional latency — You can reduce the transactional latency
between the publication database and database copy on the subscriber to
several seconds on a high-speed network. The minimal transactional latency
for a standby database with log shipping is several minutes.

� Hardware requirement — Transactional replication does not require specifically
certified hardware.

� Software requirement — Transactional replication is a standard component
of all editions of SQL Server 2000.

� Site protection — Transactional replication to a remote subscriber provides
protection against catastrophic site failure.

These advantages make transactional replication the logical choice for a high-
availability solution if you require dual use or minimal latency. If neither of these
advantages is required for the data center, you should reconsider log shipping
or failover clustering.

Chapter 5: Minimizing Downtime by Using Redundant Servers 65

Transactional Replication Limitations and Disadvantages
There are a number of limitations and disadvantages to using transactional
replication rather than log shipping or failover clustering. These limitations
and disadvantages include the following:
� Manual detection and role change — Transactional replication requires manual

intervention by a DBA to detect a failure and initiate a role change. In addition,
you must manually ensure that required objects or files not stored in the
publication database are kept synchronized between the publisher and each
subscriber.

� More network traffic than log shipping — Transactional replication generates
more network traffic than log shipping.

� Potential transaction loss — If the publisher or distributor fails, completed
transactions that have not been copied to subscribers may be unrecoverable.
You can reduce this risk by using fault tolerant storage for the transaction logs.

� Lack of transparency to clients — After a server role change, clients must
connect to a different server with a different server name and IP address. You
must manually modify each client to connect to this new server or to incorporate
an intermediate mechanism to accomplish this task for these clients. Intermedi-
ate mechanisms include NLB, DNS, and COM+ components. Each of these
intermediate mechanisms requires a manual modification by a DBA to point
clients to the new server name and IP address. The lack of transparency in-
creases the time required to complete a role change.

� Complex setup and maintenance — Setting up and maintaining transactional
replication is complex.

� Complex failback — Changing back to the original primary server after a role
change is complex.

These disadvantages outweigh the advantages of transaction replication unless
you absolutely require dual use or extremely minimal transactional latency.

Redirecting Client Network Traffic
to a Promoted Secondary Server

After the failure of a primary server, you must redirect client network traffic
to the promoted secondary server. Although this happens automatically with
failover clustering, you must perform this task manually with log shipping and

SQL Server 2000 High Availability — Volume 1: Planning66

transactional replication. Although you can perform this task at each client
when the secondary server is promoted, you can use a number of mechanisms
to expedite this process, including the following:
� Network Load Balancing — You can create an NLB cluster to direct client net-

work traffic to a promoted secondary server. NLB is a Windows service that you
run on the primary server and on one or more secondary servers to create an
NLB cluster. An NLB cluster provides a single server name and address to all
clients that want to connect to the data center. While the primary server is
functioning properly, you configure NLB to direct all client requests to the
primary server. If the primary server fails, you promote a secondary server and
then reconfigure the NLB cluster to direct all client requests to the promoted
secondary server. With NLB, clients are not redirected to a secondary server until
that server is ready to receive client requests.

Note: Because NLB cannot redirect client requests across subnets, all servers in an NLB
cluster must reside on the same subnet. To use NLB to redirect client network traffic to a
remote site, you can configure a virtual private network connection between the sites.

� Alternate server list in client application — You can design client applica-
tions with a list of alternate servers. With this approach, if a client application
fails in an attempt to connect to the primary server, you specify a number
of retries. After the retries fail, the client application attempts to connect
to a secondary server from its list of alternate servers. If a connection to
the first secondary server fails, the client application attempts to connect
to the next secondary server on the list.
With an alternate server list, clients may attempt to connect to a secondary server
that is not ready to receive client requests and attempt to connect when the
primary server has not actually failed. Although custom applications can easily
be modified to include a list of alternate servers, third-party applications and
utilities cannot be easily modified. The users of these applications need to be
aware of the alternate list and make the alternate connection manually.

� DNS redirection — You can use DNS to redirect client network traffic to a
promoted secondary server. If the primary server fails, you promote a secondary
server and then modify the DNS entry for the primary server name to point to
the standby server’s IP address. Then you rename the promoted secondary server
to the name of the primary server. This approach does not work for clients using
an IP address rather than a server name to connect to the data center.

