8051 IAR Assembler

Reference Guide

for the
8051 Microcontroller Family

COPYRIGHT NOTICE
© Copyright 1991-2004 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of AR
Systems. The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR, IAR Embedded Workbench, IAR XLINK Linker, IAR XAR Library Builder, IAR
XLIB Librarian, IAR MakeApp, and IAR PreQual are trademarks owned by IAR
Systems. C-SPY is a trademark registered in Sweden by IAR Systems. IAR
visualSTATE is a registered trademark owned by IAR Systems.

Intel is a registered trademark of Intel Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
7th edition: February 2004

Part number: A8051-7
This guide applies to version 6.x of the 8051 IAR Embedded Workbench™ IDE.

Contents

TaADIES ..o e vii
PrEface ... ix
Who should read this guide ... ix

How to use this guide ... ix
What this guide contains ... X
Other documentation ... X
Document conventions ... xi
Introduction to the 8051 IAR Assembler ..., 1
SoUrce fOrMALocoooii s 1
Assembler eXpressions ... 2

TRUE and FALSEccoooiiiieeceeeeeeee e 2

Using symbols in relocatable eXpressionsccceceeveeveeviecvenienenenne 2

SYMDOIS ..ottt s 3

LabELS .ottt 3

INLEZET CONSLANLS ...evveeiiiieiieieeteet ettt ettt 3

ASCII character CONSLANEScoeevereeeerienierenienenrinreeeeeeeeresenesnennes 4

Floating-point CONSLANLSc..coverververrerrereeieieierenrenente et 4

Predefined symbolscocoovieriiniiiiiiieieee e 5
Programming hints ... 7
Accessing special function re@iSterseceveevverereneneneneneneenenn 7

Using C-style preprocessor dir€CtiVeseeveerveereeenernieereeniuenieeninenns 7

Using JIMP and CALL ...cc.coccoiiiiiriiicieiciceneeeeeeteeeeeeeecne e 7

Upgrading from previous versions of the assembler 8
AsSemMbIEr OPLIONS ... 9
Setting command line options ... 9
Extended command line fileccccocvviiiiiiiiiiiinininiciiiincci 9

EITOI TETUIN COUESevviiiiiiniiiinieniinieriert ettt 10

Assembler environment variablescoceeveeeeienienieneneneneseeenen 10

Summary of assembler options ... 11

Descriptions of assembler options ..., 12

Assembler OPErators ... 23
Precedence of operators ... 23
Summary of assembler operatorsccoocccnvnincnicnennns 23

Unary Operators — 1cc.ecvevierenenineninineeteteeeretesresiesie e 23
Multiplicative arithmetic Operators — 2ccceeceeeeeeieneenienenereennens 24
Additive arithmetic Operators — 3ccoceveereereeneeneenieeieeie e 24

Shift OPErators — 4c.cocveiiiiiriirienenereeeeee ettt 24

AND OPETators — 5eoruieiiiiieiieieeeete ettt 24

OR OPEIAtOrS — O ...ooviiiiiiieiieieeieeie ettt st 24
ComPpParisOn OPETALOTS — 7 .c..evueeueeueerieieriententenienieeeeeesteeeseeeeseeneenneas 25
Description of operators ... 25
Assembler dir€CtiVes ... 37
Summary of assembler directives ... 37
SYNtaX CONVENLIONScoooveiiiieiiee et 41
Labels and COMMENLSccccoueruereirrininineniinenieeeeeet et 42
Parameterscoceeverienienierieeee e 42
Module control directives ..o, 42
SYNLAX ettt ettt ettt et be st besaesae e 43
Parameterscoceeieeieiienienieeeecce e 43
DESCTIPLION ...eveveiiiieiiiieientenieste sttt ettt ettt sae e ene e 43
Symbol control directives ... 45
SPNLAX vttt sttt sttt ettt et et e b et e be st sbesbesbenae 46
Parameterscoccoveveriririninieteiieeetete ettt 46
DESCIIPHON .ottt 46

EXAMPIES ..ot 47
Segment control directives ... 47
SYNLAX ©eviririieiieieeitetet ettt sttt sttt et ettt ettt et be st e besbesee e 47
Parametersccccooiiiiiiiiiiii 48
DESCTIPLION ..eveevieiiieititcientente ettt ettt e ene e 49
EXAMPIES ...ttt 50
Value assignment directives ..., 52
SYNTAX vttt sttt ettt ettt ettt et nesae st sresae et 52

8051 IAR Assembler
Reference Guide

Contents °

DESCIIPHON .euviiiiieieeiieietee ettt s
EXAMPIES .oneiiiiiiiiiiieeee e

C-style preprocessor directives ...

SYNLAX vttt sttt ettt st sbee st e e b b et s saeesaeenaeens
Parameterscocooevviviinininiiiiicicce e 78
DESCTIPLION ...eveeviiiiieiieiciententerte sttt ettt eae e 79
EXAMPIES ..ottt 80
Data definition or allocation directives ... 81
SYNTAX vttt ettt ettt ettt bbb st sae b saeebeeneene 82
Parameterscocueeieeieiienienieeee e 82
DESCIIPHONS ...eeeieiiiiieiieieeteee sttt sttt 82
EXQAMPIES ..ottt 82

vi

SYNLAX 1ottt sttt ettt ettt e st e st et st st st et e naeens 84
Parameterscocevevieriiririnirteteitee ettt 84
DESCIIPHON .ttt 84
EXAMPIES .onviiiiiiiiiiieeete e 84
Compiler function directives ... 87

DESCIIPHON .ttt ettt 87

Call frame information directives ..o, 87

SYNLAX ©eviviiiieiieitetetet ettt sttt ettt ettt ettt et snesresresaesre e 88

Parameterscoeeererenininieieeeeee s 89

DESCIIPHONS ...eeuvieiiiiieieeieee ettt sttt 90

SIMPLE TUIES .ottt 94

CFI @XPIESSIONS ..euverververnieieenieietetententestesrestesieeiteteteaeseensesseseesseasens 96

EXAMPIE ..o 98

Assembler diagnostiCs ... 101
Severity levels ...

Assembly warning messages ...

Command line error messages

ASSEMDIY EITOT MESSAZES ..vevvverrenrerreeierieetertesresieesteesieeieenseesenns 101

Assembly fatal €ITor MESSAZEScvevvervirverrirrieieieienienie e 101

Assembler internal eIror MESSAZESeeveevreurerverierierienereneneeeeeens 101

Error messages ... 102
General EITOT MESSAZESveververrerrerierreerieeeeeiensenrensessesseeseessesensenee 102

8051-Specific eITOr MESSAZES ...c.eeuvemrerrereerieeeniintinreeieeteeteeeeeeaeeeens 108

Warning MESSAZEScocoiuviiirieiniciniieeeeeeisee ettt 110
GENETAL ... e 110

8051-specific Warning mMeSSAZEScovevuerverrerrerrenrerenenereeeeeeneens 111

INAEX s 113

8051 IAR Assembler
Reference Guide

Tables

1: Typographic conventions used in this UIAEc..cccevverrerriereinenininirieeeeceee xi
2: Integer CONStANt TOIMNALSc.evvererierierieieieieie ettt ettt ettt et ettt et see b enean 4
3: ASCII character constant fOrmatscceeerereririninieieeeieresese e eeeeneene 4
4: Floating-POiNt CONSTANLSecvertirrirreererrenieeiieteteiestestesteseessesseeseeseeeensentensensessessennes 5
5: Predefined symbols

6: REISEr SYMDOLS ...cvviiiriiiiiiiiiiiieeiecceetceec ettt
7: Assembler e1ror retUIN COARScoueriiriiruiririnieniieietetetenteste ettt neeas 10
8: Assembler environment Variablesccoeoierieriinieninenieeeeeeee e 10
9: Assembler Options SUMIMATYc.ceueruerueruerrinrierierieieeetererestestessessessessesseeseeneeneens 11
10: Conditional LISt (=€) .eeevvvieeiieeiieeiie ettt ettt e et e v e eae e e eaaaeeanes 13
11: Controlling case sensitivity in user Symbols (-8)ccecveeververiieriieniienieneeneene 19
12: Specifying the processor configuration (-V)ccccceeeveeeeeeceernenenenenenenneeeens 20
13: Disabling assembler warnings (-W)cccccceevererenenne e 21
14: Including cross-references in assembler list file (-x) .. 22
15: Assembler direCtives SUMIMATYcccceeeueeureieietenientenenreereeseereeseeeesesessessensenne 37
16: Assembler direCtive ParameLtersccceveeverueruenienrenrenenieeretensesteseeseesiesseseseens 42
17: Module control dir€CtVEScceevieieierieieiiniiniinientteeeeereet et 42
18: Symbol control dir€CtiVEScceoererieririririeicietctetestete ettt ee 45
19: Segment CONIOl dITECHIVESccvevveruiruiriiniieiieiieteieteseerert ettt 47
20: Value assignment dir€CIVEScc.eeruerreiriieriieniieniiereete ettt st e esieene e 52
21: Conditional assembly dir€CtIVESccceevirveririiriiieienenieneneneeteeetereee e 56
22: Macro processing directives

23: Structured assembly dIirECIVEScocuerviiriirieriiinieieeie ettt 65
24: Listing coONtrol difECHIVESc.eeveieriiriiriiniiriieiieiieieeetertestesie ettt eae e 72
25: C-style preprocessor dir€CtIVESevververerrirrerririeeeierientenientesiesieeseeseeseeseeneeneens 77
26: Data definition or allocation dir€Ctivescccecevvevierienieneninenieieienienesenees 81
27: Assembler control dir€CtiVEScoevireririeieieiieieienenene et 83
28: Compiler function dir€CtivVesccoeruerueruininirieeeieietetesestente e eeeene 87
29: Call frame information dir€CtiVesccccorirueereririnieenierieenee st 87
30: Unary operators in CFI expressions

31: Binary operators in CFL @Xpressionscoccocevererererienienienenenenesreneenennenne 97

vii

32: Ternary operators in CFL eXPressSionsc.ccocevererereeieneenienenenenesseneenenene 98

33: Code sample with backtrace rows and cOlUMNScccceevverveeriienienieneeneeieeen. 99

8051 IAR Assembler
viii Reference Guide

Preface

Welcome to the 8051 IAR Assembler Reference Guide. The purpose of this
guide is to provide you with detailed reference information that can help you
to use the 8051 IAR Assembler to develop your application according to your
requirements.

Who should read this guide

You should read this guide if you plan to develop an application using assembler
language for your 8051 microcontroller and need to get detailed reference information
on how to use the 8051 IAR Assembler. In addition, you should have working
knowledge of the following:

o The architecture and instruction set of your 8051 microcontroller. Refer to the
documentation from the chip manufacturer for information about your 8051
microcontroller

o General assembler language programming

Application development for embedded systems

o The operating system of your host computer.

How to use this guide

When you first begin using the 8051 IAR Assembler, you should read the Introduction
to the 8051 IAR Assembler chapter in this reference guide.

If you are an intermediate or advanced user, you can focus more on the reference
chapters that follow the introduction.

If you are new to using the IAR toolkit, we recommend that you first read the initial
chapters of the 8051 IAR Embedded Workbench™ IDE User Guide. They give product
overviews, as well as tutorials that can help you get started.

What this guide contains

X

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

Introduction to the 8051 IAR Assembler provides programming information. It also
describes the source code format, and the format of assembler listings.

Assembler options first explains how to set the assembler options from the
command line and how to use environment variables. It then gives an alphabetical
summary of the assembler options, and contains detailed reference information
about each option.

Assembler operators gives a summary of the assembler operators, arranged in order
of precedence, and provides detailed reference information about each operator.
Assembler directives gives an alphabetical summary of the assembler directives, and
provides detailed reference information about each of the directives, classified into
groups according to their function.

Assembler diagnostics contains information about the formats and severity levels of
diagnostic messages.

Other documentation

8051 IAR Assembler
Reference Guide

The complete set of IAR Systems development tools for the 8051 microcontroller is
described in a series of guides. For information about:

Using the IAR Embedded Workbench™ and the IAR C-SPY™ Debugger, refer to
the 8051 IAR Embedded Workbench™ IDE User Guide

Programming for the 8051 IAR C/EC++ Compiler, refer to the 8051 IAR C/EC++
Compiler Reference Guide

Using the IAR XLINK Linker™, the IAR XLIB Librarian™, and the IAR XAR
Library Builder™, refer to the IAR Linker and Library Tools Reference Guide.
Using the IAR C Library, refer to the IAR C Library Functions Reference Guide,
available from the IAR Embedded Workbench IDE Help menu.

Using the Embedded C++ Library, refer to the C++ Library Reference, available
from the IAR Embedded Workbench IDE Help menu.

All of these guides are delivered in PDF or HTML format on the installation media.
Some of them are also delivered as printed books.

Preface __ 4

Document conventions
This guide uses the following typographic conventions:

Style Used for

computer Text that you enter or that appears on the screen.

parameter A label representing the actual value you should enter as part of a
command.

[option] An optional part of a command.

{fa | b | c} Alternatives in a command.

bold Names of menus, menu commands, buttons, and dialog boxes that

appear on the screen.
reference A cross-reference within this guide or to another guide.

Identifies instructions specific to the IAR Embedded Workbench
interface.

Identifies instructions specific to the command line interface.

Table 1: Typographic conventions used in this guide

Document conventions

8051 IAR Assembler
xii Reference Guide

Introduction to the 8051
IAR Assembler

This chapter describes the source code format for the 8051 IAR Assembler
and provides programming hints.

Refer to the chip manufacturer’s hardware documentation for syntax
descriptions of the instruction mnemonics.

Source format

The format of an assembler source line is as follows:
[label [:1] [operation] [operands] [; comment]
where the components are as follows:

label A label, which is assigned the value and type of the current
program location counter (PLC). The : (colon) is optional if the
label starts in the first column.

operation An assembler instruction or directive. This must not start in the
first column.
operands An assembler instruction can have zero, one, or more operands.

The data definition directives, for example DB and DCS8, can have
any number of operands. For reference information about the
data definition directives, see Data definition or allocation directives,
page 81.

Other assembler directives can have one, two, or three operands,
separated by commas.

comment Comment, preceded by a ; (semicolon).

The fields can be separated by spaces or tabs.
A source line may not exceed 2047 characters.

Tab characters, ASCII 094, are expanded according to the most common practice; i.e.
to columns 8, 16, 24 etc.

Assembler expressions

The 8051 IAR Assembler uses the default filename extensions s51, asm, and msa for
source files.

Assembler expressions

8051 IAR Assembler
2 Reference Guide

Expressions consist of operands and operators.

The assembler will accept a wide range of expressions, including both arithmetic and
logical operations. All operators use 32-bit two’s complement integers, and range
checking is only performed when a value is used for generating code.

Expressions are evaluated from left to right, unless this order is overridden by the
priority of operators; see also Precedence of operators, page 23.

The following operands are valid in an expression:

o User-defined symbols and labels.
o Constants, excluding floating-point constants.
o The program location counter (PLC) symbol, $.

The operands are described in greater detail on the following pages.

The valid operators are described in the chapter Assembler operators, page 23.

TRUE AND FALSE

In expressions a zero value is considered FALSE, and a non-zero value is considered
TRUE.

Conditional expressions return the value O for FALSE and 1 for TRUE.

USING SYMBOLS IN RELOCATABLE EXPRESSIONS

Expressions that include symbols in relocatable segments cannot be resolved at
assembly time, because they depend on the location of segments.

Such expressions are evaluated and resolved at link time, by the IAR XLINK Linker™.
There are no restrictions on the expression; any operator can be used on symbols from
any segment, or any combination of segments.

For example, a program could define the segments DATA and CODE as follows:

NAME progl
PUBLIC first
PUBLIC second
RSEG DATA
first DB 5
second DB 3
ENDMOD

Introduction to the 8051 IAR Assembler ___4

MODULE prog?2
EXTERN first
EXTERN second
RSEG CODE

MOV A, first
MOV A, first+1
MOV A,l+first
MOV A, first/second
ENDMOD
SYMBOLS

User-defined symbols can be up to 255 characters long, and all characters are
significant.

Symbols must begin with a letter, a—z or A-Z, ? (question mark), or _ (underscore).
Symbols can include the digits 0-9 and $ (dollar).

Case is insignificant for built-in symbols like instructions, registers, operators, and
directives. For user-defined symbols case is by default significant but can be turned on
and off using the Case sensitive user symbols (-s) assembler option. See page 19 for
additional information.

Notice that symbols and labels are byte addresses. For additional information, see
Generating lookup table, page 82.
LABELS

Symbols used for memory locations are referred to as labels.

Program location counter (PLC)

The assembler keeps track of the address of the current instruction. This is called the
program location counter.

If you need to refer to the program location counter in your assembler source code you
can use the $ (dollar) sign. For example:

SJIMP S ; Loop forever

INTEGER CONSTANTS

Since all IAR Systems assemblers use 32-bit two’s complement internal arithmetic,
integers have a (signed) range from -2147483648 to 2147483647.

Constants are written as a sequence of digits with an optional - (minus) sign in front to
indicate a negative number.

Assembler expressions

8051 IAR Assembler
4 Reference Guide

Commas and decimal points are not permitted.

The following types of number representation are supported:

Integer type Example

Binary 1010b,b'1010

Octal 1234qg,g'1234

Decimal 1234,-1,d4'1234
Hexadecimal OFFFFh, OXFFFF, h' FFFF

Table 2: Integer constant formats

Note: Both the prefix and the suffix can be written with either uppercase or lowercase
letters.

ASCIl CHARACTER CONSTANTS

ASCII constants can consist of between zero and more characters enclosed in single or
double quotes. Only printable characters and spaces may be used in ASCII strings. If the
quote character itself is to be accessed, two consecutive quotes must be used:

Format Value

'ABCD' ABCD (four characters).

"ABCD" ABCD'\0' (five characters the last ASCII null).
'A"B' A'B

TAT A

"' ' (4 quotes) '

' ' (2 quotes) Empty string (no value).

Empty string (an ASCII null character).
\ !
\ \

Table 3: ASCII character constant formats

FLOATING-POINT CONSTANTS

The 8051 IAR Assembler will accept floating-point values as constants and convert
them into IEEE single-precision (signed 32-bit) floating-point format or fractional
format.

Floating-point numbers can be written in the format:

[+]|-1[digits].[digits] [{E|e}[+]|-]1digits]

Introduction to the 8051 IAR Assembler ___4

The following table shows some valid examples:

Format Value

10.23 1.023 x 10’
1.23456E-24 1.23456 x 1024
I.0E3 1.0 x 103

Table 4: Floating-point constants
Spaces and tabs are not allowed in floating-point constants.

Note: Floating-point constants will not give meaningful results when used in
expressions.

PREDEFINED SYMBOLS

The 8051 IAR Assembler defines a set of symbols for use in assembler source files. The
symbols provide information about the current assembly, allowing you to test them in
preprocessor directives or include them in the assembled code. The strings returned by
the assembler are enclosed in double quotes.

The following predefined symbols are available:

Symbol Value

__DATE__ Current date in dd/Mmml/yyyy format (string).

__FILE__ Current source filename (string).

__IAR_SYSTEMS_ASM_ _ IAR assembler identifier (number).

__LINE__ Current source line number (number).

__TID__ Target identity, consisting of two bytes (number). The high

byte is the target identity, which is 32 (0x20) for A8051.
The low byte is the processor option *16.
The following values are therefore possible:

-v0 0x2000

-vl 0x2010

-v2 0x2020
__TIME__ Current time in hh :mm: ss format (string).
__VER__ Version number in integer format; for example, version

4.17 is returned as 417 (number).

Table 5: Predefined symbols

Notice that __TID__ is related to the predefined symbol __TID__ in the 8051 [AR

C/EC++ Compiler. It is described in the 8051 IAR C/EC++ Compiler Reference Guide.

Assembler expressions

8051 IAR Assembler
6 Reference Guide

Including symbol values in code

There are several data definition directives provided to make it possible to include a
symbol value in the code. These directives define values or reserve memory. To include
a symbol value in the code, use the symbol in the appropriate data definition directive.

For example, to include the time of assembly as a string for the program to display:

RSEG DATA

td DB __TIME__,",",__DATE__,0 ; time and date
RSEG CODE
EXTERN printstring

main
MOV A, td ; load address of string
MOV R1,A
LCALL printstring ; routine to print string
RET

Testing symbols for conditional assembly

To test a symbol at assembly time, you can use one of the conditional assembly
directives. These directives let you control the assembly process at assembly time.

For example, in a source file written for use on any one of the 8051 family members,
you may want to assemble appropriate code for a specific processor. You could do this
using the __TID__ symbol as follows:

#define TARGET ((__TID__& Ox0F00)>>4)
#if (TARGET==0x02)

#else
#endif
See Conditional assembly directives, page 56.

Register symbols

This table shows the existing predefined register symbols:

Register symbol Addressing Description

RO-R7 8-bit Data registers

A 8-bit Data register

B 8-bit Data register or SFR address of register B

ACC 8-bit SFR address of register A

Table 6: Register symbols

Introduction to the 8051 IAR Assembler ___4

Register symbol Addressing Description

DPL 8-bit SFR address of the low part of register DPTR

DPH 8-bit SFR address of the high part of register DPTR

PSW 8-bit SFR address of register PSW (program status word)

Table 6: Register symbols (Continued)

Programming hints

This section gives hints on how to write efficient code for the 8051 IAR Assembler. For
information about projects including both assembler and C or Embedded C++ source
files, see the 8051 IAR C/EC++ Compiler Reference Guide.

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for a number of 8051 derivatives are included in the IAR product
package, in the \ 8051\ inc directory. These header files define the processor-specific
special function registers (SFRs) and interrupt vector numbers.

The header files are intended to be used also with the 8051 IAR C/EC++ Compiler, and
they are suitable to use as templates when creating new header files for other 8051
derivatives.

If any assembler-specific additions are needed in the header file, these can be added
easily in the assembler-specific part of the file:

#ifdef __TIAR_SYSTEMS_ASM__
(assembler-specific defines)
#endif

USING C-STYLE PREPROCESSOR DIRECTIVES

The C-style preprocessor directives are processed before other assembler directives.
Therefore, do not use preprocessor directives in macros and do not mix them with
assembler-style comments.

