IAR Embedded Workbench®

IDE
User Guide

COPYRIGHT NOTICE
© Copyright 19962008 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of AR
Systems. The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.
CodeWright is a registered trademark of Starbase Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Seventh edition: March 2008

Part number: UEW-7
Internal reference: 5.2.0. ISUD.

Brief contents

TABIES ..o xxiii
FISUIES oo Xxvii
Preface ..o XXxiii
Part |. Product overview ... 1
Product introduction ... 3
Installed files ... 15
Part 2. Tutorials ... 23
Creating an application Project ... 25
Debugging using the IAR C-SPY® Debugger ..., 35
Mixing C and assembler modules ... 45
USING CH s 49
Simulating an INTErTUPE ... 53
Creating and using libraries ... 63
Part 3. Project management and building ... 67
The development environmMent ... 69
MaNAZING PrOJECLS ... 75
BUITAING ..o 85
EAItiNG ...oooo et 93
Part 4. Debugging ... 103
The IAR C-SPY® DebUZEEI ... 105

iv

IAR Embedded Workbench® IDE
User Guide

Executing your application ... 113

Working with variables and expressions ... 121
USIiNg breakpointscoorriieiisessssisssessssesssseesssseens 129
Monitoring memory and registers ... 137
Using the C-SPY® macro System ... 143
Analyzing your application ... 151
Part 5. IAR C-SPY® Simulator ... 157
Simulator-specific debugging ... 159
SIMUlating INtErTUPLScooooiiiieo e 177
Part 6. Reference information ... 189
IAR Embedded Workbench® IDE reference ..o 191
C-SPY® Debugger reference ..., 269
GeNeral OPLIONSccoooooiiiiierrriiieeei e 303
COmMPIlEr OPLIONScciiiirecerrrrrieiise e 309
Assembler OptioNs ... 323
Custom build OPLIONS ..o 329
Build actions OPLioNS ... 331
LiNKEr OPLIONSooiiiei e 333
Library builder options ..., 347
Debugger OPLiONS ... 349
The IAR C-SPY Command Line Utility—cspybat 353
C-SPY® macros reference ... 361
GIOSSANY ... 387

Brief contents °

IAR Embedded Workbench® IDE
vi User Guide

Contents

TADBIES ..ot XX111

Figures .. XXVl

Preface ... XXXii

Who should read this guide ... Xxxiii

How to use this guide ... Xxxiii
What this guide contains ...

Other documentation ..o XXXVii

Document conventions ..o XXXVii

Part |. Product overview ... 1

Product introdUction ... 3

The IAR Embedded Workbench IDE ... 3

An extensible and modular environmentc.cccceeeevievienienininennenne. 4

FRALUIES ..ttt 4

DOCUMENTAIONovveeieiieiieieeieetie st ere et e e sresteesteeaeesaesaaesseesaeenes 5

IAR C-SPY Debugger ... 5

General C-SPY Debugger featurescoceeeveeerreeneenienienienieniencenenne. 6

C-SPY plugin modulescceoeeveiiinienienienieeieeieeieeee e 8

RTOS QWarENESSoovveriiriiriiriinieniieitetctentetetestesreer ettt nes 9

TAR C-SPY Simulator ..c..cceeveeieieieieieniiienieeeeeeieeie et 9

DoCUMENTALIONocviviiieiieiieiieiieieieieereese et 9

IAR C/CH++ ComPIlEr ... 9

FRALUIES ..eveviiieiiiieteteee ettt 10

Runtime environmentcccccueeuevuenieneeinenenieieieienesene s 11

DOCUMENTALION ...cvviuieiiiiieriiriieiteitetetete ettt st st sre e eneene 11

IAR AsSsemDbIEF ..o 11

FRALUIESeeiviiiiiiiiiiiiiiieeceecc e 11

Documentation ...

vii

viii

TAR XLINK LINKEFocooovieeeeeeeeeeeeeeeeeeeeeeeee e 11

FRALUIES ...eeiviiiiiiiiiiiiiciccecc e 12
DOCUMENTALION ...cvvenieiiiiieriiriteiteitetetete ettt st sre e eneene 12

IAR XAR Library Builder and IAR XLIB Librarian 12
FRALUIES ..c.eeiviiiiiiiiiiiiiciceceete s 13
DOCUMENTALION ...cvveuveiiiiiereiriieiteieetetete ettt st st sre e 13

Installed files ... 15

Directory structure

ROOE QITECLOTY ..uveiiieiiiiieiieieteteeeee ettt
The CPUNAME dir€Ctorycecvevveriieiieiierieiieieeieieienie e seeseeseeseeenea 15
The commOn Air€CLOTYceveiieriiiiriiniinienreeenieeitee e 17
The metadata dir€CtOTYccuevuevierieririnieetieieeieetete e 18
File CYPES ..o 18
files with non-default filename extensionscccccceeeeveccnueennnes 20
Documentation ... 21
The user and reference gUIdescecerverierienieenieneeneeeeie e 21
ONlNE NEIP ..ooviiieiieiieieee e 22
TAR 0N the WED ..couiiiiiiiiiiiiecee e 22
Part 2. Tutorials ... 23
Creating an application Project ... 25
Setting UP @ NEW ProjJECt ..o 25
Creating a Workspace Windowcccccceeveeenerenieneeienneneenieneneennens 25
Creating the NEW PIrOJECTc.coveeveeierierieniinrenenieeeeeee et 26
Adding files to the PrOjJECtceceeueriirieririnireeeeeeeteeee e 28
Setting Project OPIONScccccverierierererriniieriereeeereerererenesresiesiesienae 29
Compiling and linking the application ... 30
Compiling the source filescocevirerieniniriieiienieriereneneeeeeeenen 30

Viewing the list file

Linking the appliCationccccecceeeerereninineeieneneneseseneeeeeeeeneen 33
Viewing the map filecccooviverinininiiieieeeeeee e 34

IAR Embedded Workbench® IDE
User Guide

Contents °

Debugging using the IAR C-SPY® Debugger ..., 35
Debugging the application ... 35
Starting the debUZEErc.oovviviiriiiiiieeieeeeeee e 35

Organizing the WINAOWScccceeririririeieieieieeeieretenie e 35

Inspecting SOUICE StAEINENLScc.eevueeeruenrerrenienieneneeieteseeeeseeseeneeas 36
Inspecting variablesccoeeviiriiniiieneee e 38
Setting and monitoring breakpointsccccccceeeevererenenienienienienenne 40
MONILOTING TEZISIELS ...veuverveereeueenienretenteniestestesieeieeteseesteseeseeseeseeseeaneas 42
MONItOTING MEIMNOTY ...evveiiiiierieeieerieeteereetesiteseesteeseeeseeeaeesesaresnnes

Viewing terminal I/Occccocevirinininiiiiicieciceenese e

Reaching program exit

Mixing C and assembler modules ... 45
Examining the calling convention ..., 45
Adding an assembler module to the project 46

Setting Up the PrOJECTcveveiireriererieniinieettereeeeeetetetene st 46

USING CHt e 49

Creating a C++ application ..., 49

Compiling and linking the C++ applicationcccocceeeceneirenecnnee. 49

Setting a breakpoint and executing to itccccceeervveveereeneerienieennens 50

Printing the Fibonacci NUMDETSccceeeriririeieieieniencneneeneeseceen 52

Simulating an iNTErrUPE ... 53
Adding an interrupt handler ... 53

The application—a brief descriptionc..cceceevceeneeneenensieniieneenne. 53

Writing an interrupt handler ... 54
Setting UP the PrOJECTe.eeieierierierierieriereeeeeteeeetete et 54
Setting up the simulation environmentccccoconenne. 54
Defining a C-SPY setup macro filecccceceeveevievieninennicncnenecnene 55
Specifying C-SPY OPtONS ...c.c.coerierieriririinieieieieeteniese e 56
Building the Projectcocevierieriinieeeeeeeeeeee e
Starting the simulator ...
Specifying a simulated INtEITUPEccevverererenenieieieieieesese e 58
Setting an immediate breakpointcocceevverievienieeneeneenennieeeennenn 59

Simulating the interrupt ... 60

Executing the applicationccocevieveenienieneirienie et 60

Using macros for interrupts and breakpoints 61

Creating and using libraries ... 63
Using libraries ...

Creating @ NeW PIOJECT ...cceeueerierierierierieniestestesiesteeiesieeseeseeeeseeneeseeeens

Creating a library project

Using the library in your application projectceeeveeverericrerenne 65
Part 3. Project management and building ... 67
The development environment ... 69
The IAR Embedded Workbench IDE ..., 69
The to0] ChaIN ...oueviiiiiieicie s 69
Running the IAR Embedded Workbench IDE ... 70
EXITINE ©eoveeiteniiieientee ettt st 71
Customizing the environment ... 71
Organizing the windows on the SCIEeNcccceevuerrerrenierenienienienenne 71

Customizing the IDE
Invoking external tOOISccceeeriruiriririniieietet e 73
MaNAZING PrOJECLS ... 75
The project model ... 75
How projects are organizedcoccoceveveneneneeieieeeieienenenenienne 75
Creating and managing WOTKSPACEScccceeeverrerereerieneenieneeneneennens 78
Navigating project files ..., 79
Viewing the WOrKSPaceccccoceveverinirieieieiciccnencncneneeeeene 80
Displaying browse informationccccceceeerererenienenennecienenennens 81
Source code coONtrol ... 82
Interacting with source code control SyStemsc..ceceeevecuererererenne 82
BUIIAING ..o 85
Building your application ..., 85
SEHNZ OPLOMNS .ttt sttt ettt ettt ettt sbe b sbesbesreene 85

IAR Embedded Workbench® IDE
User Guide

Contents °

Building a project

Building multiple configurations in a batchccccocevviniiniennnen. 87
Using pre- and post-build actionscecceeeevveveeviecienenenienienienenenne 87
Correcting errors found during buildcceceeveveninininnncncnnn. 88
Building from the command linec.ccooceeviiniinieninneiieniceeeee, 89
Extending the tool chain ...,
Tools that can be added to the tool chain
Adding an external toolccceverriireriiiiiereeee e
Editing oo 93
Using the IAR Embedded Workbench editor 93
Editing a file ..cccoouevininieeeieeeeeee s 93
Using and adding code templatesccceceeveereineneeneninenneennenns 97
Navigating in and between files
SEATCRING ...vvevieiiieierierer ettt
Customizing the editor environment ..., 100
Using an external €ditorccoceveerieerienieniienieneenieenieese e 100
Part 4. Debugging ..., 103
The IAR C-SPY® DebUZEEr ..o 105
Debugger cONCePLs ... 105
IAR C-SPY Debugger and target SyStemscoccecevcerereeeereeuennene 105
DEDUZEZET ...ttt sttt 106
Target SYSIEIM ..cc.veiiiiiiniiriieiietieteet ettt s 106
USer apPliCALIONcooveuvirieriiniieiieiieieeiieiet et 106
TAR C-SPY Debugger SYStEmSccceeeeueeierieienienienienienienieneeeeeene 106
ROM-mONitor Programccccoceeerererereeeeeeneenuenressenseseseseeeenns 107
Third-party debUZZETScccevuerviruiriirrieiieieieieeere et 107
The C-SPY environment ... 107
An integrated enVIrONMENtcocevererereeienienienienrenreneeeneeeeeeenne 107
Setting up the IAR C-SPY Debugger ..o 108
Choosing a debug drivVercoceeieirieieienieiere e 108
Executing from IeSetccccovererenerinineiieieicieesrcereee e 109

Xi

Xii

Using a setup macro file

Selecting a device description filecccccveeveinenienienienieneene 110
Loading plugin modulescccceceeveeieniiiinininenininineeeneeeeene 110
Starting the IAR C-SPY Debugger ..., 111
Redirecting debugger output to a filecccoevveviinieniininiinieniee 111
Executing your application ..., 113
Source and disassembly mode debuggingccc.cc.... 113
Executing
Step

Highlightingc.cooviiiiiiiiiiieeeeeee et
Using breakpoints to stop
Using the Break button to S0Pc..ccevvererieeneeieiieicieneneneneeene 117
StOP at PrOZIram EXit ...ceveuverierierierierieniesieeeeteee ettt ebe e ens 117
Call stack information ... 117
Terminal input and output ... 118
Working with variables and expressions ..., 121
C-SPY eXPressions ...t 121
C SYMDOIS .ottt st st s sbe et 121
Assembler SYMDOIS ..c..coeveriiriiiiiiiiicieiircceeeeee e 122
MaCTO fUNCHONS c.veveeiienieieientiiete ettt 122
MaACIO VAriablescccvevieiierieniiniinieeiieiieteee et 122
Limitations on variable information ..o 123

Effects of optimizations

Viewing variables and expressions ..o 124
Working with the WindOWSccceoveiiiiiiiiininincnnncenceeeene 124

USINg the trace SYSIEIMccvevuerviruieuierieiieiieiieienterie e siesie e e eneeneene 125

Viewing assembler variablesccccocevevierenenienieniinieieienieeene 126

USINg BreakpPoints ... 129
The breakpoint system ..., 129

IAR Embedded Workbench® IDE
User Guide

Contents °

Defining breakpointscccoooiiiii e 129
Toggling a simple code breakpointccccceeerveevieenieneeneeniennienne 130
Setting a breakpoint in the Memory wWindowcccceceeeeercreennne. 131
Defining breakpoints using the dialog boXccccocvvevvericrenieneeene 131
Defining breakpoints using system MacroSceceeeeeverrvereeriuenne 132

Viewing all breakpoints ...

Using the Breakpoint Usage dialog box

Monitoring memory and registers ... 137
Memory addressing ... 137
Windows for monitoring memory and registers 137

Using the Memory WindOWcccceveieieieienienieneneneneneneneeeene 138
Using the Stack Windowcc.ccoceevieieieiieiieienieiese e 138
Working with registers
Using the C-SPY® macro SyStem ... 143
The Macro SYStemcccccoeuiiiiiieieiceee s 143
The mMacro 1anguagecccceeeererieieieieieereeese et 144
The Macro filecccoceoveirieiiiicicceeecee e 144
Setup Macro fUNCHONScoevverierieriiieieieiieeseeeeeeeeee e 145
Using C-SPY MaACros ..o 145
Using the Macro Configuration dialog boXcccceceevevenenienencne 146
Registering and executing using setup macros and setup files 147
Executing macros using Quick Watchcccceceevieiiiiicnicninicncnene 148
Executing a macro by connecting it to a breakpointc...... 149
Analyzing your application ... 151
Function-level profiling ... 151
Using the profiler ... 151
COodE COVEFAGE ...t 153
UsSINg Code COVEIAZEevveevienrieieiiieieeieetenitesitenieesieenieeie e enenas 153

xiii

Xiv

Part 5. IAR C-SPY® Simulator ... 157

Simulator-specific debugging ... 159
The IAR C-SPY Simulator introductioncococooevnenn. 159
FEALUIESeiiiiiiiie et e 159

Selecting the simulator driverccccocevevneenennenienieneenceeee 159

Simulator-specific menus

SImMUIAtOr MENUcouviiiiiieierere e

Using the trace system in the simulator 160
Trace WINdOWccccooiiiiiiiiiiiiiiiiccce e
Trace tOOIDAT ...cc.eouiiiiiiierieieettet ettt
Function Trace Windowccccocoviiiiiiiniiiiic
Trace EXpressions Windowcccceceeceeieieiennenienenenieneneneneeneens
Find In Trace WindOWccceceevieieienienieienienene et
Find in Trace dialog BOXcccoceevieriiinienieniinieeeiee e

Memory access checking ...,
Memory Access setup dialog DOXccoecveverieneneneneneneeeeeeieene
Edit Memory Access dialog box

Using breakpoints in the simulator
Data breakpointsccceeereeieieieieieieieestesie e

Immediate breakPointsccecveveereerieirierienieneerieeeee e

Breakpoint Usage dialog DXccccoveveveneninenencnncnieicieecee
SIMUlating INtEITUPLScooooiiiio e 177

The C-SPY interrupt simulation system ... 177
Interrupt CharacteriSticseeerereeuieieieieieniene et 178
Interrupt simulation StAtescccceveeeeereriereerienieneenenereneeeeeeeneen 179

Using the interrupt simulation system ... 179
Target-adapting the interrupt simulation SyStemc.ccoceveeeeneene 180
Interrupt Setup dialog BOXc.eevereereieieieiinienenenieneereeeeeeen 180
Edit Interrupt dialog box

Forced interrupt window
C-SPY system macros for INterruptscceeeeereeeeeereruenuenenienenne 184
Interrupt Log WindOWc.coceeieieieiieiiiiiienenenenenesene e 185

IAR Embedded Workbench® IDE
User Guide

Contents °

WOrKSpace WindOWcc.cceeeeieieieiiieiiieienenese et 194
Editor WinAOWc..coeriiiiiiiiiniieiieiteiee et 202
Source Browser Windowccccoceecveieiiiiniiniiniiniinineneeeeeeeeene 207
Breakpoints WindOWcccceceeieieieieieniinienienenese et

Build WInAOWoooeiiiiiiiiciie e
Find in Files window
To0l OUtput WINAOWocveevieeieiieiieiieieieteienesene et

Debug Log WIAOWccevuieieieieieieieieiesiesiesie et

VIEW IMEIIUL ...vviinviieiiieeitieeiieeieeeiteeeeteeeteeesteeestaeessseassseesnseeensnaensseeas

Project MENU ...cccccoviiiiiriiiiieieiceteeeee e
TOOIS MENU ...ttt st
Common fONLS OPLIONS ..c..eeruvereririieniierieenieenie e ete et sresreesieesieenne 241
Key Bindings Optionscccevererererenereeieieeeieseesiesnesieeieeneenne 242
Language options

EdItOr OPLONS ..ueeeiiiiiieeiieeiieriteetetee ettt 244
Configure Auto Indent dialog bOXcccceveveninieiniinieiincncncnee 246
External Editor OPtionScccceereeuieiieinieieieie e 247
Editor Setup Files OPtioNnScccceeverierieniienieneenieenieenie e 249
Editor Colors and Fonts Optionscccceeeeeeeieieienienenenenenenne 250
MESSAZES OPLIONS ...eveevinienienietiteteeteeteete ettt et e e see st st saesee e eneeneens 251
Project OPLIONScocueeveiiiriiiieriieiteteee ettt 253
Source Code Control OPHONSeevereeereeeereeneerienrenieneneneeeereeeeenne 254
DebUZZET OPLIONSuviuveniiiiiietieiieiteiieteit ettt 255
StACK OPLIONS ...vveiuiiiiiriiiriieritesttee ettt 257

Xv

xvi

IAR Embedded Workbench® IDE
User Guide

Register Filter options ..

Terminal I/O OPONS ..c..evvirierieriiinieeieeie ettt
Configure Tools dialog BOXc.ccoceeiriririniniiiiiienirencneneceeene 261
Filename Extensions dialog DOXcc.ceceevieieiieiienencnicnicneneneeene 263
Filename Extension Overrides dialog boXccccocevviininiiinennenne 264
Edit Filename Extensions dialog boXcc.cccceeevuerieninincncncncnne. 264
Configure Viewers dialog box
Edit Viewer Extensions dialog boXccccceviineinenniinnenienieneenne 265
WINAOW MENU ..ottt eeeeeene 266
HElp MENU ..ottt 267
Embedded Workbench Startup dialog boxccccoeceeviiieniiinieniene 267
C-SPY® Debugger reference ..., 269
C-SPY WINAOWS ... s 269
Editing in C-SPY WINAOWSccceviruirininiieiieieierienenene e 269
IAR C-SPY Debugger main Windowccceeevereneneneneneneeneens 270
Disassembly WINAOWcccoceriiriiniiiiiieiienieeeeeeeee e e
MEmOTY WINAOWoviiiiiiiniieiieieeieeiieiteiteite ettt seeeeene
Fill dialog DOXvouiiieierieiiniieieeieeeeiee ettt

Memory Save dialog box ...
Memory Restore dialog box

Symbolic Memory window

Register WINAOWc...ooiiiiiiiiiiieiieiceieee ettt
Watch window

Locals window ...

AULO WINAOW ...ttt
Live Watch WindOWcccooiviririninieieieieiceee e 284
Quick Watch Windowccceviiiieiiieieeieceeeeeeee e 285
Statics WINAOW ...ooveviiiiiiiiiiiiiiiiiiteicictcieicee et 285
Select Statics dialog DOX ...co.everieriereriiieiiieieeeesieeeee e 287
Call Stack window

Terminal I/O WINAOWcccooviiniiiiniiiiiiiiiiicineeeeeee 289
Code Coverage WindOWcccceeeueeuieieieienienienienienenieniesiesesneeeene 290
Profiling WindOoWccoeiiiniiiniiiiieencreee e 292

Contents °

Stack window
C-SPY MENUS ..o
DebUug MENUooueviiriiiiiiiriniecceceeeeeeee e

GENEral OPLIONSooiiiiieieee e 303

OULPUL AITECLOTIES ...veeveereirenieienienienienereeeit ettt 304
Library Configuration ... 305
LIDTATY ettt st 305
Library file ...ooceevoviirieieieeee e 305
Configuration filecceceeveerierienieniinireeeeeee e 305
Library OPtions ... 306
Printf fOrmatter ..o 306
Scant fOrMALLErccevverererireeeeieteee ettt 306
StaCk/HEAP ..o 307

ComMPIler OPLIONS ..o 309

Multi-file compilation ...
LanNGUAZEc.oooiiiiiiice s
LangUAZE ..c..eoieeniiiiiriieteeeeee ettt
REqUITE PIOtOLYPESoevuvvviriiereriirieieniierereeene et senene
Language CONfOIMANCEc.eeveueerireererirerieierereniereeneneerereeneerenenennes
Plain 'char' IS ..oeoviiiiieeee e
Enable multibyte SUPPOTtc..coeririeiiiiiiieiiiiceeeeeeeeeeeeeene

Enable IAR migration preprocessor extensions

OPLIMIZALIONS ...
OPHMIZALIONS ...vveuveuieiinienienieneeieeitetet ettt sb e sbe e ene

xvii

xviii

Output assembler file ...

Preprocessor ...
Ignore standard include direCtoriesc..coovverererercreneeeeeenennes 317
Additional include dir€CtOriescooeeoeruereeireiiriiniecreeeseeeees 317
Preinclude file ..o
Defined Symbolsccceoevierininineninineceecceee e
Preprocessor output to file

DIagnOStiCscoccoiiiiiiiiiicc s

Enable remarksc..cooveveniniiininee e
Suppress these diagnostiCscccevveeerierieriinerineneneneeeeeeeeeeeenee 319
Treat these as 1emarkscccoceevveeiiiiiiiininininincecceeeee 319
Treat these as Warningscccceceeveeeeieieierierieneneneneneeeeeeeeeeeens 320
Treat these aS EITOTS .o..evvervirrieieiieiieiieietcete et 320
Treat all Warnings as €ITOTScoceevverieriereenieeneenieenteeseesreseeseenne 320
EXtra OPtiONS ..ot 320
Use command line OPtionscc.ceceeeeueeieieienienenieneneneneeeeeeeens 321

Assembler OPLiONS ... 323

LanGUAZE ..o s
User symbols are case sensitive
Enable multibyte SUPPOIT ..c..ccveveeruirririnieiieiieieieeenteie e

Allow mnemonics in first columnccccoeeeviieeiieecieccieceeeeeee

PreproCessOor ... s
Ignore standard include directories
Additional include direCtoriescccccoereeeeineierenieireeieereeeees
Defined symbols

Preprocessor output to filecccoevevieriiniieniiniinieeceeeie e

DiagnostiCs ...

IAR Embedded Workbench® IDE
User Guide

Contents °

EXxtra OPLtioNnscocoiiiiiiier s 327

Use command line OPtiONSceceerueevuerieriienienienieenieeneeieeieenene 327

Custom build OPLIONS ... 329
Custom Tool Configuration ..., 329

Build actions OPLiONS ... 331
Build Actions Configuration ... 331

Pre-build command line

Post-build command line

Linker OPLtioNSo 333
OULPUL ..ot 333
OULPUL IlE oot 333
FOrmatc.oooiiiiiiii s 334
EXtra OULPUL ..ot 336
HAEfINe ..o 337
Define Symbolcoeoviiiiiiinirieee e 337
DIagnOStiCSccoicoiiiiiiiiicccc s 338
Always generate OULPULc..coeververeeteeereeeeienrenrenresreeeeeeeeerenennene 338
Segment overlap Warningsccoccvceeererreereereentenenenenenesesseereene 338
No global type checKingccccooervierierieniieniieerieeeee e 338
Range checks
Warnings/EITOTScccoverueriirinininieeiieiieteiieteteie et eseeeene 339
LISt o 340
Generate lINKer LIStINGc..coceveeieiiiiniiniiniiieeeeeeeeeeercreseneee 340
CONFIG ..o 342
Linker command fileccccccooiiininiiniiiiniiiicinenneeeeeceee 342
Command file configuration toolcc.ccceeveeeeiecieceicienenenicnenenne 342
Override default program entryoccecevererereeeeneeneenenenenennes 342
Search Pathscooioviiriiiiiie e 343
Raw binary imagecccccceeeverenineneninceteeeeereesreereee e

Processing ... s
Fill unused code memory

The checksum calculationccoocueeevieiiiieeiie e

Xix

XX

EXxtra OPLtioNnscocoiiiiiiier s 346
Use command line OPtiONSceceerueevuerieriienienienieenieeneeieeieenene 346

SELUP MACTOS ..evviiiieriirierieeiteteitete ettt sttt e e nenene 350
Device description fileccceeveeieieiieiicnienieneneneneeeeteeeeene 350
Download ... 350
EXtra OPtiONS ..ot 351
Use command line OPtionsc..ceceeeeueeieierienienenieneneneneeeeeeneens 351
Plugins
The IAR C-SPY Command Line Utility—cspybat 353
Using C-SPY in batchmode ... 353
INVOCALION SYNTAX ...eeuvivieiinririiriiriiniteretere ettt 353
OULPUL .ttt ettt ettt b bbb sbe e eae 354
Using an automatically generated batch fileccccooceeveiiiininnenn. 354
IAR C-SPY command line options
Descriptions of C-SPY command line options 356
C-SPY® macros refere€ncCe ... 361
The macro language ... 361
Macro fUnCtionsccceiiiiiiiiiiiiii 361
Predefined system macro functionscc.cecceeeeeeveeeerienenenenenenne 361

Macro variables

MaCro SEALEMENEScooviiiiiiiiiiiiiiiiccec s 363
Formatted OULPULcc.eeieiiiiniiiiiieieeeeeteeee e 364
Setup macro functions summary ... 366
C-SPY system macros SUMMarynennnnens 367
Description of C-SPY system macroscccccccoovvceenncnen, 368

IAR Embedded Workbench® IDE
User Guide

Contents °

XXi

IAR Embedded Workbench® IDE
xxii User Guide

Tables

1: Typographic conventions used in this UIAecccevevinenieninienieninieeene XXXVil
27 FIIE LYPES ettt sttt ettt st s b e bttt a ettt be st naeas 18
3: Compiler options fOr ProjECt2c.ccevievierenenenininteeeieteetesreee e 46
4: Interrupts dialog DOX ..c.cceeieieiieiiiierienieneece ettt

5: Breakpoints dialog box

6: General options for a library projectccceeeeeveeveeierienienenienieneneneeeeeeneeneens 64
7: Command Shellsccoioiiiiiiiiiiii e 74
8: iarbuild.exe command lin€ OPLiONSc..cceeeererieinieiniiieeneeineee e 89
9: C-SPY assembler Symbols eXPIeSSiONScecceceeveervenrenrenreneneneerenenienenenenne 122
10: Handling name conflicts between hardware registers and assembler labels 122
11: Project options for enabling profilingcccceeveriiinieniienienienieneenceneeene 151
12: Project options for enabling code COVETAZEccevveriererenereeieieierenrennenne 154
13: Description of Simulator menu commandscccceeverererreereenieneenenenenennes 160
14: Trace Window COIUMNScccoeviiiiiiiiiniinienieicieneeeete s 161
15: Trace toolbar COMMANAScccouiviiiiiiiiiiiiiiiicce s 162
16: Toolbar buttons in the Trace Expressions Windowc..cc.ccceeeevenenenenennene. 164
17: Function buttons in the Memory Access Setup dialog boXcccceeeeerveriennee. 168
18: Example of costs for accessing memory entitiesc..coccevevveeeeeereereeruenrennennes 170
19: MEMOTY ACCESS LYPES -eeuvereerirreriieuientetententertesiessesseeseeteseeseessensensessessessessesneeses

20: Breakpoint CONAItIONSeecueeiierierieeniierienie ettt st e st e enee s

21: MEMOTY ACCESS LYPES -eeuvererrerreriirieeieeitetetententensesseeseeseeseestensensessessessessesueennens

22: Characteristics of a forced interrupt

23: Description of the Interrupt Log WindOWcccecevirieienienienienenienieseseseeens 185
24: Timer INteITUPL SELLINES ...ccvevverrerrerereriireeiteitetetetentestesre ettt eebesnesneenes 187
25: TAR Embedded Workbench IDE menu barccocccoviiiiiiiiniiine 192
26: Workspace window context menu commandsc..eocerverueriereeneenieenieenenns 196
27: Description of source code control commandsccccceeverererereeneenienennenne 197
28: Description of source code CONLrol SALEScoeeeeeeeeruerrenrenrinieeeieienenienienne 198
29: Description of commands on the editor window context menuc..c........ 204
30: Editor keyboard commands for insertion point navigationc..cecceeeeeueene. 205
31: Editor keyboard commands for SCIOIliNgGcccceceverieieienieneninenenceieseene 206

xxiii

XXiv

IAR Embedded Workbench® IDE
User Guide

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:

Editor keyboard commands for selecting text

Information in Source Browser Windowccceceeieininiinieniencnienenenienene
Source Browser window context menu commandsc..coeeeeeeeereneneennn 208
Breakpoints window context menu commandscceeevvererierenenenienenneene 210
Breakpoint CONAItIONScoveviirieerieriiiienieritencete ettt et s 212
Log breakpoint CONAItIONSccccveeverierieneneneneneeteteeeteeeeeee e 213
Location types

File menu commandsccoceviriiiiiiiiniiiiieeeee e 219
Edit menu commandscoccoceeieiiieiiieiieeneene e 221
Find dialog BOX OPHIONSccuevviriirieriiriiniieiieietetetesteeteete ettt 224
Replace dialog BOX OPLONSocuieruiiriiriiieiiiienieseece et 225
Incremental Search function buttonsc..ccceeeverenininienininicnicnencncneene
View Menu COMMANAS ..c..eoververerieririiiteieniententesteereete et ettt etetessestesteseesbesaeene
Project menu commandsc.ccooeeveeniiniinienienteeee e
Argument Variablescccocvevieriininininn e
Configurations for project dialog box options

New Configuration dialog boX OPtIONSc.cceceerieriierieriiinienieneenieeie e erenaee

Description of Create New Project dialog box

Project Option CALEZOTIESccvevuerierierieniieieteierte ettt ettt ettt sae e e
Description of the Batch Build dialog DoXcceceeirieiieieiinienieeieseseseeee
Description of the Edit Batch Build dialog boXc..cccceceevieieniininincnincnenne. 239
To0ls MENU COMMANASoviriiriirieriirtieiteitetetee ettt ettt ettt see e 240
Project IDE OPLIONScocueiiiriiiieniieieenieeieete ettt et
Register Filter options ...

Configure Tools dialog DOX OPLIONScceveruerieriereririnieieeeee e 261
Command ShellSc.ccoeiiiiiiiiiiiiiii e 263
Window menu commandscocceceeeeeeienienteninenieieeeeee et ene
Editing in C-SPY WINAOWSccceeiiiiiriiiiiiniinienieeiteeetcete ettt
Disassembly window toolbar

Disassembly context menu coOmmandsccccceeerererereneereeruenienenenenennes 273
Memory WindOW OPETAtIONSceerverueeierierierieniententeeteeseeaeesesteseesiessesiesseeseene 274
Commands on the memory window context MenUceceevvereereeneereeneenne 275
Fill dialog bOX OPHONScoeruiiieiiiiiiiienerenenerere ettt 276
Memory fill OPETALIONSc..evverieruerierierieeiieieteterte sttt ettt ettt et te st sbesee e 277

Tables 4

68: Commands on the Symbolic Memory window context menuc..cecceeeuene 280
69: Watch window context menu coOmmandscoceeveeeeeeeneenienienienienenienenenne 282
70: Effects of display format setting on different types of expressions 283
71: Symbolic memory Window COIUMNSc.coevuiriiniininininiieeeiererereee s

72: Statics window context menu commands
73: Profiling window COIUMNSoouiiiiiriiiiiiieiieieeie et
74: Stack WiNdOW COIUIMNScoueruiriiriieiiiiiiiieieieteteeteeeee ettt
75: Debug menu COMMANScc.ceeeuiriiriirienienieenieeteeeeieeie ettt
T6: LOE f11€ OPLIONS ...vviriiiiieriieiienie ettt sttt ettt st e sanesaeens
77: XLINK range check OPtiONSccccovereriririeienieeeienieteneeeereeeereresrenienaenee
78: XLINK List file OPHONS ...eeuveuieieieniirierienieeiceceiteteeetesreet ettt
79: XLINK list file format Optionscecceeceerienienierieriienienieneeneesieesee s seeens
80: XLINK checksum algorithmscocceceevieiieniinieneninininenceceieeecieseenenes
81: CSPYDAL PATAMELETSeveviriiriiriiriieiieitetet ettt ettt
82: Examples of C-SPY macro variablesc.ccecevverieneneneneeieieieieeeieeeeeeenes 362
83: C-SPY setup macros

84: Summary Of SYStEIM MACTOSeeverueruiriiriieieienieieie sttt ettt ettt sbe b eaes 367
85: __cancellnterrupt return VAIUEScc.eeveeerierieinieinienieeieeeeeie ettt s 369
86: __disableInterrupts return Vallesccccoceeeeererieieienienenenencnceeeieeennenes 370
87: __driverType return VAIUEScccoeeririreriniiieieiesiee ettt 370
88: __enablelnterrupts return VAlUEScocveevveriirienieniieneeieeieeteeeeee e 371
89: __evaluate return values
90: __openFile return ValUESccceeieiiiienienierieieieeieetcet ettt

91: __readFile return ValUEScccoecviieiiiiiiiieniieeiie ettt et e

92: __setCodeBreak return Valuesccceeeveeeiuiieiiiieeiiie et eaee e
93: __setDataBreak return VAlUEsccooveiiuiieiiieeiiie et
94: __setSimBreak return values

95: __sourcePosition return VAIUESccceeeviiieiiieeiieeeireeeteeeieeeieeeeeveeevneeeenees

XXV

IAR Embedded Workbench® IDE
xxvi User Guide

Figures

1: Create New Project dialog DOXcceecieierienienininiininienieieeeeee et 26
2: WOrkSpace WINAOWc.ceieiiriiriirieniintisieetietetete et e e st sie st sttt et enteseenaeseeseeas 27
3: New Workspace dialog DOXc..ccceevieviiiiniiniiniininininieeeteeeerercresresre e 27
4: Adding files tO PrOJECT] ..ocueeiiieiiiniiienieriee ettt 28
5: Setting cCOMPIlEr OPLIONSc.evueuiiuirieirtiieeneteeeeeee ettt 29
6: ComPilation MESSAZE ..c..ceveeueemieieieiiniintenteettettettete e ete et ste e st et bt eaee e eseenaenaens 30
7: Workspace window after compilationc..coccecevevierienenenenienienceieieceneneene 31
8: Setting the option Scan for Changed Filesccccoueveninininininiiieicieresenee 32
9: The C-SPY Debugger main WindOWcccocceereneninienenieieieieieienieneneennennenn 36
10: Stepping in C-SPY

11: Using Step Into in C-SPY ..ooiiiiiieeeet e 38
12: Inspecting variables in the Auto WindOWc..cccevevivinininieiieiieiccenenenene 39
13: Watching variables in the Watch Windowcccoevirininieieiiiiicciccee 40
14: Setting DreakPOINScccevierierieriieierieete ettt ettt et st e st este s esaesaneeaee 41
15: REZISIEr WINAOW ..cevitiiiiiiiriiiieciieieteitetctente sttt se ettt e sne e st
16: Output from the 1/O operations

17: Reaching program exit in C-SPYccccooiiiiiiiiiiiiiieiieeerteetesteseeeeeeieeee 44
18: Setting a breakpoint in CPPtUtOT.CPP .c.vevververieriiniiririeieiecieeeercrcesie e 50
19: Inspecting the function Callsceceeieviiiiirinininineeeeece e 51
20: Printing FIDONACCT SEQUENCEScc.eeruiiiiiiirieniieniienieeieeieete ettt e 52
21: Specifying setup mMacro fileccccvviririririiiiiiiieieeeeeeeer e 57
22: Inspecting the INterrupt SELNZS ...ccvevverververrirreerieieieeietetetesest et s seeeens 58
23: Printing the Fibonacci values in the Terminal I/O windowccccceeeveniinnenene 60
24: TAR Embedded Workbench IDE Windowcccccceeieirinvinieiiniiiercreienennenne 70
25: Configure Tools dialog DOXceceeveeieiieniiriirienireneneneeeee ettt 73
26: Customized TOOIS MENUccooviiiiiiiiiiiiiiii s
27: Examples of workspaces and projects

28: Displaying a project in the Workspace Windowccccecevereeieieinicncncnennens 80
29: Workspace WindOW—an OVEIVIEWcccceveerierrierierienienieeneenieenieeniesiessesnennns 81
30: GENETal OPLIONS ..cviovievieuieiieiieieieteste sttt ettt ettt st ettt et n e nene et 86
31: Editor WINAOWc.oouiiiiiiiiiciiciee e 94

XXVii

XXviii

IAR Embedded Workbench® IDE
User Guide

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:

Parentheses matching in editor window ... e 97
Editor window status bar ..o 97
Editor window code template MEeNUc..coevererenuinirenieieeeeereeeteiesrenrenenee 98
Specifying external command 1ine editorcccocevervenerenieeieienenenenenene. 101
External editor DDE SEHHNEScooveeviirriirriinieiieniertetesiceieeie et 102
IAR C-SPY Debugger and target SySteIMSccceevevververrerererereeeenueneenveneennens 106
C-SPY highlighting source location

Viewing assembler variables in the Watch windowcccccccevinininincnine 127
BIeaKPOInt ICOMNS ...evueruiiiiriiiiiiiieiiietcteeeeeeeee ettt s 130
Breakpoint Usage dialog DOXccccouereeriiriineninininieieiieietetestesreie s sieene 133
MEMOTY WINAOW ..utiiiiiiiiiieiiieitesitest ettt ettt ettt et st sete st esbeenbeenee 138
Stack WINAOW ..o 139
REGISTEr WINAOW ...cuiiiiiiiriiiiiciieitetetetettet ettt st 140
Register FIlter PAZEccceiviiiiiiiiiiieiiesiieet ettt 141
Macro Configuration dialog DOXc..ccccvereririrnienieniiniiieiccceseeeeeeeeeene 147
Quick WatCh WINAOWcccuiieiiieiiiiiie ettt e
Profiling WinAOWcceoieeiiriiniiiinieieeteeete ettt st sae e
Graphs in Profiling window

Function details WINAOWccoieiiiiiiiiiiieceieceiee ettt eeve e
Code Coverage WiNAOWccoecierierienieniieieeieete sttt et e e et s seesieenee
SIMUIALOT MEIU ..oeeviiiiiiiieiie et eeieeciee ettt e e ee e e streeetbeeeteeetaeesaaeesasaesssneens
Trace WINAOW ...ocoviiiiiiiiiiiie et ettt et e et et e et e e eaaeeeaneas
TraCe tOOIDATcouiiieiiiieiiiieiie ettt ettt et e e eae e be e ssbeeeabeeensnaennnees
Function Trace window

Trace Expressions window

Find In Trace WinAOWccceeeviiiiiiiieniieniieeiieecieeeieeenieeeeveeeaeeeseeevseessseeenneas

Find in Trace dialog DOXccceeviviirenininininnenteetccceceeceeee s

Memory Access Setup dialog DOXcc.ecereeieieirieieieieiesiesese e sie e 167
Edit Memory Access dialog box
Data breakpoints dialog DOXccccoevererereniriiiiteeceiceeeeeeeee e

Immediate breakpoints PAZEcceceeereeierientenierieneeieeteereetetete e see e see e sieene

Breakpoint Usage dialog DOXcocueeierierienieinieiienieeteneeieenie e
Simulated interrupt configurationcccceceeceecveeveneneneneneneeeeneeeeeneenenes 178

Simulation states - eXample 1ccoociiiiriiininiieeeee e 179

66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
T7:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

Figures

Simulation states - example 2

Interrupt Setup dialog BOX ...cooveiiiriiiiiiieiereeteete e
Edit Interrupt dialog BOXcccecveierieriininineninneeeeteecee s
Forced INterrupt WindOowccccoeeiiriiniiniinininineeeeieeeeetet ettt
Interrupt Log WINAOWcoouiiiiiiiiiiiieniieceie ettt
IAR Embedded Workbench IDE Windowcc.ccceceeieiienieniencncncncnenenecenens 192
IAR Embedded Workbench IDE toolbar

IAR Embedded Workbench IDE window status barccccecevereneneneecne 194
WOTKSPACE WINAOWcviiiiiriiniiriieiiciieicetetteteete ettt 194
Workspace Window CONEXE MENU ..c..coueruererueerierienieientenienieeseeseeeeteresseneesienee 196
Source Code Control MENUcc.ccuevuivuirieieiiiiieienenese st 197
Select Source Code Control Provider dialog boXc..cccceevevieviineniincncncnenne. 199
Check In Files dialog DOX ...c..coceveririiriiiiiiieienesesieeeeieeeete et 200
Check Out File dialog DOXcceoieriiriinieiieieiieetcetesteteee et 201
Editor WINAOWooviiiiiiiiiiiiiieitetcectcccesese ettt s 202
Editor window tab CONtEXt MENUccueviruiruiriiniierieieieeiteteitetestese et sie e sieene 203
Editor window CONEXE MENUceeiiuiiiiiiiiiieiietieieeiieieet et esie e sae e sreene 203
Source Browser window

Source Browser window CONtEXt MENUc..ecververeerierieeieieierienieeeneesresiesresieenes 208
Breakpoints WinAOWcoeeiiiieiiiiiieiieeieccete sttt 209
Breakpoints WindOw CONEXE MENUcceeueeuieuieirireieieienienienenresreseeereeneeneenees 209
Code DIreakpoints PAZEceeeveeriemieieierierieniesteeteete ettt ettt et et et stestesae b saeene

Log breakpoints PAZEcooeerueerierienienienieeieeteete sttt ettt
Enter Location dialog box

Build window (message WindOW)cccceeeieieieieieieieienienese e e sieseeeneene 215
Build window CONtEXt MENUoeeuiiuiiiiiiiiiieiieiieieeietee ettt 215
Find in Files window (message WindOW)cc.ccceeueueieniinienienienenenenenennenns 216
Find in Files Window CONtEXt MENUccveverririirieniieiieiieiieieietee e siesieene
Tool Output window (message window)

Tool Output WindOW CONEXE MEIIUeveriemierierieireiieireirererenrenteneestesiesiesseeneene
Debug Log window (message window)
Debug Log window CONEXt MENUcovueeruierierieerierienitenieenieeieeresiresieesieenieenee

FAIE MENU ..ottt et e e e stb e e tae e e aeeeabaeeaaneeas

Edit MENU ..oooiiiiiiiice ettt et et et e eaee s

—e

XXiX

XXX

IAR Embedded Workbench® IDE
User Guide

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:

Find in Files dialog box

Incremental Search dialog BOXc.coveriirieniiniiiieeeee e 227
Template dialog DOX ...cc.eeeviririiiiiiicicicreee s 228
VIBW IMEIIU ..o s 229
ProOject MENUooviiiiiiiiiiiieeete ettt 231
Configurations for project dialog bOXcccceceverinininiereieieieieieneeeeeees 234
New Configuration dialog box

Create New Project dialog box

Batch Build dialog DOXcccecveiiiiiiiniiniiniininenccecectctctcceee e
Edit Batch Build dialog DOXccceeviiirienieniinininiencecececeeeteceeeeeees
TOOIS MENU ...ooviiiiiiiiiic e
Common FONts OPLIONSc..coeeiiiiiiiiniinienieniinentescececeee et

Key Bindings OPONScceeeeieieieieienienieienienesie ettt ettt s seeenea
Language OPLIONScocvevieriienieeieeieete ettt ettt st st et et et e e saneenees
EdItOr OPLIONS ...cuvitieiieiieiieiieieieteeteste sttt
Configure Auto Indent dialog bOXcccoeverinineninininieceeccceeee 246
External EditOr OPONS ...coueivieriiiiiiieiieetesiceiee sttt
Editor Setup Files options

Editor Colors and FONts OPtionscceecereriererienenieieieteniesiesieeesresie e 250
IMESSAZES OPLION ..euiieniiiiieiieiteieete ettt ettt ettt sate st e bt e sbe e bt eaesaseenees 251
Message dialog box containing a Don’t show again optionc.ccccceeeueeneee 252
ProjJEcts OPLIONSocuiviieiitiriieiieitetet ettt ettt 253
Source Code COoNntrol OPLIONScccuerrereeriierieerieeieeieeeerieesieenee et senens 254
Debugger options