Note: You must change the DNS entry for the primary server in both the forward lookup
zone and the reverse lookup.

Chapter 5: Minimizing Downtime by Using Redundant Servers 67

� ODBC DSN redirection — You can use ODBC for client connections to the data
center. With ODBC, the client application uses a Data DSN to connect to the data
center. The DSN specifies the name of the server to which the client application
connects. If the primary server fails, you promote a secondary server and then
modify the DSN to point to the promoted secondary server. You can automate
the modification of these DSNs by using batch files to copy the modified DSN
to all clients.

� COM+ component redirection — You can use COM+ components for client
connections to the data center. With a COM+ component, the client application
connects to the COM+ component on an intermediate server, and the COM+
component specifies the name of the server to which the client application
connects. If the primary server fails, you promote a secondary server and then
modify the COM+ component to point to the promoted secondary server.

In addition to these methods for redirecting client network traffic in general, DTS
packages have their own options for redirection. You can use an alias for the server
name or use a dynamic properties task to set your connection object:
� Alias — Use the Client Network Utility or local.

� If you are using a named instance of SQL Server or need to refer to another
server, create an alias on both servers by using the Client Network Utility.
Use the same alias, but point it to the local <server name>\<instance name>
of the server on which the package is stored.

� If you are referring to a default instance of SQL Server on the machine on
which the package will run, select local from the server dropdown list.

� Dynamic properties task — You can use the dynamic properties task in the DTS
package to set your connection object. Using the dynamic properties task allows
the DTS package to refer to the server and instance on which it is running. You
do not need to modify each task or connection when the DTS package runs on a
different computer.

Choose among the client redirection mechanisms discussed above to redirect client
network traffic to a promoted secondary server and to allow DTS tasks to execute
properly on the promoted secondary server.

SQL Server 2000 High Availability — Volume 1: Planning68

Choosing Among the Technology Solutions
The cost of the high-availability solution, the complexity of its setup and adminis-
tration, the ease of failover and failback, and the transparency of failover and failback
to clients determine the appropriate high-availability solutions for a data center. The
choice of operating system and edition of SQL Server affects which high-availability
options are available. Failover clustering and built-in log shipping require SQL
Server 2000 Enterprise Edition. NLB requires Windows 2000 Advanced Server
or Windows 2000 Datacenter Server.

When choosing among these high-availability solutions, consider failover clustering
first. Failover clustering provides simple, quick, automatic, and transparent failover,
guaranteeing that no transactions are lost when a server fails. The hardware and
software required to set up failover clustering is relatively expensive, however.
In many environments, the direct and indirect costs resulting from data center
unavailability justify the cost of this solution. Failover clustering does not protect
against site destruction without the use of a third-party stretch cluster solution,
which is expensive and complex. For some environments, such as e-commerce
solutions, however, stretch clustering can be justified.

If you do not need automatic failover and cannot justify the cost of failover clustering,
log shipping is the most appropriate solution. Log shipping does not require
expensive hardware, and setting it up is relatively simple. Log shipping is designed
for high availability, and changing server roles in log shipping is easier than
changing server roles in transactional replication. Log shipping is also an appropriate,
inexpensive solution to protect a data center against site destruction when remote
failover clustering cannot be justified.

If you want to use a secondary server for reporting or routine maintenance tasks
and offload these tasks from the primary server for performance, you can do
one of the following:
� Increase the log shipping latency to enable a log shipping standby server to be

used for reporting or maintenance tasks. Increasing the latency,
however,decreases the availability of the data center by increasing the time
required to recover the standby database if the primary server fails.

� Maintain two log shipping standby servers, using one for reporting and main-
tenance tasks and the other for high availability.

� Use transactional replication as the high-availability solution.

To minimize the impact of a failover or a role change to a client, use failover
clustering. If you cannot justify the cost of this solution, incorporate intermediate
mechanisms, such as NLB, DNS, or COM+ components.

Chapter 5: Minimizing Downtime by Using Redundant Servers 69

Summary
To overcome each barrier to high availability, you must perform an analysis and
determine the best solution. No one solution will overcome all of the barriers to
high availability. You must use a combination of well-documented policies and
procedures, well-designed client applications, regular database backups, redundant
hardware, and redundant servers. You must weigh the cost of overcoming a barrier
against the cost of not overcoming that barrier when you determine the appropriate
solution. When evaluating a solution, be sure that the solution resolves the barrier
it was intended to solve. For example, implementing failover clustering does not
solve downtime caused by database corruption or user error.