USING JMP AND CALL

JMP is a pseudo mnemonic which is expanded to the smallest possible of the instructions
SJMP, AJMP, or LJMP. If the expression is unresolved, the assembler expands JMP to
LJMP, because that instruction can reach the entire address space. Likewise, CALL is a
pseudo mnemonic which is expanded to the smallest possible of the instructions ACALL
or LCALL. If the expression is unresolved, the assembler expands CALL to LCALL,
because that instruction can reach the entire address space.

Upgrading from previous versions of the assembler

For this reason, we recommend that you decide which instruction that you need, and do
not use JMP or CALL unnecessarily.

Upgrading from previous versions of the assembler

8051 IAR Assembler
8 Reference Guide

The current version of the 8051 IAR C/EC++ Compiler has been completely rewritten
to achieve a substantial increase in code efficiency. Because of this, the assembler
interface to C functions has been changed and is incompatible with version 5 and earlier
in object code.

However, the new assembler is source code compatible with previous versions.
Reassembled source code can be used together with version 6 or later of the 8051 IAR
Assembler. Note, however, that the byte order has been changed from big-endian to
little-endian.

Assembler options

This chapter first explains how to set the options from the command line, and
gives an alphabetical summary of the assembler options. It then provides
detailed reference information for each assembler option.

The 8051 IAR Embedded Workbench™ IDE User Guide describes how to set
assembler options in the IAR Embedded Workbench, and gives reference

information about the available options.

Setting command line options

To set assembler options from the command line, you include them on the command
line, after the 28051 command:

a8051 [options] [sourcefile]l [options]
These items must be separated by one or more spaces or tab characters.

If all the optional parameters are omitted the assembler will display a list of available
options a screenful at a time. Press Enter to display the next screenful.

For example, when assembling the source file power2.s51, use the following
command to generate a list file to the default filename (power2.1st):

a8051 power2 -L

Some options accept a filename, included after the option letter with a separating space.
For example, to generate a list file with the name 1ist.1lst:

a8051 power2 -1 list.lst

Some other options accept a string that is not a filename. This is included after the option
letter, but without a space. For example, to generate a list file to the default filename but
in the subdirectory named 1ist:

a8051 power2 -Llist\

Note: The subdirectory you specify must already exist. The trailing backslash is
required because the parameter is prepended to the default filename.
EXTENDED COMMAND LINE FILE

In addition to accepting options and source filenames from the command line, the
assembler can accept them from an extended command line file.

Setting command line options

10

8051 IAR Assembler
Reference Guide

By default, extended command line files have the extension xc1, and can be specified
using the - £ command line option. For example, to read the command line options from
extend.xcl when assembling the file source.s51, enter:

a8051 source.s51 -f extend.xcl

ERROR RETURN CODES

When using the 8051 IAR Assembler from within a batch file, you may need to
determine whether the assembly was successful in order to decide what step to take next.
For this reason, the assembler returns the following error return codes:

Return code Description

0 Assembly successful, warnings may appear

1 There were warnings (only if the -ws option is used)
2 There were errors

Table 7: Assembler error return codes

ASSEMBLER ENVIRONMENT VARIABLES

Options can also be specified using the ASM8051 environment variable. The assembler
appends the value of this variable to every command line, so it provides a convenient
method of specifying options that are required for every assembly.

The following environment variables can be used with the 8051 IAR Assembler:

Environment variable Description

ASM8051 Specifies command line options; for example:
set ASM8051=-L -ws

AB8051_INC Specifies directories to search for include files; for example:
set A8051_INC=c:\myinc\

Table 8: Assembler environment variables

For example, setting the following environment variable will always generate a list file
with the name temp.1lst:

ASM8051=-1 temp.lst

For information about the environment variables used by the AR XLINK Linker and
the IAR XLIB Librarian, see the [AR Linker and Library Tools Reference Guide.

Assembler options __¢

Summary of assembler options

The following table summarizes the assembler options available from the command

line:

Command line option

Description

-B
-b

-c{SDMEAO}

-Dsymbol [=value]

-d

-Enumber

-f filename

-G
-Iprefix
-i

-L[prefix]

-1 filename

-Mab
-N
-n

-Oprefix

-o filename

-plines
-r

-S
-s{+]|-}
-T

-tn
-Usymbol
-v[0]1]2]

-w[string] [s]

-X

-x{DI2}

Macro execution information

Makes a library module

Conditional list

Defines a symbol

Disable #ifdef/#endif matching
Maximum number of errors
Extends the command line

Opens standard input as source
Includes paths

Lists #included text

Lists to prefixed source name

Lists to named file

Macro quote characters

Omit header from assembler listing
Enables support for multibyte characters
Sets object filename prefix

Sets object filename

Lines/page

Generates debug information

Sets silent operation

Case sensitive user symbols

Active lines only

Tab spacing

Undefines a symbol

Processor configuration

Disables warnings

Unreferenced externals in object file

Includes cross-references

Table 9: Assembler options summary

Descriptions of assembler options

12

Descriptions of assembler options

8051 IAR Assembler
Reference Guide

-B

The following sections give full reference information about each assembler option.

-B

Use this option to make the assembler print macro execution information to the standard
output stream on every call of a macro. The information consists of:

o The name of the macro

e The definition of the macro

o The arguments to the macro

e The expanded text of the macro.

This option is mainly used in conjunction with the list file options -L or -1; for
additional information, see page 16.

This option is identical to the Macro execution info option on the List page in the
A8051 category in the IAR Embedded Workbench.

-b

This option causes the object file to be a library module rather than a program module.
A program module is always included during linking. A library module will only be
included if it is referenced in your application.

By default, the assembler produces a program module ready to be linked with the [AR
XLINK Linker. Use the -b option if you instead want the assembler to make a library
module.

If the NAME directive is used in the source (to specify the name of the program module),
the -b option is ignored, i.e. the assembler produces a program module regardless of the
-b option.

This option is identical to the Make library module option on the Output page in the
A8051 category in the IAR Embedded Workbench.

-c{SDMEAO}

Use this option to control the contents of the assembler list file. This option is mainly
used in conjunction with the list file options -L and -1; see page 16 for additional
information.

Assembler options __¢

The following table shows the available parameters:

Command line option Description

-cS No structured assembler list
-cD Disable list file

-cM Macro definitions

-cE No macro expansions

-cA Assembled lines only

-cO Multiline code

Table 10: Conditional list (-c)

This option is related to the Qutput list file option on the List page in the A8051
category in the IAR Embedded Workbench.

-Dsymbol [=value]

Use this option to define a preprocessor symbol with the name symbo1l and the value
value. If no value is specified, 1 is used.

The -D option allows you to specify a value or choice on the command line instead of
in the source file.

Example

For example, you could arrange your source to produce either the test or production
version of your program dependent on whether the symbol TESTVER was defined. To do
this, use include sections such as:

#ifdef TESTVER

.. ; additional code lines for test version only
#endif
Then select the version required in the command line as follows:

Production version: a8051 prog
Test version: a8051 prog -DTESTVER

Alternatively, your source might use a variable that you need to change often. You can
then leave the variable undefined in the source, and use -D to specify the value on the
command line; for example:

a8051 prog -DFRAMERATE=3

This option is identical to the Defined symbols option on the Preprocessor page in the
A8051 category in the IAR Embedded Workbench.

Descriptions of assembler options

-d -d
Allows unmatched #ifdef .. #endif statements to be used without causing an error.

The checks for #ifdef .. #endif matching are performed for each module, and a
#endi £ outside modules will therefore normally generate an error message. Use this
option to turn checking off.

Example
This allows you to write constructs such as:

#ifdef Versionl
MODULE M1
NOP
ENDMOD
#endif
MODULE M2

etc

This option is identical to the Disable #ifdef/#endif matching option on the Language
page in the A8051 category in the IAR Embedded Workbench.

-E -Enumber
This option specifies the maximum number of errors that the assembler will report.

By default, the maximum number is 100. The -E option allows you to decrease or
increase this number to see more or fewer errors in a single assembly.

-f -f filename

This option extends the command line with text read from the file named extend.xc1.
Notice that there must be a space between the option itself and the filename.

The - £ option is particularly useful where there is a large number of options which are
more conveniently placed in a file than on the command line itself.

Example

To run the assembler with further options taken from the file extend.xcl, use:

a8051 prog -f extend.xcl

8051 IAR Assembler
14 Reference Guide

-G

Assembler options __¢

-G

This option causes the assembler to read the source from the standard input stream,
rather than from a specified source file.

When -G is used, no source filename may be specified.

-Iprefix

Use this option to specify paths to be used by the preprocessor by adding the #include
file search prefix prefix.

By default, the assembler searches for #include files only in the current working
directory and in the paths specified in the A8051_INC environment variable. The -1
option allows you to give the assembler the names of directories where it will also search
if it fails to find the file in the current working directory.

Example

Using the options:

-Ic:\global\ -Ic:\thisproj\headers\

and then writing:

#include "asmlib.hdr"

in the source, will make the assembler search first in the current directory, then in the
directory c:\global\, and finally in the directory c:\thisproj\headers\.

You can also specify the include path with the A8051_INC environment variable, see
Assembler environment variables, page 10.

This option is related to the Include paths option on the Preprocessor page in the
A8051 category in the IAR Embedded Workbench.

-1
Includes #include files in the list file.

By default, the assembler does not list #include file lines since these often come from
standard files and would waste space in the list file. The -i option allows you to list
these file lines.

This option is related to the Include paths option on the Preprocessor page in the
A8051 category in the IAR Embedded Workbench.

Descriptions of assembler options

16

8051 IAR Assembler
Reference Guide

-L

-L[prefix]

By default the assembler does not generate a listing. Use this option to make the
assembler generate one and send it to the file [prefix] sourcename.lst.

To simply generate a listing, use the -L option without a prefix. The listing is sent to the
file with the same name as the source, but the extension will be 1st.

The -L option lets you specity a prefix, for example to direct the list file to a
subdirectory. Notice that you cannot include a space before the prefix.

-L may not be used at the same time as -1.

Example
To send the list file to 1ist\prog. 1st rather than the default prog.1st:
a8051 prog -Llist\

This option is related to the options on the List page in the A8051 category in the
IAR Embedded Workbench.

-1 filename

Use this option to make the assembler generate a listing and send it to the file £i1ename.
If no extension is specified, 1st is used. Notice that you must include a space before the
filename.

By default, the assembler does not generate a list file. The -1 option generates a listing,
and directs it to a specific file. To generate a list file with the default filename, use the
-L option instead.

This option is related to the options on the List page in the A8051 category in the
IAR Embedded Workbench.

-Mab

This option sets the characters to be used as left and right quotes of each macro argument
to a and b respectively.

By default, the characters are < and >. The -M option allows you to change the quote
characters to suit an alternative convention or simply to allow a macro argument to
contain < or > themselves.

Assembler options __¢

Example

For example, using the option:

-M[]

in the source you would write, for example:
print [>]

to call a macro print with > as the argument.

Note: Depending on your host environment, it may be necessary to use quote marks
with the macro quote characters, for example:

a8051 filename -M’'<>'

This option is identical to the Macro quote characters option on the Language page
in the A8051 category in the IAR Embedded Workbench.

-N

Use this option to omit the header section that is printed by default in the beginning of
the list file.

This option is useful in conjunction with the list file options -L or -1; see page 16 for
additional information.

This option is related to the options on the List page in the A8051 category in the
IAR Embedded Workbench.

-n

By default, multibyte characters cannot be used in assembler source code. If you use this
option, multibyte characters in the source code are interpreted according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in C and C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.

This option is identical to the Enable multibyte support option on the Language page
in the A8051 category in the AR Embedded Workbench.

-Oprefix

Use this option to set the prefix to be used on the name of the object file. Notice that you
cannot include a space before the prefix.

Descriptions of assembler options

By default the prefix is null, so the object filename corresponds to the source filename
(unless -o is used). The -0 option lets you specify a prefix, for example to direct the
object file to a subdirectory.

Notice that -0 may not be used at the same time as -o.

Example

To send the object code to the file obj\prog.r51 rather than to the default file
prog.r51:

a8051 prog -0Oobj\

This option is related to the Output directories option on the Output page in the
General category in the JAR Embedded Workbench.

-0 -o filename

This option sets the filename to be used for the object file. Notice that you must include
a space before the filename. If no extension is specified, r51 is used.

The option -o may not be used at the same time as the option -0.

Example

For example, the following command puts the object code to the file obj . r51 instead
of the default prog.r51:

a8051 prog -o obj

Notice that you must include a space between the option itself and the filename.

-p -plines

The -p option sets the number of lines per page to 1ines, which must be in the range
10 to 150.

This option is used in conjunction with the list options -L or -1; see page 16 for
additional information.

This option is identical to the Lines/page option on the List page in the A8051 category
in the TAR Embedded Workbench.

-r -Ir

The -r option makes the assembler generate debug information that allows a symbolic
debugger such as C-SPY to be used on the program.

8051 IAR Assembler
18 Reference Guide

Assembler options __¢

By default, the assembler does not generate debug information, to reduce the size and
link time of the object file. You must use the -r option if you want to use a debugger
with the program.

This option is identical to the Generate debug information option on the Output page
in the A8051 category in the IAR Embedded Workbench.

-S

By default, the assembler sends various informational messages via the standard output
stream. Use the -S option to prevent this.

Error and warning messages are sent to the error output stream, so they are displayed
regardless of this setting.

-s{+|-}

Use the -s option to control whether the assembler is sensitive to the case of user
symbols:

Command line option Description
-s+ Case sensitive user symbols
-s- Case insensitive user symbols

Table 11: Controlling case sensitivity in user symbols (-s)

By default, case sensitivity is on. This means that, for example, LABEL and 1abel refer
to different symbols. Use -s- to turn case sensitivity off, in which case LABEL and label
will refer to the same symbol.

This option is identical to the User symbols are case sensitive option on the Language
page in the A8051 category in the IAR Embedded Workbench.

-T

Includes only active lines in listings, for example not those in false #if blocks. By
default, all lines are listed.

This option is useful for reducing the size of listings by eliminating lines that do not
generate or affect code.

This option is identical to the Active lines only option on the List page in the A8051
category in the IAR Embedded Workbench.

Descriptions of assembler options

-t -tn

By default the assembler sets 8 character positions per tab stop. The -t option allows
you to specify a tab spacing to n, which must be in the range 2 to 9.

This option is useful in conjunction with the list options -L or -1; see page 16 for
additional information.

This option is identical to the Tab spacing option on the List page in the A8051
category in the IAR Embedded Workbench.

-U -Usymbol
Use the -U option to undefine the predefined symbol symbol.

By default, the assembler provides certain predefined symbols; see Predefined symbols,
page 5. The -U option allows you to undefine such a predefined symbol to make its name
available for your own use through a subsequent -D option or source definition.

Example

To use the name of the predefined symbol __TIME__ for your own purposes, you could
undefine it with:

a8051 prog -U__TIME_ _

-v -v[0]|1]2]
Use the -v option to specify the processor configuration.
The following table shows how the -v options are mapped to the 8051 derivatives:

Option Description Derivative

-v0 Supports derivatives that use a standard 8051 core, with a 8051
maximum of 64 Kbytes of code memory. This option
corresponds to the compiler option --cpu=plain.

-vl Supports derivatives with a maximum of 2 Kbytes of code 80751
memory. Using this processor option, no long jump (LJMP)
instructions will be generated, only the shorter ATMP
instructions. This option corresponds to the compiler option
--cpu=tiny.

Table 12: Specifying the processor configuration (-v)

8051 IAR Assembler
20 Reference Guide

Assembler options __¢

Option Description Derivative
-v2 Supports derivatives that use cores similar to the extended core Dallas
of the Dallas DS80C390/DS80C400 processors. Using this DS80C390/
processor option, 3-byte addresses will be generated when DS80C400

appropriate. This option corresponds to the compiler option
--cpu=extendedl.

Table 12: Specifying the processor configuration (-v) (Continued)
If no processor configuration option is specified, the assembler uses the -v0 option by
default.

The -v option is identical to the CPU core option on the Target page in the General
category in the IAR Embedded Workbench.

—w[+|—] [[,]lrangel [, range, ...]1[s]

By default, the assembler displays a warning message when it detects an element of the
source which is legal in a syntactical sense, but may contain a programming error; see
Assembler diagnostics, page 101, for details.

Use this option to disable warnings. The -w option without a range disables all warnings.
The -w option with one or more ranges performs the following:

Command line option Description

—w+ Enables all warnings

-w- Disables all warnings

-w+n Enables just warning n

-w-1n Disables just warning n

-w+m-n Enables warnings m to n

-w-m-n Disables warnings m to n

-w+, -m-n Enables all warnings except mto n

-w-, +m-n Disables all warnings except m to n
-w+,-m-n, -o-p Enables all warnings except mto nand o to p
-w-,+m-n, +o-p Disables all warnings except mto nand o to p

Table 13: Disabling assembler warnings (-w)
Only one -w option may be used on the command line.

By default, the assembler generates exit code 0 for warnings. Use -ws to generate exit
code 1 if a warning message is produced.

21

Descriptions of assembler options

Example

To disable just warning 0 (unreferenced label), use the following command:
a8051 prog -w-0

To disable warnings O to 8 and 14-15, use the following command:

a8051 prog -w-0-8,-14-15

This option is related to the options on the Diagnostics page in the A8051 category in
the AR Embedded Workbench.

-X -X

Use this option to force all unreferenced externally declared symbols to be included in
the object file.

-x -x{DI2}

Use this option to make the assembler include a cross-reference table at the end of the
list file.

This option is useful in conjunction with the list options -L or -1; see page 16 for
additional information.

The following parameters are available:

Command line option Description

-xD #defines

-xI Internal symbols
-x2 Dual line spacing

Table 14: Including cross-references in assembler list file (-x)

This option is identical to the Include cross-reference option on the List page in the
A8051 category in the IAR Embedded Workbench.

8051 IAR Assembler
22 Reference Guide

Assembler operators

This chapter first describes the precedence of the assembler operators, and

then summarizes the operators, classified according to their precedence.

Finally, this chapter provides reference information about each operator,

presented in alphabetical order.

Precedence of operators

Each operator has a precedence number assigned to it that determines the order in which
the operator and its operands are evaluated. The precedence numbers range from 1 (the
highest precedence, i.e. first evaluated) to 7 (the lowest precedence, i.e. last evaluated).

The following rules determine how expressions are evaluated:

e The highest precedence operators are evaluated first, then the second highest
precedence operators, and so on until the lowest precedence operators are evaluated.

e Operators of equal precedence are evaluated from left to right in the expression.

e Parentheses (and) can be used for grouping operators and operands and for
controlling the order in which the expressions are evaluated. For example, the
following expression evaluates to 1:

7/ (1+(2%3))

Summary of assembler operators

The following tables give a summary of the operators, in order of priority. Synonyms,
where available, are shown after the operator name.

UNARY OPERATORS - |

+
!, NOT

~, BITNOT
Low
HIGH

BYTE2

Unary plus.
Unary minus.
Logical NOT.
Bitwise NOT.
Low byte.
High byte.
Second byte.

23

Summary of assembler operators

BYTE3 Third byte.

BYTE4 Fourth byte

LWRD Low word.

HWRD High word.

DATE Current time/date.

LOC Local variable reference.
PRM Parameter reference
SFB Segment begin.

SFE Segment end.

SIZEOF Segment size.

MULTIPLICATIVE ARITHMETIC OPERATORS -2

* Multiplication.
/ Division.
% Modulo.

ADDITIVE ARITHMETIC OPERATORS -3

+ Addition.

- Subtraction.

SHIFT OPERATORS -4

>>, SHR Logical shift right.

<<, SHL Logical shift left.

AND OPERATORS -5

&&, AND Logical AND.
&, BITAND Bitwise AND.
OR OPERATORS -6

||, OR Logical OR.
|, BITOR Bitwise OR.

8051 IAR Assembler
24 Reference Guide

Assembler operators ___o

XOR Logical exclusive OR.

~, BITXOR Bitwise exclusive OR.

COMPARISON OPERATORS -7

=, ==, EQ Equal.

<>, 1=, NE Not equal.

>, GT Greater than.

<, LT Less than.

UGT Unsigned greater than.
ULT Unsigned less than.
>=, GE Greater than or equal.
<=, LE Less than or equal.

Description of operators
The following sections give detailed descriptions of each assembler operator. See
Assembler expressions, page 2, for related information. The number within parentheses
specifies the priority of the operator.

* Multiplication (2).
* produces the product of its two operands. The operands are taken as signed 32-bit
integers and the result is also a signed 32-bit integer.
Example

2*%2 > 4
_2%2 — _4

+ Unary plus (1).

Unary plus operator.

Example

+3 > 3
3*+2 > 6

25

Description of operators

26

8051 IAR Assembler
Reference Guide

Addition (3).

The + addition operator produces the sum of the two operands which surround it. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit integer.

Example
92+19 — 111

-242 > 0
-24-2 > -4

Unary minus (1).

The unary minus operator performs arithmetic negation on its operand.

The operand is interpreted as a 32-bit signed integer and the result of the operator is the
two’s complement negation of that integer.

Example

-3 > -3
3*-2 > -6
4--5 = 9

Subtraction (3).

The subtraction operator produces the difference when the right operand is taken away
from the left operand. The operands are taken as signed 32-bit integers and the result is
also signed 32-bit integer.

Example

92-19 — 73
-2-2 7 -4
-2--2 > 0

Division (2).

/ produces the integer quotient of the left operand divided by the right operator. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit integer.

Example
9/2 > 4
-12/3 > -4
9/2*6 —> 24

Assembler operators ___o

<, LT Less than (7).

LE

< evaluates to 1 (true) if the left operand has a lower numeric value than the right
operand.

Example

-1 <2 —>1
2 <1 >0
2 <2 ™0

Less than or equal (7)

<= evaluates to 1 (true) if the left operand has a numeric value that is lower than or equal
to the right operand.

Example
1 <=2 71
2<=1—">0

1 <=1 —>1

Not equal (7).