StACK OPLIONS ..eeuieniiiiiiiieiteite ettt ettt ettt bbb
Register FIlter OPtIONSccccceiviiiriiiienieiieiceitesceee ettt 259
Terminal I/O OPHONS ..c..covevueiiiiiiiiiiiienener ettt 260
Configure Tools dialog DOXcccceeieieriinienienieneriene e 261
Customized Tools menu

Filename Extensions dialog BOXccccocvverenieiiiiiinicnicnicnienenenesceceeeee 263
Filename Extension Overrides dialog BOXc.cccceveviririenienienienicncreeee, 264
Edit Filename Extensions dialog boXcccecerveerienernieenieniienienieneeneceieene 264
Configure Viewers dialog DOXccccceverereninininininieieeeeeieecereereeneseenes 265
Edit Viewer Extensions dialog DOXcccovcerererenininenieieieeeeeseieeeees 265

Figures ___o

134: Window menu
135: Embedded Workbench Startup dialog boXcccceevverviieiieniinieniiiecieeieeene 267
136: C-SPY debug toOIDATccceeieiiieiiiinienienienererer ettt 271
137: C-SPY Disassembly WindOWccccocererererireneninieieeeeeeeeeeeeesvesiesieenes 271

138: Disassembly window CONEXt MENUc.cevvveruieriierierierieeientesetenieesieeieeeeeneen 272

139: MEeMOTY WINAOW ..c..evuiiiiiiiiiiiiienienienenieniceie ettt sne b
140: Memory window context menu ...
141: Fill dialoZ DOX couviiriiiiiiiieiieieeieete ettt sttt st st
142: Memory Save dialog DOXccccoevereninininiiiiireteceesrceerereee e
143: Memory Restore dialog DOXccceovevierenenieninenenieteeete e

144: Symbolic Memory WindOWccccceiirierieniiinieiienieniesieentesiteie e
145: Symbolic Memory window CONteXt MENUccceeerveeeeeeeeeenrenienierenrenrennennes 280
146: RegIStEr WINAOW ...cueeruiriieiieiieiieieieiestestenieniese sttt 281
147: Watch WINAOW ..c..ooiviiiiiiiiiiiiiicicinneneeee s 282
148: Watch WindOw CONEXE METUeuveuriierierienerenerenieeteieetenteeeeetesresresresneenes 282
149: Locals WINAOW ..c.eeuiriiriieiiiiieiieieieieestestese sttt
1500 AULO WINAOW ..ovviiiiiiiiiiiieiiciictcretctesteste ettt
151: Live Watch window
152: Quick WatCh WInAOWcceeciieiiieiiiiieieceeteeie ettt eeae s

153 StatiCsS WINAOW ..coocviiiiiieiiieiieeeiieeiee et eesite e et e eteeeseaeesiaeesabeeesseeeseseesaseensseeens

154: Statics WindOW CONEEXE MENUeveureiirerierererererieeeesteneeneereressesresnessessenns
155: Select Statics dialog DOXcecvevierierieririeriereresesee et
156: Call Stack WINAOWcooviiiiiiiiiiiinieienieienesese et
157: Call Stack window context menu
158: Terminal I/O WINAOWccoccieiiiiiiieieienienenie ettt
159: Ctrl COAES MENUc.oviviiiiiiiieiiiictcieterere ettt
160: Input Mode dialog DOXccceeverierieniirininiriieeteceeeeteee e
161: Code COVerage WindOWccccevererererereneneecetetete e seesee st bbb b sae s
162: Code coverage context menu
163: Profiling WindOWccccceeiiiiniiniiniininenentrte ettt
164: Profiling CONLEXE MENUoeeieriirierienienierierieeitee ettt eas
165: Stack WINAOWccuiiuiiiiiiiiiiiiiiiieienienen ettt
166: Stack WindoOw CONEXE MENU ...c..evereriirierierierierierienieeeeeetenteeereseesresresresaeenes

167: DEDUZ MENU ..ottt sttt ettt ettt bbb b ene

XXXi

xxxii

IAR Embedded Workbench® IDE
User Guide

168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:

Autostep settings dialog box

Macro Configuration dialog BOXcccceceevieriiriienienenieeierieeee e 299
Log File dialog DOX ...cc.covieiiiiiiiiiiienicnennenctcecectetcecee e 300
Terminal I/O Log File dialog DOXc..ccceveririnerininieieieiecreeeceeeieeee 301
OULPUL OPLIONS .evvieiuteriieieeritenteeieeteeite ettt e st et e bt etesabesatesaeebeesbeenseeneesaseenees 303
Library Configuration OPtiONSccccoceeerererereeeeieeentenienienensessessesseeneennes 305
Library Options page

Multi-file COMPIAIONeoviiiriiiiiiiiiieeieeterete e 309
Compiler 1anguage OPtIONSccceeveierierierieninineneeeeeeeeteeereneesresresre e eaes 310
Compiler OptimiZations OPLIONScceeoververuereereriererieeereeteteeesrenresressesneenes 313
Compiler OULPUL OPLIONS ...cc.vevuieriieniieierieeieeiereesitenie et et sie et e e eaeeees 314
Compiler list file OPLONScoereriiieiiiirieniener e 316
Compiler preprocesSOr OPLONSc.vevververrertererereereeseeteteteeessessensessessesseens 317
Compiler diagnoStiCs OPLIONS ..cc..eeuverierieriieniierieeteerienteseesresieeseeeseeeeesreeaees 319
Extra Options page for the COMPIlerc..cocevveveriirieniiniiiiiienicncneneneneenee 320
Choosing macro qUOte CharacCtersocveverereeeeeeieieietesreneseeereeie e 324
Assembler OULPUL OPLIONSovueerieiriieierieeieniieriee sttt e ettt eee s
Assembler preprocessor options

Extra Options page for the assemblerc.coocevevirinininiiieneeceeeee 327
CUuStom tOO] OPLIONSeevuieiiiiieiiiieeieete ettt sttt et st et s 329
Build actions OPLIONSceeeierieierienienieneneneneeeeeetetet et 331
XLINK output file OPiONSccovevieierierienienienieserieetetetee et 333
XLINK extra output file OPtIONSc.cecveevierieriienienieieeieeteeee e 336
Linker defined symbols options

Linker diagnostiCs OPLtIONSc..couevierierierierienenieeieeiietete ettt
Linker List file OPIONS ...c.covviiriiiniiiieiierierieeseeet et
Linker config OPtioNScccceceeiririeiienieiiicneneseseeeee ettt
XLINK Processing OPtiONScccceceevereerierierieriertesseseeeeeentensessensessessessessesnes
Extra Options page for the linker

Library builder output OPONScccevueriererienienieneneeeeieeiteteieneeneeneeseeseeenees
Generic C-SPY OPHONSooeviieiiieiieteieieste sttt
Extra Options page for the C-SPY debuggercccccovevviiriiinieineeneencniene, 351
C-SPY Plugin OPLIONS ...coevveriieuieiiiiiiiieieienienteniestesseeeteieesee ettt sresre e 352

Preface

Welcome to the IAR Embedded Workbench® IDE User Guide. The purpose
of this guide is to help you fully utilize the features in IAR Embedded
Workbench with its integrated Windows development tools. The IAR
Embedded Workbench IDE is a very powerful Integrated Development
Environment that allows you to develop and manage a complete embedded
application project.

The user guide includes product overviews and reference information, as well
as tutorials that will help you get started. It also describes the processes of
editing, project managing, building, and debugging.

Note: Some descriptions in this guide only apply to certain versions of the
IAR Embedded Workbench® IDE. For example, not all versions support C++.

Who should read this guide

You should read this guide if you want to get the most out of the features and tools
available in the IAR Embedded Workbench IDE. In addition, you should have a working
knowledge of:

o The C or C++ programming language

e Application development for embedded systems

o The architecture and instruction set of the processor (refer to the chip
manufacturer's documentation)

o The operating system of your host computer.
Refer to the IAR C/C++ Compiler Reference Guide, IAR Assembler Reference Guide,

and |ARLinker and Library Tools Reference Guide for more information about the other
development tools incorporated in the AR Embedded Workbench IDE.

How to use this guide

If you are new to using this product, we suggest that you start by reading Part 1. Product
overview to give you an overview of the tools and the functions that the IAR Embedded
Workbench IDE can offer.

XXXiii

What this guide contains

If you already have had some experience using IAR Embedded Workbench, but need
refreshing on how to work with the IAR development tools, Part 2. Tutorialsis a good
place to begin. The process of managing projects and building, as well as editing, can
be found in Part 3. Project management and building, page 67, whereas information
about how to use the C-SPY® Debugger can be found in Part 4. Debugging, page 103.

If you are an experienced user and need this guide only for reference information, see
the reference chapters in Part 6. Reference information and the online help system
available from the IAR Embedded Workbench Help menu.

Finally, we recommend the Glossary if you should encounter any unfamiliar terms in
the IAR Systems user and reference guides.

What this guide contains

IAR Embedded Workbench® IDE
xxxiv User Guide

Below is a brief outline and summary of the chapters in this guide. Some chapters only
apply to certain versions of the [AR Embedded Workbench® IDE, partly or in their
entirety.

Part I. Product overview

This section provides a general overview of all the IAR development tools so that you
can become familiar with them:

e Product introduction provides a brief summary and lists the features offered in each
of the IAR Systems development tools—IAR Embedded Workbench® IDE, IAR
C/C++ Compiler, IAR Assembler, IAR XLINK Linker, IAR XAR Library Builder,
IAR XLIB Librarian, and IAR C-SPY Debugger.

e Installed files describes the directory structure and the types of files it contains. The
chapter also includes an overview of the documentation supplied with the IAR
development tools.

Part 2. Tutorials

The tutorials give you hands-on training in order to help you get started with using the
tools:

e Creating an application project guides you through setting up a new project,
compiling your application, examining the list file, and linking your application.
The tutorial demonstrates a typical development cycle, which is continued with
debugging in the next chapter.

e Debugging using the IAR C-SPY® Debugger explores the basic facilities of the
debugger.

Preface __4

e Mixing C and assembler modules demonstrates how you can easily combine source
modules written in C with assembler modules. The chapter also demonstrates how
the compiler can be used for examining the calling convention.

e Using C++ shows how to create a C++ class, which creates two independent
objects. The application is then built and debugged. This chapter only applies to
product versions with C++ support.

e Smulating an interrupt shows how you can add an interrupt handler to the project
and how this interrupt can be simulated using C-SPY facilities for simulated
interrupts, breakpoints, and macros.

e Creating and using libraries demonstrates how to create library modules.

Part 3. Project management and building
This section describes the process of editing and building your application:

e The development environment introduces you to the IAR Embedded Workbench
development environment. The chapter also demonstrates the facilities available for
customizing the environment to meet your requirements.

e Managing projectsdescribes how you can create workspaces with multiple projects,
build configurations, groups, source files, and options that helps you handle
different versions of your applications.

e Building discusses the process of building your application.

e Editing contains detailed descriptions about the IAR Embedded Workbench editor,
how to use it, and the facilities related to its usage. The final section also contains
information about how to integrate an external editor of your choice.

Part 4. Debugging
This section gives conceptual information about C-SPY functionality and how to use it:

e ThelAR C-SPY® Debugger introduces some of the concepts that are related to
debugging in general and to the IAR C-SPY Debugger in particular. It also
introduces you to the C-SPY environment and how to setup, start, and configure
C-SPY to reflect the target hardware.

e Executing your application describes how you initialize the IAR C-SPY Debugger,
the conceptual differences between source and disassembly mode debugging, the
facilities for executing your application, and finally, how you can handle terminal
input and output.

e \Working with variables and expressions defines the syntax of the expressions and
variables used in C-SPY, as well as the limitations on variable information. The
chapter also demonstrates the different methods for monitoring variables and
expressions.

XXXV

What this guide contains

XXXVi

IAR Embedded Workbench® IDE
User Guide

Using breakpoints describes the breakpoint system and the different ways to define
breakpoints.

Monitoring memory and registers shows how you can examine memory and
registers.

Using the C-SPY® macro system describes the C-SPY macro system, its features,
for what purposes these features can be used, and how to use them.

Analyzing your application presents facilities for analyzing your application.

Part 5. IAR C-SPY® Simulator

Smulator-specific debugging describes the functionality specific to the simulator.

Smulating interrupts contains detailed information about the C-SPY interrupt
simulation system and how to configure the simulated interrupts to make them
reflect the interrupts of your target hardware.

Part 6. Reference information

| AR Embedded Workbench® |DE reference contains detailed reference information
about the development environment, such as details about the graphical user
interface.

C-SPY® Debugger reference provides detailed reference information about the
graphical user interface of the IAR C-SPY Debugger.

General options specifies the target, output, library, heap, and stack options.

Compiler options specifies compiler options for language, optimizations, code,
output, list file, preprocessor, and diagnostics.

Assembler options describes the assembler options for language, output, list,
preprocessor, and diagnostics.

Custom build options describes the options available for custom tool configuration.

Build actions options describes the options available for pre-build and post-build
actions.

Linker options describes the XLINK options for output, defining symbols,
diagnostics, list generation, setting up the include paths, input, and processing.

Library builder options describes the XAR options available in the Embedded
Workbench.

e Debugger options gives reference information about generic C-SPY options.
e ThelAR C-SPY Command Line Utility—cspybat descrbibes how to use the C-SPY

debugger in batch mode.

C-SPY® macros reference gives reference information about C-SPY macros, such
as asyntax description of the macro language, summaries of the available setup

Preface __4

macro functions, and pre-defined system macros. Finally, a description of each
system macro is provided.

Other documentation

The complete set of IAR development tools are described in a series of guides. For
information about:

Programming for the IAR C/C++ Compiler, refer to the |AR C/C++ Compiler
Reference Guide

Programming for the IAR Assembler, refer to the AR Assembler Reference Guide

Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, refer to the IAR Linker and Library Tools Reference Guide

All of these guides are delivered in hypertext PDF or HTML format on the installation
media. Some of them are also delivered as printed books. Note that additional
documentation might be available on the Help menu depending on your product
installation.

Recommended web sites:

The chip manufacturer web site contains information and news about the
microcontroller.

The TAR Systems web site, www.iar.com, holds application notes and other
product information.
Finally, the Embedded C++ Technical Committee web site,

www.car avan.net/ec2plus, contains information about the Embedded C++
standard.

Document conventions

This book uses the following typographic conventions:

Style Used for
computer Text that you type or that appears on the screen.
parameter A label representing the actual value you should type as part of a

command. Note that this style is also used for cpuname,
configfile, libraryfile, and other labels representing your
product, as well as for the numeric part of filename extensions—xx.

[option] An optional part of a command.

{option} A mandatory part of a command.

Table 1: Typographic conventions used in this guide

XXXVii

Document conventions

IAR Embedded Workbench® IDE
xxxvii User Guide

Style Used for

alblc Alternatives in a command.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

reference A cross-reference within this guide or to another guide.

emphasis Important terms and concepts.

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Table 1: Typographic conventions used in this guide (Continued)

Part |. Product overview

This part of the IAR Embedded Workbench® IDE User Guide includes the
following chapters:

e Product introduction

e Installed files.

- .hmuiuhhhi

AARAre

Product introduction

The IAR Embedded Workbench® IDE is a very powerful Integrated
Development Environment, that allows you to develop and manage complete
embedded application projects. It is a development platform, with all the
features you would expect to find in your everyday working place.

This chapter describes the IAR Embedded Workbench IDE and provides a
general overview of all the tools that are integrated in this product.

The IAR Embedded Workbench IDE
The IAR Embedded Workbench IDE is the framework where all necessary tools are
seamlessly integrated:

The highly optimizing IAR C/C++ Compiler

The IAR Assembler

The versatile IAR XLINK Linker

The IAR XAR Library Builder and the IAR XLIB Librarian

A powerful editor

A project manager

A command line build utility

IAR C-SPY® debugger, a state-of-the-art high-level language debugger.

IAR Embedded Workbench is available for a large number of microprocessors and
microcontrollers in the 8-, 16-, and 32-bit segments, allowing you to stay within a
well-known development environment also for your next project. It provides an
easy-to-learn and highly efficient development environment with maximum code
inheritance capabilities, comprehensive and specific target support. IAR Embedded
Workbench promotes a useful working methodology, and thus a significant reduction of
the development time can be achieved by using the IAR Systems tools. We call this
concept “Different Architectures. One Solution.”

If you want detailed information about supported target processors, contact your
software distributor or your IAR representative, or visit the AR Systems web site
www.iar.com for information about recent product releases.

Part |. Product overview

The IAR Embedded Workbench IDE

IAR Embedded Workbench® IDE
4 User Guide

AN EXTENSIBLE AND MODULAR ENVIRONMENT

Although the IAR Embedded Workbench IDE provides all the features required for a
successful project, we also recognize the need to integrate other tools. Therefore the IAR
Embedded Workbench IDE can be easily adapted to work with your favorite editor and
source code control system. The IAR XLINK Linker can produce a large number of
output formats, allowing for debugging on most third-party emulators. Support for
RTOS-aware debugging and high-level debugging of state machines can also be added
to the product.

The compiler, assembler, and linker can also be run from a command line environment,
if you want to use them as external tools in an already established project environment.

FEATURES

The IAR Embedded Workbench IDE is a flexible integrated development environment,
allowing you to develop applications for a variety of different target processors. It
provides a convenient Windows interface for rapid development and debugging.

Project management

The IAR Embedded Workbench IDE comes with functions that will help you to stay in
control of all project modules, for example, C or C++ source code files, assembler files,
include files, and other related modules. You create workspaces and let them contain one
or several projects. Files can be grouped, and options can be set on all levels—project,
group, or file. Changes are tracked so that a request for rebuild will retranslate all
required modules, making sure that no executable files contain out-of-date modules. The
following list shows some additional features:

e Project templates to create a project that can be built and executed out of the box for
a smooth development startup

Hierarchical project representation

Source browser with an hierarchical symbol presentation

Options can be set globally, on groups of source files, or on individual source files

The Make command automatically detects changes and performs only the required
operations

e Text-based project files
o Custom Build utility to expand the standard tool chain in an easy way

o Command line build with the project file as input.

Source code control

Source code control (SCC)—or revision control—is useful for keeping track of different
versions of your source code. AR Embedded Workbench can identify and access any

Product introduction °

third-party source code control system that conforms to the SCC interface published by
Microsoft.

Window management

To give you full and convenient control of the placement of the windows, each window
is dockable and you can optionally organize the windows in tab groups. The system of
dockable windows also provides a space-saving way to keep many windows open at the
same time. It also makes it easy to rearrange the size of the windows.

The text editor

The integrated text editor allows editing of multiple files in parallel, and provides all
basic editing features expected from a modern editor, including unlimited undo/redo and
automatic completion. In addition, it provides functions specific to software
development, like coloring of keywords (C/C++, assembler, and user-defined), block
indent, and function navigation within source files. It also recognizes C language
elements like matching brackets. The following list shows some additional features:

o Context-sensitive help system that can display reference information for DLIB
library functions

o Syntax of C or C++ programs and assembler directives shown using text styles and
colors

Powerful search and replace commands, including multi-file search
Direct jump to context from error listing

Multibyte character support

Parenthesis matching

Automatic indentation

Bookmarks

Unlimited undo and redo for each window.

DOCUMENTATION

The TAR Embedded Workbench IDE is documented in the | AR Embedded Workbench®
IDE User Guide (this guide). There is also help and hypertext PDF versions of the user
documentation available online.

IAR C-SPY Debugger

The IAR C-SPY Debugger is a high-level-language debugger for embedded
applications. It is designed for use with the IAR Systems compilers and assemblers, and

Part |. Product overview 5

IAR C-SPY Debugger

IAR Embedded Workbench® IDE
6 User Guide

it is completely integrated in the IAR Embedded Workbench IDE, providing seamless
switching between development and debugging. This will give you possibilities such as:

e Editing while debugging. During a debug session, corrections can be made directly
into the same source code window that is used to control the debugging. Changes
will be included in the next project rebuild.

e Setting source code breakpoints before starting the debugger. Breakpoints in source
code will be associated with the same piece of source code even if additional code is
inserted.

The IAR C-SPY Debugger consists both of a general part which provides a basic set of
C-SPY features, and of a driver. The C-SPY driver is the part that provides
communication with and control of the target system. The driver also provides a user
interface—special menus, windows, and dialog boxes—to the functions provided by the
target system, for instance, special breakpoints.

Contact your software distributor or AR Systems representative for information about
available C-SPY drivers. You can also find information on the IAR Systems website,
Www.iar.com.

Depending on your product installation, the IAR C-SPY Debugger is available with a
simulator driver and optional drivers for hardware debugger systems. For information
about hardware debugger systems, see the online help system available from the Help
menu.

GENERAL C-SPY DEBUGGER FEATURES

Because IAR Systems provides an entire tool chain, the output provided by the compiler
and linker can include extensive debug information for the debugger, resulting in good
debugging possibilities for you. The IAR C-SPY Debugger offers the general features
described in this section.

Source and disassembly level debugging

The IAR C-SPY Debugger allows you to switch between source and disassembly
debugging as required, for both C or C++ and assembler source code.

Debugging the C or C++ source code provides the quickest and easiest way of verifying
the program logic of your application whereas disassembly debugging lets you focus on
the critical sections of your application, and provides you with precise control over the
hardware. In Mixed-Mode display, the debugger also displays the corresponding C/C++
source code interleaved with the disassembly listing.

Product introduction °

Single-stepping on a function call level

Compared to traditional debuggers, where the finest granularity for source level
stepping is line by line, C-SPY provides a finer level of control by identifying every
statement and function call as a step point. This means that each function calls—inside
expressions, as well as function calls being part of parameter lists to other
functions—can be single-stepped. The latter is especially useful when debugging C++
code, where numerous extra function calls are made, for example to object constructors.

The debug information also presents inlined functions as if a call was made, making the
source code of the inlined function available.

Code and data breakpoints

The C-SPY breakpoint system lets you set breakpoints of various kinds in the
application being debugged, allowing you to stop at locations of particular interest. You
can set a code breakpoint to investigate whether your program logic is correct. You can
also set a data breakpoint, to investigate how and when the data changes. Finally, you
can add conditions and connect actions to your breakpoints.

Monitoring variables and expressions

When you work with variables and expressions you are presented with a wide choice of
facilities. Any variable and expression can be evaluated in one-shot views. You can
easily both monitor and log values of a defined set of expressions during a longer period
of time. You have instant control over local variables, and real-time data is displayed
non-intrusively. Finally, the last referred variables are displayed automatically.

Container awareness

‘When you run your application in the IAR C-SPY Debugger, you can view the elements
of library data types such as STL lists and vectors. This gives you a very good overview
and premium debugging opportunities when you work with C++ STL containers.

Call stack information

The IAR C/C++ Compiler generates extensive call stack information. This allows
C-SPY to show, without any runtime penalty, the complete stack of function calls
wherever the program counter is. You can select any function in the call stack, and for
each function you get valid information for local variables and registers available.

Powerful macro system

The IAR C-SPY Debugger includes a powerful internal macro system, to allow you to
define complex sets of actions to be performed. C-SPY macros can be used solely or in

Part |. Product overview 7

IAR C-SPY Debugger

conjunction with complex breakpoints and—if you are using the simulator—the
interrupt simulation system to perform a wide variety of tasks.

Additional general C-SPY Debugger features
This list shows some additional features:

o A modular and extensible architecture allowing third-party extensions to the
debugger, for example, real-time operating systems, peripheral simulation modules,
and emulator drivers

Threaded execution keeps the IDE responsive while running the target application
Automatic stepping

Source browser provides easy navigation to functions, types and variables
Extensive type recognition of variables

Configurable registers (CPU and peripherals) and memory windows

Dedicated Stack window

Support for code coverage and function level profiling

Target application can access files on host PC using file I/O

Optional terminal I/O emulation

UBROF, Intel-extended, and Motorola input formats supported.

C-SPY PLUGIN MODULES

The IAR C-SPY Debugger is designed as a modular architecture with an open SDK that
can be used for implementing additional functionality to C-SPY in the form of plugin
modules. These modules can be seamlessly integrated in the IAR Embedded Workbench
IDE.

Plugin modules can be provided by IAR Systems, as well as by third-party suppliers.
Example of such modules are:

o Code Coverage, Profiling, and the Stack window, all well-integrated in the IAR
Embedded Workbench IDE.

o The various C-SPY drivers for debugging using certain debug systems.

o RTOS plugin modules for support for real-time OS awareness debugging.

o C-SPYLink that bridges visualSTATE and IAR Embedded Workbench to make true
high-level state machine debugging possible directly in C-SPY, in addition to the
normal C level symbolic debugging. For more information, refer to the
documentation provided with IAR visualSTATE.

For more information about the C-SPY SDK, contact IAR Systems.

IAR Embedded Workbench® IDE
8 User Guide

Product introduction °

RTOS AWARENESS
The IAR C-SPY Debugger supports real-time OS awareness debugging.

RTOS plugin modules can be provided by IAR Systems, as well as by third-party
suppliers. Contact your software distributor or IAR Systems representative, alternatively
visit the IAR Systems web site, for information about supported RTOS modules.

IAR C-SPY SIMULATOR

The C-SPY simulator driver simulates the functions of the target processor entirely in

software. With this driver, the program logic can be debugged long before any hardware
is available. Because no hardware is required, it is also the most cost-effective solution
for many applications.

Features

In addition to the general features of the C-SPY Debugger the simulator driver also

provides:

e Instruction-level simulation

e Memory configuration and validation

e Interrupt simulation

e Peripheral simulation, using the C-SPY macro system in conjunction with
immediate breakpoints.

For additional information about the IAR C-SPY Simulator, refer to Part 5. IAR
C-SPY® Smulator in this guide.

DOCUMENTATION

The TAR C-SPY Debugger is documented in the | AR Embedded Workbench® IDE User
Guide (this guide). Generic debugger features are described in Part 4. Debugging,
whereas features specific to each debugger driver are described in Part 5. IAR C-SPY®
Smulator. Features specific to supported hardware debugger systems are described in
the online help system available from the Help menu. There are also help and hypertext
PDF versions of the documentation available online.

IAR C/C++ Compiler

The IAR C/C++ Compiler is a state-of-the-art compiler that offers the standard features
of the C or C++ languages, plus many extensions designed to take advantage of the
target-specific facilities.

Part |. Product overview 9

IAR C/C++ Compiler

10

IAR Embedded Workbench® IDE
User Guide

The compiler is integrated with other IAR Systems software in the IAR Embedded
Workbench IDE.

FEATURES
The IAR C/C++ Compiler provides the following features:

Code generation

Generic and target-specific optimization techniques produce very efficient machine
code

Comprehensive output options, including relocatable object code, assembler source
code, and list files with optional assembler mnemonics

The object code can be linked together with assembler routines

Generation of extensive debug information.

Language facilities

Support for the C and C++ programming languages (some product versions do not
support C++)

Support for AR Extended EC++ with features such as full template support,
namespace support, the cast operators static_cast, const_cast, and
reinterpret_cast, as well as the Standard Template Library (STL). Applies
only to product versions that support C++.

o Placement of classes in different memory types

e Conformance to the ISO/ANSI C standard for a free-standing environment

Target-specific language extensions, such as special function types, extended
keywords, pragma directives, predefined symbols, intrinsic functions, absolute
allocation, and inline assembler

e Standard library of functions applicable to embedded systems

o [EEE-compatible floating-point arithmetic

Interrupt functions can be written in C or C++.

Type checking

Extensive type checking at compile time
External references are type checked at link time

Link-time inter-module consistency checking of the application.

Product introduction °

RUNTIME ENVIRONMENT

There are several mechanisms available for customizing the runtime environment and
the runtime libraries. For further information about the runtime environment, see the
I1AR C/C++ Compiler Reference Guide.

DOCUMENTATION

The IAR C/C++ Compiler is documented in the |AR C/C++ Compiler Reference Guide.

IAR Assembler

The IAR Assembler is integrated with the other IAR Systems software tools. It is a
powerful relocating macro assembler (supporting the Intel/Motorola style) with a
versatile set of directives and expression operators. The assembler features a built-in C
language preprocessor.

FEATURES
The IAR Assembler provides the following features:

e C preprocessor

List file with extensive cross-reference output

Number of symbols and program size limited only by available memory
Support for complex expressions with external references

Up to 65536 relocatable segments per module

255 significant characters in symbol names.

DOCUMENTATION
The TIAR Assembler is documented in the AR Assembler Reference Guide.

IAR XLINK Linker

The IAR XLINK Linker links one or more relocatable object files produced by the IAR
Assembler or AR C/C++ Compiler to produce machine code for the processor you are
using. It is equally well suited for linking small, single-file, absolute assembler
applications as for linking large, relocatable, multi-module, C/C++, or mixed C/C++
and assembler applications.

It can generate one out of more than 30 industry-standard loader formats, in addition to
the IAR Systems proprietary debug format used by the IAR C-SPY Debugger—UBROF
(Universal Binary Relocatable Object Format). An application can be made up of any

Part |. Product overview 1

IAR XAR Library Builder and IAR XLIB Librarian

number of UBROF relocatable files, in any combination of assembler and C or C++
applications.

The final output produced by the IAR XLINK Linker is an absolute, target-executable
object file that can be downloaded to the processor or to a hardware emulator.
Optionally, the output file might or might not contain debug information depending on
the output format you choose.

The AR XLINK Linker supports user libraries, and will load only those modules that
are actually needed by the application you are linking. Before linking, the AR XLINK
Linker performs a full C-level type checking across all modules as well as a full
dependency resolution of all symbols in all input files, independent of input order. It also
checks for consistent compiler settings for all modules and makes sure that the correct
version and variant of the C or C++ runtime library is used.

FEATURES

Full inter-module type checking

Simple override of library modules

Flexible segment commands allow detailed control of code and data placement
Link-time symbol definition enables flexible configuration control

Optional code checksum generation for runtime checking

Removes unused code and data.

DOCUMENTATION

The TAR XLINK Linker is documented in the IAR Linker and Library Tools Reference
Guide.

IAR XAR Library Builder and IAR XLIB Librarian

A library is a single file that contains a number of relocatable object modules, each of
which can be loaded independently from other modules in the file as it is needed. The
IAR XAR Library Builder assists you to build libraries easily. In addition the IAR XLIB
Librarian enables you to manipulate the relocatable library object files produced by the
IAR Systems assembler and compiler.

A library file is no different from any other relocatable object file produced by the
assembler or compiler, except that it includes a number of modules of the LIBRARY
type. All C or C++ applications make use of libraries, and the IAR C/C++ Compiler is
supplied with a number of standard library files.

IAR Embedded Workbench® IDE
12 User Guide

Product introduction °

FEATURES

The IAR XAR Library Builder and IAR XLIB Librarian both provide the following
features:

o Modules can be combined into a library file

e Interactive or batch mode operation.

The IAR XLIB Librarian provides the following additional features:
Modules can be listed, added, inserted, replaced, or removed

Modules can be changed between program and library type

°
°
o Segments can be listed
°

Symbols can be listed.

DOCUMENTATION

The TAR XLIB Librarian and the IAR XAR Library Builder are documented in the IAR
Linker and Library Tools Reference Guide, a PDF document available from the TAR
Embedded Workbench IDE Help menu.

Part |. Product overview 13

IAR XAR Library Builder and IAR XLIB Librarian

IAR Embedded Workbench® IDE
14 User Guide

Installed files

This chapter describes which directories are created during installation and
what file types are used. At the end of the chapter, there is a section that
describes what information you can find in the various guides and online
documentation.

Refer to the QuickStart Card and the Installation and Licensing Guide, which are
delivered with the product, for system requirements and information about
how to install and register the IAR Systems products.

Directory structure

The installation procedure creates several directories to contain the different types of
files used with the IAR Systems development tools. The following sections give a
description of the files contained by default in each directory.

ROOT DIRECTORY

The root directory created by the default installation procedure is the

x:\Program Files\IAR Systems\Embedded Workbench 5.n\ directory where x
is the drive where Microsoft Windows is installed and 5 . n is the version number of the
IAR Embedded Workbench IDE.

In the root directory there are two subdirectories—common and one named after the
processor you are using. The latter directory will hereafter be referred to as cpuname.

Note: The installation path can be different from the one shown above depending on
previously installed IAR products, and on your preferences.
THE CPUNAME DIRECTORY

The cpuname directory contains all product-specific subdirectories.

The cpuname\bin directory

The cpuname\bin subdirectory contains executable files for target-specific
components, such as the IAR C/C++ Compiler, the IAR Assembler, and the IAR
C-SPY® drivers.

Part |. Product overview

Directory structure

16

IAR Embedded Workbench® IDE
User Guide

The cpuname\config directory

The cpuname\ config subdirectory contains files used for configuring the development
environment and projects, for example:

Linker command files (* .xc1)

Special function register description files (*.sfr)

C-SPY device description files (* . ddf)

Device selection files (* . ixx, * .menu)

Flash loader applications for different devices (* . dxx), depends on your product
version

e Syntax coloring configuration files (*.c£g)

e Project templates for both application and library projects (* . ewp), and for the
library projects, the corresponding library configuration files.

The cpuname\doc directory

The cpuname\doc subdirectory contains release notes with recent additional
information about the tools. We recommend that you read all of these files. The directory
also contains online hypertext versions in hypertext PDF format of this user guide, and
of the reference guides, as well as online help files (* . chm).

The cpuname\drivers directory

The cpuname\drivers subdirectory contains low-level device drivers, typically USB
drivers, required by the C-SPY drivers.

The cpuname\examples directory

The cpuname\ examples subdirectory contains files related to example projects, which
can be opened from the Startup Screen dialog box.

The cpunamelinc directory

The cpuname\ inc subdirectory holds include files, such as the header files for the
standard C or C++ library. There are also specific header files defining special function
registers (SFRs); these files are used by both the compiler and the assembler.

The cpunamellib directory

The cpuname\1ib subdirectory holds prebuilt libraries and the corresponding library
configuration files, used by the compiler.

Installed files °

The cpuname\plugins directory

The cpuname\plugins subdirectory contains executable files and description files for
components that can be loaded as plugin modules.

The cpuname\powerpac directory

The cpuname\powerpac subdirectory contains files related to the add-on product AR
PowerPac. This directory is available if you have installed IAR PowerPac.

The cpuname\src directory

The cpuname\src subdirectory holds source files for some configurable library
functions. This directory also holds the library source code.

The cpuname\tutor directory

The cpuname\ tutor subdirectory contains the files used for the tutorials in this guide.

THE COMMON DIRECTORY

The common directory contains subdirectories for components shared by all IAR
Embedded Workbench products.

The common\bin directory

The common\bin subdirectory contains executable files for components common to all
IAR Embedded Workbench products, such as the IAR XLINK Linker, the IAR XLIB
Librarian, the IAR XAR Library Builder, the editor and the graphical user interface
components. The executable file for the IAR Embedded Workbench IDE is also located
here.

The common\config directory

The common\config subdirectory contains files used by IAR Embedded Workbench
IDE for holding settings in the development environment.

The common\doc directory

The common\doc subdirectory contains readme files with recent additional information
about the components common to all AR Embedded Workbench products, such as the
linker and library tools. We recommend that you read these files. The directory also
contains an online version in PDF format of the AR Linker and Library Tools Reference
Guide.

Part |. Product overview 17

File types

18

The common\plugins directory

The common\plugins subdirectory contains executable files and description files for
components that can be loaded as plugin modules, for example modules for Code
coverage and Profiling.

The common\src directory

The common\ src subdirectory contains source files for components common to all IAR
Embedded Workbench products, such as a sample reader of the IAR XLINK Linker
output format SIMPLE.

THE METADATA DIRECTORY

The metadata directory contains metadata (version number, name, etc.) about the
installed product components. Do not modify these files.

File types

IAR Embedded Workbench® IDE

User Guide

The versions of the IAR Systems development tools use the following default filename
extensions to identify the produced files and other recognized file types:

Ext. Type of file Output from Input to

axx Target application XLINK EPROM, C-SPY, etc.

asm Assembler source code Text editor Assembler

bat Windows command batch file C-SPY Windows

c C source code Text editor Compiler

cfg Syntax coloring configuration Text editor IAR Embedded
Workbench IDE

chm Online help system -- IAR Embedded
Workbench IDE

cpp Embedded C++ source code Text editor Compiler

dxx Target application with debug information XLINK C-SPY and other

symbolic debuggers

dat Macros for formatting of STL containers IAR Embedded IAR Embedded
Workbench IDE Workbench IDE

dbg Target application with debug information XLINK C-SPY and other
symbolic debuggers

dbgt Debugger desktop settings C-SPY C-SPY

ddf Device description file Text editor C-SPY

Table 2: File types

Installed files °

Ext. Type of file Output from Input to
dep Dependency information IAR Embedded IAR Embedded
Workbench IDE Workbench IDE
dni Debugger initialization file C-SPY C-SPY
ewd Project settings for C-SPY IAR Embedded IAR Embedded
Workbench IDE Workbench IDE
ewp IAR Embedded Workbench project IAR Embedded IAR Embedded
(current version) Workbench IDE Workbench IDE
ewplugin |AR Embedded Workbench IDE - IAR Embedded
description file for plugin modules Workbench IDE
eww Workspace file IAR Embedded IAR Embedded
Workbench IDE Workbench IDE
fmt Formatting information for the Locals and IAR Embedded IAR Embedded
Watch windows Workbench IDE Workbench IDE
h C/C++ or assembler header source Text editor Compiler or
assembler
#include
helpfiles Help menu configuration file Text editor IAR Embedded
Workbench IDE
i Preprocessed source Compiler Compiler
ixx Device selection file Text editor IAR Embedded
Workbench IDE
inc Assembler header source Text editor Assembler
#include
ini Project configuration IAR Embedded -
Workbench IDE
log Log information IAR Embedded -
Workbench IDE
lst List output Compilerand -
assembler
mac C-SPY macro definition Text editor C-SPY
map List output XLINK -
menu Device selection file Text editor IAR Embedded
Workbench IDE
par Parameter file IAR Embedded XLINK setup utility

Workbench IDE

Table 2: Filetypes (Continued)

Part |. Product overview 19

File types

20

IAR Embedded Workbench® IDE
User Guide

Ext. Type of file Output from Input to
pbd Source browse information IAR Embedded |IAR Embedded
Workbench IDE Workbench IDE
pbi Source browse information IAR Embedded |IAR Embedded
Workbench IDE Workbench IDE
pew IAR Embedded Workbench project (old IAR Embedded IAR Embedded
project format) Workbench IDE Workbench IDE
prJ IAR Embedded Workbench project (old IAR Embedded IAR Embedded
project format) Workbench IDE Workbench IDE
rxx Object module Compiler and XLINK, XAR, and
assembler XLIB
SXX Assembler source code Text editor IAR Assembler
sfr Special function register definitions Text editor C-SPY
tcl XLINK template command file Text editor XLINK setup utility
vsp visualSTATE project files IAR visualSTATE AR visualSTATE
Designer Designer and IAR
Embedded
Workbench IDE
wsdt Workspace desktop settings IAR Embedded IAR Embedded
Workbench IDE Workbench IDE
xcl Extended command line Text editor Assembler, compiler,
linker
x1b Extended librarian batch command Text editor XLIB

Table 2: File types (Continued)

Note: The notation xx stands for two digits, which form an identifier for the processor
you are using.

When you run the IAR Embedded Workbench IDE, some files are created and located
in dedicated directories under your project directory, by default $SPROJ_DIR$\Debug,
$PROJ_DIRS\Release, $PROJ_DIRS\settings, and the file * . dep under the
installation directory. None of these directories or files affect the execution of the IAR
Embedded Workbench IDE, which means you can safely remove them if required.

FILES WITH NON-DEFAULT FILENAME EXTENSIONS

In the AR Embedded Workbench IDE you can increase the number of recognized
filename extensions using the Filename Extensions dialog box, available from the
Toolsmenu. You can also connect your filename extension to a specific tool in the tool
chain. See Filename Extensions dialog box, page 263.

Installed files °

EI On the command line, you can override the default filename extension by including an
explicit extension when specifying a filename.

@ Note: If you run the tools from the command line, the XLINK listings (map files) will
by default have the extension 1st, which might overwrite the list file generated by the
compiler. Therefore, we recommend that you name XLINK map files explicitly, for
example projectl.map.

Documentation

This section briefly describes the information that is available in the user and reference
guides, in the online help, and on the Internet.

You can access the online documentation from the Help menu in the IAR Embedded
Workbench IDE. Help is also available via the F1 key in the IAR Embedded Workbench
IDE.

We recommend that you read the file readme . htm for recent information that might not
be included in the user guides. It is located in the cpuname\doc directory.

Note: Additional documentation might be available depending on your product
installation.
THE USER AND REFERENCE GUIDES

The user and reference guides provided with AR Embedded Workbench are as follows:

IAR Embedded Workbench® IDE User Guide

This guide. For a brief overview, see What this guide contains, page xxxiv.

IAR C/C++ Compiler Reference Guide

This guide provides reference information about the IAR C/C++ Compiler. You should
refer to this guide for information about:

e How to configure the compiler to suit your target processor and application
requirements

How to write efficient code for your target processor

The assembler language interface and the calling convention

The available data types

The runtime libraries

The IAR language extensions.

Part |. Product overview 21

Documentation

22

IAR Embedded Workbench® IDE
User Guide

IAR Assembler Reference Guide

This guide provides reference information about the IAR Assembler, including details
of the assembler source format, and reference information about the assembler
operators, directives, mnemonics, and diagnostics.

IAR Linker and Library Tools Reference Guide

This online PDF guide provides reference information about the IAR linker and library
tools:

e The IAR XLINK Linker reference sections provide information about XLINK
options, output formats, environment variables, and diagnostics.

o The IAR XAR Library Builder reference sections provide information about XAR
options and output.

e The IAR XLIB Librarian reference sections provide information about XLIB
commands, environment variables, and diagnostics.

ONLINE HELP

The context-sensitive online help contains reference information about the menus and
dialog boxes in the IAR Embedded Workbench IDE. There is also keyword reference
information for library-specific functions. To obtain reference information for a
function, select the function name in the editor window and press F1.

IAR ON THE WEB

The latest news from IAR Systems can be found at the web site www.iar.com, available
from the Help menu in the Embedded Workbench IDE. Visit it for information about:
Product announcements

Updates and news about current versions

Special offerings

Evaluation copies of the IAR Systems products

Technical Support, including technical notes

Application notes

Links to chip manufacturers and other interesting sites

Distributors; the names and addresses of distributors in each country.

http://www.iar.com

Part 2. Tutorials

This part of the IAR Embedded Workbench® IDE User Guide contains the
following chapters:

e Creating an application project

e Debugging using the IAR C-SPY® Debugger
e Mixing C and assembler modules

e Using C++

e Simulating an interrupt

e Creating and using libraries.

: .hmuiuhhhi

ARARAIed

24

Creating an application
project

This chapter introduces you to the IAR Embedded Workbench® integrated
development environment (IDE). The tutorial demonstrates a typical
development cycle and shows how you use the compiler and the linker to
create a small application for your device. For instance, creating a workspace,
setting up a project with C source files, and compiling and linking your
application.

The development cycle continues in the next chapter, see Debugging using the
IAR C-SPY® Debugger, page 35.

Setting up a new project
Using the IAR Embedded Workbench IDE, you can design advanced project models.
You create a workspace to which you add one or several projects. There are ready-made
project templates for both application and library projects. Each project can contain a
hierarchy of groups in which you collect your source files. For each project you can
define one or several build configurations. For more details about designing project
models, see the chapter Managing projectsin this guide.

Because the application in this tutorial is a simple application with very few files, the
tutorial does not need an advanced project model.

‘We recommend that you create a specific directory where you can store all your project
files. In this tutorial we call the directory projects. You can find all the files needed
for the tutorials in the cpuname\ tutor directory. Make a copy of the tutor directory
in your projects directory.

Before you can create your project you must first create a workspace.

CREATING A WORKSPACE WINDOW

The first step is to create a new workspace for the tutorial application. When you start
the IAR Embedded Workbench IDE for the first time, there is already a ready-made
workspace, which you can use for the tutorial projects. If you are using that workspace,
you can ignore the first step.

Part 2. Tutorials 25

Setting up a new project

IAR Embedded Workbench® IDE
26 User Guide

Choose File>New>W orkspace. Now you are ready to create a project and add it to the
workspace.

CREATING THE NEW PROJECT

To create a new project, choose Project>Create New Project. The Create New
Project dialog box appears, which lets you base your new project on a project
template.

Toal chair: ICPUNAME j

Project templates:

-t
-C
-CLIB

Description:

Creates an empty project.

()3 I Cancel |

Figure 1: Create New Project dialog box

From the Tool chain drop-down list, choose the tool chain you are using and click OK.

For this tutorial, select the project template Empty project, which simply creates an
empty project that uses default project settings.

In the standard Save Asdialog box that appears, specify where you want to place your
project file, that is, in your newly created projects directory. Type projectl in the
File name box, and click Save to create the new project.

Creating an application project __¢

The project will appear in the Workspace window.

IDebug 'l
Files IEES
Elproject! - Debug * v

project] I

Figure 2: Workspace window

By default two build configurations are created: Debug and Release. In this tutorial only
Debug will be used. You choose the build configuration from the drop-down menu at the
top of the window. The asterisk in the project name indicates that there are changes that
have not been saved.

A project file—with the filename extension ewp—will be created in the projects
directory, not immediately, but later on when you save the workspace. This file contains
information about your project-specific settings, such as build options.

Before you add any files to your project, you should save the workspace. Choose
File>Save Workspace and specify where you want to place your workspace file. In
this tutorial, you should place it in your newly created projects directory. Type
tutorials in the File namebox, and click Save to create the new workspace.