After you have determined the appropriate server redundancy solution for a data
center, use the accompanying Solution Guide to implement the solution.

Appendix
Contents of a Run Book

A run book should contain all of the information you and your staff need to perform
day-to-day operations and to respond to emergency situations. This information
should include the following:
� Resource information about the data center and its hardware and software
� Process information, including step-by-step procedures for operational and

emergency processes

The run book should contain all necessary information to enable a staff member
to perform any process, from performing a backup to failing over to a remote site.

Resource Information
The run book should contain the following types of detailed resource information
to help your staff perform routine operational tasks and respond quickly and
efficiently to data center emergencies:
� Contact information — Detailed information about each database administrator

(DBA), the building facilities staff, utility companies, and all hardware and
software vendors

� Hardware components — Detailed information about hardware components
of the data center

� Software components — Detailed information about software components
of the data center

Keeping this critical resource information current and readily available to your staff
reduces downtime when disaster strikes.

SQL Server 2000 High Availability — Volume 1: Planning72

Contact Information
Record detailed information regarding each individual or company that you or
your staff may need to contact in an emergency. This detailed contact information
should include the following:
� Contact information for each DBA at the primary site, including his or her role

in the operational and disaster recovery process
� Contact information for the building facilities staff, the power company,

the phone company, and other applicable utilities companies
� Contact information for your remote site, if you have one, and for all DBAs

at that site
� Hardware, software, and service vendor support phone numbers, e-mail

addresses, account numbers, and login and password information for related
Web sites

� Contact information for other server applications on the server, including
developers, analysts, testers, and managers affected by a change to the
application, related systems, or processes

In addition, record any additional contact information that might be useful in
troubleshooting and repairing the data center, such as useful e-mail discussion
lists and Web sites.

Hardware Components
Record detailed information regarding each hardware component in the data center,
including the following:
� Server hardware

� Model and serial number
� Brand and speed of the processor
� Amount and configuration of memory
� Version of the BIOS
� Dates and version numbers of firmware
� NIC cards, including their vendors and model numbers
� SCSI host adapter or fiber channel cards, including their vendors and model

numbers
� Local storage hardware

� Type, size, and number of drives, including cache if any
� Logical disk configuration

Appendix: Contents of a Run Book 73

� RAID levels
� Disk controller information (including write cache settings)
� Dates and versions of firmware for drives and controllers
� Special options used, such as allocation units

� Disk arrays and storage area networks
� Vendor and model
� Type, size, and number of drives, including cache if any, and controller

to which the disk is connected
� Logical disk configuration
� RAID level
� Number of controllers and number of channels
� Disk controller information (including write cache settings)
� Dates and versions of firmware for drives and controllers
� Special options used, such as allocation units

In addition, record all additional information about the data center hardware
that might be useful in troubleshooting and repairing the data center. For example,
record a map of the physical wiring of specific drives to specific array controllers.

Software Components
Record detailed information about each software component in the data center:
� All software

� Serial numbers and/or license keys
� The network share location for all software installed on the server, including

all service packs, hardware drivers, and hot fixes
� The onsite and offsite location of all software CDs, including license keys

and serial numbers
� The location of the written documentation for all software

� Windows 2000
� Operating system version, with service pack level and hot fixes
� Server name, IP address, and role in the domain
� Customized settings, including terminal server and registry settings
� Information on related systems, including contacts, configuration information,

and documentation of data interfaces
� Local administrator account name and password

SQL Server 2000 High Availability — Volume 1: Planning74

� MSCS
� Cluster configuration, including all cluster IP addresses, cluster name, cluster

nodes, and cluster resource groups
� User accounts authorized to administer the cluster

� Microsoft® SQL Server™
� Installation information, including service pack levels, hot fixes, instance

names, server collation, ports, pipes, configuration options, virtual IP name
and address, database file locations, file groups, service logins and passwords,
e-mail account, and enabled network protocols

� Information about file shares used by the SQL Server and SQL Server Agent
service accounts and the associated permissions on those shares