<> evaluates to 0 (false) if its two operands are identical in value or to 1 (true) if its two
operands are not identical in value.

Example

1 <>2 1
2 <>2 >0
'A' <> 'B' > 1

Equal (7).

= evaluates to 1 (true) if its two operands are identical in value, or to O (false) if its two
operands are not identical in value.

'"ABC' = 'ABCD' ™ O

27

Description of operators

28

8051 IAR Assembler
Reference Guide

>, GT

>=, GE

&&, AND

&, BITAND

Greater than (7).

> evaluates to 1 (true) if the left operand has a higher numeric value than the right
operand.

Example

-1 >1 >0
2>1—>1
1>1—>0

Greater than or equal (7).

>= evaluates to 1 (true) if the left operand is equal to or has a higher numeric value than
the right operand.

Example

1 >=2 >0
2>=>1—2>1
1 >=1—>1

Logical AND (5).

Use && to perform logical AND between its two integer operands. If both operands are
non-zero the result is 1; otherwise it is zero.

Example

B’1010 && B’0011 —> 1
B’1010 && B’0101 — 1
B’1010 && B’'0000 —> O

Bitwise AND (5).

Use & to perform bitwise AND between the integer operands.

Example

B’1010 & B’0011 — B’0010
B’1010 & B’0101 — B’0000
B’1010 & B'0000 — B’'0000

Assembler operators ___o

~, BITNOT Bitwise NOT (1).

Use ~ to perform bitwise NOT on its operand.

Example

~ B’1010 — B’11111111111111111111111111110101

|, BITOR Bitwise OR (6).

Use | to perform bitwise OR on its operands.

Example

B’1010 | B’0101 — B'1111
B’1010 | B’0000 — B’1010

~, BITXOR Bitwise exclusive OR (6).

Use ~ to perform bitwise XOR on its operands.

Example

B’1010 ~ B’0101 — B’1111
B’1010 ~ B’0011 — B’1001

, MOD Modulo (2).

% produces the remainder from the integer division of the left operand by the right
operand. The operands are taken as signed 32-bit integers and the result is also a signed
32-bit integer.

X % Yisequivalent to Xx-Y* (X/Y) using integer division.

Example

2%2 >0
12 7 > 5
32 1

!, NOT Logical NOT (1).

Use ! to negate a logical argument.

29

Description of operators

30

8051 IAR Assembler
Reference Guide

|1, oRr

BYTE2

BYTE3

BYTE4

DATE

Example

! B’0101 = O
! B’0000 > 1

Logical OR (6).

Use | | to perform a logical OR between two integer operands.

Example

B’1010 || B’0000 — 1
B/0000 || B’0000 > 0

Second byte (1).
BYTE?2 takes a single operand, which is interpreted as an unsigned 32-bit integer value.

The result is the middle-low byte (bits 15 to 8) of the operand.

Example

BYTE2 0x12345678 —> 0x56

Third byte (1).

BYTE3 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-high byte (bits 23 to 16) of the operand.

Example

BYTE3 0x12345678 —> 0x34

Fourth byte (1).
BYTE4 takes a single operand, which is interpreted as an unsigned 32-bit integer value.

The result is the high byte (bits 31 to 24) of the operand.

Example

BYTE4 0x12345678 — 0x12

Current time/date (1).

Use the DATE operator to specify when the current assembly began.

Assembler operators ___o

The DATE operator takes an absolute argument (expression) and returns:

DATE 1 Current second (0-59).

DATE 2 Current minute (0-59).

DATE 3 Current hour (0-23).

DATE 4 Current day (1-31).

DATE 5 Current month (1-12).

DATE 6 Current year MOD 100 (1998 —98, 2000 —00, 2002 —02).
Example

To assemble the date of assembly:

today: DC8 DATE 6, DATE 5, DATE 4

HIGH High byte (1).

HIGH takes a single operand to its right which is interpreted as an unsigned, 16-bit
integer value. The result is the unsigned 8-bit integer value of the higher order byte of
the operand.

Example

HIGH OxABCD — OxAB

HWRD High word (1).

HWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the high word (bits 31 to 16) of the operand.

Example

HWRD 0x12345678 — 0x1234

LOC Local variable reference (2)

LOC evaluates to an absolute address in the memory area block used for a function’s
local variables in a specific segment. This evaluation takes place at link time.

Loc is intended for functions using static overlays. The memory area block for local
variables must have been defined using the LOCFRAME assembler directive.

31

Description of operators

32

8051 IAR Assembler
Reference Guide

Low

LWRD

PRM

See also the 8051 IAR C/EC++ Compiler Reference Guide for information about the
assembler language interface.

Syntax

LOC (function, segment, offset)

Parameters
function The name of the function.
segment The name of a memory segment, which must be defined before
LOC is used.
offset An offset from the start address.
Example
MOV RO, #LOC (func, IOVERLAY, 0)

This will load the address of the first local variable of func into the RO register. The
TIOVERLAY memory segment is used for storing static overlay frames.

Low byte (1).

Low takes a single operand, which is interpreted as an unsigned, 16-bit integer value.
The result is the unsigned, 8-bit integer value of the lower order byte of the operand.

Example

LOW OxABCD — 0xCD

Low word (1).

LWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the low word (bits 15 to 0) of the operand.

Example

LWRD 0x12345678 —> 0x5678

Parameter reference (2).

PRM evaluates to an absolute address in the memory area block used for a function’s
parameters in a specific segment. This evaluation takes place at link time.

Assembler operators ___o

PRM is intended for functions using static overlays. The memory area block for
parameters must have been defined using the ARGFRAME assembler directive.

See also the 8051 IAR C/EC++ Compiler Reference Guide for information about the
assembler language interface.
Syntax

PRM (function, segment, offset)

Parameters
function The name of the function.
segment The name of a memory segment, which must be defined before
PRM is used.
offset An offset from the start address.
Example
MOV RO, #PRM (func, IOVERLAY, 0)

This will load the address of the first parameter of func into the rO register. The
TOVERLAY memory segment is used for storing static overlay frames.

SFB Segment begin (1).

Syntax

SFB (segment [{+|-}offset])

Parameters

segment The name of a relocatable segment, which must be defined before
SFB is used.

offset An optional offset from the start address. The parentheses are

optional if offset is omitted.

Description

SFB accepts a single operand to its right. The operand must be the name of a relocatable
segment.

The operator evaluates to the absolute address of the first byte of that segment. This
evaluation takes place at linking time.

33

Description of operators

34

8051 IAR Assembler
Reference Guide

<<

’

SFE

SHL

Example

NAME demo
RSEG CODE
start: DC1l6 SFB(CODE)

Even if the above code is linked with many other modules, start will still be set to the
address of the first byte of the segment.

Segment end (1).

Syntax

SFE (segment [{+ | -} offset])

Parameters

segment The name of a relocatable segment, which must be defined before
SFE is used.

offset An optional offset from the start address. The parentheses are

optional if of £set is omitted.

Description

SFE accepts a single operand to its right. The operand must be the name of a relocatable
segment. The operator evaluates to the segment start address plus the segment size. This
evaluation takes place at linking time.

Example

NAME demo
RSEG CODE
end: DC1l6 SFE(CODE)

Even if the above code is linked with many other modules, end will still be set to the
address of the last byte of the segment.

The size of the continuous segment MY_SEGMENT can be calculated as:

SFE (MY_SEGMENT) -SFB (MY_SEGMENT)

Logical shift left (4).

Use << to shift the left operand, which is always treated as unsigned, to the left. The
number of bits to shift is specified by the right operand, interpreted as an integer value
between 0 and 32.

>>, SHR

SIZEOF

Assembler operators ___o

Example

B’00011100 << 3 — B’11100000
B’00000111111111111 << 5 — B’11111111111100000
14 << 1 — 28

Logical shift right (4).

Use >> to shift the left operand, which is always treated as unsigned, to the right. The
number of bits to shift is specified by the right operand, interpreted as an integer value
between 0 and 32.

Example

B’01110000 >> 3 — B’00001110
B’1111111111111111 >> 20 > O
14 >> 1 > 7

Segment size (1).

Syntax

SIZEOF segment

Parameters

segment The name of a relocatable segment, which must be defined
before SIZEOF is used.

Description

SIZEOF generates SFE-SFB for its argument, which should be the name of a relocatable
segment; i.e. it calculates the size in bytes of a segment. This is done when modules are
linked together.

Example

NAME demo
RSEG CODE
size: DC16 SIZEOF CODE

sets size to the size of segment CODE.

35

Description of operators

36

8051 IAR Assembler
Reference Guide

UGT

ULT

XOR

Unsigned greater than (7).

UGT evaluates to 1 (true) if the left operand has a larger value than the right operand. The
operation treats its operands as unsigned values.

Example

2U6GT 1 > 1
-1 UGT 1 > 1

Unsigned less than (7).

ULT evaluates to 1 (true) if the left operand has a smaller value than the right operand.
The operation treats its operands as unsigned values.

Example

1 ULt 2 > 1
-1 ULT 2 > O

Logical exclusive OR (6).

Use XOR to perform logical XOR on its two operands.

Example

B’0101 XOR B’1010 —> 0
B’0101 XOR B’'0000 > 1

Assembler directives

This chapter gives an alphabetical summary of the assembler directives. It then

describes the syntax conventions and provides detailed reference information

for each category of directives.

Summary of assembler directives

The following table gives a summary of all the assembler directives.

Directive

Description

Section

$
#define
#elif

#else
#endif
#error

#if

#ifdef
#ifndef
#include
#message
#undef
/*comment*/

/7

ALIAS
ALIGN

ALIGNRAM
ARGFRAME
ASEG
ASEGN

Includes a file.
Assigns a value to a label.

Introduces a new condition ina #if...#endif
block.

Assembles instructions if a condition is false.
Endsa #if, #ifdef, or #ifndef block.
Generates an error.

Assembles instructions if a condition is true.
Assembles instructions if a symbol is defined.
Assembles instructions if a symbol is undefined.
Includes a file.

Generates a message on standard output.
Undefines a label.

C-style comment delimiter.

C++ style comment delimiter.

Assigns a permanent value local to a module.
Assigns a permanent value local to a module.

Aligns the location counter by inserting
zero-filled bytes.

Aligns the program counter.
Defines a function’s arguments.
Begins an absolute segment.

Begins a named absolute segment.

Assembler control
C-style preprocessor

C-style preprocessor

C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
Assembler control
Assembler control
Value assignment
Value assignment

Segment control

Segment control
Function control
Segment control

Segment control

Table 15: Assembler directives summary

37

Summary of assembler directives

38

8051 IAR Assembler

Reference Guide

Directive Description Section

ASSIGN Assigns a temporary value. Value assignment

BREAK Exits prematurely from a loop or switch Structured assembly

construct.

CASE Case in SWITCH block. Structured assembly

CASEOFF Disables case sensitivity. Assembler control

CASEON Enables case sensitivity. Assembler control

CFI Specifies call frame information. Call frame
information

COL Sets the number of columns per page. Listing control

COMMON Begins a common segment. Segment control

CONTINUE Continues execution of a loop or switch Structured assembly

construct.

DB Generates 8-bit byte constants, including strings. Data definition or
allocation

DC8 Generates 8-bit byte constants, including strings. Data definition or
allocation

DC16 Generates |6-bit word constants. Data definition or
allocation

DC24 Generates 24-bit word constants. Data definition or
allocation

DC32 Generates 32-bit long word constants. Data definition or
allocation

DD Generates 32-bit long word constants. Data definition or
allocation

DEFAULT Default case in SWITCH block. Structured assembly

DEFINE Defines a file-wide value. Value assignment

DS Allocates space for 8-bit bytes. Data definition or
allocation

DS16 Allocates space for |6-bit words. Data definition or
allocation

DS24 Allocates space for 24-bit words. Data definition or
allocation

DS32 Allocates space for 32-bit words. Data definition or

allocation

Table 15: Assembler directives summary (Continued)

Assembler directives __¢

Directive Description Section
DS8 Allocates space for 8-bit bytes. Data definition or
allocation
DT Generates 24-bit word constants. Data definition or
allocation

DW Generates |6-bit word constants, including Data definition or
strings. allocation

ELSE Assembles instructions if a condition is false. Conditional assembly

ELSEIF Specifies a new condition in an IF...ENDIF Conditional assembly
block.

ELSEIFS Specifies a new condition in an IFS. . .ENDIFS Structured assembly
block.

ELSES Specifies instructions to be executed if a Structured assembly
condition is false.

END Terminates the assembly of the last module ina Module control
file.

ENDF Ends a FOR loop. Structured assembly

ENDIF Ends an IF block. Conditional assembly

ENDIFS Ends an IFS block. Structured assembly

ENDM Ends a macro definition. Macro processing

ENDMAC Ends a macro definition. Macro processing

ENDMOD Terminates the assembly of the current module. Module control

ENDR Ends a REPT, REPTC or REPTI structure. Macro processing

ENDS Ends a SWITCH block. Structured assembly

ENDW Ends a WHILE loop. Structured assembly

EQU Assigns a permanent value local to a module. Value assignment

EVEN Aligns the program counter to an even address. Segment control

EXITM Exits prematurely from a macro. Macro processing

EXPORT Exports symbols to other modules. Symbol control

EXTERN Imports an external symbol. Symbol control

EXTRN Imports an external symbol. Symbol control

FOR Repeats subsequent instructions a specified Structured assembly
number of times.

FUNCALL Defines function call information. Function control

FUNCTION Defines a function. Function control

Table 15: Assembler directives summary (Continued)

39

Summary of assembler directives

Directive

Description

Section

IF
IFS

IMPORT
LIBRARY
LIMIT
LOCAL
LOCFRAME
LSTCND
LSTCOD
LSTEXP
LSTMAC
LSTOUT
LSTPAG

LSTREP

LSTSAS
LSTXRF
MACRO
MODULE
NAME
ODD
ORG
PAGE
PAGSIZ
PROGRAM
PUBLIC

PUBWEAK

RADIX
REPEAT
REPT

Assembles instructions if a condition is true.

Specifies instructions to be executed if a
condition is true.

Imports an external symbol.

Begins a library module.

Checks a value against limits.

Creates symbols local to a macro.

Defines a function’s local variables.

Controls conditional assembler listing.
Controls multi-line code listing.

Controls the listing of macro generated lines.
Controls the listing of macro definitions.
Controls assembler-listing output.

Controls the formatting of output into pages.

Controls the listing of lines generated by repeat

directives.

Controls structured assembler listing.
Generates a cross-reference table.
Defines a macro.

Begins a library module.

Begins a program module.

Aligns the program counter to an odd address.
Sets the location counter.

Generates a new page.

Sets the number of lines per page.
Begins a program module.

Exports symbols to other modules.

Exports symbols to other modules, multiple
definitions allowed.

Sets the default base.
Forces a symbol to be referenced.

Assembles instructions a specified number of
times.

Conditional assembly

Structured assembly

Symbol control
Module control
Value assignment
Macro processing
Function control
Listing control
Listing control
Listing control
Listing control
Listing control
Listing control

Listing control

Listing control
Listing control
Macro processing
Module control
Module control
Segment control
Segment control
Listing control
Listing control
Module control
Symbol control

Symbol control

Assembler control
Structured assembly

Macro processing

Table 15: Assembler directives summary (Continued)

8051 IAR Assembler
40 Reference Guide

Assembler directives __¢

Directive Description Section
REPTC Repeats and substitutes characters. Macro processing
REPTI Repeats and substitutes strings. Macro processing
REQUIRE Repeats subsequent instructions until a condition Symbol control
is true.
RSEG Begins a relocatable segment. Segment control
RTMODEL Declares runtime model attributes. Module control
SET Assigns a temporary value. Value assignment
sfr Creates byte-access SFR labels. Value assignment
SFRTYPE Specifies SFR attributes. Value assignment
STACK Begins a stack segment. Segment control
SWITCH Multiple case switch. Structured assembly
UNTIL Ends a REPEAT loop. Structured assembly
WHILE Repeats subsequent instructions until a condition Structured assembly
is true.

Table 15: Assembler directives summary (Continued)

Syntax conventions

In the syntax definitions the following conventions are used:

e Parameters, representing what you would type, are shown in italics. So, for
example, in:

ORG expr
expr represents an arbitrary expression.

e Optional parameters are shown in square brackets. So, for example, in:
END [expr]

the expr parameter is optional. An ellipsis indicates that the previous item can be
repeated an arbitrary number of times. For example:

PUBLIC symbol [,symbol]

indicates that PUBLIC can be followed by one or more symbols, separated by
commas.

41

Module control directives

42

e Alternatives are enclosed in { and } brackets, separated by a vertical bar, for
example:

LSTOUT{+|-}

indicates that the directive must be followed by either + or -.

LABELS AND COMMENTS
Where a label must precede a directive, this is indicated in the syntax, as in:
label SET expr

An optional label, which will assume the value and type of the current program location
counter (PLC), can precede all directives. For clarity, this is not included in each syntax
definition.

In addition, unless explicitly specified, all directives can be followed by a comment,
preceded by ; (semicolon).

PARAMETERS

The following table shows the correct form of the most commonly used types of
parameter:

Parameter What it consists of

expr An expression; see Assembler expressions, page 2.
label A symbolic label.

symbol An assembler symbol.

Table 16: Assembler directive parameters

Module control directives

8051 IAR Assembler
Reference Guide

Module control directives are used for marking the beginning and end of source program
modules, and for assigning names and types to them.

Directive Description

END Terminates the assembly of the last module in a file.
ENDMOD Terminates the assembly of the current module.
LIBRARY Begins a library module.

MODULE Begins a library module.

NAME Begins a program module.

PROGRAM Begins a program module.

Table 17: Module control directives

Assembler directives __¢

Directive Description

RTMODEL Declares runtime model attributes.

Table 17: Module control directives

SYNTAX

END [label]

ENDMOD [labell]

LIBRARY symbol [(expr)]
MODULE symbol [(expr)]
NAME symbol [(expr)]
PROGRAM symbol [(expr)]
RTMODEL key, value

PARAMETERS

expr Optional expression (0—255) used by the IAR compiler to encode
programming language, memory model, and processor configuration.

key A text string specifying the key.

label An expression or label that can be resolved at assembly time. It is output in the
object code as a program entry address.

symbol Name assigned to module, used by XLINK and XLIB when processing object
files.

value A text string specifying the value.

DESCRIPTION

Beginning a program module

Use NAME to begin a program module, and to assign a name for future reference by the
IAR XLINK Linker™ and the IAR XLIB Librarian™.

Program modules are unconditionally linked by XLINK, even if other modules do not
reference them.

Beginning a library module

Use MODULE to create libraries containing a number of small modules—like runtime
systems for high-level languages—where each module often represents a single routine.
With the multi-module facility, you can significantly reduce the number of source and
object files needed.

Library modules are only copied into the linked code if other modules reference a public
symbol in the module.

43

Module control directives

44

8051 IAR Assembler
Reference Guide

Terminating a module

Use ENDMOD to define the end of a module.

Terminating the last module

Use END to indicate the end of the source file. Any lines after the END directive are
ignored.

Assembling multi-module files

Program entries must be either relocatable or absolute, and will show up in XLINK load
maps, as well as in some of the hexadecimal absolute output formats. Program entries
must not be defined externally.

The following rules apply when assembling multi-module files:

o At the beginning of a new module all user symbols are deleted, except for those
created by DEFINE, #define, or MACRO, the location counters are cleared, and the
mode is set to absolute.

e Listing control directives remain in effect throughout the assembly.

Note: END must always be used in the /ast module, and there must not be any source
lines (except for comments and listing control directives) between an ENDMOD and a
MODULE directive.

If the NAME or MODULE directive is missing, the module will be assigned the name of the
source file and the attribute program.

Declaring runtime model attributes

Use RTMODEL to enforce consistency between modules. All modules that are linked
together and define the same runtime attribute key must have the same value for the
corresponding key value, or the special value *. Using the special value * is equivalent
to not defining the attribute at all. It can however be useful to explicitly state that the
module can handle any runtime model.

A module can have several runtime model definitions.

Note: The compiler runtime model attributes start with double underscore. In order to
avoid confusion, this style must not be used in the user-defined assembler attributes.

If you are writing assembler routines for use with C code, and you want to control the
module consistency, refer to the 8051 IAR C/EC++ Compiler Reference Guide.

Assembler directives __¢

Examples
The following example defines three modules where:

e MOD_1 and MOD_2 cannot be linked together since they have different values for
runtime model " foo™.

e MOD_1 and MOD_3 can be linked together since they have the same definition of
runtime model "bar" and no conflict in the definition of " foo".

e MOD_2 and MOD_3 can be linked together since they have no runtime model
conflicts. The value " *" matches any runtime model value.
MODULE MOD_1

RTMODEL "foo", "1™
RTMODEL "bar", "XXX"
ENDMOD

MODULE MOD_2

RTMODEL "foo", "2"
RTMODEL "bar", "*"
ENDMOD

MODULE MOD_3
RTMODEL "bar", "XXX"

END

Symbol control directives

These directives control how symbols are shared between modules.

Directive Description

EXTERN (EXTRN, IMPORT) Imports an external symbol.

PUBLIC (EXPORT) Exports symbols to other modules.

PUBWEAK Exports symbols to other modules, multiple definitions
allowed.

REQUIRE Forces a symbol to be referenced.

Table 18: Symbol control directives

45

Symbol control directives

46

8051 IAR Assembler
Reference Guide

SYNTAX

EXTERN symbol [,symboll]
PUBLIC symbol [,symbol]
PUBWEAK symbol [,symboll]
REQUIRE symbol

PARAMETERS

symbol Symbol to be imported or exported.

DESCRIPTION

Exporting symbols to other modules

Use PUBLIC to make one or more symbols available to other modules. Symbols declared
PUBLIC can be relocatable or absolute, and can also be used in expressions (with the
same rules as for other symbols).

The PUBLIC directive always exports full 32-bit values, which makes it feasible to use
global 32-bit constants also in assemblers for 8-bit and 16-bit processors. With the Low,
HIGH, >>, and << operators, any part of such a constant can be loaded in an 8-bit or
16-bit register or word.