Save Workspace As EHE
Save ir: Ia projects j - £ B
|1 Debug

D setkings

File name: IM j Save I
j Cancel |

Save as type: IW’orkspace Files [*.eww]

Figure 3: New Workspace dial og box

Part 2. Tutorials 27

Setting up a new project

28

IAR Embedded Workbench® IDE
User Guide

A workspace file—with the filename extension eww—has now been created in the
projects directory. This file lists all projects that you will add to the workspace.
Information related to the current session, such as the placement of windows and
breakpoints is located in the files created in the projects\settings directory.

ADDING FILES TO THE PROJECT
This tutorial uses the source files Tutor.c and Utilities.c.

o The Tutor.c application is a simple program using only standard features of the C
language. It initializes an array with the ten first Fibonacci numbers and prints the
result to stdout.

e Theutilities.c application contains utility routines for the Fibonacci
calculations.

Creating several groupsis a possibility for you to organize your source files logically
according to your project needs. However, because there are only two files in this project
there is no need for creating a group. For more information about how to create complex
project structures, see the chapter Managing projects.

In the Workspace window, select the destination to which you want to add a source file;
a group or, as in this case, directly to the project.

Choose Project>Add Files to open a standard browse dialog box. Locate the files
Tutor.c and Utilities.c, select them in the file selection list, and click Open to
add them to the projectl project.

Add Files - project1 HE
Laok, in: Ia tutor j L] £F EE-

1 Debug

[settings

""" CppTutor.cpp
Fibonacci.cpp
Inkerrupk.c

File name: I"Utilities.c" "Tutaor.c" j Open I
Files of type: IEI.-"EI++ Source Files [*.c:*.cpp;.co) j Cancel |

Figure 4: Adding files to projectl

Creating an application project __¢

SETTING PROJECT OPTIONS

Now you will set the project options. For application projects, options can be set on all
levels of nodes. First you will set the general options to suit the processor configuration
in this tutorial. Because these options must be the same for the whole build
configuration, they must be set on the project node.

I Select the project folder icon projectl - Debug in the Workspace window and choose
Project>Options. In this tutorial you should use the default settings. Then set up the
compiler options for the project.

2 Select C/C++ Compiler in the Category list to display the compiler option pages.

Options for node “project1™ E

Categary: Factory Settings |

General Options

: Language Dptimizationsl Dutputl List I Preprocessorl Diagnostic 4 I L4
Azzembler

Cusztomn Build

Build Actions [LEEHEER

Linker o

[ebugger " Embedded C++

" Extended Embedded C++
' Automatic [extension based)

™ Require pratotypes

— Language conformance Flain ‘char' iz
& Allow |AR extensions " Signed
" Relaxed 1S0/4NS] % Unsigned
7 Shrict 1504851

™ Enable multibyte suppaort

()8 I Cancel |

Figure 5: Setting compiler options

3 Verify that default settings are used. In addition to the default settings, click the List
page, and select the options Output list fileand Assembler mnemonics. Click OK to
set the options you have specified.

Note: Itis possible to customize the amount of information to be displayed in the Build
messages window. In this tutorial, the default setting is not used. Thus, the contents of
the Build messages window on your screen might differ from the screen shots.

The project is now ready to be built.

Part 2. Tutorials 29

Compiling and linking the application

30

Compiling and linking the application

BFs

IAR Embedded Workbench® IDE
User Guide

You can now compile and link the application. You should also create a compiler list file
and a linker map file and view both of them.

COMPILING THE SOURCE FILES

To compile the file Utilities.c, select it in the Workspace window.

Choose Project>Compile.

Alternatively, click the Compilebutton in the toolbar or choose the Compile command
from the context menu that appears when you right-click on the selected file in the
Workspace window.

The progress will be displayed in the Build messages window.

Messages |
Compiling

utilities.c

Generating Browse Info

Dane. 0 erroris). 0warning(s)

Figure 6: Compilation message
Compile the file Tutor . c in the same manner.

The IAR Embedded Workbench IDE has now created new directories in your project
directory. Because you are using the build configuration Debug, a Debug directory has
been created containing the directories List, Obj, and Exe:

o The List directory is the destination directory for the list files. The list files have
the extension 1st.

o The Obj directory is the destination directory for the object files from the compiler
and the assembler. These files have the extension rxx and will be used as input to
the IAR XLINK Linker.

o The Exe directory is the destination directory for the executable file. It has the
extension dxx and will be used as input to the IAR C-SPY® Debugger. Note that
this directory will be empty until you have linked the object files.

Click on the plus signs in the Workspace window to expand the view. As you can see,
IAR Embedded Workbench has also created an output folder icon in the Workspace

Creating an application project __¢

window containing any generated output files. All included header files are displayed as
well, showing the dependencies between the files.

Workspace B
Iproiect‘l - Debug 'l

Files IE

B Etutarials *

m-lD project! -Debug [v [|
=1 B Tutar.c

&1 Ca Output

— [Tutar st

|

| — [Tutor.phi
| L— B Tutar.rme
|

— & Tutorh
L— [Utilities.h
Lg [utilities.c
&1 Ca Output
— B Utilities.Ist
— [Utilities. phi
L [Utilities.rox
— [stdarg.h
— [# stdich
— [sysmach
L— [Utilities.h

project] I

Figure 7: Workspace window after compilation

VIEWING THE LIST FILE

Now examine the compiler list file and notice how it is automatically updated when you,
as in this case, will investigate how different optimization levels affect the generated
code size.

Open the list file utilities.1st by double-clicking it in the Workspace window.
Examine the list file, which contains the following information:

e The header shows the product version, information about when the file was created,
and the command line version of the compiler options that were used

e The body of the list file shows the assembler code and binary code generated for
each statement. It also shows how the variables are assigned to different segments

e The end of the list file shows the amount of stack, code, and data memory required,
and contains information about error and warning messages that might have been
generated.

Notice the amount of generated code at the end of the file and keep the file open.

Part 2. Tutorials 31

Compiling and linking the application

32

IAR Embedded Workbench® IDE
User Guide

2 Choose Tools>Optionsto open the |DE Options dialog box and click the Editor tab.

Select the option Scan for Changed Files. This option turns on the automatic update
of any file open in an editor window, such as a list file. Click the OK button.

IDE Dptions [%]

¢+ Common Fanks
Key Bindings Tab size: IS V' Syritax highlighting
¥ Auto indent

Messages Indent size: |2 Configure: |
Project

Source Code Control Tah Key Function———— [Show line numbers
Debugger ’7 " Inzert tab V' Scan for changed files
Stack. .

Register Filter & |ndent with spaces v Show Bookmarks

L Terminal IO [~ Enable virtual space
! EOL characters: IPC 'l

™ Remove trailing blarks

V' Show right margin
" Printing edge

& Calurnres IW
QK I Cancel | Apply | Help |

Figure 8: Setting the option Scan for Changed Files

Select the file utilities.c in the Workspace window. Open the C/C++ Compiler
options dialog box by right-clicking on the selected file in the Workspace window.
Click the Optimizations tab and select the Override inherited settings option.
Choose High from the Optimizations drop-down list. Click OK.

Notice that the options override on the file node is indicated in the Workspace window.

Compile the file utilities.c. Now you will notice two things. First, note the
automatic updating of the open list file due to the selected option Scan for Changed
Files. Second, look at the end of the list file and notice the effect on the code size due
to the increased optimization.

For this tutorial, the optimization level None should be used, so before linking the
application, restore the default optimization level. Open the C/C++ Compiler options
dialog box by right-clicking on the selected file in the Workspace window. Deselect the
Overrideinherited settings option and click OK. Recompile the file utilities.c.

Creating an application project __¢

LINKING THE APPLICATION
Now you should set up the options for the IAR XLINK Linker.

I Select the project folder icon projectl - Debug in the Workspace window and choose
Project>Options. Then select Linker in the Category list to display the XLINK
option pages.For this tutorial, default factory settings are used. However, pay attention
to the choice of output format and linker command file.

Output format

It is important to choose the output format that suits your purpose. You might want to
load it to a debugger—which means that you need output with debug information. In this
tutorial you will use the default output options suitable for the C-SPY
debugger—Debuginformation for C-SPY, With runtimecontrol modules, and With
1/0 emulation modules—which means that some low-level routines will be linked that
direct stdin and stdout to the Terminal I/O window in the C-SPY Debugger. You find
these options on the Output page.

Alternatively, in your real application project, you might want to load the output to a
PROM programmer—in which case you need an output format without debug
information, such as Intel-hex or Motorola S-records.

Linker command file

In the linker command file, the XLINK command line options for segment control are
used for placing segments. It is important to be familiar with the linker command file
and placement of segments. You can read more about this in the AR C/C++ Compiler
Reference Guide.

Note: The linker command file templates supplied with the product can be used as is in
the simulator, but when using them for your target system you might have to adapt them
to your actual hardware memory layout. You can find supplied linker command files in
the config directory.

In this tutorial you will use the default linker command file, which you can see on the
Config page.

If you want to examine the linker command file, use a suitable text editor, such as the
IAR Embedded Workbench editor, or print a copy of the file, and verify that the
definitions match your requirements.

Linker map file

By default no linker map file is generated. To generate a linker map file, click the List
tab and select the options Generate linker listing, Segment map, and Module map.

2 Click OK to save the linker options.

Part 2. Tutorials 33

Compiling and linking the application

34

IAR Embedded Workbench® IDE
User Guide

Now you should link the object file, to generate code that can be debugged.

Choose Project>Make. The progress will as usual be displayed in the Build messages
window. The result of the linking is a code file projectl . dxx with debug information
and a map file projectl.map.

VIEWING THE MAP FILE

Examine the file projectl.map to see how the segment definitions and code were
placed in memory. These are the main points of interest in a map file:

The header includes the options used for linking.
The CROSS REFERENCE section shows the address of the program entry.
The RUNTIME MODEL section shows the runtime model attributes that are used.

The MODULE MAP shows the files that are linked. For each file, information about the
modules that were loaded as part of your application, including segments and global
symbols declared within each segment, is displayed.

The SEGMENTS IN ADDRESS ORDER section lists all the segments that constitute
your application.

The projectl.dxx application is now ready to be run in the IAR C-SPY Debugger.

Debugging using the IAR
C-SPY® Debugger

This chapter continues the development cycle started in the previous chapter
and explores the basic features of the IAR C-SPY Debugger.

Note that, depending on what IAR product package you have installed, the IAR
C-SPY Debugger may or may not be included. The tutorials assume that you
are using the C-SPY Simulator.

Debugging the application

el 2

The projectl.dxx application, created in the previous chapter, is now ready to be run
in the IAR C-SPY Debugger where you can watch variables, set breakpoints, view code
in disassembly mode, monitor registers and memory, and print the program output in the
Terminal I/0 window.

STARTING THE DEBUGGER
Before starting the IAR C-SPY Debugger you must set a few C-SPY options.

Choose Project>Options and then the Debugger category. On the Setup page, make
sure that you have chosen Simulator from the Driver drop-down list and that Run to
main is selected. Click OK.

Choose Project>Debug. Alternatively, click the Debugger button in the toolbar. The
IAR C-SPY Debugger starts with the projectl.dxx application loaded. In addition
to the windows already opened in the Embedded Workbench, a set of C-SPY-specific
windows are now available.

ORGANIZING THE WINDOWS

In the IAR Embedded Workbench IDE, you can dock windows at specific places, and
organize them in tab groups. You can also make a window floating, which means it is
always on top of other windows. If you change the size or position of a floating window,
other currently open windows are not affected.

The status bar, located at the bottom of the Embedded Workbench main window,
contains useful help about how to arrange windows. For further details, see Organizing
the windows on the screen, page 71.

Part 2. Tutorials

35

Debugging the application

36

IAR Embedded Workbench® IDE
User Guide

Make sure the following windows and window contents are open and visible on the
screen: the Workspace window with the active build configuration tutorials—project1,
the editor window with the source files Tutor.cand Utilities.c, and the Debug Log
window.

% 1AR Embedded Workbench IDE [_ O] x]
Fle Edt Yiew Project Debug Smulator Tools Window Help

[DB2E & i 2 lo | =Y % vz @B 0 |)

CIeZ22 222 58

project] - Debug hd void do_foreground_process (void) ﬂ‘
Files ICE N L. S
B Butorials * :’;?:zun::[(JT §
(=] project] - Debug = ENE fih - get_fib{ call_count) ;
ﬂ_@gtg'tﬂ ' put_fib(£ib ;
utpu y
— B Tutor st
— B Tutorphi
L & Tutor.re e
— B Tutorh Main program.
L @ Utilitias h Prints the Fibonacci mumbers.
2 @ Utilies.c e
-2 2 Output void main(void)
— B wtiliies.Ist ¢
I— [Utiiies.pbi B sall_soune=0;
L— [Utilities.roc init fib() s
— @ stdargh init _£ib():
— B stdioh while(call_count < MAX_FIB |
— B sysmach { - -
L— [@ Utilifies.h do_foreground_process() ;
@ 3 Output y
i
projsctl [fol_ 4l | ’l—l
= Messages ‘
Building configuration: project - Debug
Tutorc
Utilities.c
Linkirng

Total number of errors: 0
Total number of wamings: 0

[= Debog Log, Build
Reary s cal= i -

Figure 9: The C-SPY Debugger main window

INSPECTING SOURCE STATEMENTS

To inspect the source statements, double-click the file Tutor . c in the Workspace
window.

With the file Tutor. c displayed in the editor window, first step over with the
Debug>Step Over command.

Alternatively, click the Step Over button on the toolbar.

Debugging using the IAR C-SPY® Debugger __4

The current position should be the call to the init_£ib function.

tutor.c |

* ZI

Mzin program.
Prints the Fibonacci numbers.

*
woid nain(woid)
i

call_count=0;
5 init_fib():

while| call count < MiX FIE |
i

do_foreground processi);
'
'

of
[« | B

Figure 10: Stepping in C-SPY

Choose Debug>Step I nto to step into the function init_fib.
Alternatively, click the Step Into button on the toolbar.

At source level, the Step Over and Step I nto commands allow you to execute your
application a statement at a time. Step Into continues stepping inside function or
subroutine calls, whereas Step Over executes each function call in a single step. For
further details, see Step, page 114.

When Step Into is executed you will notice that the active window changes to
Utilities.c asthe function init_£ib is located in this file.

Part 2. Tutorials 37

Debugging the application

38

IAR Embedded Workbench® IDE
User Guide

4 Use the Step Into command until you reach the for loop.

unsigmed int root[MiX FIB]: i

e

Initialize MAX FIB Fibonacci numbers.

*
void init_fib{ woid)
i

short i 45

root[0] = root[l] = 1;
5 for | 128 7 i<ML¥ FIB ; i++)
root[i] = get_fib{i) + get fih(i-1):
i

e

.
[l 1

Return the Fibonacci mumber 'nr'. _ILI
| &

Figure 11: Using Step Into in C-SPY

Use Step Over until you are back in the header of the for loop. Notice that the step
points are on a function call level, not on a statement level.

You can also step on a statement level. Choose Debug>Next statement to execute one
statement at a time. Alternatively, click the Next statement button on the toolbar.

Notice how this command differs from the Step Over and the Step Into commands.

Debugging with C-SPY is usually quicker and more straightforward in C/C++ source
mode. However, if you want to have full control over low-level routines, you can debug
in disassembly mode where each step corresponds to one assembler instruction. C-SPY
lets you switch freely between the two modes.

Choose View>Disassembly to open the Disassembly window, if it is not already
open.You will see the assembler code corresponding to the current C statement.

Try the different step commands also in the Disassembly window.

INSPECTING VARIABLES

C-SPY allows you to watch variables or expressions in the source code, so that you can
keep track of their values as you execute your application. You can look at a variable in
a number of ways; for example by pointing at it in the source window with the mouse
pointer, or by opening one of the Locals, Watch, Live Watch, or Auto windows. For
more information about inspecting variables, see the chapter Working with variablesand
expressions.

Debugging using the IAR C-SPY® Debugger __4

Note: When optimization level Noneis used, all non-static variables will live during
their entire scope and thus, the variables are fully debuggable. When higher levels of
optimizations are used, variables might not be fully debuggable.

Using the Auto window

Choose View>Auto to open the Auto window.

The Auto window will show the current value of recently modified expressions.

Expression | Yalue | Location | Type |
i 45 R10 short
root[0] 0 Mermory:0x202 unsigned int
root <array> Mermor:0x202 unsigned int[10]
root[1] 0 Mermory:0x204 unsigned int

Figure 12: Inspecting variablesin the Auto window

Keep stepping to see how the values change.

Setting a watchpoint
Next you will use the Watch window to inspect variables.

Choose View>Watch to open the Watch window. Notice that it is by default grouped
together with the currently open Auto window; the windows are located as a tab group.

Set a watchpoint on the variable i using the following procedure: Click the dotted
rectangle in the Watch window. In the entry field that appears, type i and press the
Enter key.

You can also drag a variable from the editor window to the Watch window.

Select the root array in the init_fib function, then drag it to the Watch window.

Part 2. Tutorials 39

Debugging the application

40

IAR Embedded Workbench® IDE
User Guide

The Watch window will show the current value of i and root. You can expand the root
array to watch it in more detail.

Watch B

Expression | Walue | Location | Type |
i 45 R10 short
= root <array> Mermor:0x202 unsigned int[10]
0 Mermory:0x202 unsigned int
Mermory:0x204 unsigned int
Mermory:0<206 unsigned int
Mermory:0x208 unsigned int
Mermory:0<20A unsigned int
Mermory:0<20C unsigned int
Mermory:0<20E unsigned int
Mermory:0<210 unsigned int
Mermor:0x212 unsigned int
Mermor:0x214 unsigned int

‘Watch

Figure 13: Watching variables in the Watch window

Execute some more steps to see how the values of 1 and root change.

To remove a variable from the Watch window, select it and press Delete.

SETTING AND MONITORING BREAKPOINTS

The IAR C-SPY Debugger contains a powerful breakpoint system with many features.
For detailed information about the different breakpoints, see The breakpoint system,
page 129.

The most convenient way is usually to set breakpoints interactively, simply by
positioning the insertion point in or near a statement and then choosing the Toggle
Breakpoint command.

Set a breakpoint on the statement get_£ib (i) using the following procedure: First,
click the utilities.c tab in the editor window and click in the statement to position
the insertion point. Then choose Edit>T oggle Breakpoint.

Alternatively, click the Toggle Breakpoint button on the toolbar.

Debugging using the IAR C-SPY® Debugger __4

A breakpoint will be set at this statement. The statement will be highlighted and there
will be a red dot in the margin to show that there is a breakpoint there.

A

Initialize MAX FIB Fibonacci numbers.
s
void init_fib{ void j
{
short i
root[0]

= 45;
= root[l] = 1:
for [i=2 ; i<MA¥_FIE ; i++)
root[i] = gt E£ib(i) + get fih(i-1):

Figure 14: Setting breakpoints

To view all defined breakpoints, choose View>Breakpointsto open the Breakpoints
window. You can find information about the breakpoint execution in the Debug Log
window.

Executing up to a breakpoint
2 To execute your application until it reaches the breakpoint, choose Debug>Go.

+++| Alternatively, click the Go button on the toolbar.
Fa—y

The application will execute up to the breakpoint you set. The Watch window will
display the value of the root expression and the Debug Log window will contain
information about the breakpoint.

3 Select the breakpoint and choose Edit>T oggle Breakpoint to remove the breakpoint.

Part 2. Tutorials 41

Debugging the application

42

IAR Embedded Workbench® IDE
User Guide

MONITORING REGISTERS

The Register window lets you monitor and modify the contents of the processor
registers.

Choose View>Register to open the Register window.

IEF'U Registers j
PC = 0O=xll62 Ri2 = 0=0200
8P = 0=09F8 R13 = 0=FFFF
FHer = 0=z0000 R14 = 0x0000
R4 = 0=x78ZD Ri5 = 0=0000
RE = 0=6BEE CYCLECOUNTER = 276
R6 = 0=5E95
R7 = 0x763B
RE = O=x4A65
RO = 0=27C3
Ri0 = 0=002D
Ri1 = 0=x7064

Figure 15: Register window

Step Over to execute the next instructions, and watch how the values change in the
Register window.

Close the Register window.

MONITORING MEMORY

The Memory window lets you monitor selected areas of memory. In the following
example, the memory corresponding to the variable root will be monitored.

Choose View>Memory to open the Memory window.

Make the Utilities.c window active and select root. Then drag it from the C source
window to the Memory window.

The memory contents in the Memory window corresponding to root will be selected.

If not all of the memory units have been initialized by the init_£fib function of the C
application yet, continue to step over and you will notice how the memory contents will

be updated.

You can change the memory contents by editing the values in the Memory window. Just
place the insertion point at the memory content that you want to edit and type the desired

value.

Close the Memory window.

Debugging using the IAR C-SPY® Debugger __4

VIEWING TERMINAL I/O

Sometimes you might need to debug constructions in your application that make use of
stdin and stdout without the possibility of having hardware support. C-SPY lets you
simulate stdin and stdout by using the Terminal I/O window.

Note: The Terminal I/O window is only available in C-SPY if you have linked your
project using the output option With 1/0 emulation modules. This means that some
low-level routines will be linked that direct stdin and stdout to the Terminal I/O
window, see Linking the application, page 33.

I Choose View>Terminal /O to display the output from the I/O operations.

Terminal I;0 B
Output: Loq file: OFff
1 =
1
2
3
5
8
13
21
34
55 -
K| 3
Input: LCtl codes | Input Mode... |
I— Buffer size: 1]

Figure 16: Output from the I/O operations

The contents of the window depends on how far you have executed the application.

REACHING PROGRAM EXIT
I To complete the execution of your application, choose Debug>Go.

+++| Alternatively, click the Go button on the toolbar.
L

Part 2. Tutorials 43

Debugging the application

As no more breakpoints are encountered, C-SPY reaches the end of the application and
aprogram exit reached message is printed in the Debug Log window.

Log |

Tue Mar 30 13:16:40 2004 Loaded module

Tue Mar3013:16:40 2004: Target reset

Tue Mar 30 13:16:40 2004: Profiler activated.
Tue Mar 30 14:18:40 2004: Program exit reached.

Debug Log

Figure 17: Reaching program exit in C-SPY
All output from the application has now been displayed in the Terminal I/O window.

4—| If you want to start again with the existing application, choose Debug>Reset, or click
=" the Reset button on the toolbar.

2 To exit from C-SPY, choose Debug>Stop Debugging. Alternatively, click the Stop
ﬁl Debugging button on the toolbar. The Embedded Workbench workspace is displayed.

C-SPY also provides many other debugging facilities. Some of these—for example
macros and interrupt simulation—are described in the following tutorial chapters.

For further details about how to use C-SPY, see Part 4. Debugging. For reference
information about the features of C-SPY, see Part 6. Reference information and the
online help system.

IAR Embedded Workbench® IDE
44 User Guide

Mixing C and assembler
modules

In some projects it may be necessary to write certain pieces of source code
in assembler language. The chapter first demonstrates how the compiler can
be helpful in examining the calling convention, which you need to be familiar
with when calling assembler modules from C/C++ modules or vice versa.
Furthermore, this chapter demonstrates how you can easily combine source
modules written in C with assembler modules, but the procedure is applicable
to projects containing source modules written in C++, too, if your product
version supports C++.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Examining the calling convention

When writing an assembler routine that will be called from a C routine, it is necessary
to be aware of the calling convention used by the compiler. By creating skeleton code in
C and letting the compiler produce an assembler output file from it, you can study the
produced assembler output file and find the details of the calling convention.

In this example you will make the compiler create an assembler output file from the file
Utilities.c.

I Create anew project in the workspace tutorials used in previous tutorials, and name
the project project2.

2 Add the files Tutor.c and Utilities.c to the project.

To display an overview of the workspace, click the Overview tab available at the bottom
of the Workspace window. To view only the newly created project, click the project2
tab. For now, the project2 view should be visible.

3 To set options, choose Project>0ptions, and select the General Options category. On
project level, default factory settings should be used in this tutorial. Click OK.

4 To set options on file level node, in the Workspace window, select the file
Utilities.c.

Part 2. Tutorials 45

Adding an assembler module to the project

46

Choose Project>Options. You will notice that only the C/C++ Compiler and Custom
Build categories are available.

In the C/C++ Compiler category, select Overrideinherited settings and verify the
following settings:

Page Option
Optimizations Size: None (Best debug support)
List Output assembler file

Include source
Include call frame information (deselected).

Table 3: Compiler options for project2

Note: In this example it is necessary to use a low optimization level when compiling
the code to show local and global variable accesses. If a higher level of optimization is
used, the required references to local variables can be removed. The actual function
declaration is not changed by the optimization level.

Click OK and return to the Workspace window.

Compile the file utilities.c. You can find the output file Utilities. sxxin the
subdirectory projects\debug\list.

To examine the calling convention and to see how the C or C++ code is represented in
assembler language, open the file Utilities.sxx.

You can now study where and how parameters are passed, how to return to the program
location from where a function was called, and how to return a resulting value. You can
also see which registers an assembler-level routine must preserve.

To obtain the correct interface for your own application functions, you should create
skeleton code for each function that you need.

For more information about the calling convention used in the compiler, see the |AR
C/C++ Compiler Reference Guide.

Adding an assembler module to the project

IAR Embedded Workbench® IDE
User Guide

This tutorial demonstrates how you can easily create a project containing both assembler
modules and C modules. You will also compile the project and view the assembler
output list file.

SETTING UP THE PROJECT

Modify project2 by adding the file Utilities.sxx.

Mixing C and assembler modules ___¢

Note: To view assembler files in the Add files dialog box, choose Project>Add Files
and choose Assembler Files from the Files of type drop-down list.

Select the project level node in the Workspace window, choose Project>Options. Use
the default settings in the General Options, C/C++ Compiler, and Linker categories.
Select the Assembler category, click the List tab, and select the option Output list file.

Click OK.

Select the file Utilities. sxx in the Workspace window and choose
Project>Compile to assemble it.

Assuming that the source file was assembled successfully, the fileUtilities.rxxwill
be created, containing the linkable object code.
Viewing the assembler list file

Open the list file by double-clicking the file Utilities.lst available in the Output
folder icon in the Workspace window.

The end of the file contains a summary of errors and warnings that were generated.
For further details of the list file format, see the | AR Assembler Reference Guide.
Choose Project>Make to relink project2.

Start C-SPY to run the project2 .dxx application and see that it behaves like in the
previous tutorial. Exit the debugger when you are done.

Part 2. Tutorials 47

Adding an assembler module to the project

IAR Embedded Workbench® IDE
48 User Guide

Using C++

In this chapter, C++ is used to create a C++ class. The class is then used for
creating two independent objects, and the application is built and debugged.
We also show an example of how to set a conditional breakpoint.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Note that, depending on what IAR product package you have installed,
support for C++ may or may not be included. This tutorial assumes that there
is support for C++.

Creating a C++ application

This tutorial will demonstrate how to use the IAR Embedded Workbench C++ features.
The tutorial consists of two files:

® Fibonacci.cpp creates a class fibonacci that can be used to extract a series of
Fibonacci numbers

® CPPtutor.cpp creates two objects, £ibl and £ib2, from the class fibonacci
and extracts two sequences of Fibonacci numbers using the f£ibonacci class.

To demonstrate that the two objects are independent of each other, the numbers are
extracted at different speeds. A number is extracted from £ib1 each turn in the loop
while a number is extracted from £ib2 only every second turn.

The object £ib1 is created using the default constructor while the definition of £ib2
uses the constructor that takes an integer as its argument.
COMPILING AND LINKING THE C++ APPLICATION

I In the workspace tutorials used in the previous chapters, create a new project,
project3.

2 Add the files Fibonacci . cpp and CPPtutor.cpp to project3.
Choose Project>Options and make sure default factory settings are used.

Note: For this application, the default stack size might be too small. For further
information about the required settings, see the CPPtutor. cpp file.

Part 2. Tutorials 49

Creating a C++ application

50

IAR Embedded Workbench® IDE
User Guide

In addition to the default settings, you need to switch to the C++ programming language,
which is supported by the TAR DLIB Library. To use a DLIB library, choose the General
Options category and click the Library Configuration tab. From the Library
drop-down list, choose Normal DLIB.

To switch to the C++ programming language, choose the C/C++ Compiler category
and click the L anguage tab. Choose Embedded C++.

To read more about the AR DLIB Library and the C++ support, see the |AR C/C++
Compiler Reference Guide.

Choose Project>Make to compile and link your application.

Alternatively, click the M ake button on the toolbar. The M ake command compiles and
links those files that have been modified.

Choose Project>Debug to start the IAR C-SPY® Debugger.

SETTING A BREAKPOINT AND EXECUTING TO IT
Open the CPPtutor.cpp window if it is not already open.

To see how the object is constructed, set a breakpoint on the C++ object £ib1 on the
following line:

fibonacci fibl;

CppTutor.cpp s =R T

#include <iostreams j

#include "Fibonacci.h™

2int main(veid)
{
A4 Create two fibonacci objects.
@ ctibonacci
fibonacci £ibZ(7): A4 FibZ starts at Fibonacci mumber 7.

A Extract two series of Fibonaccl numbers.
for (int i = 1:; i < 30; +i)
{

cout << fibl.next():

A I "It is even, we print out the next Fibonacci number of
A4 the sequence represented by fibZ.
if (i % 2 == 0}
{
cout <« " " L fibZ.nexti):

4 >
[fol [« |>|_I

Figure 18: Setting a breakpoint in CPPtutor.cpp

3 Choose Debug>Go, or click the Go button on the toolbar.

Using C++ ___4

The cursor should now be placed at the breakpoint.

To step into the constructor, choose Debug>Step I nto or click the Step Into button in
the toolbar. Then click Step Out again.

Step Over until the line:
cout << fibl.next();
Step Into until you are in the function next in the file Fibonacci . cpp.

Use the Go to function button in the lower left corner of the editor window to find and
go to the function nth by double-clicking the function name. Set a breakpoint on the
function call nth (n-1) at the line

value = nth(n-1) + nth(n-2);

It can be interesting to backtrace the function calls a few levels down and to examine
the value of the parameter for each function call. By adding a condition to the
breakpoint, the break will not be triggered until the condition is true, and you will be
able to see each function call in the Call Stack window.

To open the Breakpoints window, choose View>Breakpoints. Select the breakpoint in
the Breakpoints window, right-click to open the context menu, and choose Edit to open
the Edit Breakpointsdialog box. Set the value in the SKkip count text box to 4 and click
OK.

Close the dialog box.

Looking at the function calls

Choose Debug>Go to execute the application until the breakpoint condition is
fulfilled.

When C-SPY stops at the breakpoint, choose View>Call Stack to open the Call Stack
window.

3 fibonacci:nth(ing

©nth(3)

[Pestartup_call_main + 0xd]

Figure 19: Inspecting the function calls

Part 2. Tutorials

51

Creating a C++ application

There are five instances of the function nth displayed on the call stack. Because the Call
Stack window displays the values of the function parameters, you can see the different
values of n in the different function instances.

You can also open the Register window to see how it is updated as you trace the function
calls by double-clicking on the function instances.

PRINTING THE FIBONACCI NUMBERS
I Open the Terminal I/O window from the View menu.
2 Remove the breakpoints and run the application to the end and verify the Fibonacci

sequences being printed.

Terminal I;0 B

Output: Log file: Off

A fibonacci ohjectwas created. o
A fibonacc ohjectthat starts at fibonacc number 7 was created.

1
113
2
32
5
g 34
13

21 55
34

o o

Input: LCtl codes | InputMode...l

I Buffer size: 1]

Figure 20: Printing Fibonacci sequences

IAR Embedded Workbench® IDE
52 User Guide

Simulating an interrupt

In this tutorial an interrupt handler for a serial port is added to the project.
The Fibonacci numbers will be read from an on-chip communication
peripheral device (UART).

This tutorial will show how the IAR C/C++ Compiler interrupt keyword and
the #pragma vector directive can be used. The tutorial will also show how an
interrupt can be simulated using the features that support interrupts,
breakpoints, and macros. Notice that this example does not describe an exact
simulation; the purpose is to illustrate a situation where C-SPY® macros,
breakpoints, and the interrupt system can be useful to simulate hardware.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Note that interrupt simulation is possible only when you are using the IAR
C-SPY Simulator.

Adding an interrupt handler

This section will demonstrate how to write an interrupt in an easy way. It starts with a
brief description of the application used in this project, followed by a description of how
to set up the project.

THE APPLICATION—A BRIEF DESCRIPTION

The interrupt handler will read values from the serial communication port receive
register (UART), RBUF. It will then print the value. The main program enables interrupts
and starts printing periods (.) in the foreground process while waiting for interrupts.

Note: In this tutorial, the serial communication port UART and the receive buffer
register RBUF are symbolic names. To follow this tutorial and simulate the interrupt in
the C-SPY simulator, you should instead use names that are suitable for your target
system See the Interrupt. c file in the cpuname\tutor directory.

Part 2. Tutorials

53

Setting up the simulation environment

54

WRITING AN INTERRUPT HANDLER

The following lines define the interrupt handler used in this tutorial (the complete source
code can be found in the file Interrupt. c supplied in the cpuname\ tutor directory):

/* define the interrupt handler */
#pragma vector=UARTR_VECTOR
__interrupt void uartRecieveHandler (void)

The #pragma vector directive is used for specifying the interrupt vector address—in
this case the interrupt vector for the UART receive interrupt—and the keyword
__interrupt is used for directing the compiler to use the calling convention needed
for an interrupt function.

Note: In this tutorial, the name of the vector is symbolic. To follow this tutorial and
simulate the interrupt in the C-SPY simulator, you should instead use a name that is
suitable for your target system. See the Interrupt.c file in the cpuname\tutor
directory.

For detailed information about the extended keywords and pragma directives used in
this tutorial, see the IAR C/C++ Compiler Reference Guide.
SETTING UP THE PROJECT

Add a new project—project4—to the workspace tutorials used in previous
tutorials.

Add the files Utilities.c and Interrupt.c toit.

In the Workspace window, select the project level node and choose
Project>Options. Select the General Options category, and click the Tar get tab.
Choose ARM7TDM | from the Cor e drop-down menu.

In addition, make sure the factory settings are used in the C/C++ Compiler and Linker
categories. Make sure default factory settings are used in the General Options, C/C++
Compiler, and Linker categories.

Note: The file Interrupt . c might specify any specific settings required.

Next you will set up the simulation environment.

Setting up the simulation environment

IAR Embedded Workbench® IDE
User Guide

The C-SPY interrupt system is based on the cycle counter. You can specify the amount
of cycles to pass before C-SPY generates an interrupt.

To simulate the input to UART, values will be read from the file InputData. txt,
which contains the Fibonacci series. You will set an immediate read breakpoint on the

Simulating an interrupt ___¢

UART receive register, RBUF, and connect a user-defined macro function to it (in this
example the Access macro function). The macro reads the Fibonacci values from the
text file.

Whenever an interrupt is generated, the interrupt routine will read RBUF and the
breakpoint will be triggered, the Access macro function will be executed and the
Fibonacci values will be fed into the UART receive register.

The immediate read breakpoint will trigger the break before the processor reads the
RBUF register, allowing the macro to store a new value in the register that is immediately
read by the instruction.

This section will demonstrate the steps involved in setting up the simulator for
simulating a serial port interrupt. The steps involved are:

e Defining a C-SPY setup file which will open the file InputData. txt and define
the Access macro function

Specifying C-SPY options

Building the project

Starting the simulator

Specifying the interrupt request

Setting the breakpoint and associating the Access macro function to it.

Note: For a simple example of a system timer interrupt simulation, see Smulating a
simple interrupt, page 186.

DEFINING A C-SPY SETUP MACRO FILE

In C-SPY, you can define setup macros that will be registered during the C-SPY startup
sequence. In this tutorial you will use the C-SPY macro file SetupSimple.mac,
available in the cpuname\ tutor directory. It is structured as follows:

First the setup macro function execUserSetup is defined, which is automatically
executed during C-SPY setup. Thus, it can be used to set up the simulation environment
automatically. A message is printed in the Log window to confirm that this macro has
been executed:

execUserSetup ()
{

__message "execUserSetup() called\n";

Then the file InputbData . txt, which contains the Fibonacci series to be fed into
UART, will be opened:

_fileHandle = __openFile(
"S$TOOLKIT_DIRS\\tutor\\InputData.txt", "r");

Part 2. Tutorials 55

Setting up the simulation environment

56

IAR Embedded Workbench® IDE
User Guide

After that, the macro function Access is defined. It will read the Fibonacci values from
the file InputData. txt, and assign them to the receive register address:

Access ()
{
__message "Access () called\n";
__var _fibvalue;
if(0 == __readFile(_fileHandle, &_fibvalue))
{
RBUF = _fibvalue;

}

You will have to connect the Access macro to an immediate read breakpoint. However,
this will be done at a later stage in this tutorial.

Finally, the file contains two macro functions for managing correct file handling at reset
and exit.

For detailed information about macros, see the chapters Using the C-SPY® macro
systemand C-SPY® macros reference.

Next you will specify the macro file and set the other C-SPY options needed.

SPECIFYING C-SPY OPTIONS

To select C-SPY options, choose Project>Options. In the Debugger category, click
the Setup tab.

Use the Use macr o file browse button to specify the macro file to be used:
SetupSimple.mac

Alternatively, use an argument variable to specify the path:
STOOLKIT_DIRS$\tutor\SetupSimple.mac

See Argument variables summary, page 233, for details.

Simulating an interrupt ___¢

Options for node “project4 - Debug **

Category: Factary Settings |

General Options
C/C++ compiler Setup | F'Iuginsl
Azzembler .
Custom Build - Driver ¥ Bunto
Linker - -
Simulat A
smdato =] e
Simulator
— Setup macro
¥ Use macra file
IEI:\proiects\tutor\SetupSimple.mac J
— Device description file
¥ Overide default
I$TDDLKIT_DIF|$\c:0nfig\devic:e1 .ddf J

()3 I Cancel |

Figure 21: Specifying setup macro file

The C-SPY interrupt system requires some interrupt definitions, provided by the device
description files. With the Device description file option you can specify the
appropriate file. In this tutorial, use the default file.

Select Run to main and click OK. This will ensure that the debug session will start by
running to the main function.

The project is now ready to be built.

BUILDING THE PROJECT

Compile and link the project by choosing Project>M ake.

Alternatively, click the M ake button on the toolbar. The M ake command compiles and
links those files that have been modified.

STARTING THE SIMULATOR

Start the IAR C-SPY Debugger to run the project4 project.

The Interrupt.c window is displayed (among other windows). Click in it to make it the
active window.

Part 2. Tutorials

57

Setting up the simulation environment

2 Examine the Log window. Note that the macro file has been loaded and that the
execUserSetup function has been called.
SPECIFYING A SIMULATED INTERRUPT
Now you will specify your interrupt to make it simulate an interrupt every 2000 cycles.

I Choose Simulator>Interrupt Setup to display the Interrupt Setup dialog box. Click
New to display the Edit Interrupt dialog box and make the following settings for your

interrupt:

Setting Value Description

Interrupt UARTR_VECTOR Specifies which interrupt to use

Description As is The interrupt definition that the simulator uses to be
able to simulate the interrupt correctly.

First activation 4000 Specifies the first activation moment for the
interrupt. The interrupt is activated when the cycle
counter has passed this value.

Repeat Interval 2000 Specifies the repeat interval for the interrupt,
measured in clock cycles.

Hold time Infinite Hold time, not used here.

Probability % 100 Specifies probability. 100% specifies that the
interrupt will occur at the given frequency. Another
percentage might be used for simulating a more
random interrupt behavior.

Variance % 0 Time variance, not used here.

Table 4: Interrupts dialog box

Interrupt:
[URTR_VECTOR =l
Drescription: Cancel |
Jox12 2

First activatior:

2000 Hold tirne
& Infirite
Fiepeat interval:
r
[2000 r
Wariance [%]: Probability [%]:

[= N =

Figure 22: Inspecting the interrupt settings

IAR Embedded Workbench® IDE
58 User Guide

Simulating an interrupt ___¢

During execution, C-SPY will wait until the cycle counter has passed the activation
time. When the current assembler instruction is executed, C-SPY will generate an
interrupt which is repeated approximately every 2000 cycles.

When you have specified the settings, click OK to close the Edit Interrupt dialog box,
and then click OK to close the I nterrupt Setup dialog box.

For information about how you can use the system macro __orderInterrupt ina
C-SPY setup file to automate the procedure of defining the interrupt, see Using macros
for interrupts and breakpoints, page 61.

SETTING AN IMMEDIATE BREAKPOINT

By defining a macro and connecting it to an immediate breakpoint, you can make the
macro simulate the behavior of a hardware device, for instance an I/O port, as in this
tutorial. The immediate breakpoint will not halt the execution, only temporarily suspend
it to check the conditions and execute any connected macro.

In this example, the input to the UART is simulated by setting an immediate read
breakpoint on the RBUF address and connecting the defined Access macro to it. The
macro will simulate the input to the UART. These are the steps involved:

Choose View>Breakpointsto open the Breakpoints window, right-click to open the
context menu, choose New Breakpoint>I mmediate to open the | mmediate tab.

Add the following parameters for your breakpoint.

Setting Value Description

Break at RBUF Receive buffer address.

Access Type Read The breakpoint type (Read or Write)
Action Access () The macro connected to the breakpoint.

Table 5: Breakpoints dialog box

During execution, when C-SPY detects a read access from the RBUF address, C-SPY
will temporarily suspend the simulation and execute the Access macro. The macro will
read a value from the file InputData. txt and write it to RBUF. C-SPY will then
resume the simulation by reading the receive buffer value in RBUF.

Click OK to close the breakpoints dialog box.

For information about how you can use the system macro __setSimBreak in a C-SPY
setup file to automate the breakpoint setting, see Using macros for interrupts and
breakpoints, page 61.

Part 2. Tutorials 59

Simulating the interrupt

Simulating the interrupt

IAR Embedded Workbench® IDE

60 User Guide

In this section you will execute your application and simulate the serial port interrupt.

EXECUTING THE APPLICATION

Step through the application and stop when it reaches the while loop, where the
application waits for input.

In the Interrupt.c source window, locate the function uartReciveHandler.

Place the insertion point on the ++callCount; statement in this function and set a
breakpoint by choosing Edit>Toggle Breakpoint, or click the Toggle Breakpoint
button on the toolbar. Alternatively, use the context menu.

If you want to inspect the details of the breakpoint, choose Edit>Breakpoints.

Open the Terminal I/O window and run your application by choosing Debug>Go or
clicking the Go button on the toolbar.

The application should stop in the interrupt function.

Click Go again in order to see the next number being printed in the Terminal I/O
window.

Because the main program has an upper limit on the Fibonacci value counter, the tutorial
application will soon reach the exit label and stop.

The Terminal I/O window will display the Fibonacci series.

Output: Log file: Off

=

_>l_I
LCtl codes | InputMode...l

I Buffer size: 1]

Figure 23: Printing the Fibonacci values in the Terminal 1/0 window

Simulating an interrupt ___¢

Using macros for interrupts and breakpoints
To automate the setting of breakpoints and the procedure of defining interrupts, the
system macros __setSimBreak and __orderInterrupt, respectively, can be
executed by the setup macro execUserSetup.

The file setupAdvanced.mac is extended with system macro calls for setting the
breakpoint and specifying the interrupt:

SimulationSetup ()
{...
_interruptID = _ _orderInterrupt("UARTR_VECTOR", 4000,
2000, 0, 1, 0, 100);
if(-1 == _interruptID)

{
__message "ERROR: failed to order interrupt";

_breakID = __setSimBreak("RBUF", "R", "Access()");

}

By replacing the file SetupSimple.mac, used in the previous tutorial, with the file
SetupAdvanced.mac, setting the breakpoint and defining the interrupt will be
automatically performed at C-SPY startup. Thus, you do not need to start the simulation
by manually filling in the values in the Interrupts and Breakpoints dialog boxes.

Note: Before you load the file SetupAadvanced.mac you should remove the
previously defined breakpoint and interrupt.

Part 2. Tutorials 61

Using macros for interrupts and breakpoints

IAR Embedded Workbench® IDE
62 User Guide

Creating and using
libraries

This tutorial demonstrates how to create a library project and how you can
combine it with an application project.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Using libraries

If you are working on a large project you will soon accumulate a collection of useful
modules containing one or more routines that can be used by several of your
applications. To avoid having to assemble or compile a module each time it is needed,
you can store such modules as object files, that is, assembled or compiled but not linked.

You can collect many modules in a single object file which then is referred to as a
library. It is recommended that you use library files to create collections of related
routines, such as a device driver.

Use the IAR XAR Library Builder to build libraries.

The Main.sxx program

The Main.sxx program uses a routine called max to set the contents of one register to
the maximum value of two other registers. The EXTERN directive declares max as an
external symbol, to be resolved at link time.

A copy of the program is provided in the cpuname\ tutor directory.

The library routines

The two library routines will form a separately assembled library. It consists of the max
routine called by main, and a corresponding min routine, both of which operate on the
contents of the registers used in the Main. sxx program. The file containing these
library routines is called Maxmin. sxx, and a copy is provided with the product.

The routines are defined as library modules by the MODULE directive, which instructs the
IAR XLINK Linker to include the modules only if they are referenced by another
module.

The pUBLIC directive makes the max and min symbols public to other modules.