� Database collations if different from the server collation
� Server roles, database schemas, user accounts, permissions, database roles,

custom error messages, and the location of scripts to recreate these objects
� List of all automated SQL Server Agent jobs (specifically including all backup

jobs), what they do, who is notified, their corresponding code for each job step,
the time or times they run, and the location of scripts to recreate the jobs

� List of all alerts, what they do, the associated error number or performance
condition, who is notified, and the location of scripts to recreate the alerts

� Linked server, remote server, replication, and log-shipping configuration
information

� Distributed database and distributed partition information, including
information such as Data Dependent Routing Tables and distributed
transaction marks

� List and location of all DTS Packages, including associated login and password
information

� List, location, and purpose of all custom code that runs on the server,
and the location of a backup copy of this code

� Names and locations of client tools installed to connect to remote database
connections (for example, to heterogeneous data sources), and necessary
configuration and connection information

� List of additional features in use and relevant configuration information,
such as Extensible Markup Language (XML) support for Internet Informa-
tion Services (IIS), Active Directory® service support, and Data Source
Names (DSNs)

� Analysis Services
� Data source and transfer information, including all associated jobs
� Location and storage format of the Analysis Services repository

Appendix: Contents of a Run Book 75

� Analysis Services repository backup job information and storage location
� Location of data files
� Security architecture, including logins, database roles, and cube roles

In addition, record all additional information about the software that might be
useful in troubleshooting and repairing the data center. For example, record the
staff members who are most familiar with custom applications.

Procedural Information
Develop and document procedures for each operational and emergency task that
you and your staff perform. Whenever possible, develop Transact-SQL scripts for
each of these tasks and automate the execution of these scripts by using SQL Server
jobs or DTS packages. The procedural information should include the detailed steps
and scripts for performing the following tasks utilizing both SQL Server Enterprise
Manager and Transact-SQL scripts:

Operational Tasks
The DBA staff performs many routine operational tasks. To avoid problems, your
staff should perform these tasks by using the same procedures each time. Record
step-by-step procedures for performing each of the following types of routine
operational tasks:
� Security tasks

� Changing the domain user account and password used by SQL Server
and SQL Server Agent

� Creating new logins and database user accounts
� Changing SQL Server user passwords
� Performing standard and C2 security audits
� Scripting login information
� Scripting application roles and recording passwords
� Scripting linked or remote servers
� Restoring logins and database users to another SQL Server instance

� System administration tasks
� Starting and stopping the operating system
� Starting and stopping SQL Server services
� Changing SQL Server configuration settings
� Setting database options
� Applying SQL Server service packs

SQL Server 2000 High Availability — Volume 1: Planning76

� Changing the server name
� Manually backing up a database
� Manually backing up a transaction log

� Monitoring tasks
� Monitoring CPU usage
� Monitoring disk activity
� Monitoring memory usage
� Viewing current locks
� Viewing current activity
� Viewing the last command batch for a specified connection
� Viewing the data and log space information for a database
� Viewing the oldest active transaction in the database
� Viewing the procedure cache usage
� Viewing general statistics about SQL Server activity and usage
� Identifying and analyzing bottlenecks

� Data collection tasks
� Archiving system and application logs in the event viewer
� Archiving SQL Server error logs and SQL Server Agent logs
� Archiving SQL Server setup logs
� Archiving the cluster log file
� Archiving sqldiag.exe output
� Capturing output from sysperfinfo and sysprocesses
� Capturing output from MPS Report tool if available

� Troubleshooting tasks
� Testing TCP/IP sockets client connections
� Testing named pipes connections
� Troubleshooting deadlocks
� Troubleshooting failover clustering
� Troubleshooting replication
� Troubleshooting log shipping
� Troubleshooting MS DTC transactions
� Troubleshooting orphan users

In addition to the foregoing, add step-by-step instructions for other tasks that you
and your staff perform regularly.

Appendix: Contents of a Run Book 77

Emergency Tasks
Record the appropriate response to each type of emergency that may affect the
data center. Although the precise tasks vary depending upon the high availability
solutions implemented, have a planned and tested response to each of the following
types of emergencies:
� Natural disasters
� Power outages
� Server failures
� Hardware component failures
� User database corruption
� System database corruption
� Application failures
� Network failures
� Web server or other necessary server failures

Depending upon the high availability solutions implemented for the data center,
the detailed steps will include MSCS failover and failback steps, log-shipping role
change steps, transactional replication role change steps, and database restoration
steps. These procedures should document the process of determining when to initiate
a failover or a role change and how affected users are notified. These procedures
must include steps to verify the system’s state before bringing a restored system or
database online. They should also include escalation steps in case the first attempt
to restore availability fails.