There are no restrictions on the number of PUBLIC-declared symbols in a module.

Exporting symbols with multiple definitions to other modules

PUBWEZAK is similar to PUBLIC except that it allows the same symbol to be declared
several times. Only one of those declarations will be used by XLINK. If a module
containing a PUBLIC definition of a symbol is linked with one or more modules
containing PUBWEAK definitions of the same symbol, XLINK will use the PUBLIC
definition.

A symbol declared as PUBWEAK must be a label in a segment part, and it must be the only
symbol declared as PUBLIC or PUBWEAK in that segment part.

Note: Library modules are only linked if a reference to a symbol in that module is
made, and that symbol has not already been linked. During the module selection phase,
no distinction is made between PUBLIC and PUBWEAK definitions. This means that to
ensure that the module containing the PUBLIC definition is selected, you should link it
before the other modules, or make sure that a reference is made to some other PUBLIC
symbol in that module.

Importing symbols

Use EXTERN to import an untyped external symbol.

Assembler directives __¢

The REQUIRE directive marks a symbol as referenced. This is useful if the segment part
containing the symbol must be loaded for the code containing the reference to work, but
the dependence is not otherwise evident.

EXAMPLES

The following example defines a subroutine to print an error message, and exports the
entry address err so that it can be called from other modules. It defines print as an
external routine; the address will be resolved at link time.

NAME error
EXTERN print
PUBLIC err

err CALL print

DB "ok ok Error Kk n
RET
END err

Segment control directives

The segment directives control how code and data are generated.

Directive Description

ALIGN Aligns the location counter by inserting zero-filled bytes.
ALIGNRAM Aligns the program counter.

ASEG Begins an absolute segment.

ASEGN Begins a named absolute segment.

COMMON Begins a common segment.

EVEN Aligns the program counter to an even address.
ODD Aligns the program counter to an odd address.
ORG Sets the location counter.

RSEG Begins a relocatable segment.

STACK Begins a stack segment.

Table 19: Segment control directives

SYNTAX

ALIGN align [,valuel

ALIGNRAM align [,value]

ASEG [start [(align)]]

ASEGN segment [:typel, address

47

Segment control directives

8051 IAR Assembler
48 Reference Guide

COMMON segment [:typel [(align)]

EVEN [value]

ODD [valuel

ORG expr

RSEG segment [:type] [flag] [(align)]
RSEG segment [:typel, address

STACK segment [:typel [(align)]

PARAMETERS

address Address where this segment part will be placed.

align Exponent of the value to which the address should be aligned, in the range 0
to 30.

expr Address to set the location counter to.

flag NOROOT, ROOT

NOROOT means that the segment part may be discarded by the linker
if no symbols in this segment part are referred to. Normally all
segment parts except startup code and interrupt vectors should set this
flag. The default mode is ROOT which indicates that the segment part
must not be discarded.

REORDER, NOREORDER

REORDER allows the linker to reorder segment parts. For a given
segment, all segment parts must specify the same state for this flag.
The default mode is NOREORDER which indicates that the segment
parts must remain in order.

SORT, NOSORT

SORT means that the linker will sort the segment parts in decreasing
alignment order. For a given segment, all segment parts must specify
the same state for this flag. The default mode is NOSORT which
indicates that the segment parts will not be sorted.

segment The name of the segment.

start A start address that has the same effect as using an ORG directive at the
beginning of the absolute segment.

type The memory type, typically CODE, or DATA. In addition, any of the types
supported by the IAR XLINK Linker.

value Byte value used for padding, default is zero.

Assembler directives __¢

DESCRIPTION

Beginning an absolute segment

Use ASEG to set the absolute mode of assembly, which is the default at the beginning of
a module.

If the parameter is omitted, the start address of the first segment is 0, and subsequent
segments continue after the last address of the previous segment.

Beginning a named absolute segment
Use ASEGN to start a named absolute segment located at the address address.

This directive has the advantage of allowing you to specify the memory type of the
segment.

Beginning a relocatable segment

Use RSEG to set the current mode of the assembly to relocatable assembly mode. The
assembler maintains separate program location counters (initially set to zero) for all
segments, which makes it possible to switch segments and mode anytime without the
need to save the current segment location counter.

Up to 65536 unique, relocatable segments may be defined in a single module.

Beginning a stack segment

Use STACK to allocate code or data allocated from high to low addresses (in contrast
with the RSEG directive that causes low-to-high allocation).

Note: The contents of the segment are not generated in reverse order.

Beginning a common segment

Use COMMON to place data in memory at the same location as COMMON segments from
other modules that have the same name. In other words, all COMMON segments of the
same name will start at the same location in memory and overlap each other.

Obviously, the coMmMoN segment type should not be used for overlapping executable
code. A typical application would be when you want a number of different routines to
share a reusable, common area of memory for data.

It can be practical to have the interrupt vector table in a COMMON segment, thereby
allowing access from several routines.

The final size of the coMMoN segment is determined by the size of largest occurrence of
this segment. The location in memory is determined by the XLINK -z command; see
the IAR Linker and Library Tools Reference Guide.

49

Segment control directives

50

8051 IAR Assembler
Reference Guide

Use the align parameter in any of the above directives to align the segment start
address.

Setting the program location counter (PLC)

Use ORG to set the program location counter of the current segment to the value of an
expression. The optional label will assume the value and type of the new location
counter.

The result of the expression must be of the same type as the current segment, i.e. it is not
valid to use ORG 10 during RSEG, since the expression is absolute; use ORG $+10 instead.
The expression must not contain any forward or external references.

All program location counters are set to zero at the beginning of an assembly module.

Aligning a segment
Use ALIGN to align the program location counter to a specified address boundary. The

expression gives the power of two to which the program counter should be aligned.

The alignment is made relative to the segment start; normally this means that the
segment alignment must be at least as large as that of the alignment directive to give the
desired result.

ALIGN aligns by inserting zero/filled bytes. The EVEN directive aligns the program
counter to an even address (which is equivalent to ALIGN 1) and the oDD directive aligns
the program counter to an odd address.

Use ALIGNRAM to align the program location counter to a specified address boundary.
The expression gives the power of two to which the program location counter should be
aligned. ALIGNRAM aligns by incrementing the data; no data is generated.

EXAMPLES

Beginning an absolute segment

The following example assembles interrupt routine entry addresses in the appropriate
8051 interrupt vectors using an absolute segment:

EXTERN iesrv, tOsrv
ASEG
ORG 0
JMP main ; Power on
ORG 3
JMP iesrv ; External interrupt

Assembler directives __¢

ORG 0BH
JMP tOsrv ; Timer interrupt
ORG 30H
main: MOV A, #1
END

Beginning a relocatable segment

In the following example the data following the first RSEG directive is placed in a
relocatable segment called table; the ORG directive is used to create a gap of six bytes
in the table.

The code following the second RSEG directive is placed in a relocatable segment called
code:

EXTERN divrtn,mulrtn
RSEG table
Dw divrtn,mulrtn
ORG S+6
DW subrtn
RSEG code
subrtn MOV A,R7
SUBB A, #20
MOV R7,A
END

Beginning a stack segment

The following example defines two 100-byte stacks in a relocatable segment called

rpnstack:

STACK rpnstack
parms DS 100
opers DS 100

END

The data is allocated from high to low addresses.

Beginning a common segment
The following example defines two common segments containing variables:

NAME commonl
COMMON data

51

Value assignment directives

count DD 1
ENDMOD
NAME common?2
COMMON data
up DB 1
ORG S+2
down DB 1
END

Because the common segments have the same name, data, the variables up and down
refer to the same locations in memory as the first and last bytes of the 4-byte variable
count.

Value assignment directives

These directives are used for assigning values to symbols.

Directive Description

= Assigns a permanent value local to a module.

ALIAS Assigns a permanent value local to a module.
ASSIGN Assigns a temporary value.

DEFINE Defines a file-wide value.

EQU Assigns a permanent value local to a module.
LIMIT Checks a value against limits.

SET Assigns a temporary value.

sfr Creates byte-access SFR labels.

SFRTYPE Specifies SFR attributes.

Table 20: Value assignment directives

SYNTAX

label = expr

label ALIAS expr

label ASSIGN expr

label DEFINE expr

label EQU expr

LIMIT expr, min, max, message

label SET expr

[const] sfr register = value

[const] SFRTYPE register attribute [,attribute] = value

8051 IAR Assembler
52 Reference Guide

Assembler directives __¢

PARAMETERS
attribute One or more of the following:
BYTE The SFR must be accessed as a byte.
READ You can read from this SFR.
WORD The SFR must be accessed as a word.
WRITE You can write to this SFR.
expr Value assigned to symbol or value to be tested.
label Symbol to be defined.
message A text message that will be printed when expr is out of range.
min, max The minimum and maximum values allowed for expr.
register The special function register.
value The SFR port address.
DESCRIPTION

Defining a temporary value

Use either of ASSIGN and SET to define a symbol that may be redefined, such as for use
with macro variables. Symbols defined with SET cannot be declared PUBLIC.
Defining a permanent local value

Use EQU or = to assign a value to a symbol.

Use EQU to create a local symbol that denotes a number or offset.

The symbol is only valid in the module in which it was defined, but can be made
available to other modules with a PUBLIC directive.

Use EXTERN to import symbols from other modules.

Defining a permanent global value
Use DEFINE to define symbols that should be known to all modules in the source file.

A symbol which has been given a value with DEFINE can be made available to modules
in other files with the PUBLIC directive.

Symbols defined with DEFINE cannot be redefined within the same file.

53

Value assignment directives

54

8051 IAR Assembler
Reference Guide

Defining special function registers

Use sfr to create special function register labels with attributes READ, WRITE, and BYTE
turned on. Use SFRTYPE to create special function register labels with specified
attributes.

Prefix the directive with const to disable the WRITE attribute assigned to the SFR. You
will then get an error or warning message when trying to write to the SFR. The const
keyword must be placed on the same line as the directive.

Checking symbol values

Use LIMIT to check that expressions lie within a specified range. If the expression is
assigned a value outside the range, an error message will appear.

The check will occur as soon as the expression is resolved, which will be during linking
if the expression contains external references. The min and max expressions cannot
involve references to forward or external labels, i.e. they must be resolved when
encountered.

EXAMPLES

Redefining a symbol

The following example uses SET to redefine the symbol cons in a REPT loop to generate
a table of the first 8 powers of 3:

NAME table
cons SET 1
buildit MACRO times

Dw cons
cons SET cons * 3

IF times > 1

buildit times - 1

ENDIF

ENDM
main buildit 4

END

It generates the following code:

1 000000 NAME table

2 000001 cons SET 1

10 000000 main buildit 4

10 000000 main buildit 4
10.1 000000 0001 DW cons
10.2 000003 cons SET cons * 3
10.3 000002 IF 4 > 1
10.4 000002 buildit 4 -1

10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.

11

o W J o !

11
12
13
14
15
16
17
18
19
20
21
22
23
24

000002 0003
000009
000004
000004
000004 0009
00001B
000006
000006
000006 001B
000051
000008
000008
000008
000008
000008
000008
000008
000008
000008
000008
000008

Dw

cons SET
IF
buildit
Dw

cons SET
IF
buildit
DWW

cons SET
IF
buildit
ENDIF
ENDM
ENDIF
ENDM
ENDIF
ENDM
ENDIF
ENDM
END

Using local and global symbols

Assembler directives __¢

cons
cons * 3
4 -1>1

4 -1 -1
cons

cons * 3
4 -1-1>1
4 -1-1-1
cons
cons * 3
4 -1-1-1>1
4 -1-1-1-1

In the following example the symbol value defined in module add1 is local to that
module; a distinct symbol of the same name is defined in module add2. The DEFINE
directive is used for declaring Locn for use anywhere in the file:

locn
value

value

NAME
DEFINE
EQU
MOV
MOV
ADD
MOV
RET
ENDMOD

NAME
EQU
MOV
MOV
ADD
MOV
RET
END

addl
020H

77
R1,locn
A,value
A,R1
R1,A

add2

77
R1,locn
A,value
A,R1
R1,A

The symbol 1ocn defined in module addl is also available to module add2.

55

Conditional assembly directives

56

Using the LIMIT directive

The following example sets the value of a variable called speed and then checks it, at
assembly time, to see if it is in the range 10 to 30. This might be useful if speed is often
changed at compile time, but values outside a defined range would cause undesirable
behavior.

speed SET 23
LIMIT speed, 10,30, ...speed out of range...

Conditional assembly directives

8051 IAR Assembler
Reference Guide

These directives provide logical control over the selective assembly of source code.

Directive Description

ELSE Assembles instructions if the corresponding IF directive is false.
ELSEIF Specifies a new condition in an IF...ENDIF block.

ENDIF Ends an IF block.

IF Assembles instructions if a condition is true.

Table 21: Conditional assembly directives

SYNTAX

ELSE

ELSEIF condition
ENDIF

IF condition

PARAMETERS
condition One of the following:

An absolute expression The expression must not contain forward
or external references, and any non-zero
value is considered as true.

stringl=string2 The condition is true if stringl and
string2 have the same length and
contents.

stringl<>string2 The condition is true if stringl and

string2 have different length or
contents.

Assembler directives __¢

DESCRIPTION

Use the IF, ELSE, and ENDIF directives to control the assembly process at assembly
time. If the condition following the IF directive is not true, the subsequent instructions
will not generate any code (i.e. it will not be assembled or syntax checked) until an ELSE
or ENDIF directive is found.

Use ELSEIF to introduce a new condition after an IF directive. Conditional assembler
directives may be used anywhere in an assembly, but have their greatest use in
conjunction with macro processing.

All assembler directives (except END) as well as the inclusion of files may be disabled
by the conditional directives. Each IF directive must be terminated by an ENDIF
directive. The ELSE directive is optional, and if used, it must be inside an IF. . .ENDIF
block. IF. . .ENDIF and IF...ELSE. . .ENDIF blocks may be nested to any level.

EXAMPLES
The following macro subtracts a constant from the register r.

sub MACRO r
IF c
DEC r
ELSEIF c
DEC r
DEC r

ELSE

XCH A, r

SUBB A, #c

XCH A, r

ENDIF

ENDM

If the argument to the macro is less than 2, it generates DEC instructions to save
instruction cycles and code size; otherwise it generates a SUBB instruction.

It could be tested with the following program:

main MOV R6, #7
sub R6,2
MOV R7,#22
sub R7,1
RET

END

57

Macro processing directives

58

Macro processing directives

These directives allow user macros to be defined.

8051 IAR Assembler
Reference Guide

Directive Description

ENDM Ends a macro definition.

ENDMAC Ends a macro definition.

ENDR Ends a repeat structure.

EXITM Exits prematurely from a macro.

LOCAL Creates symbols local to a macro.

MACRO Defines a macro.

REPT Assembles instructions a specified number of times.
REPTC Repeats and substitutes characters.

REPTI Repeats and substitutes strings.

Table 22: Macro processing directives

SYNTAX

ENDM
ENDMAC
ENDR
EXITM

LOCAL symbol

[, symbol]

name MACRO [, argument]

REPT expr

REPTC formal, actual
REPTI formal,actual [,actuall]

PARAMETERS

actual
argument
expr

formal

name

symbol

String to be substituted.
A symbolic argument name.
An expression.

Argument into which each character of actual (REPTC) or each actual
(REPTT) is substituted.

The name of the macro.

Symbol to be local to the macro.

Assembler directives __¢

DESCRIPTION

A macro is a user-defined symbol that represents a block of one or more assembler
source lines. Once you have defined a macro you can use it in your program like an
assembler directive or assembler mnemonic.

When the assembler encounters a macro, it looks up the macro’s definition, and inserts
the lines that the macro represents as if they were included in the source file at that
position.

Macros perform simple text substitution effectively, and you can control what they
substitute by supplying parameters to them.

Defining a macro

You define a macro with the statement:

macroname MACRO [,arg] [,argl

Here macroname is the name you are going to use for the macro, and argis an argument
for values that you want to pass to the macro when it is expanded.

For example, you could define a macro ERROR as follows:

errmac MACRO text

CALL abort
DB text, 0
ENDM

This macro uses a parameter text to set up an error message for a routine abort. You
would call the macro with a statement such as:

errmac 'Disk not ready'
The assembler will expand this to:

CALL abort
DB 'Disk not ready',O0

If you omit a list of one or more arguments, the arguments you supply when calling the
macro are called \1 to \9 and \A to \z.

The previous example could therefore be written as follows:

errmac MACRO

CALL abort
DB \1,0
ENDM

Use the EXITM directive to generate a premature exit from a macro.

EXITM is not allowed inside REPT...ENDR, REPTC...ENDR, Oor REPTI...ENDR blocks.

59

Macro processing directives

Use LOCAL to create symbols local to a macro. The LOCAL directive must be used before
the symbol is used.

Each time that a macro is expanded, new instances of local symbols are created by the
LoCAL directive. Therefore, it is legal to use local symbols in recursive macros.

Note: It is illegal to redefine a macro.

Passing special characters

Macro arguments that include commas or white space can be forced to be interpreted as
one argument by using the matching quote characters < and > in the macro call.

For example:

macld MACRO op
MOV op
ENDM

The macro can be called using the macro quote characters:

macld <R6,#3>
END

You can redefine the macro quote characters with the -M command line option; see -M,
page 16.

Predefined macro symbols

The symbol _args is set to the number of arguments passed to the macro. The following
example shows how _args can be used:

MODULE MAN

do_op MACRO
IF _args ==
ADD \1,\2
ELSE
INC \1
ENDIF
ENDM

RSEG CODE

do_op A
do_op A, #1

END

8051 IAR Assembler
60 Reference Guide

The following listing is generated:

1 000000
2 000000
10 000000
11 000000
12 000000
13 000000

13.1 000000
13.2 000000
13.3 000000
13.4 000000 04
13.5 000001
13.6 000001

14 000001
14.1 000001
14.2 000001 2401
14.3 000003
14.4 000003
14.5 000003
14.6 000003

15 000003
16 000003

How macros are processed

Assembler directives __¢

MODULE MAN

RSEG CODE

do_op A
IF _args == 2
ADD A,
ELSE

INC A
ENDIF
ENDM
do_op A, #1
IF _args == 2
ADD A, #1
ELSE

INC A
ENDIF
ENDM

END

There are three distinct phases in the macro process:

e The assembler performs scanning and saving of macro definitions. The text between
MACRO and ENDM is saved but not syntax checked. Include-file references $ file are
recorded and will be included during macro expansion.

o A macro call forces the assembler to invoke the macro processor (expander). The
macro expander switches (if not already in a macro) the assembler input stream
from a source file to the output from the macro expander. The macro expander takes
its input from the requested macro definition.

The macro expander has no knowledge of assembler symbols since it only deals with
text substitutions at source level. Before a line from the called macro definition is
handed over to the assembler, the expander scans the line for all occurrences of
symbolic macro arguments, and replaces them with their expansion arguments.

o The expanded line is then processed as any other assembler source line. The input
stream to the assembler will continue to be the output from the macro processor,
until all lines of the current macro definition have been read.

Repeating statements

Use the REPT. . . ENDR structure to assemble the same block of instructions a number of
times. If expr evaluates to 0 nothing will be generated.

61

Macro processing directives

62

8051 IAR Assembler
Reference Guide

Use REPTC to assemble a block of instructions once for each character in a string. If the
string contains a comma it should be enclosed in quotation marks.

Only double quotes have a special meaning and their only use is to enclose the
characters to iterate over. Single quotes have no special meaning and are treated as any
ordinary character.

Use REPTI to assemble a block of instructions once for each string in a series of strings.
Strings containing commas should be enclosed in quotation marks.

EXAMPLES

This section gives examples of the different ways in which macros can make assembler
programming easier.

Coding inline for efficiency

In time-critical code it is often desirable to code routines inline to avoid the overhead of
a subroutine call and return. Macros provide a convenient way of doing this.

The following example outputs bytes from a buffer to a port:

NAME play
RSEG XDATA
buffer DS 256
RSEG CODE
play MOV DPTR, #LWRD (buffer)
MOV R5, #255
loop MOVX A, @DPTR
MOV P1,A
INC DPTR
DJNZ R5, loop
RET
END

The main program calls this routine as follows:
doplay CALL play

For efficiency we can recode this as the following macro:

NAME play

PUBLIC main

RSEG XDATA
buffer DS 256
play MACRO

LOCAL loop

loop

main:

MOV
MOV
MOVX
MOV
INC
DJNZ
RET
ENDM

RSEG
play
END

Assembler directives

DPTR, #LWRD (buffer)

R5, #255
A, @DPTR

Pl,A
DPTR

R5, loop

CODE

Notice the use of the LOCAL directive to make the label 1o0p local to the macro;
otherwise an error will be generated if the macro is used twice, as the 1oop label will

already exist.

Using REPTC and REPTI

The following example assembles a series of calls to a subroutine plot to plot each

character in a string:

NAME

EXTERN plotc

REPTC
MOV
CALL
ENDR

banner

END

reptc

chr,

"Welcome"

R6, 'chr’

plotc

This produces the following code:

000000
000000
000000
000000
000000
000000
000000
000000
000002
000005
000007
00000A
00000C
00000F

BN N AR BN e B G B N VN

~N o U W

AE57

12....

AE65

12....

AE6C

12....