Part 2. Tutorials

63

Using libraries

64

B

IAR Embedded Workbench® IDE
User Guide

For detailed information about the MODULE and PUBLIC directives, see the IAR
Assembler Reference Guide.
CREATING A NEW PROJECT

In the workspace tutorials used in previous chapters, add a new project called
projects.

Add the file Main. sxx to the new project.

To set options, choose Project>Options. Select the General Options category and
click the Library Configuration tab. Choose None from the Library drop-down list,
which means that a standard C/C++ library will not be linked.

The default options are used for the other option categories.
To assemble the file Main. sxx, choose Project>Compile.

You can also click the Compile button on the toolbar.

CREATING A LIBRARY PROJECT

Now you are ready to create a library project.

In the same workspace tutorials, add a new project called tutor_library.
Add the file Maxmin. sxx to the project.

To set options, choose Project>Options. In the General Options category, verify the
following settings:

Page Option

Output Output file: Library

Library Configuration Library: None

Table 6: General options for a library project

Note that Library Builder appears in the list of categories, which means that the TAR
XAR Library Builder is added to the build tool chain. It is not necessary to set any
XAR-specific options for this tutorial.

Click OK.
Choose Project>Make.

The library output file tutor_library.rxx has now been created.

Creating and using libraries ___¢

USING THE LIBRARY IN YOUR APPLICATION PROJECT

You can now add your library containing the maxmin routine to project5.

In the Workspace window, click the project5 tab. Choose Project>Add Filesand add
the file tutor_library.rxx located in the projects\Debug\Exe directory. Click
Open.

Click Make to build your project.

You have now combined a library with an executable project, and the application is
ready to be executed. For information about how to manipulate the library, see the |AR
Linker and Library Tools Reference Guide.

Part 2. Tutorials 65

Using libraries

IAR Embedded Workbench® IDE
66 User Guide

Part 3. Project
management and building

This part of the IAR Embedded Workbench® IDE User Guide contains the
following chapters:

e The development environment
e Managing projects
o Building

e Editing.

.hmuiuhhhi

o

7

ARARAIed

68

The development
environment

This chapter introduces you to the IAR Embedded Workbench® development
environment (IDE). The chapter also demonstrates how you can customize
the environment to suit your requirements.

The IAR Embedded Workbench IDE

THE TOOL CHAIN

The IAR Embedded Workbench IDE is the framework where all necessary tools—the
tool chain—are seamlessly integrated: a C/C++ compiler, an assembler, the TAR
XLINK Linker, the IAR XAR Library Builder, the IAR XLIB Librarian, an editor, a
project manager with Make utility, and the IAR C-SPY® Debugger, which is a
high-level language debugger. The tools used specifically for building your source code
are referred to as the build tools.

The tool chain that comes with your product installation is adapted for a certain
microcontroller. However, the IAR Embedded Workbench IDE can simultaneously
manage multiple tool chains for various microcontrollers.

You can also add IAR visualSTATE to the tool chain, which means that you can add state
machine diagrams directly to your project in the JAR Embedded Workbench IDE.

You can use the Custom Build mechanism to incorporate also other tools to the tool
chain, see Extending the tool chain, page 89.

The compiler, assembler, and linker can also be run from a command line environment,
if you want to use them as external tools in an already established project environment.

Part 3. Project management and building 69

The IAR Embedded Workbench IDE

This illustration shows the IAR Embedded Workbench IDE window with different
components.

% 1AR Embedded Workbench IDE

[_[o]x]
Menu bar — Fie Edt Wew Project Tools Window Help
Toolbar — [DEH@ (& 4 &[0] Ty e E P @ 0|0 80
2 d Ut\ht\as‘c T
project - Debug = -~
e %] ﬂ Increase the 'call count' variable.
Get and print the associated Fibonacci mumber.
B Bltutarials .
el project - Debug [« | [il RSN dn_foreground_process (void)
| [Tutor.c ¢ . Editor
| [B Utilities.c unsigned int fib; window
| L@ output next_counter) ;
@ Blproject? - Debug v fib - ger_fib[call_count) ;
-8 Blproject3 - Debug v put_fib(£ib ;
[v ¥
= v
-
Workspace —a ke é
ind Main program.
window Prints the Fibonacci mumbers.
4
void main(void)
{
call_count = 0;
init_£ib();
while [call_count < MAX_FIE)
do_foreground _processi);
i
Dverview project2 | proieet 4 [v 10 (4] >
| Messages
Building configuration: project] - Debug
Updating build tree
Caonfiguration is up-to-date
Messages
windows
Bl | >
= Build [Debug Loa | Tool Gutput [Find in Files E
Status bar — ready [tnz9, Col21 [e[

Figure 24: 1AR Embedded Workbench IDE window

The window might look different depending on what additional tools you are using.

RUNNING THE IAR EMBEDDED WORKBENCH IDE

Click the Start button on the taskbar and choose All Programs>IAR Systems>IAR

Embedded Workbench for chip manufacturer CPUNAME>IAR Embedded
Workbench.

The file TarIdePm. exe is located in the common\bin directory under your [AR

installation, in case you want to start the program from the command line or from within
Windows Explorer.

IAR Embedded Workbench® IDE

70 User Guide

The development environment ___o

Double-clicking the workspace filename

The workspace file has the filename extension eww. If you double-click a workspace
filename, the AR Embedded Workbench IDE starts. If you have several versions of [AR
Embedded Workbench installed, the workspace file will be opened by the most recently
used version of your IAR Embedded Workbench that uses that file type.

EXITING

To exit the AR Embedded Workbench IDE, choose File>Exit. You will be asked
whether you want to save any changes to editor windows, the projects, and the
workspace before closing them.

Customizing the environment

The IAR Embedded Workbench IDE is a highly customizable environment. This section
demonstrates how you can work with and organize the windows on the screen, the
possibilities for customizing the IDE, and how you can set up the environment to
communicate with external tools.

ORGANIZING THE WINDOWS ON THE SCREEN

In the IAR Embedded Workbench IDE, you can position the windows and arrange a
layout according to your preferences. You can dock windows at specific places, and
organize them in tab groups. You can also make a window floating, which means it is
always on top of other windows. If you change the size or position of a floating window,
other currently open windows are not affected.

Each time you open a previously saved workspace, the same windows are open, and they
have the same sizes and positions.

For every project that is executed in the C-SPY environment, a separate layout is saved.
In addition to the information saved for the workspace, information about all open
debugger-specific windows is also saved.

Using docked versus floating windows

Each window that you open has a default location, which depends on other currently
open windows. To give you full and convenient control of window placement, each
window can either be docked or floating.

A docked window is locked to a specific area in the Embedded Workbench main

window, which you can decide. To keep many windows open at the same time, you can
organize the windows in tab groups. This means one area of the screen is used for several
concurrently open windows. The system also makes it easy to rearrange the size of the

Part 3. Project management and building 71

Customizing the environment

72

IAR Embedded Workbench® IDE
User Guide

windows. If you rearrange the size of one docked window, the sizes of any other docked
windows are adjusted accordingly.

A floating window is always on top of other windows. Its location and size does not
affect other currently open windows. You can move a floating window to any place on
your screen, also outside of the IAR Embedded Workbench IDE main window.

Note: The editor window is always docked. When you open the editor window, its
placement is decided automatically depending on other currently open windows. For
more information about how to work with the editor window, see Using the IAR
Embedded Workbench editor, page 93.

Organizing windows
To place a window as a separate window, drag it next to another open window.

To place a window in the same tab group as another open window, drag the window you
want to locate to the middle of the area and drop the window.

To make a window floating, double-click on the window’s title bar.

The status bar, located at the bottom of the IAR Embedded Workbench IDE main
window, contains useful help about how to arrange windows.

CUSTOMIZING THE IDE

To customize the IDE, choose Tools>Optionsto get access to a vide variety of
commands for:

Configuring the editor

Configuring the editor colors and fonts

Configuring the project build command

Organizing the windows in C-SPY

Using an external editor

Changing common fonts

Changing key bindings

Configuring the amount of output to the Messages window.

In addition, you can increase the number of recognized filename extensions. By default,
each tool in the build tool chain accepts a set of standard filename extensions. If you
have source files with a different filename extension, you can modify the set of accepted
filename extensions. Choose T 0ols>Filename Extensionsto get access to the necessary
commands.

For reference information about the commands for customizing the IDE, see Tools
menu, page 240. You can also find further information related to customizing the editor

The development environment ___o

in the section Customizing the editor environment, page 100. For further information
about customizations related to C-SPY, see Part 4. Debugging.

INVOKING EXTERNAL TOOLS

The Tools menu is a configurable menu to which you can add external tools for
convenient access to these tools from within the AR Embedded Workbench IDE. For
this reason, the menu might look different depending on which tools you have

preconfigured to appear as menu commands.

To add an external tool to the menu, choose Tools>Configure Toolsto open the

Configure Tools dialog box.

Configure Tools

Menu Content:

Menu Text:
I&N otepad

Command:
IE:\W’INNT\Notepad.exe

Argument:

Initial Directary:

™ Redirect to Output \Window

™ Prampt for Cormand Line

Tool Available:

IAIways j

Cancel

Remove

I

Browse...

[

Figure 25: Configure Tools dialog box

For reference information about this dialog box, see Configure Tools dialog box, page

261.

Note: It is not possible to use the Configure Tools dialog box to extend the tool chain
in the TAR Embedded Workbench IDE, see The tool chain, page 69.

Part 3. Project management and building 73

Customizing the environment

74

IAR Embedded Workbench® IDE
User Guide

After you have entered the appropriate information and clicked OK, the menu command
you have specified is displayed on the Tools menu.

Options. ..

Configure Tools, ..
Filename Extensions. ..
Configure Viewers. ..
Motepad

Figure 26: Customized Tools menu

Note: If you intend to add an external tool to the standard build tool chain, see
Extending the tool chain, page 89.
Adding command line commands

Command line commands and calls to batch files must be run from a command shell.
You can add command line commands to the Tools menu and execute them from there.

To add commands to the ToolS menu, you must specify an appropriate command shell.
Type one of the following command shells in the Command text box:

System Command shell

Windows 2000/XP/Vista cmd.exe (recommended) or command . com

Table 7: Command shells

Specify the command line command or batch file name in the Argument text box.
The Argument text should be specified as:

/C name

where name is the name of the command or batch file you want to run.

The /C option terminates the shell after execution, to allow the IAR Embedded
Workbench IDE to detect when the tool has finished.

Example

To add the command Backup to the Tools menu to make a copy of the entire project
directory to a network drive, you would specify Command either as command . cmd or
as cmd . exe depending on your host environment, and Argument as:

/C copy c:\project*.* F:
Alternatively, to use a variable for the argument to allow relocatable paths:

/C copy S$SPROJ_DIRS*.* F:

Managing projects

This chapter discusses the project model used by the IAR Embedded
Workbench IDE. It covers how projects are organized and how you can specify
workspaces with multiple projects, build configurations, groups, source files,
and options that help you handle different versions of your applications. The
chapter also describes the steps involved in interacting with an external
third-party source code control system.

The project model

In a large-scale development project, with hundreds of files, you must be able to
organize the files in a structure that is easily navigated and maintained by perhaps
several engineers involved.

The IAR Embedded Workbench IDE is a flexible environment for developing projects
also with a number of different target processors in the same project, and a selection of
tools for each target processor.

HOW PROJECTS ARE ORGANIZED

The IAR Embedded Workbench IDE has been designed to suit the way that software
development projects are typically organized. For example, perhaps you need to develop
related versions of an application for different versions of the target hardware, and you
might also want to include debugging routines into the early versions, but not in the final
application.

Versions of your applications for different target hardware will often have source files
in common, and you might want to be able to maintain only one unique copy of these
files, so that improvements are automatically carried through to each version of the
application. Perhaps you also have source files that differ between different versions of
the application, such as those dealing with hardware-dependent aspects of the
application.

The IAR Embedded Workbench IDE allows you to organize projects in a hierarchical
tree structure showing the logical structure at a glance. In the following sections the
different levels of the hierarchy are described.

Part 3. Project management and building

75

The project model

76

IAR Embedded Workbench® IDE
User Guide

Projects and workspaces

Typically you create a project which contains the source files needed for your embedded
systems application. If you have several related projects, you can access and work with
them simultaneously. To achieve this, you can organize related projects in workspaces.

Each workspace you define can contain one or more projects, and each project must be
part of at least one workspace.

Consider this example: two related applications—for instance A and B—will be
developed, requiring one development team each (team A and B). Because the two
applications are related, parts of the source code can be shared between the applications.
The following project model can be applied:

o Three projects—one for each application, and one for the common source code

o Two workspaces—one for team A and one for team B.

It is both convenient and efficient to collect the common sources in a library project
(compiled but not linked object code), to avoid having to compile it unnecessarily.

= =

Project for application A Project for application B

Utility
library

Library project for
common sources

Workspace for team A Om Workspace for team B Om
Project for application A Project for application B
Project for utility library Project for utility library

Figure 27: Examples of workspaces and projects

For an example where a library project has been combined with an application project,
see the chapter Creating and using libraries in Part 2. Tutorials.

Managing projects °

Projects and build configurations

Often, you need to build several versions of your project. The Embedded Workbench
lets you define multiple build configurations for each project. In a simple case, you
might need just two, called Debug and Release, where the only differences are the
options used for optimization, debug information, and output format. In the Release
configuration, the preprocessor symbol NDEBUG is defined, which means the application
will not contain any asserts.

Additional build configurations can be useful, for instance, if you intend to use the
application on different target devices. The application is the same, but hardware-related
parts of the code differ. Thus, depending on which target device you intend to build for,
appropriate source files can be excluded from the build configuration. The following
build configurations might fulfil these requirements for Project A:

Project A - Device 1:Release
Project A - Device 1:Debug

°
°
e Project A - Device 2:Release
°

Project A - Device 2:Debug

Groups

Normally, projects contain hundreds of files that are logically related. You can define
each project to contain one or more groups, in which you can collect related source files.
You can also define multiple levels of subgroups to achieve a logical hierarchy. By
default, each group is present in all build configurations of the project, but you can also
specify a group to be excluded from a particular build configuration.

Source files

Source files can be located directly under the project node or in a hierarchy of groups.
The latter is convenient if the amount of files makes the project difficult to survey. By
default, each file is present in all build configurations of the project, but you can also
specity a file to be excluded from a particular build configuration.

Only the files that are part of a build configuration will actually be built and linked into
the output code.

Once a project has been successfully built, all include files and output files are displayed
in the structure below the source file that included or generated them.

Note: The settings for a build configuration can affect which include files that will be
used during compilation of a source file. This means that the set of include files
associated with the source file after compilation can differ between the build
configurations.

Part 3. Project management and building 77

The project model

78

IAR Embedded Workbench® IDE
User Guide

CREATING AND MANAGING WORKSPACES

This section describes the overall procedure for creating the workspace, projects,
groups, files, and build configurations. The File menu provides the commands for
creating workspaces. The Project menu provides commands for creating projects,
adding files to a project, creating groups, specifying project options, and running the
IAR Systems development tools on the current projects.

For reference information about these menus, menu commands, and dialog boxes, see
the chapter |AR Embedded Workbench® IDE reference.

The steps involved for creating and managing a workspace and its contents are:

o Creating a workspace.

An empty Workspace window appears, which is the place where you can view your
projects, groups, and files.

o Adding new or existing projects to the workspace.

When creating a new project, you can base it on a template project with
preconfigured project settings. There are template projects available for C
applications, C++ applications, assembler applications, and library projects.

o Creating groups.

A group can be added either to the project’s top node or to another group within the
project.

o Adding files to the project.
A file can be added either to the project’s top node or to a group within the project.
o Creating new build configurations.

By default, each project you add to a workspace will have two build configurations
called Debug and Release.

You can base a new configuration on an already existing configuration. Alternatively,
you can choose to create a default build configuration.

Note that you do not have to use the same tool chain for the new build configuration
as for other build configurations in the same project.

e Excluding groups and files from a build configuration.

Note that the icon indicating the excluded group or file will change to white in the
Workspace window.

e Removing items from a project.
For a detailed example, see Creating an application project, page 25.

Note: It might not be necessary for you to perform all of these steps.

Managing projects °

Drag and drop

You can easily drag individual source files and project files from the Windows file
explorer to the Workspace window. Source files dropped on a group will be added to that
group. Source files dropped outside the project tree—on the Workspace window
background—will be added to the active project.

Source file paths

The IAR Embedded Workbench IDE supports relative source file paths to a certain
degree.

If a source file is located in the project file directory or in any subdirectory of the project
file directory, the IAR Embedded Workbench IDE will use a path relative to the project
file when accessing the source file.

Navigating project files

There are two main different ways to navigate your project files: using the Workspace
window or the Source Browser window. The Workspace window displays an
hierarchical view of the source files, dependency files, and output files and how they are
logically grouped. The Source Browser window, on the other hand, displays information
about the build configuration that is currently active in the Workspace window. For that
configuration, the Source Browser window displays a hierarchical view of all globally
defined symbols, such as variables, functions, and type definitions. For classes,
information about any base classes is also displayed.

Part 3. Project management and building 79

Navigating project files

IAR Embedded Workbench® IDE

80 User Guide

VIEWING THE WORKSPACE

The Workspace window is where you access your projects and files during the
application development.

Choose which project you want to view by clicking its tab at the bottom of the
Workspace window.

IDebug vl Configuration
drop-down menu
Files IE
B pojoct - Debug= [||
=1 B Tutar.c « —
| e Caoutput
| — [Tutar st
I — [Tutor.phi
|
|

Indicates that the file
will be rebuilt next
time the project is built

L [Tutar.rx
— [Tutorh
L— [& Utilities.h
[Utilities.c v Indicator for
L@ G output option overrides
&1 @ project! dbe on file node
2 Ca Output
| — B project! map
— B dicpuname.rx
F— Bl Inkdevice xcl
— [Tutar.rx
L— [Utilities.roc
L— [& praject!.map

Tabs for choosing
workspace display

Owverview project] Iproiect2| proiect3|

Figure 28: Displaying a project in the Workspace window

For each file that has been built, an Output folder icon appears, containing generated
files, such as object files and list files. The latter is generated only if the list file option
is enabled. There is also an output folder related to the project node that contains
generated files related to the whole project, such as the executable file and the linker
map file (if the list file option is enabled).

Also, any included header files will appear, showing dependencies at a glance.

To display the project with a different build configuration, choose that build
configuration from the drop-down list at the top of the Workspace window.

The project and build configuration you have selected are displayed highlighted in the
Workspace window. It is the project and build configuration that is selected from the
drop-down list that will be built when you build your application.

Managing projects °

3 To display an overview of all projects in the workspace, click the Overview tab at the
bottom of the Workspace window.

An overview of all project members is displayed.

IDebug 'l

Filas I““Im-l a |
B [Elproject! - Debug

- m--n
= [utilities.c

L@ 3 Output

Owverview project] Iproiect2|

Figure 29: Workspace window—an overview

The current selection in the Build Configuration drop-down list is also highlighted
when an overview of the workspace is displayed.

DISPLAYING BROWSE INFORMATION

To display browse information in the Source Browser window, choose
Tools>Options>Project and select the option Gener ate browse infor mation.

To open the Source Browser window, choose View>Sour ce Browser. The Source
Browser window is by default docked with the Workspace window. Source browse
information is displayed for the active build configuration. For reference information,
see Source Browser window, page 207.

Note that you can choose a file filter and a type filter from the context menu that appears
when you right-click in the top pane of the window.

To see the definition of a global symbol or a function, there are three alternative methods
that you can use:

e In the Source Browser window, right-click on a symbol, or function, and choose the
Go to definition command from the context menu that appears

o In the Source Browser window, double-click on a row

e In the editor window, right-click on a symbol, or function, and choose the Go to
definition command from the context menu that appears.

The definition of the symbol or function is displayed in the editor window.

Part 3. Project management and building 81

Source code control

82

The source browse information is continuously updated in the background. While you
are editing source files, or when you open a new project, there will be a short delay
before the information is up-to-date.

Source code control

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench can identify and access any installed third-party source code
control (SCC) system that conforms to the SCC interface published by Microsoft
corporation. From within the IDE you can connect an IAR Embedded Workbench
project to an external SCC project, and perform some of the most commonly used
operations.

To connect your IAR Embedded Workbench project to a source code control system you
should be familiar with the source code control client application you are using. Note

that some of the windows and dialog boxes that appear when you work with source code
control in the IAR Embedded Workbench IDE originate from the SCC system and are
not described in the documentation from IAR Systems. For information about details in
the client application, refer to the documentation supplied with that application.

Note: Different SCC systems use very different terminology even for some of the most
basic concepts involved. It is important to keep this in mind when reading the
description below.

INTERACTING WITH SOURCE CODE CONTROL SYSTEMS

In any SCC system, you use a client application to maintain a central archive. In this
archive you keep the working copies of the files of your project. The SCC integration in
IAR Embedded Workbench allows you to conveniently perform a few of the most
common SCC operations directly from within the IDE. However, several tasks must still
be performed in the client application.

To connect an IAR Embedded Workbench project to a source code control system, you
should:

e In the SCC client application, set up an SCC project
o In IAR Embedded Workbench, connect your project to the SCC project.

Setting up an SCC project in the SCC client application

Use your SCC client tools to set up a working directory for the files in your IAR
Embedded Workbench project that you want to control using your SCC system. The
files can be placed in one or more nested subdirectories, all located under a common
root. Specifically, all the source files must reside in the same directory as the ewp project
file, or nested in subdirectories of this directory.

Managing projects °

For information about the steps involved, refer to the documentation supplied with the
SCC client application.

Connecting projects in IAR Embedded Workbench
In IAR Embedded Workbench, connect your application project to the SCC project.

In the Workspace window, select the project for which you have created an SCC
project. From the Project menu, choose Sour ce Code Control>Add Project To
Source Control. This command is also available from the context menu that appears
when you right-click in the Workspace window.

Note: The commands on the Sour ce Code Control submenu are available when there
is at least one SCC client application available.

If you have source code control systems from different vendors installed, a dialog box
will appear to let you choose which system you want to connect to.

An SCC-specific dialog box will appear where you can navigate to the proper SCC
project that you have set up.

Viewing the SCC states
When your IAR Embedded Workbench project has been connected to the SCC project,
a column that contains status information for source code control will appear in the
‘Workspace window. Different icons will be displayed depending on whether:

a file is checked out to you

a file is checked out to someone else

°

°

e afile is checked in

e a file has been modified
°

there is a new version of a file in the archive.

There are also icons for some combinations of these states. Note that the interpretation
of these states depends on the SCC client application you are using. For reference
information about the icons and the different states they represent, see Source code
control states, page 198.

For reference information about the commands available for accessing the SCC system,
see Source Code Control menu, page 197.
Configuring the source code control system

To customize the source code control system, choose Tools>Options and click the
Sour ce Code Control tab. For reference information about the available commands, see
Terminal 1/O options, page 260.

Part 3. Project management and building 83

Source code control

IAR Embedded Workbench® IDE
84 User Guide

Building

This chapter briefly discusses the process of building your application, and
describes how you can extend the chain of build tools with tools from
third-party suppliers.

Building your application

The building process consists of the following steps:

e Setting project options
o Building the project
o Correcting any errors detected during the build procedure.

To make the build process more efficient, you can use the Batch Build command. This
gives you the possibility to perform several builds in one operation. If necessary, you can
also specify pre-build and post-build actions.

In addition to use the IAR Embedded Workbench IDE for building projects, it is also
possible to use the command line utility iarbuild.exe for building projects.

For examples of building application and library projects, see Part 2. Tutorialsin this
guide. For further information about building library projects, see the |AR C/C++
Compiler Reference Guide.

SETTING OPTIONS

To specify how your application should be built, you must define one or several build
configurations. Every build configuration has its own settings, which are independent of
the other configurations. All settings are indicated in a separate column in the
Workspace window.

For example, a configuration that is used for debugging would not be highly optimized,
and would produce output that suits the debugging. Conversely, a configuration for
building the final application would be highly optimized, and produce output that suits
a flash or PROM programmer.

For each build configuration, you can set options on the project level, group level, and
file level. Many options can only be set on the project level because they affect the entire
build configuration. Examples of such options are General Options, linker settings, and
debug settings. Other options, such as compiler and assembler options, that you set on
project level are default for the entire build configuration.

Part 3. Project management and building 85

Building your application

86

IAR Embedded Workbench® IDE
User Guide

Itis possible to override project level settings by selecting the required item, for instance
a specific group of files, and selecting the option Overrideinherited settings. The new
settings will affect all members of that group, that is, files and any groups of files. To
restore all settings to the default factory settings, click the Factory Settings button.

Note: There is one important restriction on setting options. If you set an option on file
level (file level override), no options on higher levels that operate on files will affect that
file.

Using the Options dialog box

The Options dialog box—available by choosing Proj ect>Options—provides options
for the building tools. You set these options for the selected item in the Workspace
window. Options in the General Options, Linker, and Debugger categories can only
be set for the entire build configuration, and not for individual groups and files.
However, the options in the other categories can be set for the entire build configuration,
a group of files, or an individual file.

Options for node “projectl - Debug" E
Category:
General Options
C/C++ compiler Target Output | Library Configuration | Library Options | Stack/Heap
Azzembler)
Custom Build - Output file
Lirker % Executable
[ebugger Library
Simulator
r— Output directarie:
Executables/libraries:
IDebug\Exe
Object files:
|DebugiObi
List files:
|DebughList

()3 I Cancel |

Figure 30: General options

The Category list allows you to select which building tool to set options for. The tools
available in the Category list depends on which tools are included in your product. If
you select Library as output file on the Output page, Linker will be replaced by
Library Builder in the category list. When you select a category, one or more pages
containing options for that component are displayed.

Building °

Click the tab corresponding to the type of options you want to view or change. To restore
all settings to the default factory settings, click the Factory Settings button, which is
available for all categories except General Optionsand Custom Build. Note that there
are two sets of factory settings available: Debug and Release. Which one that will be
used depends on your build configuration; see New Configuration dialog box, page 235.

For information about each option and how to set options, see the chapters General
options, Compiler options, Assembler options, Linker options, Library builder options,
Custom build options, and Debugger options in Part 6. Reference information in this
guide. For information about options specific to the debugger driver you are using, see
the part of this book that corresponds to your driver.

Note: If you add to your project a source file with a non-recognized filename extension,
you cannot set options on that source file. However, you can add support for additional
filename extensions. For reference information, see Filename Extensions dialog box,
page 263.

BUILDING A PROJECT

You have access to the build commands both from the Project menu and from the
context menu that appears if you right-click an item in the Workspace window.

The three build commands M ake, Compile, and Rebuild All run in the background, so
you can continue editing or working with the IAR Embedded Workbench IDE while
your project is being built.

For further reference information, see Project menu, page 231.

BUILDING MULTIPLE CONFIGURATIONS IN A BATCH

Use the batch build feature when you want to build more than one configuration at once.
A batch is an ordered list of build configurations. The Batch Build dialog
box—available from the Project menu—Iets you create, modify, and build batches of
configurations.

For workspaces that contain several configurations it is convenient to define one or
several different batches. Instead of building the entire workspace, you can build only
the appropriate build configurations, for instance Release or Debug configurations.

For detailed information about the Batch Build dialog box, see Batch Build dialog box,
page 238.
USING PRE- AND POST-BUILD ACTIONS

If necessary, you can specity pre-build and post-build actions that you want to take place
before or after the build. The Build Actions dialog box—available from the Project
menu—Ilets you specify the actions required.

Part 3. Project management and building 87

Building your application

88

IAR Embedded Workbench® IDE
User Guide

For detailed information about the Build Actionsdialog box, see Build actions options,
page 331.

Using pre-build actions for time stamping

Pre-build actions can be used for embedding a time stamp for the build in the resulting
binary file. To achieve this, follow these steps:

Create a dedicated time stamp file, for example, timestamp . c and add it to your
project.

In this source file, use the preprocessor macros __TIME _ and __DATE__ to initialize
a string variable.

Choose Project>Options>Build Actionsto open the Build Actions dialog box.
In the Pre-build command line text field, specify for example this pre-build action:
"touch $PROJ_DIRS$\timestamp.c"

You can use the open source command line utility touch for this purpose or any other
suitable utility which updates the modification time of the source file.

If the project is not entirely up-to-date, the next time you use the M ake command, the
pre-build action will be invoked before the regular build process. The regular build
process then always must recompile timestamp . c and the correct timestamp will end
up in the binary file.

If the project already is up-to-date, the pre-build action will not be invoked. This means
that nothing will be built, and the binary file still contains the timestamp for when it was
last built.

CORRECTING ERRORS FOUND DURING BUILD

The compiler, assembler, and debugger are fully integrated with the development
environment. So if there are errors in your source code, you can jump directly to the
correct position in the appropriate source file by double-clicking the error message in
the error listing in the Build message window, or selecting the error and pressing Enter.

After you have resolved any problems reported during the build process and rebuilt the
project, you can directly start debugging the resulting code at the source level.

To specify the level of output to the Build message window, choose Tools>Optionsto
open the | DE Optionsdialog box. Click the M essagestab and select the level of output
in the Show build messages drop-down list. Alternatively, you can right-click in the
Build M essages window and select Options from the context menu.

For reference information about the Build messages window, see Build window, page
215.

Building °

BUILDING FROM THE COMMAND LINE

It is possible to build the project from the command line by using the IAR Command
Line Build Utility (iarbuild.exe) located in the common\bin directory. As input you
use the project file, and the invocation syntax is:

iarbuild project.ewp [—clean\—build\—make] <configuration>
[-log errors|warnings|info|all]

Parameter Description

project.ewp Your IAR Embedded Workbench IDE project file.

-clean Removes any intermediate and output files.

-build Rebuilds and relinks all files in the current build configuration.
-make Brings the current build configuration up to date by compiling,

assembling, and linking only the files that have changed since the last
build.

configuration The name of the configuration you want to build, which can either be
one of the predefined configurations Debug or Release, or a name that
you define yourself. For more information about build configurations, see
Projects and build configurations, page 77.

-log errors Displays build error messages.
-log warnings Displays build warning and error messages.
-log info Displays build warning and error messages, and messages issued by the

#pragma message preprocessor directive.

-log all Displays all messages generated from the build, for example compiler
sign-on information and the full command line.

Table 8: iarbuild.exe command line options

If you run the application from a command shell without specifying a project file, you
will get a sign-on message describing available parameters and their syntax.

Extending the tool chain

IAR Embedded Workbench provides a feature—Custom Build—which lets you extend
the standard tool chain. This feature is used for executing external tools (not provided
by IAR). You can make these tools execute each time specific files in your project have
changed.

By specifying custom build options, on the Custom tool configur ation page, the build
commands treat the external tool and its associated files in the same way as the standard
tools within the IAR Embedded Workbench IDE and their associated files. The relation
between the external tool and its input files and generated output files is similar to the

Part 3. Project management and building 89

Extending the tool chain

90

IAR Embedded Workbench® IDE
User Guide

relation between the C/C++ Compiler, c files, h files, and rxx files. See Custom build
options, page 329, for details about available custom build options.

You specify filename extensions of the files used as input to the external tool. If the input
file has changed since you last built your project, the external tool is executed; just as
the compiler executes if a c file has changed. In the same way, any changes in additional
input files (for instance include files) are detected.

You must specify the name of the external tool. You can also specify any necessary
command line options needed by the external tool, as well as the name of the output files
generated by the external tool. Note that it is possible to use argument variables for
substituting file paths.

For some of the file information, you can use argument variables.

It is possible to specify custom build options to any level in the project tree. The options
you specify are inherited by any sublevel in the project tree.

TOOLS THAT CAN BE ADDED TO THE TOOL CHAIN

Some examples of external tools, or types of tools, that you can add to the IAR
Embedded Workbench tool chain are:

e Tools that generate files from a specification, such as Lex and YACC

e Tools that convert binary files—for example files that contain bitmap images or
audio data—to a table of data in an assembler or C source file. This data can then be
compiled and linked together with the rest of your application.

ADDING AN EXTERNAL TOOL

The following example demonstrates how to add the tool Flex to the tool chain. The
same procedure can be used also for other tools.

In the example, Flex takes the file foo.lex as input. The two files foo.c and foo.h
are generated as output.

Add the file you want to work with to your project, for example foo. lex.

Select this file in the Workspace window and choose Project>Options. Select Custom
Build from the list of categories.

In the Filename extensions field, type the filename extension . 1ex. Remember to
specify the leading period (.).

In the Command line field, type the command line for executing the external tool, for
example

flex SFILE_PATHS -oS$FILE_BPATHS.cC

Building °

During the build process, this command line will be expanded to:
flex foo.lex -ofoo.c

Note the usage of argument variables. For further details of these variables, see
Argument variables summary, page 233.

Take special note of the use of $FILE_BNAMES which gives the base name of the input
file, in this example appended with the c extension to provide a C source file in the same
directory as the input file foo.lex.

In the Output filesfield, describe the output files that are relevant for the build. In this
example, the tool Flex would generate two files—one source file and one header file.
The text in the Output filestext box for these two files would look like this:

SFILE_BPATHS.cC
SFILE_BPATHS.h

If there are any additional files used by the external tool during the build, these should
be added in the Additional input filesfield: for instance:

STOOLKIT_DIRS$\inc\stdio.h

This is important, because if the dependency files change, the conditions will no longer
be the same and the need for a rebuild is detected.

Click OK.

To build your application, choose Project>Make.

Part 3. Project management and building 91

Extending the tool chain

IAR Embedded Workbench® IDE
92 User Guide

Editing

This chapter describes in detail how to use the IAR Embedded Workbench
editor. The final section describes how to customize the editor and how to

use an external editor of your choice.

Using the IAR Embedded Workbench editor

The integrated text editor allows editing of multiple files in parallel, and provides all
basic editing features expected from a modern editor. In addition, it provides features
specific to software development. It also recognizes C or C++ language elements.

EDITING A FILE

The editor window is where you write, view, and modify your source code. You can
open one or several text files, either from the File menu, or by double-clicking a file in
the Workspace window. If you open several files, they are organized in a tab group. You
can have several editor windows open at the same time.

Part 3. Project management and building 93

Using the IAR Embedded Workbench editor

94

Window tabs

Breakpoint icon

Bracket matching

Bookmark

Click the tab for the file that you want to display. All open files are also available from
the drop-down menu at the upper right corner of the editor window.

Drop-down menu

Tooltip information listing all open files
Tutar.c - x|
P E— v T = Splitter
d
‘;01 it I|C:'|,Pr0gram Files\IAR SystemsiEmbedded Workbench'l,utilities.cl ZI control
@ short i = 4s:
root[0] = root[l] = 1;

for [i=2 : i<MAX_FIE ; i++)|
root[i] = get_fib{i) + get fih(i-1):
i

/:(-
Return the Fibonacci mumber 'nr'.
s
unsigned int get_fib({ int nr |
{
if | inr > 0) && (nr <= MAX FIE))
{

return [root[nr-1] J:

} >
[fol [« |>|_I

Splitter control | | Go to function Right margin indicating

IAR Embedded Workbench® IDE
User Guide

limit of printing area

Figure 31: Editor window

The name of the open source file is displayed on the tab. If a file is read-only, a padlock
is visible at the bottom left corner of the editor window. If a file has been modified after
it was last saved, an asterisk appears on the tab after the filename, for example
Utilities.c *.

The commands on the Window menu allow you to split the editor window into panes.
On the Window menu you also find commands for opening multiple editor windows, as
well as commands for moving files between different editor windows. For reference
information about each command on the menu, see Window menu, page 266. For
reference information about the editor window, see Editor window, page 202.

Note: When you want to print a source file, it can be useful to enable the option Show
line number s—available by choosing Tools>Options>Editor.
Accessing reference information for DLIB library functions

When you need to know the syntax for any C or Embedded C++ library function, select
the function name in the editor window and press F1. The library documentation for the
selected function appears in a help window.

Editing °

Using and customizing editor commands and shortcut keys

The Edit menu provides commands for editing and searching in editor windows. For
instance, unlimited undo/redo by using the Edit>Undo and Edit>Redo commands,
respectively. You can also find some of these commands on the context menu that
appears when you right-click in the editor window. For reference information about each
command, see Edit menu, page 221.

There are also editor shortcut keys for:

e moving the insertion point

e scrolling text

e selecting text.

For detailed information about these shortcut keys, see Editor key summary, page 205.

To change the default shortcut key bindings, choose T ools>Options, and click the Key
Bindings tab. For further details, see Key Bindings options, page 242.

Splitting the editor window into panes

You can split the editor window horizontally or vertically into multiple panes, to allow
you to look at different parts of the same source file at once, or move text between two
different panes.

To split the window, double-click the appropriate splitter bar, or drag it to the middle of
the window. Alternatively, you can split a window into panes using the Window>Split
command.

To revert to a single pane, double-click the splitter control or drag it back to the end of
the scroll bar.

Dragging and dropping of text

You can easily move text within an editor window or between different editor windows.
Select the text and drag it to the new location.

Syntax coloring

If the Tools>Options>Editor>Syntax highlighting option is enabled, the IAR
Embedded Workbench editor automatically recognizes the syntax of:

C and C++ keywords

C and C++ comments

Assembler directives and comments

Preprocessor directives

Strings.

Part 3. Project management and building 95

Using the IAR Embedded Workbench editor

96

IAR Embedded Workbench® IDE
User Guide

The different parts of source code are displayed in different text styles.

To change these styles, choose Tools>Options, and use the Editor>Colorsand Fonts
options. For additional information, see Editor Colors and Fonts options, page 250.

In addition, you can define your own set of keywords that should be syntax-colored
automatically:

In a text file, list all the keywords that you want to be automatically syntax-colored.
Separate each keyword with either a space or a new line.

Choose Tools>Options and select Editor>Setup Files.

Select the Use Custom Keyword File option and specify your newly created text file.
A browse button is available for your convenience.

Select Edit>Colorsand Fonts and choose User Keyword from the Syntax Coloring
list. Specify the font, color, and type style of your choice. For additional information,
see Editor Colors and Fonts options, page 250.

In the editor window, type any of the keywords you listed in your keyword file; see
how the keyword is syntax-colored according to your specification.
Automatic text indentation

The text editor can perform different kinds of indentation. For assembler source files and
normal text files, the editor automatically indents a line to match the previous line. If
you want to indent a number of lines, select the lines and press the Tab key. Press
Shift-Tab to move a whole block of lines to the left.

For C/C++ source files, the editor indents lines according to the syntax of the C/C++
source code. This is performed whenever you:

e Press the Return key
e Type any of the special characters {, }, :, and #

e Have selected one or several lines, and choose the Edit>Auto Indent command.
To enable or disable the indentation:

Choose Tools>Options and select Editor.

Select or deselect the Auto indent option.

To customize the C/C++ automatic indentation, click the Configur e button.

For additional information, see Configure Auto Indent dialog box, page 246.

Editing °

Matching brackets and parentheses

When the insertion point is located next to a parenthesis, the matching parenthesis is
highlighted with a light gray color:

forf| int i = 0; i < 10; i++)]
{
i

Figure 32: Parentheses matching in editor window

The highlight remains in place as long as the insertion point is located next to the
parenthesis.

To select all text between the brackets surrounding the insertion point, choose
Edit>M atch Brackets. Every time you choose M atch Bracketsafter that, the selection
will increase to the next hierarchic pair of brackets.

Note: Both of these functions—automatic matching of corresponding parentheses and
selection of text between brackets—apply to (), [1, and {}.

Displaying status information

As you are editing, the status bar—available by choosing View>Status Bar— shows
the current line and column number containing the insertion point, and the Caps Lock,
Num Lock, and Overwrite status:

[Errors 0, Warnings O |Lm 28, Col 22 [CaP [WuM jovR

Figure 33: Editor window status bar

USING AND ADDING CODE TEMPLATES

Code templates is a method for conveniently inserting frequently used source code
sequences, for example for loops and i f statements. The code templates are defined in
a normal text file. By default, there are a few example templates provided. In addition,
you can easily add your own code templates.

Enabling code templates

By default, code templates are enabled. To enable and disable the use of code templates:

I Choose Tools>Options.

2 Go to the Editor Setup Files page.

Part 3. Project management and building 97

Using the IAR Embedded Workbench editor

98

IAR Embedded Workbench® IDE
User Guide

3 Select or deselect the Use Code Templates option.

4 In the text field, specify which template file you want to use; either the default file or

one of your own template files. A browse button is available for your convenience.

Inserting a code template in your source code

To insert a code template in your source code, place the insertion point at the location
where you want the template to be inserted and choose Edit>I nsert Template. This
command displays a list in the editor window from which you can choose a code
template.

woid nain(woid)

Figure 34: Editor window code template menu

If the code template you choose requires any type of field input, as in the for loop
example which needs an end value and a count variable, an input dialog box appears.

Adding your own code templates

The source code templates are defined in a normal text file. The original template file
CodeTemplates. txt islocated in the common\config installation directory. The first
time you use IAR Embedded Workbench, the original template file is copied to a
directory for local settings, and this is the file that will be used by default if code
templates are enabled. To use your own template file, follow the procedure described in
Enabling code templates, page 97.

To open the template file and define your own code templates, choose Edit>Code
Templates>Edit Templates.

The syntax for defining templates is described in the default template file.

Editing °

NAVIGATING IN AND BETWEEN FILES

The editor provides several functions for easy navigation within the files and between
different files:
e Switching between source and header files

If the insertion point is located on an #include line, you can choose the Open
"header.h" command from the context menu, which opens the header file in an
editor window. You can also choose the command Open Header/Sour ceFile, which
opens the header or source file that corresponds to the current file, or activates it if it
is already open. This command is available if the insertion point is located on any
line except an #include line.

e Function navigation

Click the Goto function button in the bottom left corner in an editor window to list
all functions defined in the source file displayed in the window. You can then choose
to go directly to one of the functions by double-clicking it in the list.

o Adding bookmarks

Use the Edit>Navigate>T oggle Bookmark command to add and remove
bookmarks. To switch between the marked locations, choose Edit>Navigate>Goto
Bookmark.

SEARCHING
There are several standard search functions available in the editor:

Quick search text box

Find dialog box

Replace dialog box

Find in files dialog box
Incremental Search dialog box.

To use the Quick sear ch text box on the toolbar, type the text you want to search for and
press Enter. Press Esc to cancel the search. This is a quick method for searching for text
in the active editor window.

To use the Find, Replace, Find in Files, and I ncremental Sear ch functions, choose the
corresponding command from the Edit menu. For reference information about each
search function, see Edit menu, page 221.

Part 3. Project management and building

99

Customizing the editor environment

100

Customizing the editor environment

IAR Embedded Workbench® IDE
User Guide

The TAR Embedded Workbench IDE editor can be configured on the | DE Options
pages Editor and Editor Colorsand Fonts. Choose Tools>Optionsto access the

pages.
For details about these pages, see Tools menu, page 240.

USING AN EXTERNAL EDITOR

The External Editor options—available by choosing T 0ols>Options>Editor—let you
specify an external editor of your choice.

Note: While debugging using C-SPY, C-SPY will not use the external editor for
displaying the current debug state. Instead, the built-in editor will be used.

To specify an external editor of your choice, follow this procedure:

Select the option Use External Editor.

An external editor can be called in one of two ways, using the Type drop-down menu.
Command Line calls the external editor by passing command line parameters.

DDE calls the external editor by using DDE (Windows Dynamic Data Exchange).

If you use the command line, specify the command line to pass to the editor, that is, the
name of the editor and its path, for instance:

C: \WINNT\NOTEPAD.EXE.

Editing °

You can send an argument to the external editor by typing the argument in the

Argumentsfield. For example, type $FILE_PATHS to start the editor with the active file
(in editor, project, or Messages window).

IDE Options E
- Comrmon Fonts
-Key Bindings ™ Use External Editor
- Edil Tivpe: ICommand Line j
Setup Files Editar: I |
Colors and Fonts
Arguments: I
- Messages
- Project
- Source Code Control
- Debugger
- Stack
- Register Filker

- Terminal IjQ

QK I Cancel | Apply | Help |

Figure 35: Specifying external command line editor

If you use DDE, specify the editor’s DDE service name in the Service field. In the
Command field, specify a sequence of command strings to send to the editor.

The service name and command strings depend on the external editor that you are using.
Refer to the user documentation of your external editor to find the appropriate settings.

The command strings should be entered as:

DDE-Topic CommandString
DDE-Topic CommandString

Part 3. Project management and building 101

Customizing the editor environment

102

IAR Embedded Workbench® IDE
User Guide

as in the following example, which applies to Codewright®:

IDE Dptions [%]

- Comrmon Fonts
-Key Bindings

¥ Use External Editor

Editar Type: |DDE =l
' Edtor [CACW32ion32ene -
Colors and Fonts Samvice: ICodewright
- Messages
-~ Project Command: [System BufE ditFile $FILE_PATH$
- Source Code Contral $FILE_PATH$ MovToline $CUR_LINES
- Debugger
- Stack
- Register Filker
- Terminal IO

QK I Cancel | Apply | Help |

Figure 36: External editor DDE settings

The command strings used in this example will open the external editor with a dedicated
file activated. The cursor will be located on the current line as defined in the context
from where the file is open, for instance when searching for a string in a file, or when
double-clicking an error message in the Message window.

Click OK.

When you open a file by double-clicking it in the Workspace window, the file will be
opened by the external editor.

Variables can be used in the arguments. For more information about the argument
variables that are available, see Argument variables summary, page 233.

Part 4. Debugging

This part of the IAR Embedded Workbench® IDE User Guide contains the
following chapters:

e The IAR C-SPY® Debugger

e Executing your application

e Working with variables and expressions
e Using breakpoints

e Monitoring memory and registers

e Using the C-SPY® macro system

e Analyzing your application.