Index

split-mirror snapshots, 35
transaction log, 33
type of, adjusting, 33

barriers to high availability, 4, 7–8
application design, 25
communication/connectivity, 15
environmental, 12
evaluating costs to overcome, 8
hardware, 14
overcoming, 11
process, 18
service, 17
software, 15
solving, with backups, 28
staffing, 26

business continuance volumes
(BCVs), 35

C
change management, 18, 22

emergency changes, 23
clones, 35
COM+ component redirection, 67
configuration management, 18, 24
contact information, 71–72
controller cards, 45
controlling temperature, 12
copy-on-write snapshots, 37

vs. split-mirror snapshots, 38
corrupted databases, 16
costs, evaluating, 8

D
data centers

access paths, multiple, 15
change management, 22
designing, 5
downtime, minimizing, 47
facility space, 13

monitoring, 21
planning maintenance, 6
recovering with backups, 27
redundant facilities, 13
security, 24
servers, configuring to send error

alerts, 20
Service Level Agreements, 17
support contracts, 17
uptime, goal for, 6
viruses, 16

data connections, redundant, 13
data disks, improving

performance of, 32
data files

multiple, 32
placement of, 46

databases
corruption, 16
recovering. See also backups
recovering, improving time for, 31
restoring, 29
restoring, recovery time for, 31

denial of service attacks, 16
designing high-availability data

centers, 5
diagnosing failures, 20
differential backups, 33
disaster recovery

script library for, 19
testing, 19

disk arrays, 32
external, advantages of, 42
external, controller cards for, 45
managing, 42

disk backup devices, 32
disk redundancy, remote mirror

solutions for, 43
distribution agent, 62
DNS redirection, 66

A
access, restricting, 16
alert messages, 21
alternate server list in client

application, 66
application design, overcoming

bad, 25
application errors, 29
application errors, recovering

with copy-on-write snapshots, 37
with split-mirror snapshots, 35

applications, client, alternate server
list in, 66

auditing security, 21
availability, evaluating tasks for

effect on, 23

B
backup alert, log shipping, 55
backup devices, 32
backup systems, 13
backup-and-recovery solutions

developing, 30
third-party, 34

backups
differential, 33
filegroup, 34
frequency of, adjusting, 33
full, frequency of, 33
full/differential, 30
recovering data centers with, 27
snapshot, 34
snapshot, combining with other

snapshots, 34
snapshot, copy-on-write, 37
snapshot, copy-on-write vs. split-

mirror, 38
snapshot, split-mirror, 35
solving high availability barriers

with, 28

Index80

DNS servers, 15
documentation, 18

in run books, 75
domain controllers, 15
DOS attacks, 16
downtime

minimizing, with redundant
servers, 47

preventing, with hardware, 41
scheduled, 6

drive letters, standardizing, 24
DTS packages, 67
duplexing, 44

E
educating staff, 26
emergency changes, managing, 23
emergency tasks, in run books, 77
environmental barriers, 12
errors

application. See application errors
user. See user errors

evaluating costs, 8
external disk arrays

advantages of, 42
controller cards for, 45

F
failover clustering, 45

advantages of, 51
architecture, 48
as preferred solution, 68
automatic, 51
disadvantages of, 52
vs. log shipping, 52
maintaining redundant servers

with, 48
proximity requirement, 52
transparency, 51

failures, diagnosing, 20
FibreChannel vs. SCSI, 42
filegroup backups, 34
fire suppression systems, 12
firewalls

log shipping and, 57
transactional replication and, 63

floors, raised, 12

H
hard-disk failures, 28
hardware

compatibility, checking, 14
compression, enabling, 33
information in run books, 72
quality, importance of, 14
redundancy, 41
server-class, 41
up-to-date, importance of, 14