AE63

banner

NAME

EXTERN
REPTC
MOV
CALL
ENDR
MOV
CALL
MOV
CALL
MOV
CALL
MOV

reptc

plotc

chr, "Welcome"
R6, 'chr'
plotc

R6, 'W!'
plotc
R6, 'e’
plotc
R6,'1"
plotc
R6, 'c'

63

Macro processing directives

7.8 000011 12.... CALL plotc
7.9 000014 AE6F MOV R6, 'O’
7.10 000016 12.... CALL plotc
7.11 000019 AE6D MOV R6, 'm'
7.12 00001B 12.... CALL plotc
7.13 00001E AE65 MOV R6, 'e’
7.14 000020 12.... CALL plotc
8 000023

9 000023 END

The following example uses REPTT to clear a number of memory locations:

NAME repti
EXTERN base, count, init, func

banner REPTI adds, base, count, init

MOV RO, LOW (adds)
MOV R1,HIGH (adds)
CALL func

ENDR

END

This produces the following code:

1 000000 NAME repti

2 000000

3 000000 EXTERN base, count, init, func
4 000000

5 000000 banner REPTI adds,base, count,init
6 000000 MOV RO, LOW (adds)

7 000000 MOV R1,HIGH (adds)

8 000000 CALL func

9 000000 ENDR

9.1 000000 A8.. MOV RO, LOW (base)

9.2 000002 A9.. MOV R1,HIGH (base)

9.3 000004 12.... CALL func

9.4 000007 A8.. MOV RO, LOW (count)

9.5 000009 A9.. MOV R1,HIGH (count)

9.6 00000B 12.... CALL func

9.7 O000O0OOE A8.. MOV RO, LOW(init)

9.8 000010 A9.. MOV R1,HIGH (init)

9.9 000012 12.... CALL func

10 000015

11 000015 END

8051 IAR Assembler
64 Reference Guide

Assembler directives __¢

Structured assembly directives

The structured assembly directives allow loops and control structures to be implemented
at assembly level.

Directive Description

BREAK Exits prematurely from a loop or switch construct.

CASE Case in SWITCH block.

CONTINUE Continues execution of a loop or switch construct.
DEFAULT Default case in SWITCH block.

ELSEIFS Specifies a new condition in an IFS. . .ENDIFS block.
ELSES Specifies instructions to be executed if a condition is false.
ENDF Ends an FOR loop.

ENDIFS Ends an IFS block.

ENDS Ends an SWITCH block.

ENDW Ends an WHILE loop.

FOR Repeats subsequent instructions a specified number of times.
IFS Specifies instructions to be executed if a condition is true.
REPEAT Repeats subsequent instructions until a condition is true.
SWITCH Multiple case switch.

UNTIL Ends an REPEAT loop.

WHILE Repeats subsequent instructions until a condition is true.

Table 23: Structured assembly directives

SYNTAX

BREAK levels

CASE op

CASE opl..op2

CONTINUE

DEFAULT

ELSEIFS{condition | expression}
ELSES

ENDF

ENDIFS

ENDS

ENDW

FOR reg = start {TO | DOWNTO} end {BY | STEP} step
IFS{condition | expression}
REPEAT

SWITCH

65

Structured assembly directives

66

8051 IAR Assembler
Reference Guide

UNTIL{condition | expression}
WHILE{condition | expression}

PARAMETERS

condition

expression

reg

rel

op, opl, op2

start, end, step

levels

DESCRIPTION

One of the following conditions:
<cc> Carry clear

<Ccs> Carry set

<EQ> Equal

<NE> Not equal

<vC> Overflow clear

<vs> Overflow set.

An expression of the form:

reg rel op

One of the following registers:
RO...R7

One of the following relations:
>=,<=, =, <>, ==,=,>0r<

An intermediate or memory operand.

An intermediate or memory operand. If step is omitted it
defaults to #1 or #-1 if DOWNTO is specified. The increment or
decrement in this structure is implemented with ADD/SUB or
INC/DEC.

Number of levels to break, from 1 to 3.

The 8051 IAR Assembler includes a versatile range of directives for structured
assembly, to make it easier to implement loops and control structures at assembly level.

The advantage of using the structured assembly directives is that the resulting programs
are clearer, and their logic is easier to understand.

The directives are designed to generate simple, predictable code so that the resulting
program is as efficient as if it were programmed by hand.

Assembler directives __¢

Conditional constructs

Use IFS...ENDIFS to generate assembler source code for comparison and jump
instructions. The generated code is assembled like ordinary code, and is similar to
macros. This should not be confused with conditional assembly.

IFS blocks can be nested to any level.

Use ELSES after an IFs directive to introduce instructions to be executed if the IFs
condition is false.

Use ELSEIFS to introduce a new condition after an IFS directive.

Loop directives

Use WHILE. . . ENDW to create a loop which is executed as long as the expression is
TRUE. If the expression is false at the beginning of the loop the body will not be
executed.

Use the REPEAT . . . UNTIL construct to create a loop with a body that is executed at least
once, and as long as the expression is FALSE.

You can use BREAK to exit prematurely from an WHILE. . . ENDW Or REPEAT. . .UNTIL
loop, or CONTINUE to continue with the next iteration of the loop.

The directives generate the same statements as the IFs directive.

Iteration construct

Use FOR. . . ENDF to assemble instructions to repeat a block of instructions for a
specified sequence of values.

BREAK can be used to exit prematurely from an FOR loop, and continue execution
following the ENDF.

CONTINUE can be used to continue with the next iteration of the loop.

Switch construct

Use the SWITCH. . . ENDS block to execute one of a number of sets of statements,
depending on the value of test.

CASE defines each of the tests, and DEFAULT introduces an CASE which is always true.
Note that cASE falls through by default similar to switch statements in the C language.

BREAK can be used to exit from a SWITCH. . . ENDS block.

67

Structured assembly directives

EXAMPLES

Using conditional constructs

The following program tests the A register and plots 'N', 'Z', or 'P', depending on
whether it is less than zero, zero, or greater than zero:

NAME else
EXTERN plot

main IFS A
MOV A
ELSEIFS A == 0
MOV A !
ELSES
MOV A, #'p!
ENDIFS
CALL plot
RET
END

This generates the following code:

1 000000 NAME else
2 000000 EXTERN plot
3 000000

4 000000 main IFS A< O
4.1 000000 COEO PUSH ACC
4.2 000002 C3 CLR CcYy
4.3 000003 9500 SUBB A,0
4.4 000005 DOEO POP ACC
4.5 000007 5004 JNC _20

5 000009 744E MOV A, #'N'
6 00000B ELSEIFS A == 0
6.1 00000B 8016 JMP _?1
6.2 00000D _20

6.3 00000D COEO PUSH ACC
6.4 00000F D2D1 SETB PSW.1
6.5 000011 C3 CLR Ccy
6.6 000012 9500 SUBB A,0
6.7 000014 6002 Jz S+4
6.8 000016 C2D1 CLR PSW.1
6.9 000018 DOEO POP ACC
6.10 00001A 30D104 JNB PSW.1,_?2
7 00001D 745A MOV A #'Z"
8 00001F ELSES

8. 00001F 8002 JMP _?1
8.2 000021 _?2

9 000021 7470 MOV A, #'p’

8051 IAR Assembler
68 Reference Guide

10 000023

10.1 000023 _21
11 000023 12....

12 000026 22

13 000027

Using loop constructs

The following example uses an REPEAT

register B and put the result in register A:

NAME
REPEAT
XCH
RRC

repeat
reverse

END
This generates the following code:

000000
000000
1 000000
000000 C5F0
000002 13
000003 C5F0
000005 33
000006
000006
000008 COEO
00000A D2D1
00000C C3
00000D 9400
00000F 6002
000011 c2Dp1
000013 DOEO
000015 C5F0
000017 30D1E6
00001A _?1
00001A 22
00001B
00001B

reverse
_20

C5F0

B P W o oUW N

[y
O W 00 J 9 9 9 9 9 9 9 999900k whh e

ENDIFS

CALL
RET
END

plot

Assembler directives __¢

UNTIL loop to reverse the order of bits in

NAME
REPEAT

XCH
RRC
XCH
RLC
UNTIL
XCH
PUSH
SETB
CLR
SUBB
JZ
CLR
POP
XCH
JNB

RET

END

repeat

w

Powor oy
1 w
I
HH
o

W

ACC

PSW.1

CcYy

A, #0

S+4

PSW.1
ACC

A,B
PSw.1,_20

69

Structured assembly directives

Using iteration constructs

The following example uses an FOR ... ENDF block to send a sequence of even
numbers between 0 and 98 (inclusive) to a port named port1:

NAME for_loop
EXTERN portl
play FOR A = #0 TO #100 BY #2
MOV portl,A
ENDF
RET
END

This generates the following code:

1 000000 NAME for_loop
2 000000 EXTERN portl

3 000000 play FOR A = #0 TO #100 BY #2
3. 000000 7400 MOV A, #0

3.2 000002 8004 JMP 21

3.3 000004 _20

4 000004 F5.. MOV portl,A
5 000006 ENDF

5.1 000006 2402 _?2 ADD A, #2

5.2 000008 COEO _21 PUSH ACC

5.3 00000A C3 CLR cYy

5.4 00000B 9464 SUBB A,#100
5.5 00000D DOEO POP ACC

5.6 00000F 40F3 Jc _?0

5.7 000011 _?3

6 000011 22 RET

7 000012

8 000012 END

Using switch constructs

The following example uses an SWITCH. . . ENDS block to print Zero, Positive, or
Negative depending on the value of the A register. It uses an external print routine to
print an immediate string:

pos DB "Positive"

neg DB "Negative"

zer DB "Zero"
NAME switch

EXTERN print

test SWITCH A

8051 IAR Assembler
70 Reference Guide

Assembler directives __¢

CASE #0

MOV R3, #LOW (zer)
MOV R4, #HIGH (zer)
CALL print

BREAK

CASE #0x80 .. #OxXFF
MOV R3, #LOW (neg)
MOV R4, #HIGH (neg)
CALL print

BREAK

DEFAULT

MOV R3, #LOW (pos)
MOV R4, #HIGH (pos)
CALL print

BREAK

ENDS

END

This generates the following code:

1 000000 506F7369*pos DB "Positive"
2 000009 4E656761*neg DB "Negative"
3 000012 5A65726F*zer DB "Zero"

4 000017

5 000017 NAME switch

6 000000 EXTERN print

7 000017

8 000017 test SWITCH A

9 000017

10 000017 CASE #0

10.1 000017 COEO PUSH ACC

10.2 000019 D2D1 SETB PSW.1
10.3 00001B C3 CLR cY

10.4 00001C 9400 SUBB A, #0

10.5 O00001E 6002 Jz S+4

10.6 000020 C2D1 CLR PSW.1
10.7 000022 DOEO POP ACC

10.8 000024 30D109 JNB PSW.1,_?1
11 000027 7B12 MOV R3, #LOW (zer)
12 000029 7C00 MOV R4, #HIGH (zer)
13 00002B 12.... CALL print

14 00002E BREAK

14.1 00002E 802D JMP _20

15 000030

71

Listing control directives

72

16

16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.
16.

17
18
19
20

20.

21
22

22.

23
24
25
26

26.

27

27.

28
29

o ~J o Ul W N

o

10
11
12
13
14

000030
000030
000032
000033
000035
000037
000039
00003B
00003D
00003E
000040
000042
000044
000046
000048
00004B
00004D
00004F
000052
000052
000054
000054
000054
000054
000056
000058
00005B
00005B
00005D
00005D
00005D
00005D

COEO
Cc3
9480
DOEO
401B
COEO
D2D1
Cc3
94FF
6002
C2D1
DOEO
4003
30D109
7B09
7C00
12....

8009

7B00
7C00
12....

8000

_21

_?2

_?0

CASE
PUSH
CLR
SUBB
POP
Jc
PUSH
SETB
CLR
SUBB
JZ
CLR
POP
JC
JNB
MOV
MOV
CALL
BREAK
JMP

DEFAULT

MOV
MOV
CALL
BREAK
JMP
ENDS

END

#0x80 .. #O0xFF
ACC

CcYy

A, #0x80

ACC

_?2

ACC

PSwW.1

CcYy

A, #0XFF

S+4

PSW.1

ACC

$+5

PSW.1,_°?2

R3, #LOW (neg)
R4, #HIGH (neg)

print

_?0

R3, #LOW (pos)
R4, #HIGH (pos)

print

_20

8051 IAR Assembler

Reference Guide

Listing control directives

These directives provide control over the assembler list file.

Directive Description

COL Sets the number of columns per page.
LSTCND Controls conditional assembly listing.
LSTCOD Controls multi-line code listing.

LSTEXP Controls the listing of macro-generated lines.
LSTMAC Controls the listing of macro definitions.

Table 24: Listing control directives

Assembler directives __¢

Directive Description

LSTOUT Controls assembler-listing output.

LSTPAG Controls the formatting of output into pages.

LSTREP Controls the listing of lines generated by repeat directives.
LSTSAS Controls structured assembly listing.

LSTXRF Generates a cross-reference table.

PAGE Generates a new page.

PAGSIZ Sets the number of lines per page.

Table 24: Listing control directives (Continued)

SYNTAX

COL columns
LSTCND{+ |-}
LSTCOD{+ |-}
LSTEXP{+|-}
LSTMAC{+|-}
LSTOUT{+|-}
LSTPAG{+|-}
LSTREP{+|-}
LSTSAS{+|-}
LSTXRF{+|-}
PAGE

PAGSIZ lines

PARAMETERS

columns An absolute expression in the range 80 to 132, default is 80

lines An absolute expression in the range 10 to 150, default is 44

DESCRIPTION

Turning the listing on or off

Use LsTOUT- to disable all list output except error messages. This directive overrides
all other listing control directives.

The default is LsTouT+, which lists the output (if a list file was specified).

Listing conditional code and strings

Use LsTCND+ to force the assembler to list source code only for the parts of the assembly
that are not disabled by previous conditional TF statements.

73

Listing control directives

74

8051 IAR Assembler
Reference Guide

The default setting is LSTCND-, which lists all source lines.

Use LsTCOD- to restrict the listing of output code to just the first line of code for a source
line.

The default setting is LSTCOD+, which lists more than one line of code for a source line,
if needed; i.e. long ASCII strings will produce several lines of output. Code generation
is not affected.

Controlling the listing of macros

Use LSTEXP- to disable the listing of macro-generated lines. The default is LSTEXP+,
which lists all macro-generated lines.

Use LSTMAC+ to list macro definitions. The default is LSTMAC-, which disables the
listing of macro definitions.
Controlling the listing of generated lines

Use LSTREP- to turn off the listing of lines generated by the directives REPT, REPTC,
and REPTI.

The default is LSTREP+, which lists the generated lines.

Controlling structured assembly listing

Use LsTSAS- to disable listing of the assembler source produced by the directives for
structured assembly.

The default is LsTSaS+, which lists assembler source produced by structured assembly
directives.
Generating a cross-reference table

Use LSTXRF+ to generate a cross-reference table at the end of the assembler list for the
current module. The table shows values and line numbers, and the type of the symbol.

The default is LSTXRF-, which does not give a cross-reference table.

Specifying the list file format

Use COL to set the number of columns per page of the assembler list. The default number
of columns is 80.

Use PAGSIZ to set the number of printed lines per page of the assembler list. The default
number of lines per page is 44.

Use LsTPAG+ to format the assembler output list into pages.

The default is LSTPAG-, which gives a continuous listing.

Assembler directives __¢

Use PAGE to generate a new page in the assembler list file if paging is active.
EXAMPLES

Turning the listing on or off
To disable the listing of a debugged section of program:

LSTOUT-
; Debugged section
LSTOUT+
; Not yet debugged

Listing conditional code and strings

The following example shows how LSTCND+ hides a call to a subroutine that is disabled
by an IF directive:

NAME lstcndtst
EXTERN print

RSEG prom
debug SET 0
begin IF debug

CALL print

ENDIF

LSTCND+
begin2 IF debug

CALL print

ENDIF

END

This will generate the following listing:

1 00000000 NAME lstcndtst
2 00000000 EXTERN print
3 00000000

4 00000000 RSEG CODE
5 00000000

6 00000000 debug SET 0

7 00000000 begin IF debug
8 00000000 CALL print
9 00000000 ENDIF

10 00000000

11 00000000 LSTCND+

12 00000000 begin2 IF debug

75

Listing control directives

76

8051 IAR Assembler
Reference Guide

14
15
16

00000000
00000000
00000000

ENDIF

END

The following example shows the effect of LSTCOD+ on the generated code:

g W N

000000

000000 0001000A

00000A

00000A

00000A 0001000A
006403E8
2710

000014

NAME lstcodtst

DW 1,10,100,100,10000
LSTCOD+

DW 1,10,100,1000,10000
END

Controlling the listing of macros

The following example shows the effect of LSTMAC and LSTEXP:

dec2

inc2

begin:

This will produce the following output:

o 3 o v

©

11
12
13

MACRO arg
DEC arg
DEC arg
ENDM
LSTMAC+
MACRO arg
INC arg
INC arg
ENDM

dec2 R6
LSTEXP-
inc2 R7
RET

END begin

000000
000000
000000
000000
000000
000000
000000
000000
000000

inc2

begin:

LSTMAC+
MACRO arg
INC arg
INC arg
ENDM

dec2 R6

13.1
13.2
13.3
14
15
16
17
18

000000 1E
000001 1E

000002
000002
000002
000002
000004
000005

22

Assembler directives __¢

DEC R6
DEC R6
ENDM

LSTEXP-

inc2 R7
RET

END begin

Formatting listed output

The following example formats the output into pages of 66 lines each with 132 columns.
The LSTPAG directive organizes the listing into pages, starting each module on a new
page. The PAGE directive inserts additional page breaks.

PAGSIZ 66

COL 132
LSTPAG+

ENDMOD
MODULE

PAGE

; Page size

C-style preprocessor directives

The following C-language preprocessor directives are available:

Directive

Description

#define
#elif
#else
#endif
#error
#if
#ifdef
#ifndef
#include
#message

#undef

Assigns a value to a label.

Introduces a new conditionina #if. . .#endif block.
Assembles instructions if a condition is false.

Ends a #if, #ifdef, or #ifndef block.

Generates an error.

Assembles instructions if a condition is true.

Assembles instructions if a symbol is defined.

Assembles instructions if a symbol is undefined.
Includes a file.

Generates a message on standard output.

Undefines a label.

Table 25: C-style preprocessor directives

77

C-style preprocessor directives

78

8051 IAR Assembler
Reference Guide

SYNTAX

#define label text
#elif condition
#else

#endif

#error "message"
#if condition
#ifdef Iabel
#ifndef Iabel
#include {"filename" | <filename>}
#message "message"
#undef Iabel

PARAMETERS
condition One of the following:

An absolute expression The expression must not
contain forward or external
references, and any non-zero
value is considered as true.

stringl=string The condition is true if
stringl and string2 have
the same length and contents.

stringl<>string2 The condition is true if

stringl and string2 have
different length or contents.

filename Name of file to be included.

label Symbol to be defined, undefined, or tested.

message Text to be displayed.

text Value to be assigned.

DESCRIPTION

Defining and undefining labels
Use #define to define a temporary label.
#define label value

is similar to:

label SET value

Assembler directives __¢

Use #undef to undefine a label; the effect is as if it had not been defined.

Conditional directives

Use the #if...#else...#endif directives to control the assembly process at assembly
time. If the condition following the #i £ directive is not true, the subsequent instructions
will not generate any code (i.e. it will not be assembled or syntax checked) until a
#endif or #else directive is found.

All assembler directives (except for END) and file inclusion may be disabled by the
conditional directives. Each #i £ directive must be terminated by a #endif directive.
The #else directive is optional and, if used, it must be inside a #if...#endif block.

#if..#endif and #if...#else...#endif blocks may be nested to any level.

Use #ifdef to assemble instructions up to the next #else or #endif directive only if
a symbol is defined.

Use #ifndef to assemble instructions up to the next #else or #endi £ directive only if
a symbol is undefined.

Including source files

Use #include to insert the contents of a file into the source file at a specified point.
#include " filename" searches the following directories in the specified order:

1 The source file directory.

2 The directories specified by the - T option, or options.

3 The current directory.

#include <filename> searches the following directories in the specified order:

1 The directories specified by the - I option, or options.

2 The current directory.

Displaying errors

Use #error to force the assembler to generate an error, such as in a user-defined test.

Defining comments
Use /* ... */tocomment sections of the assembler listing.

Use // to mark the rest of the line as comment.

79

C-style preprocessor directives

Note: It is important to avoid mixing the assembler language with the C-style
preprocessor directives. Conceptually, they are different languages and mixing them
may lead to unexpected behavior since an assembler directive is not necessarily
accepted as a part of the C language.

The following example illustrates some problems that may occur when assembler
comments are used in the C-style preprocessor:

#define five 5 ; comment
MOV five+addr,R7 ; syntax error!
; Expands to "5 ; comment+addr,R7"
EXAMPLES

Using conditional directives

The following example defines the labels tweak and adjust. If adjust is defined, then
register R6 is decremented by an amount that depends on adjust, in this case 30.

#define tweak 1
#define adjust 3

#ifdef tweak

MOV A,R6

CLR C
#if adjust=1

SUBB A, #4
#elif adjust=2

SUBB A, #20
#elif adjust=3

SUBB A, #30
#endif

MOV R6,A
#endif /* ifdef tweak */

Including a source file

The following example uses #include to include a file defining macros into the source
file. For example, the following macros could be defined in Macros.s51:

xch MACRO a,b
PUSH a
MOV a,b
POP b
ENDM

8051 IAR Assembler
80 Reference Guide

Assembler directives __¢

The macro definitions can then be included, using #include, as in the following
example:

NAME include

; standard macro definitions
#include "macros.s51"

; program
main: xch DPL, DPH
RET
END main

Data definition or allocation directives

These directives define values or reserve memory:

Directive Description Expression restrictions

DB Generates 8-bit byte constants, including strings.

DC8 Generates 8-bit byte constants, including strings.

DC16 Generates |6-bit word constants.

DC24 Generates 24-bit constants.

DC32 Generates 32-bit constants.

DD Generates 32-bit double word constants.

DS Allocates space for 8-bit values. No external references
Absolute

DS8 Allocates space for 8-bit integers. No external references
Absolute

DS16 Allocates space for |6-bit integers. No external references
Absolute

DS24 Allocates space for 24-bit integers. No external references
Absolute

DS32 Allocates space for 32-bit integers. No external references
Absolute

DT Generates 24-bit word constants.

DW Generates | 6-bit word constants.

Table 26: Data definition or allocation directives

81

Data definition or allocation directives

SYNTAX

DB exprl[,exprl]
DC8 exprl [,exprl]
DC1l6 exprl [,exprl]
DC24 exprl [,exprl]
DC32 exprl [,exprl]
DD exprll, exprl]

DS expr2

DS8 expr2

DS16 expr2

DS24 expr2

DS32 expr2

DT exprl[,exprl]

DW exprll[,exprl]

PARAMETERS

exprl A valid absolute, relocatable, or external expression, or an ASCII string.
ASCII strings will be zero filled to a multiple of the data size implied by
the directive. Double-quoted strings will be zero-terminated.

expr2 A constant value that specifies the number of data blocks of a given size
to be created.