.hmuiuhhhi

103

ARARAIed

104

The IAR C-SPY®
Debugger

This chapter introduces you to the IAR C-SPY Debugger. First some of the
concepts are introduced that are related to debugging in general and to the
IAR C-SPY Debugger in particular. Then the debugger environment is
presented, followed by a description of how to setup, start, and finally adapt
C-SPY to target hardware.

Debugger concepts

This section introduces some of the concepts that are related to debugging in general and
to the IAR C-SPY Debugger in particular. This section does not contain specific
conceptual information related to the functionality of the IAR C-SPY Debugger.
Instead, such information can be found in each chapter of this part of the guide. The IAR

Systems user documentation uses the following terms when referring to these concepts.

IAR C-SPY DEBUGGER AND TARGET SYSTEMS

The IAR C-SPY Debugger can be used for debugging either a software target system or
a hardware target system.

Part 4. Debugging

105

Debugger concepts

The following figure shows an overview of C-SPY and possible target systems.

— e e e e e g e e e e e — ==

Target system with application software

|
|
| Simulator I
| o | Simulator
river
| |
| ——
| X
ROM-monitor

ROM-
monitor

|
|
|
|
|
|
|
|
Target hardware |
|
|
|
|
|
|
|
|
|
|

|

Workbench C-SPY —

Emulator

r— j\[JTAG Target
emulator [~ hardware

3rd-party
driver

Target
hardware

|
I
I
I
I
I
I
I .
IAREmbedded | driver
I
I
I
I
I
I
I
I
I
I
I

= Provided by IAR Systems

Figure 37: AR C-SPY Debugger and target systems

DEBUGGER

The debugger, for instance C-SPY, is the program that you use for debugging your
applications on a target system.

TARGET SYSTEM

The target system is the system on which you execute your application when you are
debugging it. The target system can consist of hardware, either an evaluation board or
your own hardware design. It can also be completely or partially simulated by software.
Each type of target system needs a dedicated C-SPY driver.

USER APPLICATION

A user application is the software you have developed and which you want to debug
using the IAR C-SPY Debugger.

IAR C-SPY DEBUGGER SYSTEMS

The IAR C-SPY Debugger consists of both a general part which provides a basic set of
C-SPY features, and a driver. The C-SPY driver is the part that provides communication
with and control of the target system. The driver also provides the user

IAR Embedded Workbench® IDE
106 User Guide

The IAR C-SPY® Debugger __4

interface—menus, windows, and dialog boxes—to the functions provided by the target
system, for instance, special breakpoints. There are three main types of C-SPY drivers:

e Simulator driver
o ROM-monitor driver

e Emulator driver

If you have more than one C-SPY driver installed on your computer you can switch
between them by choosing the appropriate driver from within the IAR Embedded
Workbench IDE.

For an overview of the general features of IAR C-SPY Debugger, see IAR C-SPY
Debugger, page 5.For an overview of the functionality provided by each driver, see the
online help system available from the Help menu. There may also be a driver guide in
hypertext PDF format available in the doc directory. Contact your software distributor
or IAR representative for information about available C-SPY drivers. You can also find
information on the IAR Systems website, www.iar.com.

ROM-MONITOR PROGRAM

The ROM-monitor program is a piece of firmware that is loaded to non-volatile memory
on your target hardware; it runs in parallel with your application. The ROM-monitor
communicates with the debugger and provides services needed for debugging the
application, for instance stepping and breakpoints.

THIRD-PARTY DEBUGGERS

It is possible to use a third-party debugger together with the IAR Systems tool chain as
long as the third-party debugger can read any of the output formats provided by XLINK,
such as UBROF, ELF/DWAREF, COFF, Intel-extended, Motorola, or any other available
format. For information about which format to use with third-party debuggers, see the
user documentation supplied with that tool.

The C-SPY environment

AN INTEGRATED ENVIRONMENT

The IAR C-SPY Debugger is a high-level-language debugger for embedded
applications. It is designed for use with the IAR C/C++ Compiler and IAR Assembler,
and is completely integrated in the IAR Embedded Workbench IDE, providing
development and debugging within the same application.

Part 4. Debugging 107

Setting up the IAR C-SPY Debugger

108

All windows that are open in the Embedded Workbench workspace will stay open when
you start the C-SPY Debugger. In addition, a set of C-SPY-specific windows will be
opened.

You can modify your source code in an editor window during the debug session, but
changes will not take effect until you exit from the debugger and rebuild your
application.

The integration also makes it possible to set breakpoints in the text editor at any point
during the development cycle. It is also possible to inspect and modify breakpoint
definitions also when the debugger is not running, and breakpoint definitions flow with
the text as you edit. Your debug settings, such as watch properties, window layouts, and
register groups will remain between your debug sessions. When the debugger is running,
breakpoints are highlighted in the editor windows.

In addition to the features available in the IAR Embedded Workbench IDE, the debugger
environment consists of a set of C-SPY-specific items, such as a debugging toolbar,
menus, windows, and dialog boxes.

Reference information about each item specific to C-SPY can be found in the chapter
C-SPY® Debugger reference, page 269.

For specific information about a C-SPY driver, see the part of the book corresponding
to the driver.

Setting up the IAR C-SPY Debugger

IAR Embedded Workbench® IDE
User Guide

Before you start the IAR C-SPY Debugger you should set options to set up the debugger
system. These options are available on the Setup page of the Debugger category,
available with the Project>Options command. On the Plugins page you can find
options for loading plug-in modules.

In addition to the options for setting up the debugger system, you can also set
debugger-specific IDE options. These options are available with the Tools>Options
command. For further information about these options, see Debugger options, page 255.

CHOOSING A DEBUG DRIVER

Before starting C-SPY, you must choose a driver for the debugger system from the
Driver drop-down list on the Setup page. The contents of the drop-down list depend on
your product installation; drivers for hardware debugger systems might, or might not be
available. If you choose a driver for a hardware debugger system, you also need to set
hardware-specific options. For information about these options, see the online help
system available from the Help menu.

The IAR C-SPY® Debugger __4

If you choose a driver for a hardware debugger system, you also need to set
hardware-specific options. For information about these options, see the online help
system available from the Help menu and Part 6. Reference information in this guide.

Note: You can only choose a driver you have installed on your computer.

EXECUTING FROM RESET

Using the Run to option, you can specify a location you want C-SPY to run to when you
start the debugger as well as after each reset. C-SPY will place a breakpoint at this
location and all code up to this point will be executed prior to stopping at the location.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for instance function names.

If you leave the check box empty, the program counter will then contain the regular
hardware reset address at each reset.

If there are no breakpoints available when C-SPY starts, a warning message appears
notifying you that single stepping will be required and that this is time consuming. You
can then continue execution in single step mode or stop at the first instruction. If you
choose to stop at the first instruction, the debugger starts executing with the pc (program
counter) at the default reset location instead of the location you typed in the Run to box.

Note: This message will never be displayed in the C-SPY Simulator, where
breakpoints are not limited.

For driver-specific information about breakpoints, see the online help system available
from the Help menu.

USING A SETUP MACRO FILE

A setup macro file is a standard macro file that you choose to load automatically when
C-SPY starts. You can define the setup macro file to perform actions according to your
needs, by using setup macro functions and system macros. Thus, by loading a setup
macro file you can initialize C-SPY to perform actions automatically.

To register a setup macro file, select Use macr o file and type the path and name of your
setup macro file, for example Setup.mac. If you do not type a filename extension, the
extension mac is assumed. A browse button is available for your convenience.

For detailed information about setup macro files and functions, see Themacro file, page
144. For an example about how to use a setup macro file, see the chapter Smulating an
interrupt in Part 2. Tutorials.

Part 4. Debugging 109

Setting up the IAR C-SPY Debugger

110

IAR Embedded Workbench® IDE
User Guide

SELECTING A DEVICE DESCRIPTION FILE

C-SPY handles several of the target-specific adaptations by using device description
files. They contain device-specific information about for example, definitions of
peripheral units and CPU registers, and groups of these.

If you want to use the device-specific information provided in the device description file
during your debug session, you must select the appropriate device description file.
Device description files are provided in the cpuname\config directory and they have
the filename extension ddf.

To load a device description file that suits your device, you must, before you start the
C-SPY debugger, choose Project>Options and select the Debugger category. On the
Setup page, enable the use of a description file and select a file using the Device
description file browse button.

For an example about how to use a setup macro file, see Smulating an interrupt in Part
2. Tutorials.

LOADING PLUGIN MODULES

On the Plugins page you can specify C-SPY plugin modules that are to be loaded and
made available during debug sessions. Plugin modules can be provided by IAR, as well
as by third-party suppliers. Contact your software distributor or IAR representative, or
visit the IAR Systems web site, for information about available modules.

For information about how to load plugin modules, see Plugins, page 351.

The IAR C-SPY RTOS awareness plugin modules

Provided that there is one or more real-time operating systems plugin modules
supported for the IAR Embedded Workbench version you are using, you can load one
for use with the IAR C-SPY Debugger. C-SPY RTOS awareness plugin modules give
you a high level of control and visibility over an application built on top of a real-time
operating system. It displays RTOS-specific items like task lists, queues, semaphores,
mailboxes and various RTOS system variables. Task-specific breakpoints and
task-specific stepping make it easier to debug tasks.

A loaded plugin will add its own set of windows and buttons when a debug session is
started (provided that the RTOS is linked with the application). For information about
other RTOS awareness plugin modules, refer to the manufacturer of the plugin module.

The IAR C-SPY® Debugger __4

Starting the IAR C-SPY Debugger

When you have set up the debugger, you can start it.

To start the AR C-SPY Debugger and load the current project, click the Debug button.
@l Alternatively, choose the Project>Debug command.

For information about how to execute your application and how to use the C-SPY
features, see the remaining chapters in Part 4. Debugging.

Executable files built outside of the IAR Embedded Workbench IDE

It is also possible to load C-SPY with a project that was built outside the IAR Embedded
Workbench IDE, for example projects built on the command line. To be able to set
C-SPY options for the externally built project, you must create a project within the [AR
Embedded Workbench IDE.

To load an externally built executable file, you must first create a project for it in your
workspace. Choose Project>Create New Project, and specify a project name. To add
the executable file to the project, choose Project>Add Files and make sure to choose
All Filesin the Files of type drop-down list. Locate the executable file (filename
extension dxx). To start the executable file, select the project in the Workspace window
and click the Debug button. The project can be reused whenever you rebuild your
executable file.

The only project options that are meaningful to set for this kind of project are options in
the General Optionsand Debugger categories. Make sure to set up the general project
options in the same way as when the executable file was built.

To flash an externally generated application, a corresponding sim file must be available
in the same directory as the dxx file.

REDIRECTING DEBUGGER OUTPUT TO A FILE

The Debug Log window—available from the View menu—displays debugger output,
such as diagnostic messages and trace information. It can sometimes be convenient to
log the information to a file where it can be easily inspected. The L og Files dialog
box—available from the Debug menu—allows you to log output from C-SPY to a file.
The two main advantages are:

o The file can be opened in another tool, for instance an editor, so you can navigate
and search within the file for particularly interesting parts

e The file provides history about how you have controlled the execution, for instance,
what breakpoints have been triggered etc.

The information printed in the file is by default the same as the information listed in the
Log window. However, you can choose what you want to log in the file: errors,

Part 4. Debugging 111

Starting the IAR C-SPY Debugger

warnings, system information, user messages, or all of these. For reference information
about the Log File options, see Log File dialog box, page 300.

IAR Embedded Workbench® IDE
112 User Guide

Executing your application

The IAR C-SPY® Debugger provides a flexible range of facilities for executing
your application during debugging. This chapter contains information about:

e The conceptual differences between source mode and disassembly mode
debugging

e Executing your application
e The call stack

e Handling terminal input and output.

Source and disassembly mode debugging

The IAR C-SPY Debugger allows you to switch seamlessly between source mode and
disassembly mode debugging as required.

Source debugging provides the fastest and easiest way of developing your application,
without having to worry about how the compiler or assembler has implemented the
code. In the editor windows you can execute the application one statement at a time
while monitoring the values of variables and data structures.

Disassembly mode debugging lets you focus on the critical sections of your application,
and provides you with precise control over the hardware. You can open a disassembly
window which displays a mnemonic assembler listing of your application based on
actual memory contents rather than source code, and lets you execute the application
exactly one instruction at a time. In Mixed-Mode display, the debugger also displays the
corresponding C/C++ source code interleaved with the disassembly listing.

Regardless of which mode you are debugging in, you can display registers and memory,
and change their contents.

For an example of a debug session both in C source mode and disassembly mode, see
Debugging the application, page 35.

Part 4. Debugging 113

Executing

114

Executing

IAR Embedded Workbench® IDE
User Guide

The IAR C-SPY Debugger provides a flexible range of features for executing your
application. You can find commands for executing on the Debug menu as well as on the
toolbar.

STEP

C-SPY allows more stepping precision than most other debuggers in that it is not
line-oriented but statement-oriented. The compiler generates detailed stepping
information in the form of step pointsat each statement, as well as at each function call.
That is, source code locations where you might consider whether to execute a step into
or a step over command. Because the step points are located not only at each statement
but also at each function call, the step functionality allows a finer granularity than just
stepping on statements. There are four different step commands:

Step Into
Step Over
Next Statement

°
°
°
e Step Out

Consider this example and assume that the previous step has taken you to the £ (i)
function call (highlighted):

int f(int n)

{

value = f(n-1) + f£(n-2) + £(n-3);
return value;

}

£(1);

value ++;

While stepping, you typically consider whether to step into a function and continue

stepping inside the function or subroutine. The Step I nto command takes you to the first
step point within the subroutine, £ (n-1):

int f(int n)

{

value = £(n-1) + f(n-2) + £(n-3);
return value;

}

£(i);
value ++;

Executing your application __¢

The Step Into command executes to the next step point in the normal flow of control,
regardless of whether it is in the same or another function.

The Step Over command executes to the next step point in the same function, without
stopping inside called functions. The command would take you to the £ (n-2) function
call, which is not a statement on its own but part of the same statement as £ (n-1) . Thus,
you can skip uninteresting calls which are parts of statements and instead focus on
critical parts:

int f(int n)

{

value = f(n-1) + £(n-2) + f(n-3);
return value;

}
£(1);
value ++;

The Next Statement command executes directly to the next statement return value,
allowing faster stepping:

int f(int n)

{
value = f(n-1) + £(n-2) + £(n-3);
return value;
}
£(i);

value ++;

When inside the function, you have the choice of stepping out of it before reaching the
function exit, by using the Step Out command. This will take you directly to the
statement immediately after the function call:

int f(int n)

{

value = f(n-1) + £(n-2) f£(n-3);
return value;

£(1);

value ++;

The possibility of stepping into an individual function that is part of a more complex
statement is particularly useful when you use C code containing many nested function
calls. It is also very useful for Embedded C++, which tends to have many implicit
function calls, such as constructors, destructors, assignment operators, and other
user-defined operators.

Part 4. Debugging 115

Executing

116

IAR Embedded Workbench® IDE
User Guide

This detailed stepping can in some circumstances be either invaluable or unnecessarily
slow. For this reason, it is also possible to step only on statements, which means faster

stepping.

GO

The Go command continues execution from the current position until a breakpoint or
program exit is reached.

RUN TO CURSOR

The Run to Cursor command executes to the position in the source code where you
have placed the cursor. The Run to Cursor command also works in the Disassembly
window and in the Call Stack window.

HIGHLIGHTING

At each stop, C-SPY highlights the corresponding C or C++ source or instruction with
a green color, in the editor and the Disassembly window respectively. In addition, a
green arrow appears in the editor window when you step on C or C++ source level, and
in the Disassembly window when you step on disassembly level. This is determined by
which of the windows is the active window. If none of the windows are active, it is
determined by which of the window is currently placed over the other window.

Tutor.c I!EEE

void init_fib{ void |

i

int i = 45;
o root[0] = root[l] = 1;

for { i=2 ; i<MAX _FIE : i++)
{

Figure 38: C-SPY highlighting source location

For simple statements without function calls, the whole statement is typically
highlighted. When stopping at a statement with function calls, C-SPY highlights the first
call because this illustrates more clearly what Step Into and Step Over would mean at
that time.

Occasionally, you will notice that a statement in the source window is highlighted using
a pale variant of the normal highlight color. This happens when the program counter is
at an assembler instruction which is part of a source statement but not exactly at a step
point. This is often the case when stepping in the Disassembly window. Only when the
program counter is at the first instruction of the source statement, the ordinary highlight
color is used.

Executing your application __¢

USING BREAKPOINTS TO STOP

You can set breakpoints in the application to stop at locations of particular interest.
These locations can be either at code sections where you want to investigate whether
your program logic is correct, or at data accesses to investigate when and how the data
is changed. Depending on which debugger system you are using you might also have
access to additional types of breakpoints. For instance, if you are using C-SPY
Simulator there is a special kind of breakpoint to facilitate simulation of simple
hardware devices. See the chapter Smulator-specific debugging for further details.

For a more advanced simulation, you can stop under certain conditions, which you
specify. It is also possible to connect a C-SPY macro to the breakpoint. The macro can
be defined to perform actions, which for instance can simulate specific hardware
behavior.

All these possibilities provide you with a flexible tool for investigating the status of, for
example, variables and registers at different stages during the application execution.

For detailed information about the breakpoint system and how to use the different
breakpoint types, see the chapter Using breakpoints.

USING THE BREAK BUTTON TO STOP

While your application is executing, the Break button on the debug toolbar is
highlighted in red. You can stop the application execution by clicking the Break button,
alternatively by choosing the Debug>Break command.

STOP AT PROGRAM EXIT

Typically, the execution of an embedded application is not intended to end, which means
that the application will not make use of a traditional exit. However, there are situations
where a controlled exit is necessary, such as during debug sessions. You can link your
application with a special library that contains an exit label. A breakpoint will be
automatically set on that label to stop execution when it gets there. Before you start
C-SPY, choose Project>Options, and select the Linker category. On the Output page,
select the option With runtime control modules (-r).

Call stack information

The IAR C/C++ Compiler generates extensive backtrace information. This allows
C-SPY to show, without any runtime penalty, the complete call chain at any time.
Typically, this is useful for two purposes:

e Determining in what context the current function has been called

Part 4. Debugging 117

Terminal input and output

118

e Tracing the origin of incorrect values in variables and incorrect values in
parameters, thus locating the function in the call chain where the problem occurred.

The Call Stack window—available from the View menu—shows a list of function calls,
with the current function at the top. When you inspect a function in the call chain, by
double-clicking on any function call frame, the contents of all affected windows will be
updated to display the state of that particular call frame. This includes the editor, Locals,
Register, Watch and Disassembly windows. A function would normally not make use of
all registers, so these registers might have undefined states and be displayed as dashes
(---). For reference information about the Call Stack window, see Call Stack window,
page 288.

In the editor and Disassembly windows, a green highlight indicates the topmost, or
current, call frame; a yellow highlight is used when inspecting other frames.

For your convenience, it is possible to select a function in the call stack and click the
Run to Cursor command—available on the Debug menu, or alternatively on the
context menu—to execute to that function.

Assembler source code does not automatically contain any backtrace information. To be
able to see the call chain also for your assembler modules, you can add the appropriate
CFI assembler directives to the source code. For further information, see the |AR
Assembler Reference Guide.

Terminal input and output

IAR Embedded Workbench® IDE
User Guide

Sometimes you might need to debug constructions in your application that use stdin
and stdout without an actual hardware device for input and output. The Terminal I/O
window—available on the View menu—Ilets you enter input to your application, and
display output from it. This facility can be useful in two different contexts:

e If your application uses stdin and stdout
e For producing debug trace printouts.

To use this window, you need to link your application with the option With 1/0
emulation modules. C-SPY will then direct stdin, stdout, and stderr to this
window.

For reference information, see Terminal I/O window, page 289.

Directing stdin and stdout to a file

You can also direct stdin and stdout directly to a file. You can then open the file in
another tool, for instance an editor, to navigate and search within the file for particularly
interesting parts. The Terminal 1/O Log Files dialog box—available by choosing

Executing your application __¢

Debug>L ogging—allows you to select a destination log file, and to log terminal I/O
input and output from C-SPY to this file.

For reference information, see Terminal 1/0O Log File dialog box, page 301.

Part 4. Debugging 119

Terminal input and output

IAR Embedded Workbench® IDE
120 User Guide

Working with variables
and expressions

This chapter defines the variables and expressions used in C-SPY®. It also
demonstrates the different methods for examining variables and expressions.

C-SPY expressions

C-SPY lets you examine the C variables, C expressions, and assembler symbols that you
have defined in your application code. In addition, C-SPY allows you to define C-SPY
macro variables and macro functions and use them when evaluating expressions.
Expressions that are built with these components are called C-SPY expressions and
there are several methods for monitoring these in C-SPY.

C-SPY expressions can include any type of C expression, except function calls. The
following types of symbols can be used in expressions:

o C/C++ symbols

o Assembler symbols (register names and assembler labels)
o C-SPY macro functions

o C-SPY macro variables

Examples of valid C-SPY expressions are:

i+ 3

i = 42

#asm_label

#R2

#PC

my_macro_func (19)

C SYMBOLS

C symbols are symbols that you have defined in the C source code of your application,
for instance variables, constants, and functions. C symbols can be referenced by their
names.

Using sizeof

According to the ISO/ANSI C standard, there are two syntactical forms of sizeof:

sizeof (type)

Part 4. Debugging 121

C-SPY expressions

122

IAR Embedded Workbench® IDE
User Guide

sizeof expr

The former is for types and the latter for expressions.

In C-SPY, do not use parentheses around an expression when you use the sizeof
operator. For example, use sizeof x+2 instead of sizeof (x+2).
ASSEMBLER SYMBOLS

Assembler symbols can be assembler labels or register names. That is, general purpose
registers and special purpose registers, such as the program counter and the status
register. If a device description file is used, all memory-mapped peripheral units, such
as I/0 ports, can also be used as assembler symbols in the same way as the CPU
registers. See Selecting a device description file, page 110.

Assembler symbols can be used in C-SPY expressions if they are prefixed by #.

Example What it does

#pc++ Increments the value of the program counter.

myptr = #label7 Setsmyptr to the integral address of 1abel7 within its zone.

Table 9: C-SPY assembler symbols expressions

In case of a name conflict between a hardware register and an assembler label, hardware
registers have a higher precedence. To refer to an assembler label in such a case, you
must enclose the label in back quotes * (ASCII character 0x60). For example:

Example What it does
#pc Refers to the program counter.
pc’ Refers to the assembler label pc.

Table 10: Handling name conflicts between hardware registers and assembler labels

Which processor-specific symbols are available by default can be seen in the Register
window, using the CPU Registers register group. See Register groups, page 140.
MACRO FUNCTIONS

Macro functions consist of C-SPY variable definitions and macro statements which are
executed when the macro is called.

For details of C-SPY macro functions and how to use them, see The macro language,
page 144.
MACRO VARIABLES

Macro variables are defined and allocated outside your application, and can be used in
a C-SPY expression. In case of a name conflict between a C symbol and a C-SPY macro

Working with variables and expressions ___¢

variable, the C-SPY macro variable will have a higher precedence than the C variable.
Assignments to a macro variable assigns both its value and type.

For details of C-SPY macro variables and how to use them, see The macro language,
page 361.

Limitations on variable information

The value of a C variable is valid only on step points, that is, the first instruction of a
statement and on function calls. This is indicated in the editor window with a bright
green highlight color. In practice the value of the variable is accessible and correct more
often than that.

When the program counter is inside a statement, but not at a step point, the statement or
part of the statement is highlighted with a pale variant of the ordinary highlight color.

EFFECTS OF OPTIMIZATIONS

The compiler is free to optimize the application software as much as possible, as long
as the expected behavior remains. Depending on your project settings, a high level of
optimization results in smaller or faster code, but also in increased compile time.
Debugging might be more difficult because it will be less clear how the generated
code relates to the source code. Typically, using a high optimization level can affect
the code in a way that will not allow you to view a value of a variable as expected.

Consider this example:

foo ()

{
int 1 = 42;

x = bar(i); //Not until here the value of i is known to C-SPY

}

From the point where the variable i is declared until it is actually used there is no need
for the compiler to waste stack or register space on it. The compiler can optimize the
code, which means C-SPY will not be able to display the value until it is actually used.
If you try to view a value of a variable that is temporarily unavailable, C-SPY will
display the text:

Unavailable

If you need full information about values of variables during your debugging session,
you should make sure to use the lowest optimization level during compilation, that is,
None.

Part 4. Debugging 123

Viewing variables and expressions

124

Viewing variables and expressions

IAR Embedded Workbench® IDE
User Guide

There are several methods for looking at variables and calculating their values:

e Tooltip watch—in the editor window—provides the simplest way of viewing the
value of a variable or more complex expressions. Just point at the variable with the
pointer. The value will be displayed next to the variable.

e The Auto window—available from the View menu—automatically displays a
useful selection of variables and expressions in, or near, the current statement.

e The Locals window—available from the View menu—automatically displays the
local variables, that is, auto variables and function parameters for the active
function.

e The Watch window—available from the View menu—allows you to monitor the
values of C-SPY expressions and variables.

e The Live Watch window—available from the View menu—repeatedly samples and
displays the value of expressions while your application is executing. Variables in
the expressions must be statically located, such as global variables.

e The Statics window—available from the View menu—automatically displays the
values of variables with static storage duration.

e The Quick Watch window, see Using the Quick Watch window, page 125.
e The Trace system, see Using the trace system, page 125.
For text that is to wide to fit in a column—in any of the above windows, except the Trace

window—and thus is truncated, just point at the text with the mouse pointer and tooltip
information will be displayed.

For reference information about the different windows, see C-SPY windows, page 269.

WORKING WITH THE WINDOWS

All the windows are easy to use. You can add, modify, and remove expressions, and
change the display format.

A context menu containing useful commands is available in all windows if you
right-click in each window. Convenient drag-and-drop between windows is supported,
except for in the Locals window and the Quick Watch window where it is not applicable.

To add a value you can also click in the dotted rectangle and type the expression you
want to examine. To modify the value of an expression, click in the Value field and
modify its content. To remove an expression, select it and press the Delete key.

Working with variables and expressions ___¢

Using the Quick Watch window

The Quick Watch window—available from the View menu—Iets you watch the value
of a variable or expression and evaluate expressions.

The Quick Watch window is different from the Watch window in the following ways:

o The Quick Watch window offers a fast method for inspecting and evaluating
expressions. Right-click on the expression you want to examine and choose Quick
Watch from the context menu that appears. The expression will automatically
appear in the Quick Watch window.

e In contrast to the Watch window, the Quick Watch window gives you precise control
over when to evaluate the expression. For single variables this might not be
necessary, but for expressions with side effects, such as assignments and C-SPY
macro functions, it allows you to perform evaluations under controlled conditions.

USING THE TRACE SYSTEM

A traceis arecorded sequence of events in the target system, typically executed machine
instructions. Depending on what C-SPY driver you are using, additional types of trace
data can be recorded. For example, read and write accesses to memory, as well as the
values of C-SPY expressions.

By using the trace system, you can trace the program flow up to a specific state, for
instance an application crash, and use the trace information to locate the origin of the
problem. Trace information can be useful for locating programming errors that have
irregular symptoms and occur sporadically. Trace information can also be useful as test
documentation.

The trace system is not supported by all C-SPY drivers. For detailed information about
the trace system and the components provided by the C-SPY driver you are using, see
the corresponding driver documentation in Simulator-specific debugging, page 159 and
the online help system, respectively.

Which trace system functionality that is provided depends on the C-SPY driver you are
using. However, for all C-SPY drivers that support the trace system, the Trace window,
the Find in Trace window, and the Find in Trace dialog box are always available. You
can save the trace information to a file to be analyzed later.

The Trace window and its browse mode

The type of information that is displayed in the Trace window depends on the C-SPY

driver you are using. The different trace data is displayed in separate columns, but the
Trace column is always available if the driver you are using supports the trace system.
The corresponding source code can also be shown.

Part 4. Debugging 125

Viewing variables and expressions

126

IAR Embedded Workbench® IDE
User Guide

You can follow the execution history by simply looking and scrolling in the Trace
window. Alternatively, you can enter browse mode. To enter browse mode, double-click
an item in the Trace window, or click the Browsetoolbar button. The selected item turns
yellow and the source and disassembly windows will highlight the corresponding
location. You can now move around in the Trace window by using the up and down
arrow keys, or by scrolling and clicking; the source and Disassembly windows will be
updated to show the corresponding location. Double-click again to leave browse mode.

Searching in the trace data

You can perform advanced searches in the recorded trace data. You specify the search
criteria in the Find in Trace dialog box and view the result in the Find in Trace window.

The Find in Trace window is very similar to the Trace window, showing the same
columns and data, but only those rows that match the specified search criteria.
Double-clicking an item in the Find in Trace window brings up the same item in the
Trace window.

VIEWING ASSEMBLER VARIABLES

An assembler label does not convey any type information at all, which means C-SPY
cannot easily display data located at that label without getting extra information. To
view data conveniently, C-SPY treats, by default, all data located at assembler labels as
variables of type int. However, in the Watch, Quick Watch, and Live Watch windows,
you can select a different interpretation to better suit the declaration of the variables.

asmmain. asm

asmvarl:
ASWVAarz:
asmvarsi:
asmvard:

Srmain

PUBLIC

COMMON
CODE32

RSEG

DC32
DC32
DCE
DCE

CODE32
NOP
E main

Working with variables and expressions ___¢

In this figure, you can see four variables in the Watch window and their corresponding
declarations in the assembler source file to the left:

main

main

INTVEC: CODE

main

ICODE: CODE

42
456
55
10

main

[v]

Expression Yalue Location Type
asrmwvarl 42 0=8000 int
asrar? 456 0x8004 int
asrvard 55 0=8008 <G-hit unsigned>
Add
Remove

v Default Farmak
Binary Formak
COckal Format
Drecimal Format
Hezxadecimal Format
Char Formak

16-bit Signed
16-bit Unsigned
32-bit Signed

32-bit Unsigned

Figure 39: Viewing assembler variables in the Watch window

Note that asmvar4 is displayed as an int, although the original assembler declaration
probably intended for it to be a single byte quantity. From the context menu you can
make C-SPY display the variable as, for example, an 8-bit unsigned variable. This has
already been specified for the asmvar3 variable.

Part 4. Debugging 127

Viewing variables and expressions

IAR Embedded Workbench® IDE
128 User Guide

Using breakpoints

This chapter describes the breakpoint system and different ways to create and
monitor breakpoints.

The breakpoint system

The C-SPY® breakpoint system lets you set various kinds of breakpoints in the
application you are debugging, allowing you to stop at locations of particular interest.
You can set a breakpoint at a code location to investigate whether your program logic is
correct, or to get trace printouts. In addition to code breakpoints, and depending on what
C-SPY driver you are using, additional breakpoint types might be available. For
example, you might be able to set a data breakpoint, to investigate how and when the
data changes. If you are using the simulator driver you can also set immediate
breakpoints.

All your breakpoints are listed in the Breakpoints window where you can conveniently
monitor, enable, and disable them.

You can let the execution stop only under certain conditions, which you specify. It is also
possible to let the breakpoint trigger a side effect, for instance executing a C-SPY macro
function, without stopping the execution. The macro function can be defined to perform
a wide variety of actions, for instance, simulating hardware behavior.

You can set breakpoints while you edit your code even if no debug session is active. The
breakpoints will then be validated when the debug session starts. Breakpoints are
preserved between debug sessions. C-SPY provides different ways of defining
breakpoints.

All these possibilities provide you with a flexible tool for investigating the status of your
application.

Defining breakpoints

The breakpoints you define will appear in the Breakpoints window. From this window
you can conveniently view all breakpoints, enable and disable breakpoints, and open a
dialog box for defining new breakpoints. For more details, see Breakpoints window,
page 209.

Breakpoints are set with a higher precision than single lines, in analogy with the step
mechanism; for more details about the step precision, see Sep, page 114.

Part 4. Debugging

129

Defining breakpoints

You can set a breakpoint in several different ways: using the Toggle Breakpoint
command, from the Memory window, from a dialog box, or using predefined system
macros. The different methods allow different levels of complexity and automation.

TOGGLING A SIMPLE CODE BREAKPOINT

Toggling a code breakpoint is a quick method of setting a breakpoint. The following
methods are available both in the editor window and in the Disassembly window:
o Double-click in the gray left-side margin of the window

e Place the insertion point in the C source statement or assembler instruction where
!? you want the breakpoint, and click the Toggle Breakpoint button in the toolbar

e Choose Edit>Toggle Breakpoint
e Right-click and choose Toggle Breakpoint from the context menu.

Breakpoint icons

A breakpoint is marked with an icon in the left margin of the editor window, and the icon
is different for code and for log breakpoints:

Tutar.c W |
Code breakpoint \ unsigned int get fib(int nr)
{
Log breakpoint —__ ® —
)

Log @ Lilities.c:37.5
Memory: Dx68 [Fetch]

Disabled code —C return | 0 j:

breakpoint }
i

Figure 40: Breakpoint icons

Tooltip information

@ If the breakpoint icon does not appear, make sure the option Show bookmarksis
selected, see Editor options, page 244.

@ Just point at the breakpoint icon with the mouse pointer to get detailed tooltip
information about all breakpoints set on the same location. The first row gives user
breakpoint information, the following rows describe the physical breakpoints used for
implementing the user breakpoint. The latter information can also be seen in the
Breakpoint Usage dialog box.

Note: The breakpoint icons might look different for the C-SPY driver you are using.
For more information about breakpoint icons, see the driver-specific documentation.

IAR Embedded Workbench® IDE
130 User Guide

H W N

Using breakpoints ___¢

SETTING A BREAKPOINT IN THE MEMORY WINDOW

It is possible to set breakpoints directly on a memory location in the Memory window.
Right-click in the window and choose the breakpoint command from the context menu
that appears. To set the breakpoint on a range, select a portion of the memory contents.

The breakpoint is not highlighted; you can see, edit, and remove it by using the
Breakpoints window, which is available from the View menu. The breakpoints you set
in this window will be triggered for both read and write access. All breakpoints defined
in the Memory window are preserved between debug sessions.

Setting different types of breakpoints in the Memory window is only supported if the
driver you use supports these types of breakpoints.
DEFINING BREAKPOINTS USING THE DIALOG BOX

The advantage of using the dialog box is that it provides you with a graphical interface
where you can interactively fine tune the characteristics of the breakpoints. You can set
the options and quickly test whether the breakpoint works according to your intentions.

To define a new breakpoint:

Choose View>Breakpointsto open the Breakpoints window.

In the Breakpoints window, right-click to open the context menu.
On the context menu, choose New Breakpoint.

On the submenu, choose the breakpoint type you want to set. Depending on the C-SPY
driver you are using, different breakpoint types might be available.

To modify an existing breakpoint:
Choose View>Breakpointsto open the Breakpoints window.

In the Breakpoints window, select the breakpoint you want to modify and right-click to
open the context menu.

On the context menu, choose Edit.

A breakpoint dialog box appears. Specify the breakpoint settings and click OK. The
breakpoint will be displayed in the Breakpoints window.

All breakpoints you define using a breakpoint dialog box are preserved between debug
sessions.

For reference information about code and log breakpoints, see Code breakpoints dialog
box, page 210 and Log breakpoints dialog box, page 212, respectively. For details about
any additional breakpoint types, see the driver-specific documentation.

Part 4. Debugging 131

Defining breakpoints

132

IAR Embedded Workbench® IDE
User Guide

Tracing incorrect function arguments

If a function with a pointer argument is sometimes incorrectly called with a NULL
argument, it is useful to put a breakpoint on the first line of the function with a condition
that is true only when the parameter is 0. The breakpoint will then not be triggered until
the problematic situation actually occurs.

Performing a task with or without stopping execution

You can perform a task when a breakpoint is triggered with or without stopping the
execution.

You can use the Action text box to associate an action with the breakpoint, for instance
a C-SPY macro function. When the breakpoint is triggered and the execution of your
application has stopped, the macro function will be executed.

If you instead want to perform a task without stopping the execution, you can set a
condition which returns 0 (false). When the breakpoint is triggered, the condition will
be evaluated and since it is not true execution will continue.

Consider the following example where the C-SPY macro function performs a simple
task:

__Vvar my_counter;

count ()

{
my_counter += 1;
return 0;

}

To use this function as a condition for the breakpoint, type count () in the EXpression
text box under Conditions. The task will then be performed when the breakpoint is
triggered. Because the macro function count returns 0, the condition is false and the
execution of the program will resume automatically, without any stop.

DEFINING BREAKPOINTS USING SYSTEM MACROS

You can define breakpoints not only by using the Breakpoints dialog box but also by
using built-in C-SPY system macros. When you use macros for defining breakpoints,
the breakpoint characteristics are specified as function parameters.

Macros are useful when you have already specified your breakpoints so that they fully
meet your requirements. You can define your breakpoints in a macro file by using
built-in system macros and execute the file at C-SPY startup. The breakpoints will then
be set automatically each time you start C-SPY. Another advantage is that the debug
session will be documented, and that several engineers involved in the development
project can share the macro files.

Using breakpoints ___¢

If you use system macros for setting breakpoints it is still possible to view and modify
them in the Breakpoints window. In contrast to using the dialog box for defining
breakpoints, all breakpoints that are defined using system macros will be removed when
you exit the debug session.

The following breakpoint macros are available:

__setCodeBreak
__setDataBreak
__setSimBreak
__clearBreak

For details of each breakpoint macro, see the chapter C-SPY® macros reference.

Defining breakpoints at C-SPY startup using a setup macro file

You can use a setup macro file to define breakpoints at C-SPY startup. Follow the
procedure described in Registering and executing using setup macros and setup files,
page 147.

Viewing all breakpoints

To view breakpoints, you can use the Breakpoints window and the Breakpoints Usage
dialog box.

For information about the Breakpoints window, see Breakpoints window, page 209.

USING THE BREAKPOINT USAGE DIALOG BOX

The Breakpoint Usage dialog box—available from C-SPY driver-specific menus, for
example the Simulator menu—Ilists all active breakpoints.

Breakpoint Usage [%]

[Fetch
-SSP Terminal 140 & libsupport module

Figure 41: Breakpoint Usage dialog box

Part 4. Debugging 133

Viewing all breakpoints

134

IAR Embedded Workbench® IDE
User Guide

The Breakpoint Usagedialog box lists all breakpoints currently set in the target system,
both the ones you have defined and the ones used internally by C-SPY. For each
breakpoint in the list, the address and access type are shown. Each breakpoint can also
be expanded to show its originator. The format of the items in this dialog box depends
on which C-SPY driver you are using.

The dialog box gives a low-level view of all breakpoints, related but not identical to the
list of breakpoints shown in the Breakpoints dialog box.

Exceeding the number of available low-level breakpoints will cause the debugger to
single step. This will significantly reduce the execution speed. Therefore, in a debugger
system with a limited amount of breakpoints, the Breakpoint Usage dialog box can be
useful for:

e Identifying all consumers of breakpoints
o Checking that the number of active breakpoints is supported by the target system

o Configuring the debugger to utilize the available breakpoints in a better way, if
possible.

For information about the available number of breakpoints in the debugger system you
are using and how to use the available breakpoints in a better way, see the section about
breakpoints in the part of this book that corresponds to the debugger system you are
using.

Breakpoint consumers
There are several consumers of breakpoints in a debugger system.

User breakpoints—the breakpoints you define by using the Breakpoints dialog box or
by toggling breakpoints in the editor window—often consume one low-level breakpoint
each, but this can vary greatly. Some user breakpoints consume several low-level
breakpoints and conversely, several user breakpoints can share one low-level
breakpoint. User breakpoints are displayed in the same way both in the Breakpoint
Usage dialog box and in the Breakpoints window, for example Data @[R]
callCount.

C-SPY itself also consumes breakpoints. C-SPY will set a breakpoint if:

o the C-SPY option Run to has been selected, and any step command is used. These
are temporary breakpoints which are only set when the debugger system is running.
This means that they are not visible in the Breakpoint Usage window.

e the linker options With 1/O emulation modules has been selected.

These types of breakpoint consumers are displayed in the Breakpoint Usage dialog
box, for example, C-SPY Terminal I/0 & libsupport module.

Using breakpoints °

C-SPY plugin modules, for example modules for real-time operating systems, can
consume additional breakpoints. Specifically, by default the Stack window consumes a
breakpoint. To disable the breakpoint used by the Stack window:

e Choose Tools>Options>Stack.
e Deselect the Stack pointer(s) not valid until program reaches: label option.

Part 4. Debugging

135

Viewing all breakpoints

IAR Embedded Workbench® IDE
136 User Guide

Monitoring memory and
registers

This chapter describes how to use the features available in the IAR C-SPY®
Debugger for examining memory and registers.

Memory addressing

In C-SPY, the term zoneis used for a named memory area. A memory address, or
location, is a combination of a zone and a numerical offset into that zone. Memory zones
are used in several contexts, perhaps most importantly in the Memory and Disassembly
windows. The Zonebox in these windows allows you to choose which memory zone to
display.

Memory zones are defined in the device description files. For further information, see
Selecting a device description file, page 110.

Windows for monitoring memory and registers

C-SPY provides many windows for monitoring memory and registers, each of them
available from the View menu:

o The Memory window

Gives an up-to-date display of a specified area of memory—a memory zone—and
allows you to edit it. Different colors are used for indicating data coverage along with
execution of your application. You can fill specified areas with specific values and
you can set breakpoints directly on a memory location or range. You can open several
instances of this window, to monitor different memory areas.

o The Symbolic memory window

Displays how variables with static storage duration are laid out in memory. This can
be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example by buffer overruns.

o The Stack window

Displays the contents of the stack, including how stack variables are laid out in
memory. In addition, some integrity checks of the stack can be performed to detect
and warn about problems with stack overflow. For example, the Stack window is
useful for determining the optimal size of the stack.

Part 4. Debugging 137

Windows for monitoring memory and registers

138

Go to memory —
address

IAR Embedded Workbench® IDE
User Guide

o The Register window
Gives an up-to-date display of the contents of the processor registers and SFRs, and
allows you to edit them.

You can easily view the memory contents for a specific variable by dragging the variable
to the Memory window or the Symbolic memory window. The memory area where the
variable is located will appear.

USING THE MEMORY WINDOW

The Memory window gives an up-to-date display of a specified area of memory and
allows you to edit it.

Zone display
Gotol j IMemory j E

30 0O 0O OO OO0 OO OO0 0O CO OO OO OO0 OO0 OO 00 OO0 OO0
40 0O 0O OO OO0 OO OO 0O OO OO OO0 OO0 OO0 OO 00 OO0 OO0
50 00 C0O 00 00 00 0O 00 00 OO0 00 00 00 00 c3 00 02
60 Oa 00 [k 02 3 B
70 B -

80 cd cd cd cd cd cd cd cd cd cd cd cd cd cd cd cd
90 cd cd cd cd cd cd cd cd cd cd cd cd cd cd cd cd
a0 cd cd cd cd cd cd cd cd cd cd cd cd 37 00 76 0O
b0 00 00 09 £f 06 00 cd cd cd cd cd cd cd cd 00 al

1

Figure 42: Memory window

The display area shows the addresses currently being viewed, the memory contents in

the format you have chosen, and the memory contents in ASCII format. You can edit the
contents of the Memory window, both in the hexadecimal part and the ASCII part of the
window.

For reference information, see Memory window, page 273. See also Setting a breakpoint
in the Memory window, page 131.

USING THE STACK WINDOW

Before you can open the Stack window you must make sure it is enabled; Choose
Pr oj ect>Options>Debugger >Plugins and select Stack from the list of plugins. In
C-SPY, you can then open a Stack window by choosing View>Stack. You can open

Monitoring memory and registers ___¢

several instances of the Stack window, each showing a different stack—if several stacks
are available—or the same stack with different display settings.

. Current stack
Stack view pointer Used stack memory, Unused stack memory,

in dark gray in light gray

The graphical stack bar
with tooltip information

Cliani: gadk Location | Data. Yariable Yalue |Frame |

pointer 0x08
+1 0x08
+2 0x0000 p.mStatus 0 [1] _exit
+4 Ox4Rh
+5 0x67
+6 OxEOQ
+7 0Ox04

Figure 43: Stack window

For detailed reference information about the Stack window, and the method used for
computing the stack usage and its limitations, see Sack window, page 293. For reference
information about the options specific to the window, see Stack options, page 257.

@ Place the mouse pointer over the stack bar to get tool tip information about stack usage.

Detecting stack overflows

If you have selected the option Enable stack checks, available by choosing
Tools>Options>Stack, you have also enabled the functionality needed to detect stack
overflows. This means that C-SPY can issue warnings for stack overflow when the
application stops executing. Warnings are issued either when the stack usage exceeds a
threshold that you can specify, or when the stack pointer is outside the stack memory
range.

Viewing the stack contents

The display area of the Stack window shows the contents of the stack, which can be

useful in many contexts. Some examples are:

e Investigating the stack usage when assembler modules are called from C modules
and vice versa

e Investigating whether the correct elements are located on the stack

e Investigating whether the stack is restored properly.

Part 4. Debugging 139

Windows for monitoring memory and registers

WORKING WITH REGISTERS

The Register window gives an up-to-date display of the contents of the processor
registers and special function registers, and allows you to edit them.