HCL, 14
high availability, 1, 4

achievable levels of, 6
barriers to. See barriers to high

availability
benefits of, 1
choosing solutions, 68
designing for, 5
recovery point vs. recovery

time, 5
setting goals for, 5
solutions, determining/

evaluating, 9
value, establishing, 5

humidity controls, 12

I
identifying stakeholders, 5
If SQL Server Agent is not running,

the data-cente, 24
incident management, 18, 19

L
log analyzers, 30
log files, placement of, 46
log reader agent, 62
log shipping, 52

advantages of, 59
architecture, 53
backup alert, 55
configuring, 54
database synchronization, 56
disadvantages of, 59
vs. failover clustering, 52
firewalls and, 57
monitoring servers, 53
out of sync alert, 56

potential transaction loss, 59
primary server, 53
primary server, bringing back

online, 58
role changing, 57
site protection, 59
SQL logins, resolving, 58
standby servers, 53
transaction log, backing up, 57
transaction log backup copy

job, 55
transaction log backup,

copying, 57
transaction log backup job, 55
transaction log backups,

restoring, 58
transaction log restore job, 55
transparency, lack of, 60

login failures, monitoring, 21

M
maintenance

management, 18, 23
planned, 16
tasks, evaluating effect on

availability, 23
managing

configuration, 24
disk arrays, 42
emergency changes, 23
incidents, 18
maintenance, 23
planned changes, 22
processes, 18

measuring recovery time, 31
Microsoft Cluster Service.

See MSCS clusters
Microsoft Hardware Compatibility

List (HCL), 14
Microsoft Operations Framework

(MOF), 11
mirrored striping, 45
mirroring, 44
MOF, 11
monitoring

data centers, 21
login failures, 21

Index 81

MSCS clusters, 48
nodes in, 48
shared storage resource

mechanism, 50
multiple-instance clusters, 49

N
name conflicts, preventing, 25
network cards

redundant, 15, 46
teaming, 46

network load balancing, 66
networks, redundant, 15
NLB, 66

O
ODBC DSN redirection, 67
off-site storage, 13
operating systems, choosing, 68
operational tasks, in run books, 75
out of sync alert, log shipping, 56

P
performance baselines, 21
planned changes, managing, 22
power failure monitoring, 42
power supplies, redundant, 12
power-on monitoring, 42
prefailure monitoring, 42
procedures

developing, 18
documentation, 18
documenting in run book, 75

process barriers to high
availability, 18

process management, 18

Q
QA environment, establishing, 22

R
RAID, 43

implementations, popular/
common, 43

implementations, read/write
performances of, 43

mirrored striping, 45
mirroring, 44
striped mirroring, 44
striping, 43
striping with distributed

parity, 44
raised floors, 12
recovering

data centers, with backups, 27
databases, 29. See also backups
databases, improving time for, 31

recovery point vs. recovery time, 5
recovery time

improving, 31
total, measuring, 31

redirecting traffic to secondary
server, 65

redirection, 67
redundant

data center facilities, 13
data connections, 13
hardware, 41
network cards, 15, 46
networks, 15
power supplies, 12
power system, 12
servers, maintaining with

failover clustering, 48
servers, maintaining with log

shipping, 52
servers, maintaining with

transactional replication, 60
servers, minimizing downtime

with, 47
solutions, 14
storage subsystems, 42

redundant array of independent
disks. See RAID

remirroring, 35
remote mirror solutions, 43
response time, reducing, 20
restoring databases, 29

recovery time for, 31
restricting access, 16
rotating staff roles, 26
run book

accessibility of, 19

contact information in, 72
emergency task information in, 77
hardware component

information in, 72
maintaining off-site copy, 19
operational tasks in, 75
procedural information in, 75
resource information in, 71
software information in, 73
updating, 19

run books, 71

S
scheduled downtime, 6
script libraries, 19
SCSI controllers, separate, 32
SCSI vs. FibreChannel, 42
searching Microsoft Hardware

Compatibility List, 14
security, 13, 24

audits, 21
server-class hardware, 41
servers, 60

configuring to send error
alerts, 20

failure, diagnosing, 20
hard-coding names,

why not to, 25
performance baselines, 21, 25
redirecting traffic to

secondary, 65
redundant, maintaining with

failover clustering, 48
redundant, maintaining with log

shipping, 52
redundant, minimizing

downtime with, 47
security, 24
virtual. See virtual servers

service barriers to high
availability, 17

Service Level Agreements (SLAs), 17
service packs, why not to code for

specific level of, 25
services, 24
single-instance clusters, 49
SLAs. See Service Level

Agreements (SLAs)