DESCRIPTIONS
Use DB, DC8, DC16, DC24, DC32, DD, DP, or DW to reserve and initialize memory space.

Use DS, DS8, DS16, DS24, or DS32 to reserve uninitialized memory space.
EXAMPLES

Generating lookup table
The following example generates a lookup table of addresses to routines:

NAME table

table DB addsubr, subsubr, clrsubr
addsubr ADD A,R7
RET

subsubr SUBB A,R7
RET

clrsubr CLR A

8051 IAR Assembler
82 Reference Guide

Assembler directives __¢

RET

END

Defining strings

To define a string:

mymsg DC8 'Please enter your name'

To define a string which includes a trailing zero:

myCstr DC8 "This is a string."

To include a single quote in a string, enter it twice; for example:

errmsg DC8 'Don''t understand!'

Reserving space
To reserve space for 0xA bytes:

table DS8 0xA

Assembler control directives

These directives provide control over the operation of the assembler.

Directive Description

S Includes a file.

/*comment*/ C-style comment delimiter.

// C++style comment delimiter.

CASEOFF Disables case sensitivity.

CASEON Enables case sensitivity.

RADIX Sets the default base on all numeric values.

Table 27: Assembler control directives

SYNTAX

$filename
/*comment*/
// comment
CASEOFF
CASEON
RADIX expr

83

Assembler control directives

84

8051 IAR Assembler
Reference Guide

PARAMETERS

comment Comment ignored by the assembler.

expr Default base; default 10 (decimal).

filename Name of file to be included. The $ character must be the first
character on the line.

DESCRIPTION

Use $ to insert the contents of a file into the source file at a specified point.
Use /*...*/ to comment sections of the assembler listing.
Use // to mark the rest of the line as comment.

Use RADIX to set the default base for constants. The default base is 10.

Controlling case sensitivity

Use CASEON or CASEOFF to turn on or off case sensitivity for user-defined symbols. By
default case sensitivity is off.

When CASEOFF is active all symbols are stored in upper case, and all symbols used by
XLINK should be written in upper case in the XLINK definition file.
EXAMPLES

Including a source file

The following example uses $ to include a file defining macros into the source file. For
example, the following macros could be defined in Mymacros.s51:

xch MACRO a,b
PUSH a
MOV a,b
POP b
ENDM

The macro definitions can be included with a $ directive, as in:

NAME include
; standard macro definitions
Smymacros.s51

; program
main

Assembler directives __¢

xch DPL, DPH
RET
END main

Defining comments

The following example shows how /*. . .*/ can be used for a multi-line comment:
/ *

Program to read serial input.

Version 6: 19.6.03

Author: mjp

*/

Changing the base

To set the default base to 16:

RADIX D'16
MOV A,l2

The immediate argument will then be interpreted as H' 12.

To change the base from 16 to 10, expr must be written in hexadecimal format, for
example:

RADIX 0x0A

Controlling case sensitivity
When CASEOFF is set, label and LABEL are identical in the following example:

label NOP ; Stored as "LABEL"
JMP LABEL

The following will generate a duplicate label error:

CASEOFF

label NOP
LABEL NOP ; Error, "LABEL" already defined

END

85

Compiler function directives

86

Compiler function directives

The following directives are used by the C compiler:

Directive Description

ARGFRAME Defines a function’s arguments.
FUNCALL Defines function call information.
FUNCTION Defines a function.

LOCFRAME Defines a function’s local variables.

Table 28: Compiler function directives

DESCRIPTION

The compiler function directives can be used by the compiler to pass information about
functions to the linker. These directives are normally not used in assembler
programming. For information on how to use these directives, see the chapter Assembler
language interface in the 8051 IAR C/EC++ Compiler Reference Guide.

Call frame information directives

These directives allow backtrace information to be defined in the assembler source code.

8051 IAR Assembler
Reference Guide

Directive Description

CFI BASEADDRESS Declares a base address CFA (Canonical Frame Address).
CFI BLOCK Starts a data block.

CFI CODEALIGN Declares code alignment.

CFI COMMON Starts or extends a common block.

CFI CONDITIONAL Declares data block to be a conditional thread.

CFI DATAALIGN Declares data alignment.

CFI ENDBLOCK Ends a data block.

CFI ENDCOMMON Ends a common block.

CFI ENDNAMES Ends a names block.

CFI FRAMECELL Creates a reference into the caller’s frame.

CFI FUNCTION Declares a function associated with data block.

CFI INVALID Starts range of invalid backtrace information.

CFI NAMES Starts a names block.

CFI NOFUNCTION Declares data block to not be associated with a function.

Table 29: Call frame information directives

Assembler directives __¢

Directive Description

CFI PICKER Declares data block to be a picker thread.

CFI REMEMBERSTATE Remembers the backtrace information state.
CFI RESOURCE Declares a resource.

CFI RESOURCEPARTS Declares a composite resource.

CFI RESTORESTATE Restores the saved backtrace information state.
CFI RETURNADDRESS Declares a return address column.

CFI STACKFRAME Declares a stack frame CFA.

CFI STATICOVERLAYFRAME Declares a static overlay frame CFA.

CFI VALID Ends range of invalid backtrace information.
CFI VIRTUALRESOURCE Declares a virtual resource.

CFI cfa Declares the value of a CFA.

CFI resource Declares the value of a resource.

Table 29: Call frame information directives (Continued)

SYNTAX

The syntax definitions below show the syntax of each directive. The directives are
grouped according to usage.

Names block directives

CFI NAMES name

CFI ENDNAMES name

CFI RESOURCE resource : bits [, resource : bits]

CFI VIRTUALRESOURCE resource : bits [, resource : bits]
CFI RESOURCEPARTS resource part, part [, part]

CFI STACKFRAME cfa resource type [, cfa resource type]
CFI STATICOVERLAYFRAME cfa segment [, cfa segment]

CFI BASEADDRESS cfa type [, cfa typel

Extended names block directives

CFI NAMES name EXTENDS namesblock
CFI ENDNAMES name
CFI FRAMECELL cell cfa(offset): size|, cell cfa(offset): sizel

Common block directives

CFI COMMON name USING namesblock
CFI ENDCOMMON name

CFI CODEALIGN codealignfactor
CFI DATAALIGN dataalignfactor

87

Call frame information directives

88

8051 IAR Assembler
Reference Guide

CFI RETURNADDRESS resource type
CFI cfa {NOTUSED|USED}
CFI cfa {resource | resource + constant \ resource - constant}

CFI cfa cfiexpr

CFI resource {UNDEFINED | SAMEVALUE | CONCAT}
CFI resource {resource | FRAME(cfa, offset)}
CFI resource cfiexpr

Extended common block directives

CFI COMMON name EXTENDS commonblock USING namesblock
CFI ENDCOMMON name

Data block directives

CFI BLOCK name USING commonblock
CFI ENDBLOCK name

CFI {NOFUNCTION | FUNCTION label}
CFI {INVALID | VALID}

CFI {REMEMBERSTATE | RESTORESTATE}

CFI PICKER

CFI CONDITIONAL label [, labell]
CFI cfa {resource | resource + constant | resource - constant}

CFI cfa cfiexpr

CFI resource {UNDEFINED | SAMEVALUE | CONCAT}
CFI resource {resource | FRAME(cfa, offset)}
CFI resource cfiexpr

PARAMETERS
bits

cell

cfa

cfiexpr

codealignfactor

commonblock

constant

The size of the resource in bits.

The name of a frame cell.

The name of a CFA (canonical frame address).

A CFI expression (see CFI expressions, page 96).

The smallest factor of all instruction sizes. Each CFI directive for
a data block must be placed according to this alignment. 1 is the
default and can always be used, but a larger value will shrink the
produced backtrace information in size. The possible range is
1-256.

The name of a previously defined common block.

A constant value or an assembler expression that can be evaluated
to a constant value.

Assembler directives __¢

dataalignfactor The smallest factor of all frame sizes. If the stack grows towards
higher addresses, the factor is negative; if it grows towards lower
addresses, the factor is positive. 1 is the default, but a larger value
will shrink the produced backtrace information in size. The
possible ranges are -256 — -1 and 1 — 256.

label A function label.

name The name of the block.

namesblock The name of a previously defined names block.

offset The offset relative the CFA. An integer with an optional sign.
part A part of a composite resource. The name of a previously

declared resource.

resource The name of a resource.

segment The name of a segment.

size The size of the frame cell in bytes.

type The memory type, such as CODE, CONST or DATA. In addition, any

of the memory types supported by the IAR XLINK Linker. It is
used solely for the purpose of denoting an address space.

DESCRIPTIONS

The Call Frame Information directives (CFI directives) are an extension to the
debugging format of the IAR C-SPY Debugger. The CFI directives are used for defining
the backtrace information for the instructions in a program. The compiler normally
generates this information, but for library functions and other code written purely in
assembler language, backtrace information has to be added if you want to use the call
frame stack in the debugger.

The backtrace information is used to keep track of the contents of resources, such as
registers or memory cells, in the assembler code. This information is used by the IAR
C-SPY Debugger to go “back” in the call stack and show the correct values of registers
or other resources before entering the function. In contrast with traditional approaches,
this permits the debugger to run at full speed until it reaches a breakpoint, stop at the
breakpoint, and retrieve backtrace information at that point in the program. The
information can then be used to compute the contents of the resources in any of the
calling functions—assuming they have call frame information as well.

89

Call frame information directives

90

8051 IAR Assembler
Reference Guide

Backtrace rows and columns

At each location in the program where it is possible for the debugger to break execution,
there is a backtrace row. Each backtrace row consists of a set of columns, where each
column represents an item that should be tracked. There are three kinds of columns:

e The resource columns keep track of where the original value of a resource can be
found.

e The canonical frame address columns (CFA columns) keep track of the top of the
function frames.

o The return address column keeps track of the location of the return address.

There is always exactly one return address column and usually only one CFA column,
although there may be more than one.

Defining a names block

A names block is used to declare the resources available for a processor. Inside the
names block, all resources that can be tracked are defined.

Start and end a names block with the directives:

CFI NAMES name
CFI ENDNAMES name

where name is the name of the block.
Only one names block can be open at a time.

Inside a names block, four different kinds of declarations may appear: a resource
declaration, a stack frame declaration, a static overlay frame declaration, or a base
address declaration:

e To declare a resource, use one of the directives:

CFI RESOURCE resource : bits
CFI VIRTUALRESOURCE resource : bits

The parameters are the name of the resource and the size of the resource in bits. A
virtual resource is a logical concept, in contrast to a “physical” resource such as a
processor register. Virtual resources are usually used for the return address.

More than one resource can be declared by separating them with commas.

A resource may also be a composite resource, made up of at least two parts. To
declare the composition of a composite resource, use the directive:

CFI RESOURCEPARTS resource part, part,

The parts are separated with commas. The resource and its parts must have been
previously declared as resources, as described above.

Assembler directives __¢

o To declare a stack frame CFA, use the directive:
CFI STACKFRAME cfa resource type

The parameters are the name of the stack frame CFA, the name of the associated
resource (the stack pointer), and the segment type (to get the address space). More
than one stack frame CFA can be declared by separating them with commas.

When going “back” in the call stack, the value of the stack frame CFA is copied into
the associated stack pointer resource to get a correct value for the previous function
frame.

e To declare a static overlay frame CFA, use the directive:
CFI STATICOVERLAYFRAME cfa segment

The parameters are the name of the CFA and the name of the segment where the static
overlay for the function is located. More than one static overlay frame CFA can be
declared by separating them with commas.

o To declare a base address CFA, use the directive:
CFI BASEADDRESS cfa type

The parameters are the name of the CFA and the segment type. More than one base
address CFA can be declared by separating them with commas.

A base address CFA is used to conveniently handle a CFA. In contrast to the stack
frame CFA, there is no associated stack pointer resource to restore.

Extending a names block

In some special cases you have to extend an existing names block with new resources.
This occurs whenever there are routines that manipulate call frames other than their
own, such as routines for handling, entering, and leaving C or Embedded C++ functions;
these routines manipulate the caller’s frame. Extended names blocks are normally used
only by compiler developers.

Extend an existing names block with the directive:
CFI NAMES name EXTENDS namesblock

where namesblock is the name of the existing names block and name is the name of
the new extended block. The extended block must end with the directive:

CFI ENDNAMES name

Defining a common block

The common block is used for declaring the initial contents of all tracked resources.
Normally, there is one common block for each calling convention used.

91

Call frame information directives

92

8051 IAR Assembler
Reference Guide

Start a common block with the directive:
CFI COMMON name USING namesblock

where name is the name of the new block and namesbIock is the name of a previously
defined names block.

Declare the return address column with the directive:
CFI RETURNADDRESS resource type

where resource is a resource defined in namesblock and type is the segment type.
You have to declare the return address column for the common block.

End a common block with the directive:
CFI ENDCOMMON name
where name is the name used to start the common block.

Inside a common block you can declare the initial value of a CFA or a resource by using
the directives listed last in Common block directives, page 88. For more information on
these directives, see Simple rules, page 94, and CF1I expressions, page 96.

Extending a common block

Since you can extend a names block with new resources, it is necessary to have a
mechanism for describing the initial values of these new resources. For this reason, it is
also possible to extend common blocks, effectively declaring the initial values of the
extra resources while including the declarations of another common block. Just as in the
case of extended names blocks, extended common blocks are normally only used by
compiler developers.

Extend an existing common block with the directive:
CFI COMMON name EXTENDS commonblock USING namesblock

where name is the name of the new extended block, commonblock is the name of the
existing common block, and namesblock is the name of a previously defined names
block. The extended block must end with the directive:

CFI ENDCOMMON name

Defining a data block

The data block contains the actual tracking information for one continuous piece of
code. No segment control directive may appear inside a data block.

Start a data block with the directive:

CFI BLOCK name USING commonblock

Assembler directives __¢

where name is the name of the new block and commonblock is the name of a previously
defined common block.

If the piece of code is part of a defined function, specify the name of the function with
the directive:

CFI FUNCTION label

where label is the code label starting the function.

If the piece of code is not part of a function, specify this with the directive:
CFI NOFUNCTION

End a data block with the directive:

CFI ENDBLOCK name

where name is the name used to start the data block.

Inside a data block you may manipulate the values of the columns by using the directives
listed last in Data block directives, page 89. For more information on these directives,
see Simple rules, page 94, and CFI expressions, page 96.

SIMPLE RULES

To describe the tracking information for individual columns, there is a set of simple rules
with specialized syntax:

CFI cfa { NOTUSED | USED }

CFI cfa { resource | resource + constant \ resource - constant }
CFI resource { UNDEFINED | SAMEVALUE | CONCAT }

CFI resource { resource | FRAME(cfa, offset) }

These simple rules can be used both in common blocks to describe the initial
information for resources and CFAs, and inside data blocks to describe changes to the
information for resources or CFAs.

In those rare cases where the descriptive power of the simple rules are not enough, a full
CFI expression can be used to describe the information (see CFI expressions, page 96).
However, whenever possible, you should always use a simple rule instead of a CFI
expression.

There are two different sets of simple rules: one for resources and one for CFAs.

Simple rules for resources

The rules for resources conceptually describe where to find a resource when going back
one call frame. For this reason, the item following the resource name in a CFI directive
is referred to as the location of the resource.

93

Call frame information directives

To declare that a tracked resource is restored, that is, already correctly located, use
SAMEVALUE as the location. Conceptually, this declares that the resource does not have
to be restored since it already contains the correct value. For example, to declare that a
register REG is restored to the same value, use the directive:

CFI REG SAMEVALUE

To declare that a resource is not tracked, use UNDEFINED as location. Conceptually, this
declares that the resource does not have to be restored (when going back one call frame)
since itis not tracked. Usually it is only meaningful to use it to declare the initial location
of a resource. For example, to declare that REG is a scratch register and does not have to
be restored, use the directive:

CFI REG UNDEFINED

To declare that a resource is temporarily stored in another resource, use the resource
name as its location. For example, to declare that a register REG1 is temporarily located
in a register REG2 (and should be restored from that register), use the directive:

CFI REG1l REG2

To declare that a resource is currently located somewhere on the stack, use FRAME (cfa,
offset) as location for the resource, where cfa is the CFA identifier to use as “frame
pointer” and of fset is an offset relative the CFA. For example, to declare that a register
REG is located at offset -4 counting from the frame pointer CFA_SP, use the directive:

CFI REG FRAME (CFA_SP,-4)

For a composite resource there is one additional location, CONCAT, which declares that
the location of the resource can be found by concatenating the resource parts for the
composite resource. For example, consider a composite resource RET with resource
parts RETLO and RETHI. To declare that the value of RET can be found by investigating
and concatenating the resource parts, use the directive:

CFI RET CONCAT

This requires that at least one of the resource parts has a definition, using the rules
described above.

Simple rules for CFAs

In contrast with the rules for resources, the rules for CFAs describe the address of the
beginning of the call frame. The call frame often includes the return address pushed by
the subroutine calling instruction. The CFA rules describe how to compute the address
to the beginning of the current call frame. There are two different forms of CFAs, stack
frames and static overlay frames, each declared in the associated names block. See
Names block directives, page 88.

8051 IAR Assembler
94 Reference Guide

Assembler directives __¢

Each stack frame CFA is associated with a resource, such as the stack pointer. When
going back one call frame the associated resource is restored to the current CFA. For
stack frame CFAs there are two possible simple rules: an offset from a resource (not
necessarily the resource associated with the stack frame CFA) or NOTUSED.

To declare that a CFA is not used, and that the associated resource should be tracked as
anormal resource, use NOTUSED as the address of the CFA. For example, to declare that
the CFA with the name CFA_SP is not used in this code block, use the directive:

CFI CFA_SP NOTUSED

To declare that a CFA has an address that is offset relative the value of a resource, specify
the resource and the offset. For example, to declare that the CFA with the name CFA_sp
can be obtained by adding 4 to the value of the SP resource, use the directive:

CFI CFA_SP SP + 4

For static overlay frame CFAs, there are only two possible declarations inside common
and data blocks: USED and NOTUSED.

CFI EXPRESSIONS

Call Frame Information expressions (CFI expressions) can be used when the descriptive
power of the simple rules for resources and CFAs is not enough. However, you should
always use a simple rule when one is available.

CFI expressions consist of operands and operators. Only the operators described below
are allowed in a CFI expression. In most cases, they have an equivalent operator in the
regular assembler expressions.

In the operand descriptions, cfiexpr denotes one of the following:

o A CFI operator with operands
® A numeric constant

o A CFA name

® A resource name.

Unary operators

Overall syntax: OPERATOR (operand)

Operator Operand Description

UMINUS cfiexpr Performs arithmetic negation on a CFl expression.
NOT cfiexpr Negates a logical CFl expression.

COMPLEMENT cfiexpr Performs a bitwise NOT on a CFl expression.

Table 30: Unary operators in CFI expressions

95

Call frame information directives

96

8051 IAR Assembler
Reference Guide

Operator

Operand

Description

LITERAL

expr

Get the value of the assembler expression. This can insert

the value of a regular assembler expression into a CFl

expression.

Table 30: Unary operators in CFI expressions (Continued)

Binary operators

Overall syntax: OPERATOR (operandl, operand?2)

Operator Operands Description

ADD cfiexpr,cfiexpr Addition

SUB cfiexpr,cfiexpr Subtraction

MUL cfiexpr,cfiexpr Multiplication

DIV cfiexpr,cfiexpr Division

MOD cfiexpr,cfiexpr Modulo

AND cfiexpr,cfiexpr Bitwise AND

OR cfiexpr,cfiexpr Bitwise OR

XOR cfiexpr,cfiexpr Bitwise XOR

EQ cfiexpr,cfiexpr Equal

NE cfiexpr,cfiexpr Not equal

LT cfiexpr,cfiexpr Less than

LE cfiexpr,cfiexpr Less than or equal

GT cfiexpr,cfiexpr Greater than

GE cfiexpr,cfiexpr Greater than or equal

LSHIFT cfiexpr,cfiexpr Logical shift left of the left operand. The number of
bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

RSHIFTL cfiexpr,cfiexpr Logical shift right of the left operand. The number of
bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

RSHIFTA cfiexpr,cfiexpr Arithmetic shift right of the left operand. The number

of bits to shift is specified by the right operand. In
contrast with RSHIFTL the sign bit will be preserved
when shifting.

Table 31: Binary operators in CFI expressions

Assembler directives __¢

Ternary operators
Overall syntax: OPERATOR (operandl, operand2, operand3)

Operator Operands Description

FRAME cfa,size,offset Get value from stack frame. The operands are:
cfa An identifier denoting a previously declared CFA.
sizeA constant expression denoting a size in bytes.
offsetA constant expression denoting an offset in
bytes.
Gets the value at address cfa+offset of size size.

IF cond, true, false Conditional operator. The operands are:
condA CFA expression denoting a condition.
trueAny CFA expression.
falseAny CFA expression.
If the conditional expression is non-zero, the result is the
value of the true expression; otherwise the result is the
value of the false expression.

LOAD size, type,addr Get value from memory. The operands are:
sizeA constant expression denoting a size in bytes.
typeA memory type.
addrA CFA expression denoting a memory address.
Gets the value at address addr in segment type type of
size size.

Table 32: Ternary operators in CFI expressions

EXAMPLE

The following is a generic example and not an example specific to the 8051
microcontroller. This will simplify the example and clarify the usage of the CFI
directives. A target-specific example can be obtained by generating assembler output
when compiling a C source file.

Consider a generic processor with a stack pointer Sp, and two registers R0 and R1.
Register RO will be used as a scratch register (the register is destroyed by the function
call), whereas register R1 has to be restored after the function call. For reasons of
simplicity, all instructions, registers, and addresses will have a width of 16 bits.