IEF'U Registers j
PC = 0O=xll62 Ri2 = 0=0200
8P = 0=09F8 R13 = 0=FFFF
FHer = 0=z0000 R14 = 0x0000
R4 = 0=x78ZD Ri5 = 0=0000
RE = 0=6BEE CYCLECOUNTER = 276
R6 = 0=5E95
R7 = 0x763B
RE = O=x4A65
RO = 0=27C3
Ri0 = 0=002D
Ri1 = 0=x7064

Figure 44: Register window

Every time C-SPY stops, a value that has changed since the last stop is highlighted. To
edit the contents of a register, click it, and modify the value. Some registers can be
expanded to show individual bits or subgroups of bits.

You can change the display format by changing the Base setting on the Register Filter
page—available by choosing Tools>Options.

Register groups

Due to the large amount of registers—memory-mapped peripheral unit registers and
CPU registers—it is inconvenient to show all registers concurrently in the Register
window. Instead you can divide registers into register groups. By default there is only
one register group in the debugger: CPU Registers.

In addition to the CPU Register s there are additional register groups predefined in the
device description files—available in the cpuname\config directory—that make all
SER registers available in the register window. The device description file contains a
section that defines the special function registers and their groups.

You can select which register group to display in the Register window using the
drop-down list. You can conveniently keep track of different register groups
simultaneously, as you can open several instances of the Register window.

Enabling predefined register groups

To use any of the predefined register groups, select a device description file that suits
your device, see Selecting a device description file, page 110.

IAR Embedded Workbench® IDE
140 User Guide

Monitoring memory and registers ___¢

The available register groups will be listed on the Register Filter page available if you
choose the Tools>Options command when C-SPY is running.

Defining application-specific groups

In addition to the predefined register groups, you can create your own register groups
that better suit the use of registers in your application.

To define new register groups, choose Tools>Optionsand click the Register Filter tab.
This page is only available when the IAR C-SPY Debugger is running.

IDE Dptions [%]

Comrmon Fonts X §
Key Bindings ¥ Use register filter Groups:

Editar IMyFiIter.fIt Filter Files... | I - l
Messages
Project: (=~ CPU Registers

Source Code Contral
Debugger

Stack.

Register Filker

o Terminal jfis]

Group members:

QK | Cancel | Apply | Help |

Figure 45: Register Filter page
For reference information about this dialog box, see Register Filter options, page 259.

Part 4. Debugging 141

Windows for monitoring memory and registers

IAR Embedded Workbench® IDE
142 User Guide

Using the C-SPY® macro
system

The IAR C-SPY Debugger includes a comprehensive macro system which
allows you to automate the debugging process and to simulate peripheral
devices. Macros can be used in conjunction with complex breakpoints and
interrupt simulation to perform a wide variety of tasks.

This chapter describes the macro system, its features, for what purpose these
features can be used, and how to use them.

The macro system

C-SPY macros can be used solely or in conjunction with complex breakpoints and
interrupt simulation to perform a wide variety of tasks. Some examples where macros
can be useful:

e Automating the debug session, for instance with trace printouts, printing values of
variables, and setting breakpoints.

e Hardware configuring, such as initializing hardware registers.

o Developing small debug utility functions, for instance calculating the stack depth.

e Simulating peripheral devices, see the chapter Smulating interrupts. This only
applies if you are using the simulator driver.

The macro system has several features:

e The similarity between the macro language and the C language, which lets you
write your own macro functions.

e Predefined system macros which perform useful tasks such as opening and closing
files, setting breakpoints and defining simulated interrupts.

e Reserved setup macro functions which can be used for defining at which stage the
macro function should be executed. You define the function yourself, in a setup
macro file.

e The option of collecting your macro functions in one or several macro files.

e A dialog box where you can view, register, and edit your macro functions and files.
Alternatively, you can register and execute your macro files and functions using
either the setup functionality or system macros.

Part 4. Debugging 143

The macro system

144

IAR Embedded Workbench® IDE
User Guide

Many C-SPY tasks can be performed either by using a dialog box or by using macro
functions. The advantage of using a dialog box is that it provides you with a graphical
interface where you can interactively fine-tune the characteristics of the task you want
to perform, for instance setting a breakpoint. You can add parameters and quickly test
whether the breakpoint works according to your intentions.

Macros, on the other hand, are useful when you already have specified your breakpoints
so that they fully meet your requirements. You can set up your simulator environment
automatically by writing a macro file and executing it, for instance when you start
C-SPY. Another advantage is that the debug session will be documented, and if there are
several engineers involved in the development project you can share the macro files
within the group.

THE MACRO LANGUAGE

The syntax of the macro language is very similar to the C language. There are macro
statements, which are similar to C statements. You can define macro functions, with or
without parameters and return values. You can use built-in system macros, similar to C
library functions. Finally, you can define global and local macro variables. For a
detailed description of the macro language components, see The macro language, page
361.

Example

Consider this example of a macro function which illustrates the different components of
the macro language:

CheckLatest (value)
{

oldvalue;

if (oldvalue != value)

{

__message "Message: Changed from ", oldvalue, " to ", value;

oldvalue = value;
}
}

Note: Reserved macro words begin with double underscores to prevent name conflicts.

THE MACRO FILE

You collect your macro variables and functions in one or several macro files. To define
a macro variable or macro function, first create a text file containing the definition. You
can use any suitable text editor, such as the editor supplied with the IAR Embedded
Workbench IDE. Save the file with a suitable name using the filename extension mac.

Using the C-SPY® macro system __4

Setup macro file

It is possible to load a macro file at C-SPY startup; such a file is called a setup macro
file. This is especially convenient if you want to make C-SPY perform actions before
you load your application software, for instance to initialize some CPU registers or
memory-mapped peripheral units. Other reasons might be if you want to automate the
initialization of C-SPY, or if you want to register multiple setup macro files. An example
of a C-SPY setup macro file SetupSimple.mac can be found in the cpuname\tutor
directory.

For information about how to load a setup macro file, see Registering and executing
using setup macrosand setup files, page 147. For an example of how to use setup macro
files, see the chapter Smulating an interrupt in Part 2. Tutorials.

SETUP MACRO FUNCTIONS

The setup macro functions are reserved macro function names that will be called by
C-SPY at specific stages during execution. The stages to choose between are:

e After communication with the target system has been established but before
downloading the application software

e Once after your application software has been downloaded
o FEach time the reset command is issued

o Once when the debug session ends.

To define a macro function to be called at a specific stage, you should define and register
a macro function with the name of a setup macro function. For instance, if you want to
clear a specific memory area before you load your application software, the macro setup
function execUserPreload is suitable. This function is also suitable if you want to
initialize some CPU registers or memory mapped peripheral units before you load your
application software. For detailed information about each setup macro function, see
Setup macro functions summary, page 366.

As with any macro function, you collect your setup macro functions in a macro file.
Because many of the setup macro functions execute before main is reached, you should
define these functions in a setup macro file.

Using C-SPY macros
If you decide to use C-SPY macros, you first need to create a macro file in which you
define your macro functions. C-SPY needs to know that you intend to use your defined
macro functions, and thus you must register (load) your macro file. During the debug
session you might need to list all available macro functions as well as execute them.

Part 4. Debugging 145

Using C-SPY macros

146

IAR Embedded Workbench® IDE
User Guide

To list the registered macro functions, you can use the Macro Configuration dialog
box. There are various ways to both register and execute macro functions:

e You can register a macro interactively by using the Macro Configuration dialog
box.

® You can register and execute macro functions at the C-SPY startup sequence by
defining setup macro functions in a setup macro file.

e A file containing macro function definitions can be registered using the system
macro __ registerMacroFile. This means that you can dynamically select
which macro files to register, depending on the runtime conditions. Using the
system macro also lets you register multiple files at the same moment. For details
about the system macro, see __registerMacroFile, page 376.

o The Quick Watch window lets you evaluate expressions, and can thus be used for
executing macro functions.

e A macro can be connected to a breakpoint; when the breakpoint is triggered the
macro will be executed.

USING THE MACRO CONFIGURATION DIALOG BOX

The Macro Configuration dialog box—available by choosing Debug>M acr os—lets
you list, register, and edit your macro files and functions. The dialog box offers you an
interactive interface for registering your macro functions which is convenient when you
develop macro functions and continuously want to load and test them.

Using the C-SPY® macro system __4

Macro functions that have been registered using the dialog box will be deactivated when
you exit the debug session, and will not automatically be registered at the next debug
session.

Macro Configuration BE
Look in: Ia tutaor j - I‘j‘ v
_1Debug
1 settings

Setupadvanced. mac
SetupSimple. mac

File name: ISetupSimpIe.mac j
Files of type: IMacro Filez [*.mac] j
Selected Macro Files: Add |

C:hprojectshtutorS etupSimple. mac Add Al |
Remove |
Remave Al |

— Registered Macro .
Regist
(o] User € System ﬂl

Parameters | File

_canceldlinterrupts] - Spstem Macro -
__cancellnterupt int] - Spstem Macro -
_clearBreak [id) - Spstem Macro -
__clozeFile [file] - Spstem Macro - — ol
- ose |
__dizablelnterrupts Il - Spstem Macro -
__driverType [ztring] - Spstem Macro - LI Help |

Figure 46: Macro Configuration dialog box

For reference information about this dialog box, see Macro Configuration dialog box,
page 299.

REGISTERING AND EXECUTING USING SETUP MACROS AND
SETUP FILES

It can be convenient to register a macro file during the C-SPY startup sequence,
especially if you have several ready-made macro functions. C-SPY can then execute the
macros before main is reached. You achieve this by specifying a macro file which you
load before starting the debugger. Your macro functions will be automatically registered
each time you start the C-SPY Debugger.

If you define the macro functions by using the setup macro function names you can
define exactly at which stage you want the macro function to be executed.

Part 4. Debugging 147

Using C-SPY macros

148

IAR Embedded Workbench® IDE
User Guide

Follow these steps:
Create a new text file where you can define your macro function.
For example:

execUserSetup ()

{

__registerMacroFile("MyMacroUtils.mac") ;
_ _registerMacroFile("MyDeviceSimulation.mac") ;

}

This macro function registers the macro files MyMacroUtils.mac and
MyDeviceSimulation.mac. Because the macro function is defined with the
execUserSetup function name, it will be executed directly after your application has
been downloaded.

Save the file using the filename extension mac.

Before you start C-SPY, choose Project>Options and click the Setup tab in the
Debugger category. Select the check box Use Setup file and choose the macro file you
just created.

The interrupt macro will now be loaded during the C-SPY startup sequence.

EXECUTING MACROS USING QUICK WATCH

The Quick Watch window—available from the View menu—Ilets you watch the value

of any variables or expressions and evaluate them. For macros, the Quick Watch window
is especially useful because it is a method which lets you dynamically choose when to
execute a macro function.

Consider the following simple macro function which checks the status of a watchdog
timer interrupt enable bit:

WDTstatus ()
{
if (#WDreg & 0x01 != 0) /* Checks the status of WDTIE */
return "Timer enabled"; /* C-SPY macro string used */
else

return "Timer disabled"; /* C-SPY macro string used */

}
Save the macro function using the filename extension mac. Keep the file open.

To register the macro file, choose Debug>M acr os. The M acr o Configuration dialog
box appears. Locate the file, click Add and then Register. The macro function appears
in the list of registered macros.

Using the C-SPY® macro system __4

3 In the macro file editor window, select the macro function name WDTstatus.
Right-click, and choose Quick Watch from the context menu that appears.

Quick Watch B

G e =]

| Expression | Yalue | Location | Type |
WD Tstatus() "Timer disabled" macro string

Figure 47: Quick Watch window

The macro will automatically be displayed in the Quick Watch window.

Click Close to close the window.

EXECUTING A MACRO BY CONNECTING ITTO A
BREAKPOINT

You can connect a macro to a breakpoint. The macro will then be executed at the time
when the breakpoint is triggered. The advantage is that you can stop the execution at
locations of particular interest and perform specific actions there.

For instance, you can easily produce log reports containing information such as how the
values of variables, symbols, or registers changes. To do this you might set a breakpoint
on a suspicious location and connect a log macro to the breakpoint. After the execution
you can study how the values of the registers have changed.

For an example of how to create a log macro and connect it to a breakpoint, follow these
steps:

I Assume this skeleton of a C function in your application source code:

int fact(int x)

{

}
2 Create a simple log macro function like this example:

logfact ()
{
__message "fact(" ,x, ")";

}
The __message statement will log messages to the Log window.

Save the macro function in a macro file, with the filename extension mac.

Part 4. Debugging 149

Using C-SPY macros

150

IAR Embedded Workbench® IDE
User Guide

Before you can execute the macro it must be registered. Open the Macro
Configuration dialog box—available by choosing Debug>M acr os—and add your
macro file to the list Selected Macro Files. Click Register and your macro function
will appear in the list Registered Macros. Close the dialog box.

Next, you should toggle a code breakpoint—using the Toggle Breakpoint button—on
the first statement within the function fact in your application source code. Open the
Breakpoint dialog box—available by choosing Edit>Breakpoints—your breakpoint
will appear in the list of breakpoints at the bottom of the dialog box. Select the
breakpoint.

Connect the log macro function to the breakpoint by typing the name of the macro
function, logfact (), in the Action field and clicking Apply. Close the dialog box.

Now you can execute your application source code. When the breakpoint has been
triggered, the macro function will be executed. You can see the result in the Log
window.

You can easily enhance the log macro function by, for instance, using the __ fmessage
statement instead, which will print the log information to a file. For information about
the __fmessage statement, see Formatted output, page 364.

For a complete example where a serial port input buffer is simulated using the method
of connecting a macro to a breakpoint, see the chapter Smulating an interrupt in Part 2.
Tutorials.

Analyzing your application

Itis important to locate an application’s bottle-necks and to verify that all parts
of an application have been tested. This chapter presents facilities available in
the IAR C-SPY® Debugger for analyzing your application so that you can
efficiently spend time and effort on optimizations.

Function-level profiling

The profiler will help you find the functions where most time is spent during execution,
for a given stimulus. Those functions are the parts you should focus on when spending
time and effort on optimizing your code. A simple method of optimizing a function is to
compile it using speed optimization. Alternatively, you can move the function into the
memory which uses the most efficient addressing mode. For detailed information about
efficient memory usage, see the IAR C/C++ Compiler Reference Guide.

The Profiling window displays profiling information, that is, timing information for the
functions in an application. Profiling must be turned on explicitly using a button on the
window’s toolbar, and will stay active until it is turned off.

The profiler measures the time between the entry and return of a function. This means
that time consumed in a function is not added until the function returns or another
function is called. You will only notice this if you are stepping into a function.

For reference information about the Profiling window, see Profiling window, page 292.

USING THE PROFILER

Before you can use the Profiling window, you must build your application using the
following options:

Category Setting

C/C++ Compiler Output>Generate debug information
Linker Format>Debug information for C-SPY
Debugger Plugins>Profiling

Table 11: Project options for enabling profiling

After you have built your application and started C-SPY, choose View>Profiling to
open the window, and click the Activate button to turn on the profiler.

Click the Clear button, alternatively use the context menu available by right-clicking in
the window, when you want to start a new sampling.

Part 4. Debugging

Function-level profiling

cl 3 Start the execution. When the execution stops, for instance because the program exit is
reached or a breakpoint is triggered, click the Refresh button.

[olE|=]clof

Function | Calls | Flat Time (cycles) | Flat Time (%) | Accumulated Tim.. | Accumulated Tim. |
Qutside main 0 207 428 207 428
__datalb_memze.. 1 0 n.og 0 n.og
__putchar 24 72 149 72 149
_exit o 0 ono 0 ono
do_foreground_p... 10 280 79 3980 g2.23
exit 1 3 008 3 008
get_fib 26 390 8.06 390 8.06
init_fib 1 248 512 486 10.08
main 1 159 329 627 95.60
next_counter 10 70 1.45 70 1.45
put_fib 10 3336 68.93 3480 71.90
futchar 24 72 149 144 2498

Figure 48: Profiling window
Profiling information is displayed in the window.

Viewing the figures
Clicking on a column header sorts the entire list according to that column.

A dimmed item in the list indicates that the function has been called by a function which
does not contain source code (compiled without debug information). When a function
is called by functions that do not have their source code available, such as library
functions, no measurement in time is made.

There is always an item in the list called Outside main. This is time that cannot be placed
in any of the functions in the list. That is, code compiled without debug information, for
instance, all startup and exit code, and C/C++ library code.

= Clicking the Graph button toggles the percentage columns to be displayed either as
numbers or as bar charts.

Profiling]
[5F =(c|o|
Function | Calls | Flat Tirme (cycles) | Flat Time (32 | Accurmulsted T\m...| Accumulated Tim...|
Qutsicle main] 5 5
__datalb_memze.. 0 0 i}
__putchar 24 72 | 72 |
_ et i} 0 i}
dao_foreground_p... 10 280 | 3980 |
exit 1 3 3
get_fil 26 380 | 340]
init_filn 1 248 1 488 |
main 0 159 1 4627 |
next_countar 10 70 | 70 |
put_fib 10 3336 I 3480 |
putchar 24 72 | 144 1

Figure 49: Graphsin Profiling window

IAR Embedded Workbench® IDE
152 User Guide

Analyzing your application ___¢

Clicking the Show detailsbutton displays more detailed information about the function
selected in the list. A window is opened showing information about callers and callees
for the selected function:

¥ Profiling - Function details

Function: putchar -
Flat time 6571 cycles., Accumulated time 9329 cycles.
Callers:

Total: 538

Count Function

E14 do foreground_process
24 put_fib
Callees

Count Function

Figure 50: Function details window

Producing reports

To produce a report, right-click in the window and choose the Save Ascommand on the
context menu. The contents of the Profiling window will be saved to a file.

Code coverage

The code coverage functionality helps you verify whether all parts of your code have
been executed. This is useful when you design your test procedure to make sure that all
parts of the code have been executed. It also helps you identify parts of your code that
are not reachable.

USING CODE COVERAGE

The Code Coverage window—available from the View menu—reports the status of the
current code coverage analysis, that is, what parts of the code have been executed at least
once since the start of the analysis. The compiler generates detailed stepping
information in the form of step pointsat each statement, as well as at each function call.
The report includes information about all modules and functions. It reports the amount
of all step points, in percentage, that have been executed and lists all step points that have
not been executed up to the point where the application has been stopped. The coverage
will continue until turned off.

Part 4. Debugging

153

Code coverage

154

IAR Embedded Workbench® IDE
User Guide

For reference information about the Code Coverage window, see Code Coverage
window, page 290.

Before using the Code Coverage window you must build your application using the
following options:

Category Setting

C/C++ Compiler
Linker

Output>Generate debug information
Format>Debug information for C-SPY

Debugger Plugins>Code Coverage

Table 12: Project options for enabling code coverage

After you have built your application and started C-SPY, choose View>Code Cover age
to open the Code Coverage window and click Activate to switch on the code coverage
analyzer. The following window will be displayed:

Code Coverage B

[0 5] cf g
=% project] 91.18%
=% Tutar 100.00%
4 do_foreground_pracess 100.00%
% main 100.00%
@ next_counter 100.00%
Elc Ltilities 86.96%%
&9 get_fib 65.57%
L B 17238 addr(lx] 144)
& init_fib 100.00%
& @ put_fib 84.62%

Figure 51: Code Coverage window

Viewing the figures

The code coverage information is displayed in a tree structure, showing the program,
module, function and step point levels. The plus sign and minus sign icons allow you to
expand and collapse the structure.

The following icons are used to give you an overview of the current status on all levels:

o A red diamond signifies that 0% of the code has been executed

e A green diamond signifies that 100% of the code has been executed

e A red and green diamond signifies that some of the code has been executed
.

A yellow diamond signifies a step point that has not been executed.

Analyzing your application ___¢

The percentage displayed at the end of every program, module and function line shows
the amount of code that has been covered so far, that is, the number of executed step
points divided with the total number of step points.

For step point lines, the information displayed is the column number range and the row
number of the step point in the source window, followed by the address of the step point.

<column start>-<column end>:row.

A step point is considered to be executed when one of its instructions has been executed.
When a step point has been executed, it is removed from the window.

Double-clicking a step point or a function in the Code Coverage window displays that
step point or function as the current position in the source window, which becomes the
active window. Double-clicking a module on the program level expands or collapses the
tree structure.

An asterisk (*) in the title bar indicates that C-SPY has continued to execute, and that
the Code Coverage window needs to be refreshed because the displayed information is
no longer up to date. To update the information, use the Refresh command.

What parts of the code are displayed?

The window displays only Statements that have been compiled with debug information.
Thus, startup code, exit code and library code will not be displayed in the window.
Furthermore, coverage information for statements in inlined functions will not be
displayed. Only the statement containing the inlined function call will be marked as
executed.

Producing reports

To produce a report, right-click in the window and choose the Save AScommand on the
context menu. The contents of the Code Coverage window will be saved to a file.

Part 4. Debugging 155

Code coverage

IAR Embedded Workbench® IDE
156 User Guide

Part 5. IAR C-SPY®
Simulator

This part of the IAR Embedded Workbench® IDE User Guide contains the
following chapters:

o Simulator-specific debugging

e Simulating interrupts.

.hmuiuhhhi

157

ARARAIed

158

Simulator-specific
debugging

In addition to the general C-SPY® features, the C-SPY Simulator provides
some simulator-specific features, which are described in this chapter.

You will get reference information, as well as information about driver-specific
characteristics, such as memory access checking and breakpoints.

The IAR C-SPY Simulator introduction

The IAR C-SPY Simulator simulates the functions of the target processor entirely in
software, which means the program logic can be debugged long before any hardware is
available. As no hardware is required, it is also the most cost-effective solution for many
applications.

FEATURES

In addition to the general features listed in the chapter Product introduction, the IAR
C-SPY Simulator also provides:

Instruction-accurate simulated execution

Memory configuration and validation

Interrupt simulation

Immediate breakpoints with resume functionality

Peripheral simulation (using the C-SPY macro system).

SELECTING THE SIMULATOR DRIVER

Before starting the IAR C-SPY Debugger you must choose the simulator driver. In the
TAR Embedded Workbench IDE, choose Project>Options and click the Setup tab in
the Debugger category. Choose Simulator from the Driver drop-down list.

Depending on your product version, the list might or might not contain hardware
drivers. You can only choose a driver you have installed on your computer.

Part 5. IAR C-SPY Simulator 159

Simulator-specific menus

160

Simulator-specific menus

When you use the simulator driver, the Simulator menu is added in the menu bar.

SIMULATOR MENU

v Interrupt Setup. ..
Farced Interrupts
Interrupt Log
Memoary Access Setup..,

Trace
Function Trace

Breakpoint Usage

Figure 52: Smulator menu

The Simulator menu contains the following commands:

Menu command

Description

Interrupt Setup

Forced Interrupts

Interrupt Log

Memory Access Setup

Trace

Function Trace

Breakpoint Usage

Displays a dialog box to allow you to configure C-SPY interrupt
simulation; see Interrupt Setup dialog box, page 180.

Displays a window from which you can trigger an interrupt; see Forced
interrupt window, page 183.

Displays a window which shows the status of all defined interrupts; see
Interrupt Log window, page 185.

Displays a dialog box to simulate memory access checking by specifying
memory areas with different access types; see Memory Access setup dialog
box, page 166.

Opens the Trace window with the recorded trace data; see Trace window,
page 161.

Opens the Function Trace window with the trace data for which
functions were called or returned from; see Function Trace window, page
162.

Displays the Breakpoint Usage dialog box which lists all active
breakpoints; see Breakpoint Usage dialog box, page 175.

Table 13: Description of Smulator menu commands

Using the trace system in the simulator
In the C-SPY simulator, a traceis a recorded sequence of executed machine instructions.
In addition, you can record the values of C-SPY expressions by selecting the expressions
in the Trace Expressions window. The Function Trace window only shows trace data

IAR Embedded Workbench® IDE
User Guide

Simulator-specific debugging ___o

corresponding to calls to and returns from functions, whereas the Trace window displays
all instructions.

For more detailed information about using the common features in the trace system, see
Using the trace system, page 125.
TRACE WINDOW

The Trace window—available from the Simulator menu—displays a recorded
sequence of executed machine instructions. In addition, the window can display trace
data for expressions.

Trace =]
OXIEB2SYHE M
| Trace | call_count |:|
Z61 00000234 MOV 0x0002, R2
Z62 0000023C ER §+0x1E

=]
Z63 000o0o0z5a CHMP Ox0004, R2
Z64 00000zZ5C BLT §-0x1E
Z65 00000Z3E MOV Rz, Rl -
Z66 00000z40 JARL get £ih, LP soo T LI
Function Trace Trace ITrace Expressions =

Figure 53: Trace window

C-SPY generates trace information based on the location of the program counter.

The Trace window contains the following columns:

Trace window column Description

A serial number for each row in the trace buffer. Simplifies the
navigation within the buffer.

Trace The recorded sequence of executed machine instructions.
Optionally, the corresponding source code can also be displayed.

Expression Each expression you have defined to be displayed appears in a
separate column. Each entry in the expression column displays the
value dfter executing the instruction on the same row. You specify
the expressions for which you want to record trace information in
the Trace Expressions window; see Trace Expressions window, page
163.

Table 14: Trace window columns

For more information about using the trace system, see Using the trace system, page
125.

Part 5. IAR C-SPY Simulator 161

Using the trace system in the simulator

162

IAR Embedded Workbench® IDE
User Guide

TRACE TOOLBAR

The Trace toolbar is available in the Trace window and in the Function trace window:

Enable/Disable Find
Toggle Source

|
@XEQ,%?W F|E|

Clear trace data Browse Save Edit Expressions

Edit Settings
|

Figure 54: Trace toolbar

The following function buttons are available on the toolbar:

Toolbar button Description

Enable/Disable Enables and disables tracing. This button is not available in the
Function trace window.

Clear trace data Clears the trace buffer. Both the Trace window and the Function
trace window are cleared.

Toggle Source Toggles the Trace column between showing only disassembly or
disassembly together with corresponding source code.

Browse Toggles browse mode on and off for a selected item in the Trace
column. For more information about browse mode, see The Trace
window and its browse mode, page 125.

Find Opens the Find In Trace dialog box where you can perform a
search; see Find in Trace dialog box, page 164.

Save Opens a standard Save dialog box where you can save the
recorded trace information to a text file, with tab-separated
columns.

Edit Settings This button is not enabled in the C-SPY simulator.

Edit Expressions Opens the Trace Expressions window; see Trace Expressions

window, page 163.

Table 15: Trace toolbar commands

FUNCTION TRACE WINDOW

The Function Trace window—available from the Simulator menu—displays a subset
of the trace data displayed in the Trace window. Instead of displaying all rows, the

Simulator-specific debugging ___o

Function Trace window only shows trace data corresponding to calls to and returns from
functions.

Function Trace =]
XASYHE A

| Trace | call_count |;|
2699 Memory: 0x002D4: put f£ib + 50 2

2711 Memory:0x00114: ?C PUTCHAR 2

2713 Memory:0x00313: put f£ib + 107 2

2717 Memory:0x00214: do foreground process... 2

27158 Memory:0x0023E: main + 41 2

2721 Memory:0x00145: 251 CHMP LOZ 2

2735 Memory:0x00247: main + 50 2

2737 Memory:0x00205: do foreground process 2

2738 Memory: 0x00200: next counter 2 j
Function Trace ITrace | Trace Expressions =

Figure 55: Function Trace window

For information about the toolbar, see Trace toolbar, page 162.

For more information about using the trace system, see Using the trace system, page
125.

TRACE EXPRESSIONS WINDOW

In the Trace Expressions window—available from the Trace window toolbar—you can
specity specific expressions for which you want to record trace information.

Trace Expressions B
+ 3

Expression | Format

i N Default

race Expressions

Figure 56: Trace Expressions window

In the Expr ession column, you specify any expression you want to be recorded. You can
specify any expression that can be evaluated, such as variables and registers.

The Format column shows which display format is used for each expression.
Each row in this window will appear as an extra column in the Trace window.

For more information about using the trace system, see Using the trace system, page
125.

Part 5. IAR C-SPY Simulator 163

Using the trace system in the simulator

164

IAR Embedded Workbench® IDE
User Guide

Use the toolbar buttons to change the order between the expressions:

Toolbar button Description
Arrow up Moves the selected row up
Arrow down Moves the selected row down

Table 16: Toolbar buttons in the Trace Expressions window

FIND IN TRACE WINDOW

The Find In Trace window—available from the View>M essages menu—displays the
result of searches in the trace data.

Find In Trace B
T -

onsoza CHP Rl. RO 2

008led CHP R4, #10 2

Find In Trace

Figure 57: Find In Trace window

The Find in Trace window looks like the Trace window, showing the same columns and
data, but only those rows that match the specified search criteria. Double-clicking an
item in the Find in Trace window brings up the same item in the Trace window.

You specify the search criteria in the Find In Trace dialog box. For information about
how to open this dialog box, see Find in Trace dialog box, page 164.

For more information about using the trace system, see Using the trace system, page
125.

FIND IN TRACE DIALOG BOX

Use the Find in Trace dialog box—available by choosing Edit>Find and
Replace>Find or from the Trace window toolbar—to specify the search criteria for
advanced searches in the trace data. Note that the Edit>Find and Replace>Find
command is context-dependent. It displays the Find in Trace dialog box if the Trace

Simulator-specific debugging ___o

window is the current window or the Find dialog box if the editor window is the current
window.

Find in Trace E
IV Text Search Find I
| = |
Cancel

™ Makch Case
™ Makch whale word

™ Only search in one column

ITrace j

™ address Range

[e gk

Figure 58: Find in Trace dialog box

The search results are displayed in the Find In Trace window—available by choosing
the View>M essages command, see Find In Trace window, page 164.

In the Find in Trace dialog box, you specify the search criteria with the following
settings:
Text search

A text field where you type the string you want to search for. Use the following options
to fine-tune the search:

Match Case Searches only for occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.

Match whole word Searches only for the string when it occurs as a separate word.
Otherwise int will also find print, sprintf and so on.

Only search in one Searches only in the column you selected from the drop-down menu.
column

Address Range

Use the text fields to specify an address range. The trace data within the address range
is displayed. If you also have specified a text string in the Text sear ch field, the text
string will be searched for within the address range.

For more information about using the trace system, see Using the trace system, page
125.

Part 5. IAR C-SPY Simulator 165

Memory access checking

166

Memory access checking

IAR Embedded Workbench® IDE
User Guide

C-SPY can simulate different memory access types of the target hardware and detect
illegal accesses, for example a read access to write-only memory. If a memory access
occurs that does not agree with the access type specified for the specific memory area,
C-SPY will regard this as an illegal access. The purpose of memory access checking is
to help you to identify any memory access violations.

The memory areas can either be the zones predefined in the device description file, or
memory areas based on the segment information available in the debug file. In addition
to these, you can define your own memory areas. The access type can be read and write,
read only, or write only. It is not possible to map two different access types to the same
memory area. You can choose between checking access type violation or checking
accesses to unspecified ranges. Any violations are logged in the Debug Log window.
You can also choose to have the execution halted.

In addition, you can specify the cost—in cycles—associated with accessing a byte in the
memory during execution. The costs for read and write accesses are specified separately,
because they can differ. These costs will be added to the cycle counter whenever a byte
is accessed.

In addition, you can specify the cost—in cycles—associated with accessing a memory
entity during execution. The size of the memory entity depends on the bus width. The
costs for read and write accesses are specified separately, because they can differ. You
can also specify costs separately for sequential and non-sequential memory accesses.
These costs will be added to the cycle counter whenever a byte is accessed. These
additional features related to specifying the cost might, or might not, be included in your
product version.

Choose Simulator >Memory Access Setup to open the Memory Access Setup dialog
box.
MEMORY ACCESS SETUP DIALOG BOX

The Memory Access Setup dialog box—available from the Simulator menu—Ilists all
defined memory areas, where each column in the list specifies the properties of the area.

Simulator-specific debugging ___o

In other words, the dialog box displays the memory access setup that will be used during

the simulation.

Memory Access Setup

™ Use ranges based on
% Deyvice description file
| Debug file segment information [anly shovwn while debugging)

Cancel

™ Use manual ranges

Zone | Start Addr| End Addr| Accesz Type |
Memory 0x0 0x1FF R

Memory 0200 0x9FF R

Memory 01000 0«10FF R

Memory 0x1100 0«FFFF R

Zone | Start Addr| End Addr| Accesz Type

Exdit....

Delete |
[elete &l |

[Mew... |
[Ee

Memony aczess checking
Check far:

¥ Access bype violation

Schor:
€ Log violations

¥ Access tounspeciied ranges % [Log and stop execution

Figure 59: Memory Access Setup dialog box

Note: If you enable both the Useranges based on and the Use manual ranges option,
memory accesses will be checked for all defined ranges.

For information about the columns and the properties displayed, see Edit Memory

Access dialog box, page 169.

Use ranges based on

Use the Userangesbased on option to choose any of the predefined alternatives for the

memory access setup. You can choose between:

o Devicedescription file, which means the properties will be loaded from the device

description file

e Debug file segment information, which means the properties will be based on the
segment information available in the debug file. This information is only available
while debugging. The advantage of using this option, is that the simulator can catch

memory accesses outside the linked application.

Part 5. IAR C-SPY Simulator 167

Memory access checking

Use manual ranges

Use the Use manual ranges option to specify your own ranges manually via the Edit
Memory Access dialog box. To open this dialog box, choose New to specify a new
memory range, or select a memory zone and choose Edit to modify it. For more details,
see Edit Memory Access dialog box, page 169.

The ranges you define manually are saved between debug sessions.

Memory access checking
Use the Check for options to specify what to check for. Choose between:

® Access type violation

e Access to unspecified ranges.

Use the Action options to specify the action to be performed if there is an access
violation. Choose between:

e Log violations

e Log and stop execution.

Any violations are logged in the Debug Log window.

Buttons

The Memory Access Setup dialog box contains the following buttons:

Button Description

OK Standard OK.

Cancel Standard Cancel.

New Opens the Edit Memory Access dialog box, where you can specify a

new memory range and attach an access type to it; see Edit Memory
Access dialog box, page 169.

Edit Opens the Edit Memory Access dialog box, where you can edit the
selected memory area. See Edit Memory Access dialog box, page 169.

Delete Deletes the selected memory area definition.

Delete All Deletes all defined memory area definitions.

Table 17: Function buttons in the Memory Access Setup dial og box

Note: Except for the OK and Cancel buttons, buttons are only available when the
option Use manual rangesis selected.

IAR Embedded Workbench® IDE
168 User Guide

Simulator-specific debugging ___o

EDIT MEMORY ACCESS DIALOG BOX

In the Edit Memory Access dialog box—available from the Memory Access Setup
dialog box—you can specify the memory ranges, and assign an access type to each
memory range, for which you want to detect illegal accesses during the simulation.

Zone:
I Memory - l Cancel |
Start address: End address:
Jo [1FFF
—Access lype
 Fead and write
' Fead only
© Wfrite anly

Figure 60: Edit Memory Access dialog box

For each memory range you can define the following properties:

Memory range

Use these settings to define the memory area for which you want to check the memory
accesses:

Zone The memory zone; see Memory addressing, page 137.
Start address The start address for the address range, in hexadecimal notation.

End address The end address for the address range, in hexadecimal notation.

Access type

Use one of these options to assign an access type to the memory range; the access type
can be one of Read and write, Read only, or Write only. It is not possible to assign two
different access types to the same memory area.

Cycle costs

Use the Read and Write text fields to specify the number of cycles used for accessing
the memory range. The cycle cost can be specified individually for read and write
accesses, because it can differ.

Part 5. IAR C-SPY Simulator 169

Using breakpoints in the simulator

170

Cycle costs

Use these settings to specify the cost—in cycles—associated with accessing a memory
entity during execution:

Bus width The size of the memory entity depends on the bus width, which can
be specified as 8, 16, or 32 bits. For examples about how this affects
the cost, see Table 18, Example of costs for accessing memory entities.

Sequential The cost for sequential accesses to the memory area; the cycle cost
can be specified individually for read and write accesses, because it
can differ.

Non-sequential The cost for non-sequential accesses to the memory area; the cycle
cost can be specified individually for read and write accesses, because
it can differ.

Note: These options may, or may not, be available in your product version.

Example

If the cost is specified as 1 cycle, a word access (16 bits) will cost 2 cycles with an 8-bit
bus width, and 1 cycle with a 16-bit or 32-bit bus width:

Memory entity 8-bit bus 16-bit bus 32-bit bus
Word entities (16 bits) 2 | |
Long entities (32 bits) 4 2 |

Table 18: Example of costs for accessing memory entities

Using breakpoints in the simulator

IAR Embedded Workbench® IDE
User Guide

Using the C-SPY Simulator, you can set an unlimited amount of breakpoints. For code
and data breakpoints you can define a size attribute, that is, you can set the breakpoint
on a range. You can also set immediate breakpoints.

For information about the breakpoint system, see the chapter Using breakpoints in this
guide. For detailed information about code breakpoints, see Code breakpoints dialog
box, page 210.

DATA BREAKPOINTS

Data breakpoints are triggered when data is accessed at the specified location. Data
breakpoints are primarily useful for variables that have a fixed address in memory. If you
set a breakpoint on an accessible local variable, the breakpoint will be set on the
corresponding memory location. The validity of this location is only guaranteed for

Simulator-specific debugging ___o

small parts of the code. The execution will usually stop directly after the instruction that
accessed the data has been executed.

You can set a data breakpoint in three different ways; by using:
e A dialog box, see Data breakpoints dialog box, page 171

e A system macro, see __SetDataBreak, page 378
e The Memory window, see Setting a breakpoint in the Memory window, page 131.

Data breakpoints dialog box

The options for setting data breakpoints are available from the context menu that
appears when you right-click in the Breakpoints window. On the context menu, choose
New Breakpoint>Data to set a new breakpoint. Alternatively, to modify an existing
breakpoint, select a breakpoint in the Breakpoint window and choose Edit on the
context menu.

The Data breakpoints dialog box appears.

’ [rata |

Break &f:

| [

5

—Access Type e
& Readwiite & Auto |1
 Read Manual
= wiite — Action
Expression: I
r— Condition:
Expression:

% Condition true Skip count; I 0

" Condition changed

Figure 61: Data breakpoints dialog box

Break At

Specify the location for the breakpoint in the Break At text box. Alternatively, click the
Edit browse button to open the Enter L ocation dialog box; see Enter Location dialog
box, page 214.

Part 5. IAR C-SPY Simulator 171

Using breakpoints in the simulator

172

IAR Embedded Workbench® IDE
User Guide

Access Type

Use the options in the Access Type area to specify the type of memory access that
triggers data or immediate breakpoints.

Memory Access type Description

Read/Write Read or write from location.
Read Read from location.
Write Werite to location.

Table 19: Memory Access types

Note: Data breakpoints never stop execution within a single instruction. They are
recorded and reported after the instruction is executed. (Immediate breakpoints do not
stop execution at all, they only suspend it temporarily. See |mmediate breakpoints, page
173.)

Size

Optionally, you can specify a size—in practice, a range of locations. Each read and write
access to the specified memory range will trigger the breakpoint. For data breakpoints,
this can be useful if you want the breakpoint to be triggered on accesses to data
structures, such as arrays, structs, and unions.

There are two different ways the size can be specified:

o Auto, the size will automatically be based on the type of expression the breakpoint
is set on. For example, if you set the breakpoint on a 12-byte structure, the size of
the breakpoint will be 12 bytes

e Manual, you specify the size of the breakpoint manually in the Size text box.

Action

You can optionally connect an action to a breakpoint. You specify an expression, for
instance a C-SPY macro function, which is evaluated when the breakpoint is triggered
and the condition is true.

Conditions

You can specify simple and complex conditions.

Conditions Description
Expression A valid expression conforming to the C-SPY expression syntax.
Condition true The breakpoint is triggered if the value of the expression is true.

Table 20: Breakpoint conditions

Simulator-specific debugging ___o

Conditions Description

Condition changed The breakpoint is triggered if the value of the expression has changed
since it was last evaluated.

Skip count The number of times that the breakpoint must be fulfilled before a break
occurs (integer).

Table 20: Breakpoint conditions (Continued)

IMMEDIATE BREAKPOINTS

In addition to generic breakpoints, the C-SPY Simulator lets you set immediate
breakpoints, which will halt instruction execution only temporarily. This allows a
C-SPY macro function to be called when the processor is about to read data from a
location or immediately after it has written data. Instruction execution will resume after
the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the processor reads at a
memory-mapped location, a C-SPY macro function can intervene and supply
appropriate data. Conversely, when the processor writes to a memory-mapped location,
a C-SPY macro function can act on the value that was written.

The two different methods of setting an immediate breakpoint are by using:

e A dialog box, see Immediate breakpoints dialog box, page 173
e A system macro, see __SetSmBreak, page 379.

Immediate breakpoints dialog box

The options for setting immediate breakpoints are available from the context menu that
appears when you right-click in the Breakpoints window. On the context menu, choose
New Breakpoint>I mmediate to set a new breakpoint. Alternatively, to modify an
existing breakpoint, select a breakpoint in the Breakpoint window and choose Edit on
the context menu.

Part 5. IAR C-SPY Simulator 173

Using breakpoints in the simulator

174

IAR Embedded Workbench® IDE
User Guide

The Immediate breakpoints dialog box appears.

’ Immediate |

Break &f:

| EN

Accesz Type Action
’7 Expression:

% Read
 Wiite

Figure 62: Immediate breakpoints page

Break At

Specify the location for the breakpoint in the Break At text box. Alternatively, click the
Edit browse button to open the Enter L ocation dialog box; see Enter Location dialog
box, page 214.

Access Type

Use the options in the Access Type area to specify the type of memory access that
triggers data or immediate breakpoints.

Memory Access type Description

Read Read from location.

Write Write to location.

Table 21: Memory Access types

Note: Immediate breakpoints do not stop execution at all; they only suspend it
temporarily. See Using breakpoints in the simulator, page 170.

Action

You should connect an action to the breakpoint. Specify an expression, for instance a
C-SPY macro function, which is evaluated when the breakpoint is triggered and the
condition is true.

Simulator-specific debugging ___o

BREAKPOINT USAGE DIALOG BOX

The Breakpoint Usage dialog box—available from the Simulator menu—Ilists all
active breakpoints.

Breakpoint Usage [%]

[Fetch
-SSP Terminal 140 & libsupport module

Figure 63: Breakpoint Usage dialog box

In addition to listing all breakpoints that you have defined, this dialog box also lists the
internal breakpoints that the debugger is using.

For each breakpoint in the list the address and access type are shown. Each breakpoint
in the list can also be expanded to show its originator.

For more information, see Viewing all breakpoints, page 133.

Part 5. IAR C-SPY Simulator

175

Using breakpoints in the simulator

IAR Embedded Workbench® IDE
176 User Guide

Simulating interrupts

By being able to simulate interrupts, you can debug the program logic long
before any hardware is available. This chapter contains detailed information
about the C-SPY® interrupt simulation system and how to configure the
simulated interrupts to make them reflect the interrupts of your target
hardware. Finally, reference information about each interrupt system macro is
provided.

For information about the interrupt-specific facilities useful when writing
interrupt service routines, see the IAR C/C++ Compiler Reference Guide.

The C-SPY interrupt simulation system

The IAR C-SPY Simulator includes an interrupt simulation system that allows you to
simulate the execution of interrupts during debugging. It is possible to configure the
interrupt simulation system so that it resembles your hardware interrupt system. By
using simulated interrupts in conjunction with C-SPY macros and breakpoints, you can
compose a complex simulation of, for instance, interrupt-driven peripheral devices.
Having simulated interrupts also lets you test the logic of your interrupt service routines.

The interrupt system has the following features:

Simulated interrupt support for the microcontroller
Single-occasion or periodical interrupts based on the cycle counter
Predefined interrupts for different devices

Configuration of hold time, probability, and timing variation

State information for locating timing problems

Two interfaces for configuring the simulated interrupts—a dialog box and a C-SPY
system macro—that is, one interactive and one automating interface

e Activation of interrupts either instantly or based on parameters you define

o A log window which continuously displays the status for each defined interrupt.
The interrupt system is activated by default, but if it is not required it can be turned off
to speed up the simulation. You can turn the interrupt system on or off as required either
in the I nterrupt Setup dialog box, or by using a system macro. Defined interrupts will

be preserved until you remove them. All interrupts you define using the I nterrupt
Setup dialog box are preserved between debug sessions.

Part 5. IAR C-SPY Simulator 177

The C-SPY interrupt simulation system

Activation
signal

time
[cycles]

IAR Embedded Workbench® IDE

178 User Guide

INTERRUPT CHARACTERISTICS

The simulated interrupts consist of a set of characteristics which lets you fine-tune each
interrupt to make it resemble the real interrupt on your target hardware. You can specify
a first activation time, a repeat interval, a hold time, and a variance.

H H H

-

T

*
EY +V +y +V
A A+R A+2R A+3R

* If probability is less than 100%, some interrupts may be omitted.

A = Activation time
R = Repeat interval
H = Hold time
V =Variance
Figure 64: Smulated interrupt configuration

The interrupt simulation system uses the cycle counter as a clock to determine when an
interrupt should be raised in the simulator. You specify the first activation time, which
is based on the cycle counter. C-SPY will generate an interrupt when the cycle counter
has passed the specified activation time. However, interrupts can only be raised between
instructions, which means that a full assembler instruction must have been executed
before the interrupt is generated, regardless of how many cycles an instruction takes.