Index82

snapshot agent, 62
snapshot backups, 34

combining with other backups, 34
copy-on-write, 37
copy-on-write vs. split-mirror, 38
split-mirror, 35
split-mirror, advantages and

disadvantages, 36
software

barriers to high availability, 15
failures, 15
information in run books, 73
planned maintenance, 16
upgrades, 16

split-mirror snapshots, 35
advantages and

disadvantages, 36
vs. copy-on-write snapshots, 38

SQL Server
automatic recovery, 51
edition, choosing, 68
failures of, 15
maintenance, planned, 16
multiple-instance clusters, 49
multiple-instance clusters,

assessing need for, 50
resources mechanism, 50

restricting access, 16
services, 24
single-instance clusters, 49
user error, 16
virtual servers, 49

staffing, 26
stakeholders, identifying, 5
standardizing drive letters, 24
storage, ensuring sufficient, 14
storage subsystems

failures of, 28
redundant, 42

striped mirroring, 44
striping, 43
striping with distributed parity, 44
support contracts, 17

T
tasks, evaluating for effect on

availability, 23
temperature controls, 12
testing disaster recovery plans, 19
torn pages, 28
transaction log backups, 33
transactional replication, 60

advantages, 64
architecture, 60

database synchronization, 62
disabling replication, 63
disadvantages, 65
firewalls and, 63
role changes, 63–64
server roles, 61
SQL Server logins, resolving, 63
transparency, lack of, 65

U
updating run book, 19
upgrades, planning, 16
user errors, 16, 29

recovering, with copy-on-write
snapshots, 37

recovering, with split-mirror
snapshots, 35

V
Virtual Device Interface

for Backup (VDI), 34
virtual servers, 49, 50
viruses, 16

W
write caching, 45

	Front Cover
	Contents
	Preface
	System Requirements
	Document Conventions
	Acknowledgments

	Chapter 1- Introduction to High Availability
	Microsoft SQL Server 2000 High Availability Series
	Planning Guide
	Solution Guide

	Understanding High Availability
	Designing a High-Availability Data Center
	Setting High-Availability Goals
	Identifying and Analyzing Barriers to High Availability
	Determining and Evaluating High-Availability Solutions

	Chapter 2 - Overcoming Barriers to High Availability
	Overcoming Environmental Barriers
	Overcoming Hardware Barriers
	Overcoming Communication and Connectivity Barriers
	Overcoming Software Barriers
	Overcoming Service Barriers
	Overcoming Process Barriers
	Process Management
	Incident Management
	Change Management
	Maintenance Management
	Configuration Management

	Overcoming Application Design Barriers
	Overcoming Staffing Barriers

	Chapter 3 - Recovering a Data Center by Using Database Backups
	Solving High-Availability Barriers Using Backups
	Storage Subsystem Failure
	Application or User Errors

	Developing a Backup-and-Recovery Solution
	Measuring Total Recovery Time
	Improving Total Recovery Time

	Using a Third-Party Backup-and-Recovery Solution
	Using Snapshots to Improve the Recovery Time
	Using Third-Party Solutions to Increase Functionality

	Chapter 4 - Preventing Downtime by Using Redundant Components
	Using Server-Class Hardware
	Using a Redundant Storage Subsystem
	RAID
	Controller Cards
	Data and Log File Placement

	Using Redundant Network Cards

	Chapter 5 - Minimizing Downtime by Using Redundant Servers
	Using Failover Clustering to Maintain a Redundant Server
	Failover Clustering Architecture
	Failover Clustering Advantages
	Failover Clustering Limitations and Disadvantages

	Using Log Shipping to Maintain a Redundant Server
	Log Shipping Architecture
	Firewall Considerations
	Log Shipping Role Change
	Log Shipping Advantages
	Log Shipping Limitations and Disadvantages

	Using Transactional Replication to Maintain a Redundant Server
	Transactional Replication Architecture
	Firewall Considerations
	Transactional Replication Role Change
	Transactional Replication Advantages
	Transactional Replication Limitations and Disadvantages

	Redirecting Client Network Traffic to a Promoted Secondary Server
	Choosing Among the Technology Solutions
	Summary

	Appendix - Contents of a Run Book
	Resource Information
	Contact Information
	Hardware Components
	Software Components

	Procedural Information
	Operational Tasks
	Emergency Tasks