97

Call frame information directives

98

8051 IAR Assembler
Reference Guide

Consider the following short code sample with the corresponding backtrace rows and
columns. At entry, assume that the stack contains a 16-bit return address. The stack
grows from high addresses towards zero. The CFA denotes the top of the call frame, that
is, the value of the stack pointer after returning from the function.

Address CFA SP RO RI RET Assembler code

0000 SP+2 — SAME CFA -2 funcl: PUSH R1
0002 SP+4 CFA -4 MOV R1,#4
0004 CALL func2
0006 POP RO
0008 SP+2 RO MOV R1,RO
000A SAME RET

Table 33: Code sample with backtrace rows and columns

Each backtrace row describes the state of the tracked resources before the execution of
the instruction. As an example, for the MOV R1, RO instruction the original value of the
R1 register is located in the RO register and the top of the function frame (the CFA
column) is SP + 2. The backtrace row at address 0000 is the initial row and the result
of the calling convention used for the function.

The SP column is empty since the CFA is defined in terms of the stack pointer. The RET
column is the return address column—that is, the location of the return address. The RO
column has a ‘—’ in the first line to indicate that the value of RO is undefined and does
not need to be restored on exit from the function. The R1 column has SAME in the initial
row to indicate that the value of the R1 register will be restored to the same value it
already has.

Defining the names block
The names block for the small example above would be:

CFI NAMES trivialNames
CFI RESOURCE SP:16, R0O:16, R1:16
CFI STACKFRAME CFA SP DATA

;; The virtual resource for the return address column
CFI VIRTUALRESOURCE RET:16

CFI ENDNAMES trivialNames

Defining the common block

The common block for the simple example above would be:

CFI COMMON trivialCommon USING trivialNames
CFI RETURNADDRESS RET DATA

Assembler directives __¢

CFI CFA SP + 2

CFI RO UNDEFINED

CFI R1 SAMEVALUE

CFI RET FRAME (CFA, -2) ; Offset -2 from top of frame
CFI ENDCOMMON trivialCommon

Note: sp may not be changed using a CFI directive since it is the resource associated
with CFA.

Defining the data block

Continuing the simple example, the data block would be:

RSEG CODE: CODE

CFI BLOCK funclblock USING trivialCommon

CFI FUNCTION funcl
funcl:

PUSH R1

CFI CFA SP + 4

CFI R1 FRAME (CFA, -4)

MOV R1, #4

CALL func?2

POP RO

CFI R1 RO

CFI CFA SP + 2

MOV R1,RO

CFI R1 SAMEVALUE

RET

CFI ENDBLOCK funclblock

Note that the CFI directives are placed affer the instruction that affects the backtrace
information.

99

Call frame information directives

8051 IAR Assembler
100 Reference Guide

Assembler diagnostics

This chapter lists the error and warning messages for the 8051 IAR Assembler.

Severity levels

The diagnostic messages produced by the 8051 IAR Assembler reflect problems or
errors that are found in the source code or occur at assembly time.

ASSEMBLY WARNING MESSAGES

Assembly warning messages are produced when the assembler has found a construct
which is probably the result of a programming error or omission. These messages are
listed in the section Warning messages, page 110.

COMMAND LINE ERROR MESSAGES

Command line errors occur when the assembler is invoked with incorrect parameters.
The most common situation is when a file cannot be opened, or with duplicate,
misspelled, or missing command line options.

ASSEMBLY ERROR MESSAGES

Assembly error messages are produced when the assembler has found a construct which
violates the language rules. These messages are listed in the section Error messages,
page 102.

ASSEMBLY FATAL ERROR MESSAGES

Assembly fatal error messages are produced when the assembler has found a user error
so severe that further processing is not considered meaningful. After the diagnostic
message has been issued the assembly is immediately terminated. These error messages
are identified as Fatal in the error messages list.

ASSEMBLER INTERNAL ERROR MESSAGES

During assembly a number of internal consistency checks are performed and if any of
these checks fail, the assembler will terminate after giving a short description of the
problem. Such errors should normally not occur. However, if you should encounter an
error of this type, please report it to your software distributor or to IAR Technical
Support. Please include information enough to reproduce the problem.

101

Error messages

102

This would typically include:

The exact internal error message text.

The source file of the program that generated the internal error.

A list of the options that were used when the internal error occurred.

The version number of the assembler, which can be seen in the header of the list file
generated by the assembler.

Error messages

8051 IAR Assembler
Reference Guide

Error messages are displayed on the screen, as well as printed in the optional list file.

All errors are issued as complete, self-explanatory messages. The error message consists
of the incorrect source line, with a pointer to where the problem was detected, followed
by the source line number and the diagnostic message. If include files are used, error

messages will be preceded by the source line number and the name of the current file:

"subfile.h",4 Error[40]: bad instruction

GENERAL ERROR MESSAGES
The following section lists the general error messages.

0 Invalid syntax
The assembler could not decode the expression.

| Too deep #include nesting (max. is 10)
The assembler limit for nesting of #include files was exceeded. A recursive
#include could be the reason.

2 Failed to open #include file name
Could not open a #include file. The file does not exist in the specified
directories. Check the - prefixes.

3 Invalid #include file name
A #include file name must be written <file> or "file".

4 Unexpected end of file encountered
End of file encountered within a conditional assembly, the repeat directive, or
during macro expansion. The probable cause is a missing end of conditional
assembly etc.

5 Too long source line (max. is 2048 characters) truncated
The source line length exceeds the assembler limit.

15
16

17
18

20
21
22

23
24

Assembler diagnostics ___¢

Bad constant
A character that is not a legal digit was encountered.

Hexadecimal constant without digits
The prefix 0x or 0x of a hexadecimal constant found without any hexadecimal
digits following.

Invalid floating point constant
A too large floating-point constant or invalid syntax of floating-point constant
was encountered.

Too many errors encountered (>100).
Space or tab expected

Too deep block nesting (max is 50)
The preprocessor directives are nested too deep.

String too long (max is 2045)
The assembler string length limit was exceeded.

Missing delimiter in literal or character constant
No closing delimiter ' or " was found in character or literal constant.

Missing #endif
A #if, #ifdef, or #ifndef was found but had no matching #endif.

Invalid character encountered: char; ignored

Identifier expected
A name of a label or symbol was expected.

') expected

No such pre-processor command: command
was followed by an unknown identifier.

Unexpected token found in pre-processor line
The preprocessor line was not empty after the argument part was read.

Argument to #define too long (max is 2048)
Too many formal parameters for #define (max is 37)

Macro parameter parameter redefined
A #define symbol’s formal parameter was repeated.

' or')' expected

Unmatched #else, #endif or #elif
Fatal. Missing #if, #ifdef, or #ifndef.

103

Error messages

25 #error error
Printout via the #error directive.

26 '(" expected

27 Too many active macro parameters (max is 256)
Fatal. Preprocessor limit exceeded.

28 Too many nested parameterized macros (max is 50)
Fatal. Preprocessor limit exceeded.

29 Too deep macro nesting (max is 100)
Fatal. Preprocessor limit exceeded.

30 Actual macro parameter too long (max is 512)
A single macro (in #define) argument may not exceed the length of a source
line.

31 Macro macro called with too many parameters
The number of parameters used was greater than the number in the macro
declaration.

32 Macro macro called with too few parameters
The number of parameters used was less than the number in the macro
declaration (#define).

33 Too many MACRO arguments
The number of assembler macros exceeds 32.

34 May not be redefined
Assembler macros may not be redefined.

35 No name on macro
An assembler macro definition without a label was encountered.

36 lllegal formal parameter in macro
A parameter that was not an identifier was found.
37 ENDM or EXITM not in macro

An ENDM directive or EXITM directive encountered outside a macro.

38 '>' expected but found end-of-line
A < was found but no matching >.

39 END before start of module
The end-of-module directive has no matching MODULE directive.

40 Bad instruction
The mnemonic/directive does not exist.

8051 IAR Assembler
104 Reference Guide

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Assembler diagnostics ___¢

Bad label

Labels must begin withA. ..z, a. ..z, _, or 2. The succeeding characters
mustbeA...Z,a...z,0...9,_,or 2. Labels cannot have the same name as
a predefined symbol.

Duplicate label
The label has already appeared in the label field or has been declared as
EXTERN.

lllegal effective address
The addressing mode (operands) is not allowed for this mnemonic.

',' expected
A comma was expected but not found.

Name duplicated
The name of RSEG, STACK, or COMMON segments is already used but for
something else.

Segment type expected
In RSEG, STACK, or COMMON directive : was found but the segment type that
should follow was not valid.

Segment name expected
The RSEG, STACK, and COMMON directives need a name.

Value out of range range
The value exceeds its limits.

Alignment already set
RSEG, STACK, and COMMON segments do not allow alignment to be set more
than once. Use ALIGN, EVEN, or ODD instead.

Undefined symbol: symbol
The symbol did not appear in label field or in an EXTERN or s£fr declaration.

Can't be both PUBLIC and EXTERN
Symbols can be declared as either PUBLIC or EXTERN.

EXTERN not allowed
Reference to EXTERN symbols is not allowed in this context.

Expression must be absolute
The expression cannot involve relocatable or external symbols.

Expression can not be forward
The assembler must be able to solve the expression the first time this
expression is encountered.

105

Error messages

106

8051 IAR Assembler
Reference Guide

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

lllegal size
The maximum size for expressions is 32 bits.

Too many digits
The value exceeds the size of the destination.

Unbalanced conditional assembly directives
Missing conditional assembly IF or ENDIF.

ELSE without IF
Missing conditional assembly IF.

ENDIF without IF
Missing conditional assembly TF.

Unbalanced structured assembly directives
Missing structured assembly IF or ENDIF.

'+' or '-' expected
A plus or minus sign is missing.

lllegal operation on extern or public symbol
An illegal operation has been used on a public or external symbol, e.g. VAR.

lllegal operation on non-constant label
It is illegal to make a non-constant symbol PUBLIC or EXTERN.

Extern or unsolved expression
The expression must be solved at assembly time, i.e. not include external
references.

'=' expected
Equals sign was missing.

Segment too long (max is max)
The length of ASEG, RSEG, STACK, or COMMON segments is larger than the
addressable length.

Public did not appear in label field
A symbol was declared PUBLIC but no label with the same name was found in
the source file.

End of block-repeat without start
The repeat directive REPT was not found although the ENDR directive was.

Segment must be relocatable
The operation is not allowed on ASEG.

70

71

72

73

74

75

76

77

78

79

80

82

83

84

Assembler diagnostics ___¢

Limit exceeded: error text, value is: value (decimal)
The value exceeded the limits set with the LIMIT directive. The error text is
set by the user in the LIMIT directive.

Symbol symbol has already been declared EXTERN
An attempt to redeclare an EXTERN as EXTERN was made.

Symbol symbol has already been declared PUBLIC
An attempt to redeclare a PUBLIC as PUBLIC was made.

End-of-module missing
A PROGRAM or MODULE directive was encountered before ENDMOD was found.

Expression must yield non-negative result
The expression was evaluated to a negative number, whereas a positive number
was required.

Repeat directive unbalanced
This error is caused by a REPT directive without a matching ENDR, or a an ENDR
directive without a matching REPT.

End of repeat directive is missing
A REPT directive without a closing ENDR was encountered.

LOCALs not allowed in this context, (symbol)
Local symbols must be declared within macro definitions.

End of macro expected
An assembler macro is being defined but there was no end-of-macro.

End of repeat expected
One of the repeat directives is active, but there was no end-of-repeat found.

End of conditional assembly expected
Conditional assembly is active but there was no end of if.

End of structured assembly expected
One of the directives for structured assembly is active but has no matching
END.

Misplaced end of structured assembly
A directive that terminates one of the structured assembly directives was found
but no matching START directive is active.

Error in SFR attribute definition
The sFRTYPE directive was used with unknown attributes.

lllegal symbol type in symbol
The symbol cannot be used in this context since it has the wrong type.

107

Error messages

85

86

87

88

89
90
91
92
93
94
95
96
97
98
99
100

Wrong number of arguments
Expected a different number of arguments.

Number expected
Characters other than digits were encountered.

Label must be public or extern
The label must be declared with PUBLIC or EXTERN.

Label not defined with DEFFN
The label has to be defined via DEFFN before used in this context.

Sorry DEMO version, bytecount exceeded (max bytes)
Different parts of ASEG have overlapping code
Internal error

Empty macro stack overflow

Macro stack overflow

Attempt to access out-of-stack value

Invalid macro operator

No such macro argument

Sorry Lite version, bytecount exceeded (max bytes)
Option -re cannot handle code in include files, use -r or -rn instead
#include within macro not supported

Duplicate segment definitions
Segment redefinition with different attributes; for example, an RSEG segment
cannot be used as a COMMON segment.

8051-SPECIFIC ERROR MESSAGES

In addition to the general error messages, the 8051 IAR Assembler may generate the
following error messages:

401
402
403
404
405
406

8051 IAR Assembler
108 Reference Guide

Too many operands

:8 or :16 expected

There is no error message with this number
The register name is not allowed here
There is no error message with this number

lllegal suffix

Assembler diagnostics ___¢

407 lllegal value value
408 lllegal size specifier specifier
409 C-comment has no end

410 Could not solve step
411 Nothing to BREAK out of

412 CASE after DEFAULT
DEFAULT is a catch-all case and is not allowed to have a CASE after it.

413 CASE outside SWITCH
414 COMMA expected

415 Nothing to CONTINUE to
CONTINUE needs something to continue.

416 Cannot solve break
The break count must be solvable.count value

417 DEFAULT outside SWITCH

418 ELSE used more than once
It is not allowed to have multiple ELSE directives for an IF.

419 ELSE without matching IF

420 ELSEIF cannot be used after ELSE
421 ELSEIF with no matching IF

422 ENDF without matching FOR

423 ENDIF without matching IF

424 ENDS without matching SWITCH
425 ENDW without matching WHILE

426 THEN without matching IF

427 Negative step value

428 Zero step value

429 UNTIL without matching REPEAT
430 Break argument must be 1,2, or 3

431 Multiple DEFAULT
It is not allowed to have more than one DEFAULT inside a SWITCH.

109

Warning messages

110

432 Can't assign register to register

433 lllegal constant prefix specifier

434 lllegal prefix specifier

435 lllegal bit suffix specifier

Warning messages

GENERAL

The following section lists the general warning messages.

0 Unreferenced label
The label was not used as an operand, nor was it declared public.

| Nested comment
A C-type comment, /* ... */, was nested.

2 Unknown escape sequence
A backslash (\) found in a character constant or string literal was followed by
an unknown escape character.

3 Non-printable character
A non-printable character was found in a literal or character constant.

4 Macro or define expected

5 Floating point value out-of-range
Floating point value is too large to be represented by the floating-point system
of the target.

6 Floating point division by zero

7 Wrong usage of string operator (‘#' or '##'); ignored.
The current implementation restricts usage of the # and ## operators to the
token field of parameterized macros. In addition, the # operator must precede
a formal parameter.

8 Macro parameter(s) not used

9 Macro redefined

10 Unknown macro

I Empty macro argument

12 Recursive macro

8051 IAR Assembler
Reference Guide

19
20

21
22

Assembler diagnostics ___¢

Redefinition of Special Function Register
The special function register (SFR) has already been defined.

Division by zero
Division by 0 in constant expression.

Constant truncated
The constant was longer than the size of the destination.

Suspicious sfr expression
A special function register (SFR) is used in an expression, and the assembler
cannot check access rights.

Empty module module, module skipped
An empty module was created by using END directly after ENDMOD or MODULE,
followed by ENDMOD without any statements in between.

End of program while in include file
The program ended while a file was being included.

Symbol symbol duplicated

Bit symbol cannot be used as operand
A symbol was declared using the bit directive, but since the bit address is not
calculated the symbol should not be used.

Label did not appear in label field

Set segment alignment the same value or larger
When the alignment set by ALIGN is larger than the segment alignment it may
be lost at link time.

8051-SPECIFIC WARNING MESSAGES

In addition to the general warning messages, the 8051 IAR Assembler may generate the
following warning messages:

400

401

402

Number out of range
The value does not fit the instruction/directive and is truncated.

SFR neither defined as READ nor WRITE
The SFRTYPE directive was used in such a way that the special function
register is inaccessible.

More than one SFR size attribute defined using default (byte)
The SFRTYPE directive was used with multiple size definitions. The assembler
will use default byte size.

Warning messages

112

8051 IAR Assembler
Reference Guide

403

404

405

406

407
408
409

No SFR size attribute defined using default (byte)
The SFRTYPE directive was used with no size definition. The assembler will
use default byte size.

Displacement out of bounds
The offset in a JMP or CALL instruction does not fit, the destination label is to
far off.

Accessing SFR incorrectly, check read/write flags
An attempt such as to write to a read-only SFR has been made.

Accessing SFR using incorrect size
An attempt such as to write to a read-only SFR has been made.

Address may not be reachable
SFR address might not be bit addressable

Bit address used as regular dir8 address

A

absolute SegMentsSo vttt 49
ADD (CFLOperator)o.vuetneneeeennenen.. 97
addition (assembler operator), 26
ALIAS (assembler directive) 52
ALIGN (assembler directive) 47
alignment, of segments., 50
ALIGNRAM (assembler directive). 47
AND (assembler operator)ooueuernan.. 28
AND (CFLOperator)o.vuveneneneennennn.. 97
architecture, 8051 ix
ARGFRAME (assembler directive) 87
ASCII character constants.c.couvnennen.n.. 4
ASEG (assembler directive) 47
ASEGN (assembler directive). 47
asm (filename extension)coiuin... 2
ASMS8051 (environment variable). 10
assembler control directives 83
assembler diagnostics i 101
assembler directives
ALIAS . . . 52
ALIGN. . ..o 47
ALIGNRAM i 47
ARGFRAME. 87
ASEG. ... 47
ASEGN 47
assemblercontrol. 83
ASSIGN. 52
BREAK 65
call frame information 87
CASE. .. 65
CASEOFF e 83
CASEON. ... e 83
CFLdirectives.oovi i 87
COL. .ot e 72
COMMENtS, USING . .« v vttt 42
COMMON. ... e e 47
compiler function.o o oL 87

Index °

conditional assembly L oL 56
See also C-style preprocessor directives
CONTINUE.o e 65
C-style preprocessorc.cueuvnenenannenenn 77
data definition or allocation 81
DB . 81
DC8 . 81
DCIO . oot 81
DC24 . o 81
DC32 81
DD . 81
DEFAULTot 65
DEFINE.t 52
DS 81
DS 81
DSIO .« 81
D24 82
DS 82
DT . 82
DW 82
ELSE ... 56
ELSEIF . ..o e 56
ELSEIFS ..o e 65
ELSES . .. 65
END. .o 42
ENDF. . .o 65
ENDIF. ... e e 56
ENDIFS. ..o e 65
ENDM. ..o e e 58
ENDMAC ...ttt e e 58
ENDMODt 42
ENDR ... 58
ENDS. . 65
ENDW . .o 65
EQU. .o 52
EVEN .. 47
EXITM ..ot e e 58
EXPORT ...t e 45
EXTERNo e 45

113

114

FOR . ..t e 65
FUNCALL. . ..ot 87
FUNCTION. . ..ot e 87
TF 56
TES . 65
IMPORTttt e 45
labels, using.t 42
LIBRARY ... 42
LIMIT ..o e e 52
listfilecontrol 72
LOCAL ..ot e 58
LOCFRAMEt 87
LSTCND ...t e 72
LSTCODttt 73
LSTEXP ..ot 73
LSTMAC. . oot e e e 73
LSTOUT ..ot 73
LSTPAG ...t 73
LSTREP.ot 73
LSTSAS. oo 73
LSTXRF .ot 73
MACRO. ..ot te 58
MACIO PrOCESSING . « ¢ vt v v vt ettt ee e 58
MODULEottt 42
modulecontrol. i 42
NAME . .o 42
ODD .ttt 47
ORG ..ot 47
PAGE. 73
PAGSIZ . ..o 73
PATAMELETS « o o o v vt et e e e e 42
PROGRAMt 42
PUBLIC. . ..o e 45
PUBWEAKo 45
RADIX .. 84
REPEAT ... e 65
REPT . .. 58
REPTC. . ..o e 58

8051 IAR Assembler
Reference Guide

REPTI 58
REQUIRE i 45
RSEG. 47
RTMODEL i 43
segmentcontrol ol 47
SET .. 52
) 52
SFRTYPE 52
STACK 47
staticoverlay i 87
structured assembly Lo L. 65
SUMMATY « + v v v tete e et e et ee e e e ee s 37
SWITCH 65
symbolcontrol. L .. 45
13 1172 . GO 41
UNTIL. ... 65
value assignment 52
WHILE 65
#define...... 77
#elif 77
#else. 77
#endif. 77
HOITOT . . oottt e e 77
HE 77
#ifdef 77
#ifndef 78
#include. i 78
HMESSAZE -« v v et e 78
#undef 78
S 83
T 83
I 83
TSN 52
assembler environment variables 10
assembler eXpressions.t 2
assemblerlabels L il 3
assembler directives, using with. 42
defining and undefining 79
formatof 1

Index °

assembler list files BYTE4. ... 30
active lines, including 19 DATE. e 30
conditional code and strings. 74 EQ . 27
conditions, specifying 12 GE . 28
cross-references GT . 28

GENETatiNg . . . oottt 22 HIGH.o 31

table, generating 74 HWRD. 31
disabling 73 1N EXPIESSIONS. « o vt vttt ettt e 2
enabling......... i 73 LE . 27
filename, specifying. 16 LOC. . 31
format, specifying 74 LOW 32
generated lines, controlling 74 LT 27
GENETALNG . . o\ttt et 16 LWRD ... 32
header section, omitting. 17 MOD ... 29
#include files, specifying, 15 NE .o 27
lines per page, specifying. 18 NOT . . 29
macro execution information, including. 12 OR .. 30
macro-generated lines, controlling. 74 precedence.t 23
structured assembly, controlling. 74 PRM ... 32
tab spacing, specifying. 20 SEB .o 33
using directives to format. 74 SEE . o 34

assembler macros SHL . . 34
arguments, Passing to. vovv v v v n e 60 SHR . .. 35
defining 59 SIZEOF 35
generated lines, controlling in listfile 74 UGT. .o e 36
inlineroutines 62 ULT .o e 36
predefined symbol L L. 60 XOR e 36
PIOCESSING . o v v vttt ettt 61 e 29
quote characters, specifying. 16 L PP 27
special characters, using. 60 Do . oo 29

assembler object file, specifying filename. 17 PP 28

assembler Operators 23 Q& e 28
AND o e 28 e 25
BITAND . ..ot 28 e 25-26
BITNOT. 29 e 26
BITOR.o 29 L 26
BITXOR 29 LSS N 27
BYTE2. 30 B PN 34
BYTE3. ..o 30 Qe e 27