To define the periodicity of the interrupt generation you can specify the repeat interval
which defines the amount of cycles after which a new interrupt should be generated. In
addition to the repeat interval, the periodicity depends on the two options
probability—the probability, in percent, that the interrupt will actually appear in a
period—and variance—a time variation range as a percentage of the repeat interval.
These options make it possible to randomize the interrupt simulation. You can also
specify a hold time which describes how long the interrupt remains pending until
removed if it has not been processed. If the hold time is set to infinite, the corresponding
pending bit will be set until the interrupt is acknowledged or removed.

Simulating interrupts ___¢

INTERRUPT SIMULATION STATES

The interrupt simulation system contains status information that can be used for locating
timing problems in your application. The Interrupt Setup dialog box displays the
available status information. The interrupt activation signal can exist in one of the states
Idle or Pending. For an interrupt, the following states can be displayed: Executing,
Removed, or Expired.

For a repeatable interrupt that has a specified repeat time which is longer than the
execution time, the status information at different times can look like this:

Hold time Time Status
Interrupt A B C D E A Idle _
activation B Pending
signal Execution time for C Idle (1 executing)
interrupt handler D Idle (1 executing)
E Idle

Figure 65: Smulation states - example 1

If the interrupt repeat interval is shorter than the execution time, and the interrupt is
re-entrant (or non-maskable), the status information at different times can look like this:

Hold time Time Status
A Idle
Int t .
anct?\:;i‘:m A B C D B Executing
signal Execution time for Cc Idle (1 executing)
D

interrupt handler (1) Execution time for

interrupt handler (2) Executing (1 executing

Figure 66: Smulation states - example 2

In this case, the execution time of the interrupt handler is too long compared to the repeat
time, which might indicate that you should rewrite your interrupt handler and make it
shorter, or that you should specify a longer repeat time for the interrupt simulation
system.

Using the interrupt simulation system

The interrupt simulation system is easy to use. However, to take full advantage of the
interrupt simulation system you should be familiar with how to adapt it for the processor
you are using, and know how to use:

o The Forced Interrupt window
e The Interruptsand Interrupt Setup dialog boxes

Part 5. IAR C-SPY Simulator 179

Using the interrupt simulation system

IAR Embedded Workbench® IDE
180 User Guide

o The C-SPY system macros for interrupts

o The Interrupt Log window.

TARGET-ADAPTING THE INTERRUPT SIMULATION SYSTEM

The interrupt simulation has the same behavior as the hardware. This means that the
execution of an interrupt is dependent on the status of the global interrupt enable bit. The
execution of maskable interrupts is also dependent on the status of the individual
interrupt enable bits.

To be able to perform these actions for various derivatives, the interrupt system must
have detailed information about each available interrupt. Except for default settings, this
information is provided in the device description files.You can find preconfigured ddaf
files in the cpuname\config directory. The default settings will be used if no device
description file has been specified.

To load a device description file before you start C-SPY, choose Project>Options and
click the Setup tab of the Debugger category.

Choose a device description file that suits your target.

Note: In case you do not find a preconfigured device description file that resembles
your device, you can define one according to your needs. For details of device
description files, see Selecting a device description file, page 110.

INTERRUPT SETUP DIALOG BOX

The Interrupt Setup dialog box—available by choosing Simulator>Interrupt
Setup—lists all defined interrupts.

Interrupt Setup E

Interupt | Type | Statuz | Mext Activation |
[FlUARTR_VECTOR Fepeat 4000

Cancel

i

Mew..

Ef:..

[Velete

i

Delete &l

Figure 67: Interrupt Setup dialog box

Simulating interrupts ___¢

The option Enableinterrupt simulation enables or disables interrupt simulation. If the
interrupt simulation is disabled, the definitions remain but no interrupts will be
generated. You can also enable and disable installed interrupts individually by using the
check box to the left of the interrupt name in the list of installed interrupts.

The columns contain the following information:

Interrupt Lists all interrupts.

Type Shows the type of the interrupt. The type can be Forced, Single,
or Repeat.

Status Shows the status of the interrupt. The status can be | dle, Removed,

Pending, Executing, or Expired.

Next Activation Shows the next activation time in cycles.

Note: For repeatable interrupts there might be additional information in the Type
column about how many interrupts of the same type that is simultaneously executing
(n executing). If nis larger than one, there is a reentrant interrupt in your interrupt

simulation system that never finishes executing, which might indicate that there is a
problem in your application.

Only non-forced interrupts may be edited or removed.

Click New or Edit to open the Edit Interrupt dialog box.

EDIT INTERRUPT DIALOG BOX

Use the Edit Interrupt dialog box—available from the I nterrupt Setup dialog box—to
add and modify interrupts. This dialog box provides you with a graphical interface

Part 5. IAR C-SPY Simulator 181

Using the interrupt simulation system

IAR Embedded Workbench® IDE

182 User Guide

where you can interactively fine-tune the interrupt simulation parameters. You can add
the parameters and quickly test that the interrupt is generated according to your needs.

Edit Interrupt E
Interrupt:

|UARTR_VECTOR

Drescription:

o o]

Cancel |

Jox12 2

First activatior:

|4DDD

Fiepeat interval:

|2DDD

Wariance [%]:

Hold tirne
& Infirite

o

Probability [%]:

o =

=

Figure 68: Edit Interrupt dialog box

For each interrupt you can set the following options:

Interrupt

Description

First activation

Repeat interval

Variance %

Hold time

A drop-down list containing all available interrupts. Your
selection will automatically update the Description box. The
list is populated with entries from the device description file
that you have selected.

Contains the description of the selected interrupt, if available.
The description is retrieved from the selected device
description file For interrupts specified using the system
macro __orderInterrupt, the Description box will be
empty.

The value of the cycle counter after which the specified type
of interrupt will be generated.

The periodicity of the interrupt in cycles.

A timing variation range, as a percentage of the repeat
interval, in which the interrupt may occur for a period. For
example, if the repeat interval is 100 and the variance 5%, the
interrupt might occur anywhere between T=95 and T=105, to
simulate a variation in the timing.

Describes how long, in cycles, the interrupt remains pending
until removed if it has not been processed. If you select
Infinite, the corresponding pending bit will be set until the
interrupt is acknowledged or removed.

Simulating interrupts ___¢

Probability % The probability, in percent, that the interrupt will actually
occur within the specified period.

FORCED INTERRUPT WINDOW

From the Forced I nterrupt window—available from the Simulator menu—you can
force an interrupt instantly. This is useful when you want to check your interrupt
logistics and interrupt routines.

Forced Interrupt Window B
Trigger |

Interrupt | Description -

-

4] | 3

Figure 69: Forced Interrupt window

To force an interrupt, the interrupt simulation system must be enabled. To enable the
interrupt simulation system, see Interrupt Setup dialog box, page 180.

The Forced Interrupt window lists all available interrupts and their definitions. The
description field is editable and the information is retrieved from the selected device
description file.

By selecting an interrupt and clicking the Trigger button, an interrupt of the selected
type is generated.

A triggered interrupt will have the following characteristics:

Characteristics Settings

First Activation As soon as possible (0)
Repeat interval 0

Hold time Infinite

Variance 0%

Probability 100%

Table 22: Characteristics of a forced interrupt

Part 5. IAR C-SPY Simulator 183

Using the interrupt simulation system

184

IAR Embedded Workbench® IDE
User Guide

C-SPY SYSTEM MACROS FOR INTERRUPTS

Macros are useful when you already have sorted out the details of the simulated interrupt
so that it fully meets your requirements. By writing a macro function containing
definitions for the simulated interrupts you can automatically execute the functions
when C-SPY starts. Another advantage is that your simulated interrupt definitions will
be documented if you use macro files, and if you are several engineers involved in the
development project you can share the macro files within the group.

The C-SPY Simulator provides a set of predefined system macros for the interrupt
simulation system. The advantage of using the system macros for specifying the
simulated interrupts is that it lets you automate the procedure.

These are the available system macros related to interrupts:
__enableInterrupts

__disablelInterrupts

__orderInterrupt

__cancellInterrupt

__cancelAllInterrupts
__popSimulatorInterruptExecutingStack

The parameters of the first five macros correspond to the equivalent entries of the
Interruptsdialog box. To read more about how to use the
__popSimulatorInterruptExecutingStack macro, see Interrupt simulationina
multi-task system, page 184.

For detailed reference information about each macro, see Description of C-SPY system
macros, page 368.

Defining simulated interrupts at C-SPY startup using a setup file

If you want to use a setup file to define simulated interrupts at C-SPY startup, follow the
procedure described in Registering and executing using setup macros and setup files,
page 147.

Interrupt simulation in a multi-task system

If you are using interrupts in such a way that the normal instruction used for returning
from an interrupt handler is not used, for example in an operating system with
task-switching, the simulator cannot automatically detect that the interrupt has finished
executing. The interrupt simulation system will work correctly, but the status
information in the I nterrupt Setup dialog box might not look as you expect. If there are
too many interrupts executing simultaneously, a warning might be issued.

Simulating interrupts ___¢

To avoid these problems, you can use the
__popSimulatorInterruptExecutingStack macro to inform the interrupt
simulation system that the interrupt handler has finished executing, as if the normal
instruction used for returning from an interrupt handler was executed. You can use the
following procedure:

Set a code breakpoint on the instruction that returns from the interrupt function.

Specifty the __popSimulatorInterruptExecutingStack macro as a condition to
the breakpoint.

When the breakpoint is triggered, the macro is executed and then the application
continues to execute automatically.

INTERRUPT LOG WINDOW

The Interrupt L og window—available from the Simulator menu—displays runtime
information about the interrupts that you have activated in the | nterruptsdialog box or
forced via the Forced Interrupt window. The information is useful for debugging the
interrupt handling in the target system.

Interrupt Log Window B
Cycles | FC | Interrupt | MNumber | Status -
4004 0x1158 UARTR_VECTOR 1 Trigged
4004 0x1158 UARTR_VECTOR 1 Executed
G000 0x1158 UARTR_VECTOR 1 Trigged
G000 0x1158 UARTR_VECTOR 1 Executed
aoo0 0x1266 UARTR_VECTOR 1 Trigged
aoo0 0x1266 UARTR_VECTOR 1 Executed -

Figure 70: Interrupt Log window

The columns contain the following information:

Column Description

Cycles The point in time, measured in cycles, when the event occurred.
PC The value of the program counter when the event occurred.
Interrupt The interrupt as defined in the device description file.

Number A unique number assigned to the interrupt. The number is used for

distinguishing between different interrupts of the same type.

Table 23: Description of the Interrupt Log window

Part 5. IAR C-SPY Simulator 185

Simulating a simple interrupt

186

Column Description

Status Shows the status of the interrupt, which can be Triggered, Forced,
Executing, Finished, or Expired.
* Triggered: The interrupt has passed its activation time.
* Forced: The same as Triggered, but the interrupt has been forced from
the Forced Interrupt window.
* Executing: The interrupt is currently executing.
* Finished: The interrupt has been executed.
* Expired: The interrupt hold time has expired without the interrupt
being executed.

Table 23: Description of the Interrupt Log window (Continued)

When the Interrupt Log window is open it will be updated continuously during runtime.

Note: If the window becomes full of entries, the first entries will be erased.

Simulating a simple interrupt

IAR Embedded Workbench® IDE
User Guide

This example demonstrates the method for simulating a timer interrupt. However, the
procedure can also be used for other types of interrupts.

This simple application contains an interrupt service routine for a timer, which
increments a tick variable. The main function sets the necessary status registers. The
application exits when 100 interrupts have been generated.

#include "iocpuname.h"
#include <intrinsics.h>
volatile int ticks = 0;
void main (void)
{
/* Enter your timer setup code here */

__enable_interrupt () ; /* Enable interrupts */
while (ticks < 100); /* Endless loop */
printf ("Done\n") ;

}

/* Timer interrupt service routine */
#pragma vector = TIMER_VECTOR

__interrupt void basic_timer (void)

{
ticks += 1;

}

Simulating interrupts ___¢

To simulate and debug an interrupt, perform the following steps:

Add your interrupt service routine to your application source code and add the file to
your project.

C-SPY needs information about the interrupt to be able to simulate it. This information
is provided in the device description files. To select a device description file, choose
Project>Options, and click the Setup tab in the Debugger category. Use the Use
device description file browse button to locate the file ddf file.

Build your project and start the simulator.

Choose Simulator>Interrupt Setup to open the Interrupts Setup dialog box. Select
the Enable interrupt simulation option to enable interrupt simulation. Click New to
open the Edit Interrupt dialog box. The following table lists the options and suggests
some settings. For your interrupt, verify the options according to your requirements:

Option Settings
Interrupt TIMER_VECTOR
First Activation 4000

Repeat interval 2000

Hold time 0

Probability % 100

Variance % 0

Table 24: Timer interrupt settings

Click OK.

Execute your application. If you have enabled the interrupt properly in your application
source code, C-SPY will:

o Generate an interrupt when the cycle counter has passed 4000

e Continuously repeat the interrupt after approximately 2000 cycles.

Part 5. IAR C-SPY Simulator 187

Simulating a simple interrupt

IAR Embedded Workbench® IDE
188 User Guide

Part 6. Reference
information

This part of the IAR Embedded Workbench® IDE User Guide contains the
following chapters:

e IAR Embedded Workbench® IDE reference
e C-SPY® Debugger reference

e General options

e Compiler options

e Assembler options

e Custom build options

o Build actions options

e Linker options

e Library builder options

e Debugger options

e The IAR C-SPY Command Line Utility—cspybat

o C-SPY® macros reference.

.hmuiuhhhi

189

ARARAIed

190

IAR Embedded
Workbench® IDE
reference

This chapter contains reference information about the windows, menus, menu
commands, and the corresponding components that are found in the IAR
Embedded Workbench IDE. Information about how to best use the IDE for
your purposes can be found in parts 3 to 5 in this guide. This chapter contains
the following sections:

e Windows, page 191
e Menus, page 218.

The IAR Embedded Workbench IDE is a modular application. Which menus
are available depends on which components are installed.

Windows

The available windows are:

IAR Embedded Workbench IDE window
Workspace window

Editor window

Source Browser window

Breakpoints window

Message windows.

In addition, a set of C-SPY®-specific windows becomes available when you start the
IAR C-SPY Debugger. Reference information about these windows can be found in the
chapter C-SPY® Debugger reference in this guide.

Part 6. Reference information

191

Windows

192

Menu bar

Toolbar

Workspace
window

Status bar

IAR EMBEDDED WORKBENCH IDE WINDOW

The figure shows the main window of the IAR Embedded Workbench IDE and its
different components. The window might look different depending on which plugin
modules you are using.

% 1AR Embedded Workbench IDE [_ O[]
File Edt View Project Tools window Help
DER@ S L= o sy aviBeedh BWEL D
* Uiities.c T
project] - Diebug =T =
e %] ﬁ Tncrease the 'call count' variable.
- Get and print the asscciated Fibonacci number.
B [Eutorials “
[@=10 project] - Debug |~ ||l NS do_foreground_process (void) Editor
| = @ Tutore { window
| [Utilities.c unsigned int fih:
| Lmzaoutput next_counter () ;
-a @lprojectz - Debug v f£ib - ger_fib| call_count];
rojecti - Debug v put_fib(£ib };
rojectd - Debug v 1
rojects - Debug v
tutor_hbrary-Debug v I
Main program.
Prints the Fibonacci numbers.
*/
void wmain|veid)
{
call_count = 0;
init_fibi);
while { call_count < MAX_FIE)
do_foreground process();
}
Overview project? | project 4 | » | [Fol [D
x Messages
Building confiquration: praject] - Debug
Updating build tree
Configuration is up-to-date
1 | |
=, Build [Debug Lag [Tool Oubput [Find in Files ®
Ready Ln2s, Col 21 UM v

Figure 71: 1AR Embedded Workbench IDE window

Each window item is explained in greater detail in the following sections.

Menu bar

Gives access to the JAR Embedded Workbench IDE menus.

Menu

Description

File

Edit

The File menu provides commands for opening source and project files, saving
and printing, and exiting from the IAR Embedded Workbench IDE.

The Edit menu provides commands for editing and searching in editor windows
and for enabling and disabling breakpoints in C-SPY.

Table 25: |AR Embedded Workbench IDE menu bar

IAR Embedded Workbench® IDE

User Guide

Open Cut

Save All

Paste

IAR Embedded Workbench® IDE reference ___¢

Menu Description

View Use the commands on the View menu to open windows and decide which
toolbars to display.

Project The Project menu provides commands for adding files to a project, creating
groups, and running the IAR Systems tools on the current project.

Tools The Tools menu is a user-configurable menu to which you can add tools for use
with the IAR Embedded Workbench IDE.

Window With the commands on the Window menu you can manipulate the IAR
Embedded Workbench IDE windows and change their arrangement on the

screen.

Help The commands on the Help menu provide help about the IAR Embedded
Workbench IDE.

Table 25: | AR Embedded Workbench IDE menu bar (Continued)

For reference information for each menu, see Menus, page 218.

Toolbar

The TAR Embedded Workbench IDE toolbar—available from the View
menu—>provides buttons for the most useful commands on the IAR Embedded
Workbench IDE menus, and a text box for typing a string to do a quick search.

You can display a description of any button by pointing to it with the mouse button.
When a command is not available, the corresponding toolbar button will be dimmed,
and you will not be able to click it.

This figure shows the menu commands corresponding to each of the toolbar buttons:

Go to
Find Next Bookmark Make
Toggle
Navigate Forward Breakpoint

‘ Replace

DG S| 2@ o o

MEAS R I-E L X AR~ T 2

Save Copy

New Document Print Undo

Quick Search text box Find GoTo | Navigate Backward Stop Build

Find Previous Toggle Bookmark Compile Debug
Figure 72: 1AR Embedded Workbench | DE toolbar

Note: When you start C-SPY, the Debug button will change to a M ake and Debug
button.

Part 6. Reference information 193

Windows

Status bar

The Status bar at the bottom of the window displays the number of errors and warnings
generated during a build, the position of the insertion point in the editor window, and the
state of the modifier keys. The Status bar is available from the View menu.

As you are editing, the status bar shows the current line and column number containing
the insertion point, and the Caps Lock, Num Lock, and Overwrite status.

[Errors 0, Warnings O |Lm 28, Col 22 [CaP [WuM jovR

Figure 73: 1AR Embedded Workbench IDE window status bar

WORKSPACE WINDOW

The Workspace window, available from the View menu, is where you can access your
projects and files during the application development.

Configuration
drop-down menu

=

Project icon (currently Debug -
indicates multi-file - —
compilation) Files EHER
Bl @Eprojectl - Debug v
Elore || |h|
B utilities.c ol
23 Output
Indicates that the file will
. be rebuilt next time the
Tabs for choosing project is built
workspace display
\ 0 - . -
YEMviEW project] I pr0|ect2|

Column containing Column containing
status information HEeRES C‘_"ie control
about option overrides SRS I eliTEe

Figure 74: Workspace window

Toolbar

At the top of the window there is a drop-down list where you can choose a build
configuration to display in the window for a specific project.

IAR Embedded Workbench® IDE
194 User Guide

7

IAR Embedded Workbench® IDE reference ___¢

The display area
The display area is divided in different columns.

The Files column displays the name of the current workspace and a tree representation
of the projects, groups and files included in the workspace.

The column that contains status information about option overrides can have one of
three icons for each level in the project:

Blank There are no settings/overrides for this file/group
Black check mark There are local settings/overrides for this file/group
Red check mark There are local settings/overrides for this file/group, but they are either

identical with the inherited settings or they will be ignored because of

use of multi-file compilation, which means the overrides are superfluous.

The column that contains build status information can have one of three icons for each
file in the project:

Blank The file will not be rebuilt next time the project is built
Red star The file will be rebuilt next time the project is built
Gearwheel The file is being rebuilt.

For details about the different source code control icons, see Source code control states,
page 198.

At the bottom of the window you can choose which project to display. Alternatively, you
can choose to display an overview of the entire workspace.

For more information about project management and using the Workspace window, see

the chapter Managing projectsin Part 3. Project management and building in this guide.

Part 6. Reference information

195

Windows

Workspace window context menu

Clicking the right mouse button in the Workspace window displays a context menu
which gives you convenient access to several commands.

Options. ..

Make:
L =
Rebuild all
Clean

Shop Build

Add 3
Remave

Source Code Contral »
File Properties. ..

Sefk as fAekive

Figure 75: Workspace window context menu

The following commands are available on the context menu:

Menu command Description

Options Displays a dialog box where you can set options for each build tool on
the selected item in the Workspace window. You can set options on the
entire project, on a group of files, or on an individual file.

Make Brings the current target up to date by compiling, assembling, and linking
only the files that have changed since the last build.

Compile Comepiles or assembles the currently active file as appropriate. You can

choose the file either by selecting it in the Workspace window, or by
selecting the editor window containing the file you want to compile.

Rebuild All Recompiles and relinks all files in the selected build configuration.
Clean Deletes intermediate files.

Stop Build Stops the current build operation.

Add>Add Files Opens a dialog box where you can add files to the project.

Add>Add "filename" Adds the indicated file to the project. This command is only available if
there is an open file in the editor.

Add>Add Group Opens a dialog box where you can add new groups to the project.
Remove Removes selected items from the Workspace window.

Source Code Control Opens a submenu with commands for source code control, see Source
Code Control menu, page 197.

Table 26: Workspace window context menu commands

IAR Embedded Workbench® IDE
196 User Guide

IAR Embedded Workbench® IDE reference ___¢

Menu command Description
File Properties Opens a standard File Properties dialog box for the selected file.
Set as Active Sets the selected project in the overview display to be the active project.

It is the active project that will be built when the Make command is
executed.

Table 26: Workspace window context menu commands (Continued)

Source Code Control menu

The Source Code Control menu is available from the Project menu and from the
context menu in the Workspace window. This menu contains some of the most
commonly used commands of external, third-party source code control systems.

Check In...

Check Qut. ..
Undo Checkout
et Lakest Yersion
Compare. ..
History...
Properties...

Refresh

Copneck Project to SCC Project, ..
Disconnect Project from SCC Project...

Figure 76: Source Code Control menu

For more information about interacting with an external source code control system, see
Source code control, page 82.

The following commands are available on the submenu:

Menu command Description

Check In Opens the Check In Files dialog box where you can check in the
selected files; see Check In Files dialog box, page 200. Any changes you
have made in the files will be stored in the archive. This command is
enabled when currently checked-out files are selected in the Workspace
window.

Check Out Checks out the selected file or files. Depending on the SCC system you
are using, a dialog box may appear; see Check Out Files dialog box, page
201. This means you get a local copy of the file(s), which you can edit.
This command is enabled when currently checked-in files are selected in
the Workspace window.

Table 27: Description of source code control commands

Part 6. Reference information 197

Windows

Menu command

Description

Undo Check out

Get Latest Version

Compare

History

Properties

Refresh

Connect Project to
SCC Project

Disconnect Project
From SCC Project

The selected files revert to the latest archived version; the files are no
longer checked-out. Any changes you have made to the files will be lost.
This command is enabled when currently checked-out files are selected
in the Workspace window.

Replaces the selected files with the latest archived version.

Displays—in a SCC-specific window—the differences between the local
version and the most recent archived version.

Displays SCC-specific information about the revision history of the
selected file.

Displays information available in the SCC system for the selected file.

Updates the SCC display status for all the files that are part of the
project. This command is always enabled for all projects under SCC.

Opens a dialog box, which originates from the SCC client application, to
let you create a connection between the selected IAR Embedded
Workbench project and an SCC project; the IAR Embedded Workbench
project will then be an SCC-controlled project. After creating this
connection, a special column that contains status information will appear
in the Workspace window.

Removes the connection between the selected IAR Embedded
Workbench project and an SCC project; your project will no longer be a
SCC-controlled project. The column in the Workspace window that
contains SCC status information will no longer be visible for that project.

Table 27: Description of source code control commands (Continued)

Source code control states

Each source code-controlled file can be in one of several states.

SCC state

Description

[

(grey padlock)

(grey padlock)

Checked out to you. The file is editable.
Checked out to you. The file is editable and you have modified the file.
Checked in. In many SCC systems this means that the file is

write-protected.

Checked in. There is a new version available in the archive.

Table 28: Description of source code control states

IAR Embedded Workbench® IDE
198 User Guide

IAR Embedded Workbench® IDE reference ___¢

SCC state Description

(red padlock) Checked out exclusively to another user. In many SCC systems this
means that you cannot check out the file.

Al (red padlock) Checked out exclusively to another user. There is a new version available
in the archive. In many SCC systems this means that you cannot check
out the file.

Table 28: Description of source code control states (Continued)

Note: The source code control in IAR Embedded Workbench depends on the
information provided by the SCC system. If the SCC system provides incorrect or
incomplete information about the states, IAR Embedded Workbench might display
incorrect symbols.

Select Source Code Control Provider dialog box

The Select Sour ce Code Control Provider dialog box is displayed if there are several
SCC systems from different vendors available. Use this dialog box to choose the SCC
system you want to use.

Select Source Code Control Provider E
Cancel |

[Micrasaft Yisual Sourcesate

Figure 77: Select Source Code Control Provider dialog box

Part 6. Reference information 199

Windows

200

IAR Embedded Workbench® IDE
User Guide

Check In Files dialog box

The Check In Filesdialog box is available by choosing the Project>Sour ce Code
Control>Check In command, alternatively available from the Workspace window
context menu.

Check In Files E

Comment

K

Cancel

Ik

Advanced. .,
™ Keep checked out

Files

C:hprojectshtutor\Utilities. o

Figure 78: Check In Files dialog box

Comment

A text box in which you can write a comment—typically a description of your
changes—that will be stored in the archive together with the file revision. This text box
is only enabled if the SCC system supports the adding of comments at check-in.

Keep checked out

The file(s) will continue to be checked out after they have been checked in. Typically,
this is useful if you want to make your modifications available to other members in your
project team, without stopping your own work with the file.

Advanced

Opens a dialog box, originating from the SCC client application, that contains advanced
options. This button is only available if the SCC system supports setting advanced
options at check in.

Files

A list of the files that will be checked in. The list will contain all files that were selected
in the Workspace window when this dialog box was opened.

IAR Embedded Workbench® IDE reference ___¢

Check Out Files dialog box

The Check Out File dialog box is available by choosing the Project>Source Code
Control>Check Out command, alternatively available from the Workspace window
context menu. However, this dialog box is only available if the SCC system supports
adding comments at check-out or advanced options.

Check Dut Files E

Comment

K

Cancel

Advanced. .,

Ik

Files
C:hprojectshtutor\Utilities. o

Figure 79: Check Out File dialog box

Comment

A text field in which you can write a comment—typically the reason why the file is
checked out—that will be placed in the archive together with the file revision. This text
box is only enabled if the SCC system supports the adding of comments at check-out.

Advanced

Opens a dialog box, originating from the SCC client application, that contains advanced
options. This button is only available if the SCC system supports setting advanced
options at check out.

Files

A list of files that will be checked out. The list will contain all files that were selected in
the Workspace window when this dialog box was opened.

Part 6. Reference information 201

Windows

EDITOR WINDOW

Source files are displayed in editor windows. You can have one or several editor
windows open at the same time. The editor window is always docked, and its size and
position depends on other currently open windows.

Drop-down menu

Tooltip information listing all open files

Window tabs —— | 00 c "x|

rr— : : Splitter

a . 2

\;01 lnl]c:'l,Program Files\IAR Systems\Embedded WorkbenchiUtiities. c| Z control

Breakpointicon ————— @ short i = 45;

root[0] = root[l] = 1;

Bracket matching | S——))
for [i=2 : i<MAX_FIE ; i++)|
root[i] = get_fib{i) + get fih(i-1):

'

/*

Return the Fibonacci mumber 'nr'.
s
unsigned int get_fib({ int nr |

Bookmark
if | inr > 0) && (nr <= MAX FIE))
{

return [root[nr-1] J:
} -
[fol [« | 'I_I

Splitter control Go to function Right margin indicating
limit of printing area

Figure 80: Editor window

The name of the open source file is displayed on the tab. If a file is read-only, a padlock
icon is visible at the bottom left corner of the editor window. If a file has been modified
after it was last saved, an asterisk appears after the filename on the tab, for example
Utilities.c *. All open files are available from the drop-down menu in the upper
right corner of the editor window.

For information about using the editor, see the chapter Editing, page 93.

Split commands

Use the Window>Split command—or the Splitter controls—to split the editor window
horizontally or vertically into multiple panes.

On the Window menu you also find commands for opening multiple editor windows, as
well as commands for moving files between the different editor windows.

IAR Embedded Workbench® IDE
202 User Guide

IAR Embedded Workbench® IDE reference ___¢

Go to function

With the Goto function button in the bottom left-hand corner of the editor window you
can display all functions in the C or C++ editor window. You can then choose to go
directly to one of them.

Editor window tab context menu

The context menu that appears if you right-click on a tab in the editor window provides
access to commands for saving and closing the file.

Save intermupt.c
Cloze

Figure 81: Editor window tab context menu

Editor window context menu

The context menu available in the editor window provides convenient access to several
commands.

Ut

Copy.
Paste

Complete
Match Brackets
Insert Template 3

Open HeaderfSource File

5o ko definition

Toggle Breakpoint {Code)
Toggle Breakpoint {Log)
Enablefdisable Ereakpaoint

Set Mext Statement

Quick \Watch
Add to Wakch

Move to PC
Run ko Cursor

Options. ..

Figure 82: Editor window context menu

Note: The contents of this menu are dynamic, which means it may contain other
commands than in this figure. All available commands are described in Table 29,
Description of commands on the editor window context menu.

Part 6. Reference information 203

Windows

204

IAR Embedded Workbench® IDE
User Guide

The following commands are available on the editor window context menu:

Menu command

Description

Cut, Copy, Paste

Complete

Match Brackets

Insert Template

Open "headerh"

Open Header/Source
File

Go to definition

Check In
Check Out
Undo Checkout

Toggle Breakpoint
(Code)

Toggle Breakpoint
(Log)

Enable/disable
Breakpoint

Standard window commands.

Attempts to complete the word you have begun to type, basing the guess
on the contents of the rest of the editor document.

Selects all text between the brackets immediately surrounding the
insertion point, increases the selection to the next hierarchic pair of
brackets, or beeps if there is no higher bracket hierarchy.

Displays a list in the editor window from which you can choose a code
template to be inserted at the location of the insertion point. If the code
template you choose requires any field input, the Template dialog box
appears; for information about this dialog box, see Template dialog box,
page 228. For information about using code templates, see Using and
adding code templates, page 97.

Opens the header file "headerh" in an editor window. This menu
command is only available if the insertion point is located on an
#include line when you open the context menu.

Jumps from the current file to the corresponding header or source file. If
the destination file is not open when performing the command, the file
will first be opened. This menu command is only available if the insertion
point is located on any line except an #include line when you open
the context menu. This command is also available from the File>Open

menu.
Shows the declaration of the symbol where the insertion point is placed.

Commands for source code control; for more details, see Source Code
Control menu, page 197. These menu commands are only available if the
current source file in the editor window is SCC-controlled. The file must
also be a member of the current project.

Toggles a code breakpoint at the statement or instruction containing or
close to the cursor in the source window. For information about code
breakpoints, see Code breakpoints dialog box, page 210.

Toggles a log breakpoint at the statement or instruction containing or
close to the cursor in the source window. For information about log
breakpoints, see Log breakpoints dialog box, page 212.

Toggles a breakpoint between being disabled, but not actually
removed—making it available for future use—and being enabled again.

Table 29: Description of commands on the editor window context menu

IAR Embedded Workbench® IDE reference ___¢

Menu command Description

Set Next Statement Sets the PC directly to the selected statement or instruction without
executing any code. Use this menu command with care. This menu
command is only available when you are using the debugger.

Quick Watch Opens the Quick Watch window, see Quick Watch window, page 285.
This menu command is only available when you are using the debugger.

Add to Watch Adds the selected symbol to the Watch window. This menu command is
only available when you are using the debugger.

Move to PC Moves the insertion point to the current PC position in the editor
window. This menu command is only available when you are using the
debugger.

Run to Cursor Executes from the current statement or instruction up to a selected

statement or instruction. This menu command is only available when you
are using the debugger.

Options Displays the IDE Options dialog box, see Tools menu, page 240.

Table 29: Description of commands on the editor window context menu (Continued)

Source file paths

The IAR Embedded Workbench IDE supports relative source file paths to a certain
degree.

If a source file is located in the project file directory or in any subdirectory of the project
file directory, the IAR Embedded Workbench IDE will use a path relative to the project
file when accessing the source file.

Editor key summary

The following tables summarize the editor’s keyboard commands.

Use the following keys and key combinations for moving the insertion point:

To move the insertion point Press

One character left Arrow left

One character right Arrow right

One word left Ctri+Arrow left
One word right Ctrl+Arrow right
One line up Arrow up

One line down Arrow down

To the start of the line Home

Table 30: Editor keyboard commands for insertion point navigation

Part 6. Reference information 205

Windows

206

IAR Embedded Workbench® IDE
User Guide

To move the insertion point Press

To the end of the line End

To the first line in the file Ctrl+Home
To the last line in the file Ctrl+End

Table 30: Editor keyboard commands for insertion point navigation (Continued)

Use the following keys and key combinations for scrolling text:

To scroll

Press

Up one line
Down one line
Up one page

Down one page

Ctrl+Arrow up
Ctrl+Arrow down
Page Up

Page Down

Table 31: Editor keyboard commands for scrolling

Use the following key combinations for selecting text:

To select

Press

The character to the left

The character to the right

One word to the left

One word to the right

To the same position on the previous line
To the same position on the next line
To the start of the line

To the end of the line

One screen up

One screen down

To the beginning of the file

To the end of the file

Shift+Arrow left
Shift+Arrow right
Shift+Ctrl+Arrow left
Shift+Ctrl+Arrow right
Shift+Arrow up
Shift+Arrow down
Shift+Home
Shift+End

Shift+Page Up
Shift+Page Down
Shift+Ctrl+Home
Shift+Ctrl+End

Table 32: Editor keyboard commands for selecting text

IAR Embedded Workbench® IDE reference ___¢

SOURCE BROWSER WINDOW

The Source Browser window—available from the View menu—displays an hierarchical
view in alphabetical order of all symbols defined in the active build configuration.

[® [Neme
project] - Debug

< call_count
+ do_foreground_process
get_fib
* init_fib
+* main
4+ next_counter
*
w

put_fib
root

KN — i
Full name: get_fibling)

Symbol type: function

Filename: ChprojectsiUtilities.c

Source Browser

Figure 83: Source Browser window

The window consists of two separate panes. The top pane displays the names of global
symbols and functions defined in the project.

Each row is prefixed with an icon, which corresponds to the Symbol type classification,
see Table 33, Informationin Source Browser window. By clicking in the window header,
you can sort the symbols either by name or by symbol type.

In the top pane you can also access a context menu; see Source Browser window context
menu, page 208.

For a symbol selected in the top pane, the bottom pane displays the following
information:

Type of information Description

Full name Displays the unique name of each element, for instance
classname:membername.

Symbol type Displays the symbol type for each element: enumeration, enumeration
constant, class, typedef, union, macro, field or variable, function,
template function, template class, and configuration.

Filename Specifies the path to the file in which the element is defined.

Table 33: Information in Source Browser window

Part 6. Reference information 207

Windows

208

IAR Embedded Workbench® IDE
User Guide

For further details about how to use the Source Browser window, see Displaying browse
information, page 81.
Source Browser window context menu

Right-clicking in the Source Browser window displays a context menu with convenient
access to several commands.

5o ko Definition
IMowve to Parent

v Al Symbols
All Functions & Yariables
Mon-Member Functions & ‘ariables
Types
Constants & Macros

Al Files
v Exclude System Includes
Only Project Members

Figure 84: Source Browser window context menu

The following commands are available on the context menu:

Menu command Description
Go to Definition The editor window will display the definition of the selected item.
Move to Parent If the selected element is a member of a class, struct, union,

enumeration, or namespace, this menu command can be used for
moving to its enclosing element.

All Symbols Type filter; all global symbols and functions defined in the project will
be displayed.

All Functions & Variables Type filter; all functions and variables defined in the project will be
displayed.

Non-Member Functions Type filter; all functions and variables that are not members of a class

& Variables will be displayed

Types Type filter; all types such as structures and classes defined in the

project will be displayed.

Constants & Macros Type filter; all constants and macros defined in the project will be
displayed.
All Files File filter; symbols from all files that you have explicitly added to your

project and all files included by them will be displayed.

Table 34: Source Browser window context menu commands

IAR Embedded Workbench® IDE reference ___¢

Menu command Description

Exclude System Includes File filter; symbols from all files that you have explicitly added to your
project and all files included by them will be displayed, except the
include files in the IAR Embedded Workbench installation directory.

Only Project Members File filter; symbols from all files that you have explicitly added to your
project will be displayed, but no include files.

Table 34: Source Browser window context menu commands (Continued)

BREAKPOINTS WINDOW

The Breakpoints window—available from the View menu—Ilists all breakpoints. From
the window you can conveniently monitor, enable, and disable breakpoints; you can also
define new breakpoints and modify existing breakpoints.

Code @ Tutar.c:46.2

Figure 85: Breakpoints window

All breakpoints you define are displayed in the Breakpoints window.

For more information about the breakpoint system and how to set breakpoints, see the
chapter Using breakpoints in Part 4. Debugging.

Breakpoints window context menu

Right-clicking in the Breakpoints window displays a context menu with several
commands.

G0 to Source
Edit...

Delete
Disable
Enable Al
Disable Al

Mew Breakpoint ¥

Figure 86: Breakpoints window context menu

Part 6. Reference information 209

Windows

210

IAR Embedded Workbench® IDE
User Guide

The following commands are available on the context menu:

Menu command Description

Go to Source Moves the insertion point to the location of the breakpoint, if the
breakpoint has a source location. Double-click a breakpoint in the
Breakpoints window to perform the same command.

Edit Opens the Edit Breakpoint dialog box for the selected breakpoint.

Delete Deletes the selected breakpoint. Press the Delete key to perform the
same command.

Enable Enables the selected breakpoint. The check box at the beginning of the
line will be selected. You can also perform the command by manually
selecting the check box. This command is only available if the selected
breakpoint is disabled.

Disable Disables the selected breakpoint. The check box at the beginning of the
line will be cleared. You can also perform this command by manually
deselecting the check box.This command is only available if the selected
breakpoint is enabled.

Enable All Enables all defined breakpoints.
Disable All Disables all defined breakpoints.
New Breakpoint Displays a submenu where you can open the New Breakpoint dialog

box for the available breakpoint types. All breakpoints you define using
the New Breakpoint dialog box are preserved between debug
sessions. In addition to code and log breakpoints—see Code breakpoints
dialog box, page 210 and —other types of breakpoints might be available
depending on the C-SPY driver you are using. For information about
driver-specific breakpoint types, see the driver-specific debugger
documentation.

Table 35: Breakpoints window context menu commands

Code breakpoints dialog box

Code breakpoints are triggered when an instruction is fetched from the specified
location. If you have set the breakpoint on a specific machine instruction, the breakpoint
will be triggered and the execution will stop, before the instruction is executed.

To set a code breakpoint, right-click in the Breakpoints window and choose New
Breakpoint>Code on the context menu. To modify an existing breakpoint, select it in
the Breakpoints window and choose Edit on the context menu.

IAR Embedded Workbench® IDE reference ___¢

The Code breakpoints dialog box appears.

& Code |
Break &f:
| Edit...l
— Size
&+ Auta I_I—
 Marual
— Action
Expression: I
Condition:
Expression:
% Condition true Skip count; I—D
" Condition changed

Figure 87: Code breakpoints page

Break At

Specify the location of the breakpoint in the Break At text box. Alternatively, click the
Edit browse button to open the Enter Location dialog box; see Enter Location dialog
box, page 214.

Size

Optionally, you can specify a size—in practice, a range—of locations. Each fetch access
to the specified memory range will trigger the breakpoint. There are two different ways
the size can be specified:

e Auto, the size will be set automatically, typically to 1
e Manual, you specify the size of the breakpoint range manually in the Size text box.

Action

You can optionally connect an action to a breakpoint. Specify an expression, for instance
a C-SPY macro function, which is evaluated when the breakpoint is triggered and the
condition is true.

Part 6. Reference information 211

Windows

IAR Embedded Workbench® IDE
212 User Guide

Conditions

You can specify simple and complex conditions.

Conditions Description

Expression A valid expression conforming to the C-SPY expression syntax.
Condition true The breakpoint is triggered if the value of the expression is true.
Condition changed The breakpoint is triggered if the value of the expression has changed

since it was last evaluated.

Skip count The number of times that the breakpoint must be fulfilled before a break
occurs (integer).

Table 36: Breakpoint conditions

Log breakpoints dialog box

Log breakpoints are triggered when an instruction is fetched from the specified location.
If you have set the breakpoint on a specific machine instruction, the breakpoint will be
triggered and the execution will temporarily halt and print the specified message in the
C-SPY Debug Log window. This is a convenient way to add trace printouts during the
execution of your application, without having to add any code to the application source
code.

To set a log breakpoint, right-click in the Breakpoints window and choose New
Breakpoint>L og on the context menu. To modify an existing breakpoint, select it in the
Breakpoints window and choose Edit on the context menu.

The L og breakpoints dialog box appears.

8 1o |
Break At

IE:\tutor\Tutor.c.4?.3 Edit;..l

Meszage: [~ CSpymaco"__message” style

I"depth =", call_count

Condition:
Expression:

' Condition true
" Condition changed

Figure 88: Log breakpoints page

IAR Embedded Workbench® IDE reference ___¢

The quickest—and typical—way to set a log breakpoint is by choosing Toggle
Breakpoint (L og) from the context menu available by right-clicking in either the editor
or the Disassembly window. For more information about how to set breakpoints, see
Defining breakpoints, page 129.

Break At

Specify the location of the breakpoint in the Break At text box. Alternatively, click the
Edit button to open the Enter L ocation dialog box; see Enter Location dial og box, page
214.

Message

Specify the message you want to be displayed in the C-SPY Debug Log window. The
message can either be plain text, or—if you also select the option C-SPY macro
" __message" style—a comma-separated list of arguments.

C-SPY macro "__message" style

Select this option to make a comma-separated list of arguments specified in the Message
text box be treated exactly as the arguments to the C-SPY macro language statement
__message, see Formatted output, page 364.

Conditions

You can specify simple and complex conditions.

Conditions Description

Expression A valid expression conforming to the C-SPY expression syntax.
Condition true The breakpoint is triggered if the value of the expression is true.
Condition changed The breakpoint is triggered if the value of the expression has changed

since it was last evaluated.

Table 37: Log breakpoint conditions

Part 6. Reference information 213

Windows

214

IAR Embedded Workbench® IDE
User Guide

Enter Location dialog box

Use the Enter Location dialog box—available from a breakpoints dialog box—to
specify the location of the breakpoint.

Enter Location E

Type
' Expression

7 Absolute address

 Souree location

Expression:

()3 I Cancel |

Figure 89: Enter Location dialog box

You can choose between these locations and their possible settings:

Location type

Description/Examples

Expression

Absolute Address

Source Location

Any expression that evaluates to a valid address, such as a function or
variable name. Code breakpoints are set on functions and data
breakpoints are set on variable names. For example, my_var refers to
the location of the variable my_var, and arr [3] refers to the third
element of the array arr.

An absolute location on the form zone: hexaddress or simply
hexaddress. Zone specifies in which memory the address belongs.
For example Memory: 0x42.

If you enter a combination of a zone and address that is not valid, C-SPY
will indicate the mismatch.

A location in the C source code using the syntax:

{file path}.row.column. File specifies the filename and full path.
Row specifies the row in which you want the breakpoint. Column specifies
the column in which you want the breakpoint. Note that the Source
Location type is usually meaningful only for code breakpoints.

For example, {C:\my_projects\Utilities.c}.22.3

sets a breakpoint on the third character position on line 22 in the source
file Utilities.c.

Table 38: Location types

IAR Embedded Workbench® IDE reference ___¢

BUILD WINDOW

The Build window—available by choosing View>M essages—displays the messages
generated when building a build configuration. When opened, this window is by default
grouped together with the other message windows, see Windows, page 191.

| Messages | File | Line |
Tutar.c
A\ Warming[Pe0b4]: declaration does not declare amahing CAProgram File. ATutarc 17
Q Error[Pe0z0]: identifier "call_count" is undefined CAProgram File. \Tutorc 24
Q Error[Pe0z0]: identifier "call_count" is undefined CAProgram File. \Tutorc 35
Q Error[Pe0z0]: identifier "call_count" is undefined CAProgram File. \Tutorc 45
Dane. 3 errors). 1 warning(s)

Figure 90: Build window (message window)
Double-clicking a message in the Build window opens the appropriate file for editing,
with the insertion point at the correct position.

Right-clicking in the Build window displays a context menu which allows you to copy,
select, and clear the contents of the window.

Gy
Select Al

Clear Al

Options. ..
Figure 91: Build window context menu

The Options command opens the M essages page of the | DE options dialog box. On
this page you can set options related to messages; see Messages options, page 251.

FIND IN FILES WINDOW

The Find in Files window—available by choosing View>M essages—displays the
output from the Edit>Find and Replace>Find in Filescommand. When opened, this

Part 6. Reference information 215

Windows

216

IAR Embedded Workbench® IDE
User Guide

window is by default grouped together with the other message windows, see \WMndows,
page 191.

Find in Files B
Fath | Line | String -
Chprojectsh. ATutorc 4 * Ctutarial. Print the Fibonacci numbers.
Chprojectsh. ATutorc 14 int call_count;

Chprojectsh. ATutor.c 28 Getand printthe associated Fibonacci number.
Chprojectsh. ATutor.c 32 unsigned intfik;

Chprojectsh. ATutor.c 41 Prints the Fibonacci numbers.