115

116

P 27
S e e 27
e 28
D e 28
> 35
LA 29
L 29
e 30
e 29
assembler options
command line, settingc. ... 9
extended command file, setting 9
SUMMATY « o v v e vttt ettt e e et eeenes 11
typographic convention xi
B 12
Do 12
T 12
D 13
S 14
A 14
S 9,14
S 15
P 15
A 15
S I 16
O 16
Mo 16
N 17
A 17
FO . 17
S0 e 18
D e 18
P 18
S 19
P 19
el 19
P 20
U 20

8051 IAR Assembler
Reference Guide

TV e 20
2 21

X e e e 22
assembler output, including debug information 18
assembler source files, including 79, 84
assembler source format. 1
assembler symbols L oL 3
CXPOTTING « v v v vttt e et 46
IMPOTtING . . o v vttt e 46

in relocatable expressions oo 2
local. ..o 55
predefined 5
undefining. i 20
redefining. i 54
assembler, upgrading from previous version. 8
assembly error messages. 101-102
assembly warning messages 101, 110
disabling 21
ASSIGN (assembler directive) 52
assumptions (programming experience) ix
A8051_INC (environment variable) 10
-B (assembleroption) i 12
-b (assembler option)i .. 12
backtrace information, defining 87
BITAND (assembler operator) 28
BITNOT (assembler operator) 29
BITOR (assembler operator).cvvuennn.. 29
bitwise AND (assembler operator) 28
bitwise exclusive OR (assembler operator)............. 29
bitwise NOT (assembler operator) 29
bitwise OR (assembler operator). 29
BITXOR (assembler operator) 29
BREAK (assembler directive).covn.. 65
BYTE2 (assembler operator)coo... 30
BYTES3 (assembler operator)c..... 30
BYTE4 (assembler operator)c.cuoo... 30

C

-c (assembler option)iiiiiii i 12
call frame information directives 87
CALL (pseudo mnemonic)o v vvenneennenennnn. 7
case sensitive user symbols. 19
case sensitivity, controlling. 84
CASE (assembler directive)oou... 65
CASEOFF (assembler directive). 83
CASEON (assembler directive) 83
CFLdirectivesvunii e 87
CFIL @XPressionsovuvet et e iee e 96
CFLOpPeratorsouue ettt it 96
character constants, ASCIL 4
COL (assembler directive)ccovine.... 72
command line error messages, assembler............. 101
command line options. i 9
command line, extending 14
COMUMEIES . . ot vttt ettt e e e e e e 80

assembler directives, using with. 42

in assembler soucecode. 1

multi-line, using with assembler directives 85
COMMON SEZMENLS. .+« e vt ettt et et e e e 49
COMMON (assembler directive) 47
COMPLEMENT (CFI operator)c..covun... 96
computer style, typographic convention Xi
conditional assembly directives 56

See also C-style preprocessor directives. 79
conditional code and strings, listing 74
conditional constructs (structured assembly) 67
conditional listfile 12
configuration, ProCessorovveve e e enennen.. 20
CONStants, INTEZETottt ettt enn 3
CONTINUE (assembler directive) 65
conventions, typographic Xi
CPU core, specifyingc.oiiiiiiennan.. 20

CPU, defining in assembler. See processor configuration
cross-references, in assembler list file
GENETALNGottt 22

Index °

table, generating. i 74
current time/date (assembler operator) 30
C-style preprocessor directivesouenenn... 77
-D (assembleroption)t 13
-d (assembler option)iiiiiiiiiean.. 14
data allocation directives.oovuvinenenan.. 81
data definition directives., 81
_ _DATE_ _ (predefined symbol) 5
DATE (assembler operator).veuenennn.. 30
DB (assembler directive) 81
DCS8 (assembler directive). 81
DC16 (assembler directive).coou.... 81
DC24 (assembler directive)., 81
DC32 (assembler directive).oo.... 81
DD (assembler directive)ciuii.... 81
debug information, including in assembler output 18
DEFAULT (assembler directive). 65
#define (assembler directive) 77
DEFINE (assembler directive) 52
derivatives, specifying. See processor configuration
diagnostics . ..ot e 101
directives. See assembler directives
DIV (CFLOperator) vve et ieeeeeennn 97
division (assembler operator) 26
document CONVENtions.vvvene v, xi
DS8 (assembler directive)., 81
DS (assembler directive). 81
DS16 (assembler directive)., 81
DS24 (assembler directive)., 82
DS32 (assembler directive)., 82
DT (assembler directive)., 82
DW (assembler directive), 82
-E (assembleroption) 14

17

118

edition NOLICE . ..\ v v ittt e ii
efficient coding techniques 7
#elif (assembler directive). 77
#else (assembler directive) 77
ELSE (assembler directive). 56
ELSEIF (assembler directive). 56
ELSEIFS (assembler directive). 65
ELSES (assembler directive) 65
END (assembler directive) 42
ENDF (assembler directive) 65
#endif (assembler directive) 77
ENDIF (assembler directive) 56
ENDIFS (assembler directive) 65
ENDM (assembler directive) 58
ENDMAC (assembler directive). 58
ENDMOD (assembler directive). 42
ENDR (assembler directive) 58
ENDS (assembler directive) 65
ENDW (assembler directive) 65
environment variables
ASMBOST ..o 10
assembler. 10
ABOSI_INC e 10
EQ (assembler operator), 27
EQ (CFLoperator). ovie i ieeeene 97
EQU (assembler directive)ou.... 52
equal (assembler operator)iiiia... 27
#error (assembler directive), 77
CITOT MNESSAZES « - ¢ v oe et e e et e e eeeenns 102
maximum number, specifying 14
using #errortodisplay i 80
EVEN (assembler directive)co..... 47
EXITM (assembler directive) 58
€Xperience, Programmingeueneenenen.. ix
EXPORT (assembler directive). 45
expressions. See assembler expressions
extended command linefile 9, 14
EXTERN (assembler directive). 45
EXTRN (assembler directive). 45

8051 IAR Assembler
Reference Guide

F

-f (assembleroption). 9, 14
false value, in assembler expressions 2
fatal errors.o 101
_ _FILE_ _ (predefined symbol). 5
file extensions. See filename extensions
file types
assembler SOUICevv v 2
extended commandline....................... 9, 14
#include. ... 15
filename extensions
ASTNL &ttt et e 2
1T 2
Sl 18
S5 2
XCl o 9, 14
filenames, specifying for assembler object file 17-18
floating-point constants.t 4
FOR (assembler directive) 65
formats, assembler sourcecode. 1
fourth byte (assembler operator). 30
FRAME (CFILoperator).covuininiunenenen. 98
FUNCALL (assembler directive) 87
FUNCTION (assembler directive) 87
-G (assembleroption) 15
GE (assembler operator)c...oiiiinan.. 28
GE (CFLOperator). vvuei i e 97
global value, defining 53
greater than or equal (assembler operator) 28
greater than (assembler operator) 28
GT (assembler operator)c.c.ovuvunenenenan.. 28
GT (CFLOperator). vvvee e e eeaene 97

H

header files, SFR. 7
header section, omitting from assembler list file. 17
high byte (assembler operator) 31
high word (assembler operator) 31
HIGH (assembler operator). vn... 31
HWRD (assembler operator) 31
-I (assembler option).t 15
-1 (assembleroption). 15
_ _IAR_SYSTEMS_ASM_ _ (predefined symbol) 5
#if (assembler directive) 77
IF (assembler directive)couuo.n.. 56
IF (CFLoperator).covvvn et 98
#ifdef (assembler directive). 77
#ifdef/#endif matching, disabling 14
#ifndef (assembler directive). 78
IFS (assembler directive) 65
IMPORT (assembler directive) 45
#includefiles. 15
#include (assembler directive) 78
include paths, specifying. 15
inline coding, using Mmacros 62
instruction set, 8051 ix
INEEZET CONSLANES . « . v vttt et e e e e e e e e 3
internal errors, assembler 101
iteration constructs (in structured assembly). 67
JMP (pseudo mnemonic)c.cenininan... 7
-L (assembleroption) i, 16
-1 (assembleroption). 16

Index °

labels. See assembler labels

LE (assembler operator)c.vuvuninenenan.. 27
LE (CFLOPerator)o vv ettt eeeaenes 97
less than or equal (assembler operator). 27
less than (assembler operator).c.c.vn.... 27
library modules. 43

CIEALINE « o v vttt ettt ettt 12
LIBRARY (assembler directive). 42
LIMIT (assembler directive). 52
_ _LINE_ _ (predefined symbol) 5
lines per page, in assembler listfile 18
listing control directives 72
LITERAL (CFlLoperator)oovuienenenan.. 97
LOAD (CFLOperator) ovvvev i 98
LOC (assembler operator).ouvenenenenn.. 31
local value, defining 53
LOCAL (assembler directive). 58
LOCFRAME (assembler directive). 87
logical AND (assembler operator) 28
logical exclusive OR (assembler operator) 36
logical NOT (assembler operator). 29
logical OR (assembler operator) 30
logical shift left (assembler operator) 34
logical shift right (assembler operator) 35
loops (in structured assembly) 67
low byte (assembler operator). 32
low word (assembler operator) 32
LOW (assembler operator)ovuueuennen.. 32
LSHIFT (CFloperator).vuuininennennn... 97
LSTCND (assembler directive). 72
LSTCOD (assembler directive). 73
LSTEXP (assembler directives) 73
LSTMAC (assembler directive) 73
LSTOUT (assembler directive). 73
LSTPAG (assembler directive) 73
LSTREP (assembler directive) 73
LSTSAS (assembler directive) 73
LSTXREF (assembler directive) 73
LT (assembler operator)ouvunenennan.. 27

19

120

LT (CFLOperator)cvvene e 97

LWRD (assembler operator)c...ouvene... 32
-M (assembler option).t 16
macro execution information, including in list file 12
macro processing directiveseuin... 58
macro quote characters 60

specifying 16
MACRO (assembler directive) 58
macros. See assembler macros
memory

reserving space and initializing 82

reserving uninitialized spacein 81
#message (assembler directive). 78
messages, excluding from standard output stream 19
MOD (assembler operator)ooueuervrnenen.. 29
MOD (CFLOperator).cvvveeeeeeeeenennn 97
module ConSiStency. vv i 44
module control directives, 42
MODULE (assembler directive) 42
modules, terminating i 44
modulo (assembler operator), 29
msa (filename extension)c.ouin... 2
MUL (CFLOperator) «ovveeee e eeeeaennn 97
multibyte character support. 17
multiplication (assembler operator) 25
multi-module files, assembling. 44
-N (assembler option)t 17
-n (assembleroption)o 17
NAME (assembler directive). 42
NE (assembler operator)covnininina.. 27
NE (CFLOperator). vovvvn vt e 97
not equal (assembler operator) 27
NOT (assembler operator).coeueuenenn.. 29

8051 IAR Assembler
Reference Guide

NOT (CFLoperator)cuovuenennunenenenen.. 96
-O (assembleroption), 17
-0 (assembler option) 18
ODD (assembler directive), 47
operands
formatof 1
in assembler expressions 2
operations, formatof. L .. 1
operation, Silent i 19
operators. See assembler operators
OPLION SUMMATY . o\ vttt v e et e e ee e eeeeaannn 11
OR (assembler operator).ouvuvrnunenenen.. 30
OR (CFLOperator). vvvve et ieeeaennn 97
ORG (assembler directive)vuienen.n.. 47
-p (assembleroption), 18
PAGE (assembler directive) 73
PAGSIZ (assembler directive). 73
parameters
in assembler directives. 42
typographic convention Xi
precedence, of assembler operators. 23
predefined symbols. 5
in assembler macros. 60
undefining L L 20
_ DATE . 5
_ _FILE . . 5
_IAR_SYSTEMS_ASM_ _ 5
CLINE 5
C TID 5-6
TIME . e 5
__VER .. 5
preprocessor symbol, defining 13
prerequisites (programming experience). ix

PRM (assembler operator), 32
processor configuration, specifying 20
program location counter (PLC) 1,3

SEHNG .« v\ttt 50
program modules, beginning. 43
PROGRAM (assembler directive). 42
programming experience, required ix
programming hints i 7
PUBLIC (assembler directive) 45
PUBWEAK (assembler directive). 45
-r (assembler option). i 18
RADIX (assembler directive)ovuvrvnien... 84
reference information, typographic convention. xi
register symbols, predefined L. 6
registered trademarks, ii
relocatable expressions, using symbolsin............... 2
relocatable segments, beginning 49
REPEAT (assembler directive) 65
repeating Statementsot it 61
REPT (assembler directive) 58
REPTC (assembler directive) 58
REPTI (assembler directive). 58
REQUIRE (assembler directive). 45
RSEG (assembler directive) 47
RSHIFTA (CFloperator)covuvuervunenen.. 97
RSHIFTL (CFlLoperator)c.ouuvuvuvunenen.. 97
RTMODEL (assembler directive) 43
rules, in CFl directives 94
runtime model attributes, declaring. 44
r51 (filename extension)ccuuinran.... 18
-S (assembleroption)l 19
-s (assembler option).ol 19
second byte (assembler operator) 30

Index °

segment begin (assembler operator) 33
segment control directives. 47
segment end (assembler operator). 34
segment size (assembler operator) 35
segments
absolute 49
aligning 50
common, beginmingvuvuit ittt 49
relocatable 49
stack, beginning oo 49
SET (assembler directive). 52
SFB (assembler operator)c..oeuenenenn.. 33
SFE (assembler operator)c..oeueuenenn.. 34
sfr (assembler directive) 52
SFRTYPE (assembler directive) 52

SFR. See special function registers
SFR. See special function registers

SHL (assembler operator).c..veuenenenn.. 34
SHR (assembler operator).cocuenenen.n.. 35
silent operation, specifying in assembler. 19
simple rules, in CFl directives. 94
SIZEOF (assembler operator)vuuenen.n. 35
source files, including. 79, 84
source format, assembler 1
special function registers. i, 7

defininglabels L 54
stack segments, beginning., .. 49
STACK (assembler directive)c....... 47
standard input stream (stdin), reading from. 15
standard output stream, disabling messagesto 19
statements, repeating.vt ittt 61
structured assembly directives 65
SUB (CFIoperator)c.ocuuiuienneniennennn. 97
subtraction (assembler operator). 26
switch constructs (in structured assembly) 67
SWITCH (assembler directive). 65
symbol control directives 45
symbol values, checking. 54

121

122

symbols

See also assembler symbols

predefined, in assembler 5

predefined, in assembler macro 60

user-defined, case sensitive 19
syntax

See also assembler source format

assembler directives. 41
s51 (filename extension)vvvvt e, 2
-T (assembler option)vuvinenenenenn.. 19
-t (assembler option) it 20
tab spacing, specifying in assembler list file............ 20
target processor, specifying. 20
temporary values, defining 53
third byte (assembler operator) 30
_ _TID_ _ (predefined symbol). 5-6
_ _TIME_ _ (predefined symbol) 5
time-criticalcode 62
trademarks i ii
true value, in assembler expressions 2
typographic conventionsvuevueneenen... xi
-U (assembler option) viin i 20
UGT (assembler operator)c.covuennn.. 36
ULT (assembler operator)covnvnenenn.. 36
UMINUS (CFIoperator).c.vvuvernennennen .. 96
unary minus (assembler operator). 26
unary plus (assembler operator) 25
#undef (assembler directive). 78
unsigned greater than (assembler operator). 36
unsigned less than (assembler operator) 36
UNTIL (assembler directive) 65
user symbols, case sensitive oL 19

8051 IAR Assembler
Reference Guide

A\

-v (assembler option) i 20
value assignment directives. 52
values, defining. i 81
_ _VER_ _ (predefined symbol) 5
-w (assembleroption) 21
WAININEZS & ¢ o v ettt et e e e e et e e 101, 110

disabling 21
WHILE (assembler directive) 65
-X (assembler option) 22
xcl (filename extension) 9, 14
XOR (assembler operator)iiniinan.. 36
XOR (CFIOperator)vuevenneineennen.. 97

Symbols

! (assembler operator). 29
= (assembler operator). 27
#define (assembler directive) 77
#elif (assembler directive). 71
#else (assembler directive) 77
#endif (assembler directive) 71
#error (assembler directive) 71
#if (assembler directive), 71
#ifdef (assembler directive). 71
#ifdef/#endif matching, disabling 14
#ifndef (assembler directive). 78
#includefiles.t 15
#include (assembler directive) 78
#message (assembler directive). 78
#undef (assembler directive). 78
$ (assembler directive) i 83

$ (program location counter).iiii.... 3
% (assembler Operator).t 29
& (assembler Operator)o it 28
&& (assembler operator) 28
* (assembler Operator) 25
+ (assembler operator)i ... 25-26
- (assembler Operator)t 26
-B (assembleroption) i 12
-b (assembleroption) 12
-c (assembler option) i 12
-D (assembler option) 13
-d (assembleroption)l 14
-E (assembleroption) i 14
-f (assembleroption). 9,14
-G (assembler option)t 15
-I (assembler option).t 15
-1 (assembleroption). il 15
-L (assembler option)t 16
-1 (assembleroption). 16
-M (assembler option). 16
-N (assembler option)o i i 17
-n (assembler option) i 17
-O (assembler option)o vt 17
-0 (assembler option) i 18
-p (assembler option)t 18
-r (assembler Option). 18
-S (assembleroption) 19
-s (assembler option). 19
-T (assembler option)uuuenenenenn.. 19
-t (assembler option) 20
-U (assembler option)vtiin i 20
-v (assembler option) 20
-w (assembler option) 21
-X (assembler option)i i 22
/ (assembler Operator)ovuee e 26
/*...%/ (assembler directive). 83
// (assembler directive), 83
< (assembler Operator)eieninanaaann 27
<< (assembler Operator)ueuinenanan.. 34

Index °

<= (assembler Operator)ouiiienenan.. 27
<> (assembler Operator)ot 27
= (assemblerdirective) 52
= (assembler Operator)ouvinenienenan.. 27
== (assembler Operator)uiienenan.. 27
> (assembler Operator)viiiniienenan.. 28
>= (assembler Operator)t 28
>> (assembler Operator)t 35
A (assembler Operator).vvv e 29
_ _DATE_ _ (predefined symbol) 5
_ _FILE_ _ (predefined symbol). 5
_ _IAR_SYSTEMS_ASM_ _ (predefined symbol) 5
_ _LINE_ _ (predefined symbol) 5
_ _TID_ _ (predefined symbol). 5-6
_ _TIME_ _ (predefined symbol) 5
_ _VER_ _ (predefined symbol)...................... 5
_args, predefined macrosymbol 60
| (assembler operator)t 29
Il (assembler operator).t 30
~ (assembler operator)ot 29

Numerics

8051 architecture and instructionset. ix
8051 derivatives, specifying, 20

123

	Contents
	Tables vii
	Preface ix
	Who should read this guide ix
	How to use this guide ix
	What this guide contains x
	Other documentation x
	Document conventions xi

	Introduction to the 8051 IAR Assembler 1
	Source format 1
	Assembler expressions 2
	Programming hints 7
	Upgrading from previous versions of the assembler 8

	Assembler options 9
	Setting command line options 9
	Summary of assembler options 11
	Descriptions of assembler options 12

	Assembler operators 23
	Precedence of operators 23
	Summary of assembler operators 23
	Description of operators 25

	Assembler directives 37
	Summary of assembler directives 37
	Syntax conventions 41
	Module control directives 42
	Symbol control directives 45
	Segment control directives 47
	Value assignment directives 52
	Conditional assembly directives 56
	Macro processing directives 58
	Structured assembly directives 65
	Listing control directives 72
	C-style preprocessor directives 77
	Data definition or allocation directives 81
	Assembler control directives 83
	Compiler function directives 87
	Call frame information directives 87

	Assembler diagnostics 101
	Severity levels 101
	Error messages 102
	Warning messages 110

	Index 113

	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Other documentation
	Document conventions

	Introduction to the 8051 IAR Assembler
	Source format
	Assembler expressions
	Programming hints
	Upgrading from previous versions of the assembler

	Assembler options
	Setting command line options
	Summary of assembler options
	Descriptions of assembler options
	-B
	-b
	-c
	-D
	-d
	-E
	-f
	-G
	-I
	-i
	-L
	-l
	-M
	-N
	-n
	-O
	-o
	-p
	-r
	-S
	-s
	-T
	-t
	-U
	-v
	-w
	-X
	-x

	Assembler operators
	Precedence of operators
	Summary of assembler operators
	Description of operators
	*
	+
	+
	-
	-
	/
	<, LT
	<=, LE
	<>, !=, NE
	=, ==, EQ
	>, GT
	>=, GE
	&&, AND
	&, BITAND
	~, BITNOT
	|, BITOR
	^, BITXOR
	%, MOD
	!, NOT
	||, OR
	BYTE2
	BYTE3
	BYTE4
	DATE
	HIGH
	HWRD
	LOC
	LOW
	LWRD
	PRM
	SFB
	SFE
	<<, SHL
	>>, SHR
	SIZEOF
	UGT
	ULT
	XOR

	Assembler directives
	Summary of assembler directives
	Syntax conventions
	Module control directives
	Symbol control directives
	Segment control directives
	Value assignment directives
	Conditional assembly directives
	Macro processing directives
	Structured assembly directives
	Listing control directives
	C-style preprocessor directives
	Data definition or allocation directives
	Assembler control directives
	Compiler function directives
	Call frame information directives

	Assembler diagnostics
	Severity levels
	Error messages
	Warning messages

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Symbols
	Numerics