Chproject. \Utilities.c 16 unsigned int root[MAx_FIB]:

Chproject. \Utilities.c 23 inti=45;

Chproject. \Utilities.c 35 unsigned int get_fib(intnr) -
« | _>l_I
Call Stack | Debug Lag |Builld Find in Files ITooI Cutput x

Figure 92: Find in Files window (message window)

Double-clicking an entry in the page opens the appropriate file with the insertion point
positioned at the correct location.

Right-clicking in the Find in Files window displays a context menu which allows you to
copy, select, and clear the contents of the window.

Copy
Select Al

Clear Al

Figure 93: Find in Files window context menu

TOOL OUTPUT WINDOW

The Tool Output window—available by choosing View>M essages—displays any
messages output by user-defined tools in the Tools menu, provided that you have
selected the option Redirect to Output Window in the Configure Tools dialog box;

IAR Embedded Workbench® IDE reference ___¢

see Configure Tools dialog box, page 261. When opened, this window is by default
grouped together with the other message windows, see Windows, page 191.

Output |

Figure 94: Tool Output window (message window)

Right-clicking in the Tool Output window displays a context menu which allows you to
copy, select, and clear the contents of the window.

Copy
Select Al

Clear Al

Figure 95: Tool Output window context menu

DEBUG LOG WINDOW

The Debug Log window—available by choosing View>M essages—displays debugger
output, such as diagnostic messages and trace information. This output is only available
when the C-SPY Debugger is running. When opened, this window is by default grouped
together with the other message windows, see Windows, page 191.

Log

Fri Feb 06 10:41:40 2004: Loaded module
Fri Felb 06 10:41:40 2004: Target reset

Figure 96: Debug Log window (message window)

Part 6. Reference information 217

Menus

Right-clicking in the Tool Output window displays a context menu which allows you to
copy, select, and clear the contents of the window.

Copy
Select Al

Clear Al

Figure 97: Debug Log window context menu

218

Menus

IAR Embedded Workbench® IDE
User Guide

The following menus are available in the IAR Embedded Workbench IDE:

File menu
Edit menu
View menu
Project menu
Tools menu

Window menu

Help menu.

In addition, a set of C-SPY-specific menus become available when you start the AR
C-SPY Debugger. Reference information about these menus can be found in the chapter
C-SPY® Debugger reference, page 269.

FILE MENU

The File menu provides commands for opening workspaces and source files, saving and
printing, and exiting from the IAR Embedded Workbench IDE.

LU=

IAR Embedded Workbench® IDE reference ___¢

The menu also includes a numbered list of the most recently opened files and
workspaces to allow you to open one by selecting its name from the menu.

Mew 3
Open 3
Close

Save Workspace
Close Workspace

Save CTRLES
Save fs..,

Save Al

Page Setup...

Frint. .. CTRLAR

Recent Files 3
Recent Workspaces 3

Exit

Figure 98: File menu

The following commands are available on the File menu:

Menu command Shortcut Description

New CTRL+N Displays a submenu with commands for creating a new
workspace, or a new text file.

Open>File CTRL+O Displays a submenu from which you can select a text file to
open.

Open> Displays a submenu from which you can select a workspace file

Workspace to open. Before a new workspace is opened you will be
prompted to save and close any currently open workspaces.

Open> CTRL+ Opens the header file or source file that corresponds to the

Header/Source File SHIFT+H

Close

Open Workspace

Save Workspace

Close Workspace

current file, and jumps from the current file to the newly
opened file. This command is also available from the context
menu available from the editor window.

Closes the active window. You will be given the opportunity to
save any files that have been modified before closing.

Displays a dialog box where you can open a workspace file.
You will be given the opportunity to save and close any
currently open workspace file that has been modified before
opening a new workspace.

Saves the current workspace file.

Closes the current workspace file.

Table 39: File menu commands

Part 6. Reference information

219

Menus

220

IAR Embedded Workbench® IDE
User Guide

Menu command Shortcut

Description

Save CTRL+S
Save As

Save All
Page Setup
Print CTRL+P

Recent Files

Recent Workspaces

Exit

Saves the current text file or workspace file.

Displays a dialog box where you can save the current file with a

new name.

Saves all open text documents and workspace files.
Displays a dialog box where you can set printer options.
Displays a dialog box where you can print a text document.

Displays a submenu where you can quickly open the most
recently opened text documents.

Displays a submenu where you can quickly open the most
recently opened workspace files.

Exits from the IAR Embedded Workbench IDE. You will be
asked whether to save any changes to text windows before
closing them. Changes to the project are saved automatically.

Table 39: File menu commands (Continued)

B 15 = 2ls

EDIT MENU

IAR Embedded Workbench® IDE reference ___¢

The Edit menu provides several commands for editing and searching.

Unda Chrl+2
Redo CErlH
Uk GErl
Copy Chrl+C
Paste Chrl+y
Paste Special...
Select Al Chrl+a
Find and Replace
Mavigate
Code Templates
Mext ErrorfTag F4
Previous ErrorfTag Shift+F4
Complete Chrl+Space
Match Brackets Chrl+E
Auto Indent Chrl+T
Elock Comment Chrl+k
Elock Unomment Chrl+Shift+k
Toggle Breakpoink F2
Enable/Disable Breakpoint Ctrl+F9
Figure 99: Edit menu
Menu command Shortcut Description
Undo CTRL+Z Undoes the last edit made to the current editor window.
Redo CTRL+Y Redoes the last Undo in the current editor window.
You can undo and redo an unlimited number of edits
independently in each editor window.
Cut CTRL+X The standard Windows command for cutting text in editor
windows and text boxes.
Copy CTRL+C The standard Windows command for copying text in editor
windows and text boxes.
Paste CTRL+V The standard Windows command for pasting text in editor
windows and text boxes.
Paste Special Provides you with a choice of the most recent contents of the
clipboard to choose from when pasting in editor documents.
Select All CTRL+A Selects all text in the active editor window.

Table 40: Edit menu commands

Part 6. Reference information

221

Menus

222

Menu command

Shortcut

Description

% | Find and Replace>Find CTRL+F

hd

¥z

IAR Embedded Workbench® IDE
User Guide

Find and Replace>
Find Next

Find and Replace>
Find Previous

Find and Replace>
Find Next (Selected)

Find and Replace>
Find Previous
(Selected)

Find and Replace>
Replace

Find and Replace>
Find in Files

Find and Replace>
Incremental Search

Navigate>Go To

Navigate>
Toggle Bookmark

Navigate>
Go to Bookmark

F3

SHIFT+F3

CTRL+F3

CTRL+
SHIFT+F3

CTRL+H

CTRL+I

CTRL+G

CTRL+F2

F2

Displays the Find dialog box where you can search for text
within the current editor window. Note that if the insertion
point is located in the Memory window when you choose the
Find command, the dialog box will contain a different set of
options than it would otherwise do. If the insertion point is
located in the Trace window when you choose the Find
command, the Find in Trace dialog box is opened; the
contents of this dialog box depend on the C-SPY driver you
are using, see the driver documentation for more
information.

Finds the next occurrence of the specified string.

Finds the previous occurrence of the specified string.

Searches for the next occurrence of the currently selected
text or the word currently surrounding the insertion point.

Searches for the previous occurrence of the currently
selected text or the word currently surrounding the insertion
point.

Displays a dialog box where you can search for a specified
string and replace each occurrence with another string. Note
that if the insertion point is located in the Memory window
when you choose the Replace command, the dialog box will
contain a different set of options than it would otherwise do.

Displays a dialog box where you can search for a specified
string in multiple text files; see Find in Files dialog box, page
226.

Displays a dialog box where you can gradually fine-tune or
expand the search by continuously changing the search string.

Displays a dialog box where you can move the insertion point
to a specified line and column in the current editor window.

Toggles a bookmark at the line where the insertion point is
located in the active editor window.

Moves the insertion point to the next bookmark that has
been defined with the Toggle Bookmark command.

Table 40: Edit menu commands (Continued)

IAR Embedded Workbench® IDE reference ___¢

Menu command Shortcut Description
Navigate> ALT+Left Navigates backward in the insertion point history. The
Navigate Backward arrow current position of the insertion point is added to the history

by actions like Go to definition and clicking on a result from
the Find in Files command.

Navigate> ALT+Right Navigates forward in the insertion point history. The current

Navigate Forward arrow position of the insertion point is added to the history by
actions like Go to definition and clicking on a result from
the Find in Files command.

Navigate> Fl12 Shows the declaration of the selected symbol or the symbol

Go to Definition where the insertion point is placed. This menu command is
available when browse information has been enabled, see
Project options, page 253.

Code Templates> CTRL+ Displays a list in the editor window from which you can
Insert Template SHIFT+ choose a code template to be inserted at the location of the
SPACE insertion point. If the code template you choose requires any

field input, the Template dialog box appears; for
information about this dialog box, see Template dialog box,
page 228. For information about using code templates, see
Using and adding code templates, page 97.

Code Templates> Opens the current code template file, where you can modify

Edit Templates existing code templates and add your own code templates.
For information about using code templates, see Using and
adding code templates, page 97.

Next Error/Tag F4 If there is a list of error messages or the results from a Find
in Files search in the Messages window, this command will
display the next item from that list in the editor window.

Previous Error/Tag ~ SHIFT+F4 If there is a list of error messages or the results from a Find
in Files search in the Messages window, this command will
display the previous item from that list in the editor window.

Complete CTRL+ Attempts to complete the word you have begun to type,
SPACE basing the guess on the contents of the rest of the editor
document.
Auto Indent CTRL+T Indents one or several lines you have selected in a C/C++

source file. To configure the indentation, see Configure Auto
Indent dialog box, page 246.

Table 40: Edit menu commands (Continued)

Part 6. Reference information 223

Menus

224

IAR Embedded Workbench® IDE
User Guide

Menu command Shortcut Description

Match Brackets

Selects all text between the brackets immediately
surrounding the insertion point, increases the selection to the
next hierarchic pair of brackets, or beeps if there is no higher
bracket hierarchy.

Block Comment CTRL+K Places the C++ comment character sequence // at the

beginning of the selected lines.

Block Uncomment ~ CTRL+K Removes the C++ comment character sequence // from the

Toggle Breakpoint Fo

beginning of the selected lines.

Toggles a breakpoint at the statement or instruction that
contains or is located near the cursor in the source window.
This command is also available as an icon button in the debug
bar.

Enable/Disable CTRL+F9 Toggles a breakpoint between being disabled, but not actually

Breakpoint

removed—making it available for future use—and being
enabled again.

Table 40: Edit menu commands (Continued)

Find dialog box

The Find dialog box is available from the Edit menu. Note that the contents of this
dialog box look different if you search in an editor window compared to if you search

in the Memory window.

Option

Description

Find What
Match Whole Word Only

Match Case

Search as Hex

Find Next
Find Previous

Stop

Selects the text to search for.

Searches the specified text only if it occurs as a separate word.
Otherwise specifying int will also find print, sprintf etc. This
option is only available when you search in an editor window.

Searches only occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.
This option is only available when you search in an editor window.

Searches for the specified hexadecimal value. This option is only
available when you search in the Memory window.

Finds the next occurrence of the selected text.
Finds the previous occurrence of the selected text.

Stops an ongoing search. This button is only available during a search
in the Memory window.

Table 41: Find dialog box options

IAR Embedded Workbench® IDE reference ___¢

Replace dialog box

The Replace dialog box is available from the Edit menu.

Option Description

Find What Selects the text to search for.

Replace With Selects the text to replace each found occurrence in the Replace
With box.

Match Whole Word Only Searches the specified text only if it occurs as a separate word.
Otherwise int will also find print, sprintf etc. This checkbox
is not available when you perform the search in the Memory window.

Match Case Searches only occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.
This checkbox is not available when you perform the search in the
Memory window.

Search as Hex Searches for the specified hexadecimal value. This checkbox is only
available when you perform the search in the Memory window.

Find Next Searches the next occurrence of the text you have specified.

Replace Replaces the searched text with the specified text.

Replace All Replaces all occurrences of the searched text in the current editor
window.

Table 42: Replace dialog box options

Part 6. Reference information 225

Menus

226

IAR Embedded Workbench® IDE
User Guide

Find in Files dialog box

Use the Find in Filesdialog box—available from the Edit menu—to search for a string
in files.

Find in Files [%]

Find what Find |
I j Close |

™ Match case
™ Makch whale word

Look in
& Project files

" Project files and user include files
" Project files and all include Files
" Direckory:

| g2 o

¥ | Lack i subdirectaries

File types

I*.c,'*.cpp;*.cc,'*.h;*.hpp,‘*.s*;*.msa;*.asm j

Figure 100: Find in Files dialog box

The result of the search appears in the Find in Files messages window—available from
the View menu. You can then go to each occurrence by choosing the Edit>Next
Error/Tag command, alternatively by double-clicking the messages in the Find in Files
messages window. This opens the corresponding file in an editor window with the
insertion point positioned at the start of the specified text. A blue flag in the left-most
margin indicates the line.

In the Find in Files dialog box, you specify the search criteria with the following
settings.
Find what

A text field in which you type the string you want to search for. There are two options
for fine-tuning the search:

Match case Searches only for occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.

Match whole word Searches only for the string when it occurs as a separate word.
Otherwise int will also find print, sprintf and so on.

IAR Embedded Workbench® IDE reference ___¢

Look in

The options in the L ook in area lets you specify which files you want to search in for a
specified string. Choose between:

Project files The search will be performed in all files that you have explicitly added to
your project.

Project files and user The search will be performed in all files that you have explicitly added to
include files your project and all files included by them, except the include files in the
IAR Embedded Workbench installation directory.

Project files and all The search will be performed in all project files that you have explicitly
include files added to your project and all files included by them.

Directory The search will be performed in the directory that you specify. Recent
search locations are saved in the drop-down list. Locate the directory
using the browse button.

Look in The search will be performed in the directory that you have specified
subdirectories and all its subdirectories.
File types

This is a filter for choosing which type of files to search; the filter applies to all options
in the Look in area. Choose the appropriate filter from the drop-down list. Note that the
Filetypestext field is editable, which means that you can add your own filters. Use the
* character to indicate zero or more unknown characters of the filters, and the 2
character to indicate one unknown character.

Stop
Stops an ongoing search. This function button is only available during an ongoing
search.

Incremental Search dialog box

The Incremental Search dialog box—available from the Edit menu—Iets you
gradually fine-tune or expand the search string.

Incremental Search x|

Find Wwhat: | =
[T Mateh Cass Cloze |

Figure 101: Incremental Search dialog box

Part 6. Reference information 227

Menus

228

IAR Embedded Workbench® IDE

User Guide

Find What

Type the string to search for. The search will be performed from the location of the
insertion point—the start point. Gradually incrementing the search string will gradually
expand the search criteria. Backspace will remove a character from the search string; the
search will be performed on the remaining string and will start from the start point.

If a word in the editor window is selected when you open the | ncremental Search
dialog box, this word will be displayed in the Find What text box.

Match Case

Use this option to find only occurrences that exactly match the case of the specified text.
Otherwise searching for int will also find INT and Int.

Function buttons

Function button Description

Find Next Searches for the next occurrence of the current search string. If the
Find What text box is empty when you click the Find Next button, a
string to search for will automatically be selected from the drop-down
list. To search for this string, click Find Next.

Close Closes this dialog box.

Table 43: Incremental Search function buttons

Template dialog box

Use the Template dialog box to specify any field input that is required by the source
code template you insert. This dialog box appears when you insert a code template that
requires any field input.

Template “for™ E

End Yalue I 10 ok I
‘ariable I i Cancel |

fForfink i =0; i < 10; +-+i)

+

Figure 102: Template dialog box

Note: This figure reflects the default code template that can be used for automatically
inserting code for a for loop.

IAR Embedded Workbench® IDE reference ___¢

The contents of this dialog box match the code template. In other words, which fields
that appear depends on how the code template is defined.

At the bottom of the dialog box, the code that would result from the code template is
displayed.

For more information about using code templates, see Using and adding code templ ates,
page 97.

VIEW MENU

With the commands on the View menu you can choose what to display in the IAR
Embedded Workbench IDE. During a debug session you can also open
debugger-specific windows from the View menu.

Messages 3

‘Warkspace

Source Browser

Breakpoints

Toolbars 3
v Status Bar

Figure 103: View menu

Menu command Description

Messages Opens a submenu which gives access to the message windows—Build,
Find in Files, Tool Output, Debug Log—that display messages and text
output from the IAR Embedded Workbench commands. If the window
you choose from the menu is already open, it becomes the active

window.
Workspace Opens the current Workspace window.
Source Browser Opens the Source Browser window.
Breakpoints Opens the Breakpoints window.
Toolbars The options Main and Debug toggle the two toolbars on and off.
Status bar Toggles the status bar on and off.

Table 44: View menu commands

Part 6. Reference information 229

Menus

Menu command Description

Debugger windows During a debugging session, the different debugging windows are also
available from the View menu:
Disassembly window
Memory window
Symbolic Memory window
Register window
Watch window
Locals window
Statics window
Auto window
Live Watch window
Quick Watch window
Call Stack window
Terminal I/O window
Code Coverage window
Profiling window
Stack window
For descriptions of these windows, see C-SPY windows, page 269.

Table 44: View menu commands (Continued)

IAR Embedded Workbench® IDE
230 User Guide

IAR Embedded Workbench® IDE reference ___¢

PROJECT MENU

The Project menu provides commands for working with workspaces, projects, groups,
and files, as well as specifying options for the build tools, and running the tools on the
current project.

Add Files. ..

Add Group. ..

Import File List, .,
Edit Configurations. ..

Remayve

Create Mew Project. ..
Add Existing Project. ..

Options... Ale+F7
Source Code Contral 3
Make F?

Compile Chrl+F7
Rebuild all

Clean

Batch build. .. F&

Stop Build Chrl+Break
Debug Chrl+D

IMake & Restark Debugger

Figure 104: Project menu

Menu Command Description

Add Files Displays a dialog box that where you can select which files to include
to the current project.

Add Group Displays a dialog box where you can create a new group. The Group
Name text box specifies the name of the new group. The Add to
Target list selects the targets to which the new group should be
added. By default the group is added to all targets.

Import File List Displays a standard Open dialog box where you can import
information about files and groups from projects created using
another IAR tool chain.

To import information from project files which have one of the older
filename extensions pew or prj you must first have exported the
information using the context menu command Export File List
available in your own IAR Embedded Workbench.

Edit Configurations Displays the Configurations for project dialog box, where you can
define new or remove existing build configurations.

Table 45: Project menu commands

Part 6. Reference information 231

Menus

232

Menu Command

Description

Remove

Create New Project

Add Existing Project

Options Alt+F7

Source Code Control

Make F7

Compile Ctrl+F7

Rebuild All
Clean

Batch BuildF8

Stop Build Ctrl+Break
Debug Ctrl+D

In the Workspace window, removes the selected item from the
workspace.

Displays a dialog box where you can create a new project and add it
to the workspace.

Displays a dialog box where you can add an existing project to the
workspace.

Displays the Options for node dialog box, where you can set
options for the build tools on the selected item in the Workspace
window. You can set options on the entire project, on a group of files,
or on an individual file.

Opens a submenu with commands for source code control, see Source
Code Control menu, page 197.

Brings the current build configuration up to date by compiling,
assembling, and linking only the files that have changed since the last
build.

Compiles or assembles the currently selected file, files, or group.
One or more files can be selected in the Workspace window—all files
in the same project, but not necessarily in the same group. You can
also select the editor window containing the file you want to compile.
The Compile command is only enabled if every file in the selection is
individually suitable for the command.

You can also select a group, in which case the command is applied to
each file in the group (including inside nested groups) that can be
compiled, even if the group contains files that cannot be compiled,
such as header files.

Rebuilds and relinks all files in the current target.
Removes any intermediate files.

Displays a dialog box where you can configure named batch build
configurations, and build a named batch.

Stops the current build operation.

Starts the IAR C-SPY Debugger so that you can debug the project
object file. If necessary, a make will be performed before running
C-SPY to ensure the project is up to date. Depending on your IAR
product installation, you can choose which debugger drive to use by
selecting the appropriate C-SPY driver on the C-SPY Setup page
available by using the Project>Options command.

Table 45: Project menu commands (Continued)

IAR Embedded Workbench® IDE
User Guide

Menu Command

IAR Embedded Workbench® IDE reference ___¢

Description

Make & Restart Debugger Stops the debugger, makes the active build configuration, and starts

the debugger again; all in a single command. This button is only
available during debugging.

Table 45: Project menu commands (Continued)

Argument variables summary

Variables can be used for paths and arguments. The following argument variables can

be used:

Variable Description

$CUR_DIRS Current directory

$CUR_LINES Current line

$SEW_DIRS Top directory of IAR Embedded Workbench, for example
c:\program files\iar systems\embedded workbench
5.n

$EXE_DIRS Directory for executable output

$FILE_BNAMES
$FILE_BPATHS
$FILE_DIRS
$FILE_FNAMES
$FILE_PATHS
$LIST_DIRS
SOBJ_DIRS
$PROJ_DIRS
$PROJ_FNAMES
$PROJ_PATHS
$TARGET_DIRS
$TARGET_BNAMES
$TARGET_BPATHS
$TARGET_FNAMES$
$TARGET_PATHS

STOOLKIT_DIRS

Filename without extension

Full path without extension

Directory of active file, no filename

Filename of active file without path

Full path of active file (in Editor, Project, or Message window)
Directory for list output

Directory for object output

Project directory

Project file name without path

Full path of project file

Directory of primary output file

Filename without path of primary output file and without extension
Full path of primary output file without extension

Filename without path of primary output file

Full path of primary output file

Directory of the active product, for example ¢ : \program
files\iar systems\embedded workbench 5.n\cpuname

Table 46: Argument variables

Part 6. Reference information 233

Menus

234

IAR Embedded Workbench® IDE
User Guide

Variable Description

$_ENVVAR_S The environment variable ENVVAR. Any name within $_ and _$ will
be expanded to that system environment variable.

Table 46: Argument variables (Continued)

Configurations for project dialog box

In the Configuration for project dialog box—available by choosing Project>Edit
Configurations—you can define new build configurations for the selected project;
either entirely new, or based on a previous project.

Configurations for "Project1™

Configurations:
Release New. |
Remove |

Figure 105: Configurations for project dialog box

The dialog box contains the following:

Operation Description

Configurations Lists existing configurations, which can be used as templates for new
configurations.

New Opens a dialog box where you can define new build configurations.

Remove Removes the configuration that is selected in the Configurations list.

Table 47: Configurations for project dialog box options

IAR Embedded Workbench® IDE reference ___¢

New Configuration dialog box

In the New Configuration dialog box—available by clicking New in the
Configurationsfor project dialog box—you can define new build configurations;
either entirely new, or based on any currently defined configuration.

New Configuration [%]

M ame: ok |
I Cancel |

Tool chain:

|cPUNAME 4|

Based on configuration:
I [ebug j

& Debug

Factory settings
’7 " Felease

Figure 106: New Configuration dialog box

The dialog box contains the following:

Item Description
Name The name of the build configuration.
Tool chain The target to build for. If you have several versions of IAR Embedded

Workbench for different targets installed on your host computer, the
drop-down list can contain these targets.

Based on configuration A currently defined build configuration that you want the new
configuration to be based on. The new configuration will inherit the
project settings as well as information about the factory settings from
the old configuration. If you select None, the new configuration will have
default factory settings and not be based on an already defined
configuration.

Factory settings Specifies the default factory settings—either Debug or Release—that
you want to apply to your new build configuration. These factory
settings will be used by your project if you press the Factory Settings
button in the Options dialog box.

Table 48: New Configuration dialog box options

Create New Project dialog box

The Create New Project dialog box is available from the Project menu, and lets you
create a new project based on a template project. There are template projects available

Part 6. Reference information 235

Menus

236

IAR Embedded Workbench® IDE
User Guide

for C/C++ applications, assembler applications, and library projects. You can also create
your own template projects.

Create New Project E

Tool chain: I CRUMAME

Project templates:

[~

Empty project
[l gsm
[C++

Description:

Creates an empty project.

.

Cancel

Figure 107: Create New Project dialog box

The dialog box contains the following:

Item

Description

Tool chain

Project templates

The target to build for. If you have several versions of IAR Embedded
Workbench for different targets installed on your host computer, the
drop-down list can contain these targets.

Lists all available template projects that you can base a new project on.

Table 49: Description of Create New Project dialog box

Options dialog box

The Options dialog box is available from the Project menu.

In the Category list you can select the build tool for which you want to set options. The
options available in the Category list will depend on the tools installed in your IAR
Embedded Workbench IDE, and will typically include the following options:

Category

Description

General Options
C/C++ Compiler

Assembler

General options
IAR C/C++ Compiler options

IAR Assembler options

Table 50: Project option categories

IAR Embedded Workbench® IDE reference ___¢

Category Description

Custom Build Options for extending the tool chain

Build Actions Options for pre-build and post-build actions

Linker IAR XLINK Linker options. This category is
available for application projects.

Library Builder IAR XAR Library Builder options. This
category is available for library projects.

Debugger IAR C-SPY Debugger options

Simulator Simulator-specific options

Table 50: Project option categories (Continued)
Note: Additional debugger categories might be available depending on the debugger
drivers installed.

Selecting a category displays one or more pages of options for that component of the
IAR Embedded Workbench IDE.

For detailed information about each option, see the option reference chapters:

General options
Compiler options
Assembler options
Custom build options
Build actions options
Linker options

Library builder options
Debugger options.

For information about the options related to available hardware debugger systems, see
the online help system.

Part 6. Reference information 237

Menus

238

IAR Embedded Workbench® IDE
User Guide

Batch Build dialog box

The Batch Build dialog box—available by choosing Project>Batch build—lists all
defined batches of build configurations.

Batch Build [%]

Batches:

— Build

Mew..

Femove

Edit...

Cloze

il L

Cancel

I ake

Llean

Rebuid Al |

Figure 108: Batch Build dialog box

The dialog box contains the following:

Item Description

Batches Lists all currently defined batches of build configurations.

New Displays the Edit Batch Build dialog box, where you can define new
batches of build configurations.

Remove Removes the selected batch.

Edit Displays the Edit Batch Build dialog box, where you can modify
already defined batches.

Build Consists of the three build commands Make, Clean, and Rebuild All.

Table 51: Description of the Batch Build dialog box

IAR Embedded Workbench® IDE reference ___¢

Edit Batch Build dialog box

In the Edit Batch Build dialog box—available from the Batch Build dialog box—you
can create new batches of build configurations, and edit already existing batches.

Edit Batch Build [%]
—Name
Awailable configurations Configurations to build [drag to order]

project] - Debug
project] - Release
project? - Debug
project? - Release

Lk

L4+

()3 I Cancel

Figure 109: Edit Batch Build dialog box

The dialog box contains the following:

Item Description

Name The name of the batch.

Available configurations Lists all build configurations that are part of the workspace.

Configurations to build Lists all the build configurations you select to be part of a named
batch.

Table 52: Description of the Edit Batch Build dialog box

To move appropriate build configurations from the Available configurationslist to the
Configurationsto build list, use the arrow buttons. Note also that you can drag the
build configurations in the Configurationsto build field to specify the order between
the build configurations.

Part 6. Reference information 239

Menus

240

IAR Embedded Workbench® IDE
User Guide

TOOLS MENU

The Toolsmenu provides commands for customizing the environment, such as changing
common fonts and shortcut keys.

It is a user-configurable menu to which you can add tools for use with JAR Embedded
Workbench. Thus, it might look different depending on which tools have been
preconfigured to appear as menu items. See Configure Tools dialog box, page 261.

Options. ..

Configure Tools, ..
Filename Extensions. ..
Configure Viewers. ..
Motepad

Figure 110: Tools menu

Tools menu commands

Menu command

Description

Options

Configure Tools

Filename Extensions

Configure Viewers

Notepad

Displays the IDE Options dialog box where you can customize the IAR
Embedded Workbench IDE. In the left side of the dialog box, select a
category and the corresponding options are displayed in the right side of
the dialog box. Which categories that are available in this dialog box
depends on your IAR Embedded Workbench IDE configuration, and
whether the IDE is in a debugging session or not.

Displays a dialog box where you can set up the interface to use external
tools.

Displays a set of dialog boxes where you can define the filename
extensions to be accepted by the build tools.

Displays a dialog box where you can configure viewer applications to
open documents with.

User-configured. This is an example of a user-configured addition to the
Tools menu.

Table 53: Tools menu commands

IAR Embedded Workbench® IDE reference ___¢

COMMON FONTS OPTIONS

Use the Common Fonts options—available by choosing Tools>Options—for
configuring the fonts used for all project windows except the editor windows.

IDE Options [}
rmon Fonts — Fixed ‘Width Font
Key Bindings —
Editar Fant... I IEouner, size = 10
Messages
Project — Propartional Width Font
Source Code Contral —
Debugger Font... | IMS Sans Serif, size =10
Stack.
- Register Filter
S Terminal 0
QK | Cancel | Apply | Help |

Figure 111: Common Fonts options

With the Font buttons you can change the fixed and proportional width fonts,
respectively.

Any changes to the Fixed Width Font options will apply to the Disassembly, Register,
and Memory windows. Any changes to the Proportional Width Font options will
apply to all other windows.

None of the settings made on this page apply to the editor windows. For information
about how to change the font in the editor windows, see Editor Colors and Fonts
options, page 250.

Part 6. Reference information 241

Menus

242

IAR Embedded Workbench® IDE
User Guide

KEY BINDINGS OPTIONS

Use the Key Bindings options—available by choosing Tools>Options—to customize
the shortcut keys used for the IAR Embedded Workbench IDE menu commands.

IDE Dptions [%]
Comrmon Fonts
Menu: I File = l

Editar - "
Messages Command | Frimary | Alias -
Prai tg Mew document CTRL+M
rale Mew workspace
Source Code Contral Open CTRL+0
Debugger Open ‘Workspace o
Stack. Header/Source File CTRL+5K...
Register Filker Close
..... i Save Workspace
Terminal 1fO Claca Winrd enace LI

Prezz shortcut key: Frimary Aliaz

I St Al

[lear | [lear | HesetAIIl

QK I Cancel | Apply | Help |

Figure 112: Key Bindings options

Menu

Use the drop-down list to choose the menu you want to edit. Any currently defined
shortcut keys are shown in the scroll list below.

Command

All commands available on the selected menu are listed in the Commands column.
Select the menu command for which you want to configure your own shortcut keys.

Press shortcut key

Use the text field to type the key combination you want to use as shortcut key. It is not
possible to set or add a shortcut if it is already used by another command.

Primary

The shortcut key will be displayed next to the command on the menu. Click the Set
button to set the combination for the selected command, or the Clear button to delete
the shortcut.

IDE Options (X

¥

IAR Embedded Workbench® IDE reference ___¢

Alias

The shortcut key will work but not be displayed on the menu. Click either the Add
button to make the key take effect for the selected command, or the Clear button to
delete the shortcut.

Reset All

Reverts all command shortcut keys to the factory settings.

LANGUAGE OPTIONS

Use the L anguage options—available by choosing Tools>Options—to specify the
language to be used in windows, menus, dialog boxes, etc.

Comrmon Fonts
Key Bindings
Language
Editar
Messages After changing to a different language,
you must restart the application.

Language

Project

Source Code Contral
Debugger

Stack.

QK | Cancel Help

Figure 113: Language options

Language
Use the drop-down list to choose the language to be used.
The languages that can be selected depend on your product version.

Note: If you have IAR Embedded Workbench IDE installed for several different tool
chains in the same directory, the IDE might be in mixed languages if the tool chains are
available in different languages.

Part 6. Reference information 243

Menus

EDITOR OPTIONS
Use the Editor options—available by choosing Tools>Options—to configure the
editor.
Comrmon Fonts
Key Bindings Tab size: IS V' Syritax highlighting
Edfiz ¥ Autoindsnt
Indent size: |2
- Colors and Fonts Tah Key Function.———— [Show line numbers
- Messages " Inzert tab V' Scan for changed files
- Project
Srooulfcce Code Cantral & |ndent with spaces V' Show bookmarks
. Debugger [~ Enable virtual space
EOL characters: IPC 'l
Stac.k) ™ Remove trailing blarks
- Reegister Filter V' Show right margin
- Terminal IjQ
" Printing edge
& Calurnres ISD
QK | Cancel | Apply | Help |

Figure 114: Editor options

For more information about the IAR Embedded Workbench IDE Editor and how it can
be used, see Editing, page 93.

Tab Size

Use this option to specify the number of character spaces corresponding to each tab.

Indent Size

Use this option to specify the number of character spaces to be used for indentation.

Tab Key Function
Use this option to specify how the Tab key is used. Choose between:

e Inserttab
e Indent with spaces.

IAR Embedded Workbench® IDE
244 User Guide

IAR Embedded Workbench® IDE reference ___¢

EOL character

Use this option to select the line break character to be used when editor documents are
saved. Choose between:

PC (default) Windows and DOS end of line characters. The PC format is used by
default.

Unix UNIX end of line characters.

Preserve The same end of line character as the file had when it was opened,

either PC or UNIX. If both types or neither type are present in the
opened file, PC end of line characters will be used.

Show right margin

The area of the editor window outside the right-side margin is displayed as a light gray
field. You can choose to set the size of the text field between the left-side margin and the
right-side margin. Choose to set the size based on:

Printing edge Size based on the printable area which is based on general printer
settings.
Columns Size based on number of columns.

Syntax Highlighting

Use this option to make the editor display the syntax of C or C++ applications in
different text styles.

To read more about syntax highlighting, see Editor Colorsand Fonts options, page 250,
and Syntax coloring, page 95.

Auto Indent

Use this option to ensure that when you press Return, the new line will automatically be
indented. For C/C++ source files, indentation will be performed as configured in the
Configure Auto Indent dialog box. Click the Configur e button to open the dialog box
where you can configure the automatic indentation; see Configure Auto Indent dialog
box, page 246. For all other text files, the new line will have the same indentation as the
previous line.

Show Line Numbers

Use this option to display line numbers in the editor window.

Part 6. Reference information 245

Menus

246

IAR Embedded Workbench® IDE
User Guide

H W N

Scan for Changed Files

Use this option to check if files have been modified by some other tool. In that case the
files will be automatically reloaded. If a file has been modified in the IAR Embedded
Workbench IDE, you will be prompted first.

Show Bookmarks

Use this option to display a column on the left side in the editor window, with icons for
compiler errors and warnings, Find in Filesresults, user bookmarks and breakpoints.
Enable Virtual Space

Use this option to allow the insertion point to move outside the text area.

Remove trailing blanks

Use this option to remove trailing blanks from files when they are saved to disk. Trailing
blanks are blank spaces between the last non-blank character and the end of line
character.

CONFIGURE AUTO INDENT DIALOG BOX

Use the Configure Auto I ndent dialog box to configure the automatic indentation
performed by the editor for C/C++ source code. To open the dialog box:

Choose Tools>Options.
Click the Editor tab.
Select the Auto indent option.

Click the Configur e button.

Configure Auto Indent [%]
Sample code
(Opening Brace () int fiint x)
|0 al i
] switch (%)
Body (b) al| {
z c case 0O:
] return 1;
Label {c) c defanlt:
ID—] EEetuUrn X:
+
+
[8]4 I Cancel

Figure 115: Configure Auto Indent dialog box

IAR Embedded Workbench® IDE reference ___¢

To read more about indentation, see Automatic text indentation, page 96.

Opening Brace (a)

Use the text box to type the number of spaces used for indenting an opening brace.

Body (b)

Use the text box to type the number of additional spaces used for indenting code after
an opening brace, or a statement that continues onto a second line.

Label (c)

Use the text box to type the number of additional spaces used for indenting a label,
including case labels.

Sample code

This area reflects the settings made in the text boxes for indentation. All indentations are
relative to the preceding line, statement, or other syntactic structures.

EXTERNAL EDITOR OPTIONS

Use the External Editor options—available by choosing Tools>Options—to specify
an external editor of your choice.

IDE Dptions [%]

- Cormmon Fonts
- Key Bindings [V Use External Editor

Editar Type: |DDE =l
- Editor: |c:\cw32\cw32.exe J

etup Files

- Colors and Fonts Service: IEodewright
- Messages
- Project Command: |System BufEditFile $FILE_PATH$
- Source Code Contral $FILE_PATH$ MovToline $CUR_LINES
- Debugger

- Stack
- Register Filker
- Terminal IjQ

QK I Cancel | Apply Help

Figure 116: External Editor options

See also Using an external editor, page 100.

Part 6. Reference information 247

Menus

248

IAR Embedded Workbench® IDE
User Guide

Use External Editor

Use this option to enable the use of an external editor.

Type
Use the drop-down list to select the type of interface. Choose between:

e Command Line
e DDE (Windows Dynamic Data Exchange).

Editor

Use the text field to specify the filename and path of your external editor. A browse
button is available for your convenience.

Arguments

Use the text field to specify any arguments to pass to the editor. Only applicable if you
have selected Command Line as the interface type, see Type, page 243.

Service

Use the text field to specify the DDE service name used by the editor. Only applicable
if you have selected DDE as the interface type, see Type, page 248.

The service name depends on the external editor that you are using. Refer to the user
documentation of your external editor to find the appropriate settings.
Command

Use the text field to specify a sequence of command strings to send to the editor. The
command strings should be typed as:

DDE-Topic CommandString
DDE-Topic CommandString

Only applicable if you have selected DDE as the interface type, see Type, page 248.

The command strings depend on the external editor that you are using. Refer to the user
documentation of your external editor to find the appropriate settings.

Note: Variables can be used in arguments. See Argument variables summary, page
233, for information about available argument variables.

IAR Embedded Workbench® IDE reference ___¢

EDITOR SETUP FILES OPTIONS

Use the Editor Setup Files options—available by choosing T ools>Options—to
specify setup files for the editor.

IDE Dptions [%]

Comrmon Fonts
Key Bindings ™ Use Custom Keyword File

Editar I |
-External Editor

| V¥ Use Code Templates

Colors and Fonts Iation DatablaR Embedded Warkbench\CodeT emplates.tst _I
- Messages

- Project

- Source Code Control

- Debugger

- Stack

- Register Filker

- Terminal IjQ

QK I Cancel Apply Help

Figure 117: Editor Setup Files options

Use Custom Keyword File

Use this option to specify a text file containing keywords that you want the editor to
highlight. For information about syntax coloring, see Syntax coloring, page 95.

Use Code Templates

Use this option to specify a text file with code templates that you can use for inserting
frequently used code in your source file. For information about using code templates,
see Using and adding code templates, page 97.

Part 6. Reference information 249

Menus

EDITOR COLORS AND FONTS OPTIONS

Use the Editor Colorsand Fonts options—available by choosing Tools>Options—to
specify the colors and fonts used for text in the editor windows.

IDE Options X
Comrmon Fonts Editar Font
Key Bindings
Language Fant... |E0urier Mew, size =9
—|- Editor
External Editor Syt Ciletig
Setup Files
Colors and Fonts Default ~
Messages C KE}'WU'd
Project EE::IQS Type Style:
Source Code Contral Preprocessor
Debugger Integer [dec]
Stack. Integer [oct] Sample

Integer [hex)
Float b
Background Color

QK Cancel Help

Figure 118: Editor Colors and Fonts options

Editor Font

Press the Font button to open the standard Font dialog box where you can choose the
font and its size to be used in editor windows.

Syntax Coloring

Use the Syntax Coloring options to choose color and type style for selected elements.
The elements you can customize are: C or C++, compiler keywords, assembler
keywords, and user-defined keywords. Use the following options:

Scroll-bar list Lists the possible items for which you can specify font and style of
syntax.

Color Provides a list of colors to choose from for the selected element.

Type Style Provides a list of type styles to choose from.

Sample Displays the current setting.

IAR Embedded Workbench® IDE
250 User Guide

IAR Embedded Workbench® IDE reference ___¢

Background Color Provides a list of background colors to choose from for the editor
window.

The keywords controlling syntax highlighting for assembler and C or C++ source code
are specified in the files syntax_icc.cfgand syntax_asm.cfg, respectively. These
files are located in the config directory.

MESSAGES OPTIONS

Use the M essages options—available by choosing T ools>Options—to choose the
amount of output in the Build messages window.

IDE Options 53
Comrmon Fonts
Key Bindings Show build messages: Wiarnings -
Language Log n file
+|- Editor
™ Log build messages in file
Project {+
Source Code Contral -
Debugger

Stack. J

Some dialog boxes can be suppressed by selecting a "Don't show
again'' check box. Click “"Enable All Dialogs" to enable all
suppreszed dialog boxes again.

Enable All Dialogs

QK | Cancel Help

Figure 119: Messages option

Show build messages

Use this drop-down menu to specify the amount of output in the Build messages
window. Choose between:

All Shows all messages, including compiler and linker information.
Messages Shows messages, warnings, and errors.

Woarnings Shows warnings and errors.

Errors Shows errors only.

Part 6. Reference information 251

Menus

252

IAR Embedded Workbench® IDE
User Guide

Log File

Use these options to write build messages to a log file. To enable the options, select the
Enable build log file option. Choose between:

Append to end of file Appends the messages at the end of the specified file.

Overwrite old file Replaces the contents in the file you specify.

Type the filename you want to use in the text box. A browse button is available for your
convenience.

Enable All Dialogs
The Enable All Dialogs button enables all suppressed dialog boxes.

Some dialog boxes can be suppressed by selecting a Don’t show again check box, for
example:

IAR Embedded Workbench IDE E

] E This will kerminate the debug session.
-

Ok I Cancel |

" Don't show again

Figure 120: Message dialog box containing a Don’t show again option

IAR Embedded Workbench® IDE reference ___¢

PROJECT OPTIONS

Use the Project options—available by choosing Tools>Options—to set options for the
Make and Build commands.

IDE Dptions [%]

Stop build operation on: INever 'l
Save editor windows before building: IAIways 'l

Save workspace and projects before IAIways vl
building:
Make before debugging: IAIways 'l

™ Reload last workspace at startup

¥ Play a sound after build operations

¥ Generate browss information

QK I Cancel Apply Help

Figure 121: Projects options

The following options are available:

Option Description

Stop build operation on Specifies when the build operation should stop.
Never: Do not stop.
Warnings: Stop on warnings and errors.
Errors: Stop on errors.

Save editor windows before Always: Always save before Make or Build.

building Ask: Prompt before saving.
Never: Do not save.

Save workspace and projects Always: Always save before Make or Build.

before building Ask: Prompt before saving.
Never: Do not save.

Make before debugging Always: Always perform the Make command before
debugging.

Ask: Always prompt before performing the Make command.
Never: Do not perform the Make command before
debugging.

Table 54: Project IDE options

Part 6. Reference information 253

Menus

254

IAR Embedded Workbench® IDE
User Guide

Option Description

Reload last workspace at startup ~ Select this option if you want the last active workspace to
load automatically the next time you start IAR Embedded
Workbench.

Play a sound after build operations Plays a sound when the build operations are finished.

Generate browse information Enables the use of the Source Browser window, see Source
Browser window, page 207.

Table 54: Project |DE options (Continued)

SOURCE CODE CONTROL OPTIONS

Use the Sour ce Code Contr ol options—available by choosing Tools>Options—to
configure the interaction between an IAR Embedded Workbench project and an SCC
project.

IDE Dptions [%]

¢+ Common Fanks
i Key Bindings

™ Keep items checked out when checking in

Save editor windows befare perfarming IAIways vl

source code contral commands:

- Register Filter
S Terminal 0

QK I Cancel Apply Help

Figure 122: Source Code Control options

Keep items checked out when checking in

Determines the default setting for the option K eep Checked Out in the Check In Files
dialog box; see Check In Files dialog box, page 200.

IAR Embedded Workbench® IDE reference ___¢

Save editor windows before performing source code control
commands

Specifies whether editor windows should be saved before you perform any source code
control commands. Choose between:

Ask When you perform any source code control commands, you will be asked
about saving editor windows first.

Never Editor windows will never be saved first when you perform any source
code control commands.

Always Editor windows will always be saved first when you perform any source
code control commands.

DEBUGGER OPTIONS

Use the Debugger options—available by choosing Tools>Options—for configuring
the debugger environment.

IDE Dptions [%]

-~ Common Fonts

o —when zource resolves to multiple function instances
- Key Bindings
= Editor [~ Automatically choose allinstances
- External Editor - R
¥ — Source code color in d bly windo
Setup Files
Colors and Fonts Calar |
- Messages
- Project — Step into functions —STL container expansion
- Source Code Control & All functi
unctions
Depth: [10
- Stack " Functions with source anly
~ Register Filter — Live watch — Default integer format
 Terminal 1/0 Update interval
= 1000 i
[millizeconds]: I IDec:lmaI j
QK I Cancel | Apply | Help |

Figure 123: Debugger options

When source resolves to multiple function instances

Some source code corresponds to multiple code instances, for example template code.
When specifying a source location in such code, for example when setting a source
breakpoint, you can make C-SPY act on all instances or a subset of instances. Use the
Automatically choose all instances option to let C-SPY act on all instances without
asking first.

Part 6. Reference information

255

Menus

256

IAR Embedded Workbench® IDE
User Guide

Source code color in Disassembly window

Use the Color button to select the color of the source code in the Disassembly window.

Step into functions

Use this option to control the behavior of the Step Into command. Choose between:

All functions The debugger will step into all functions.

Functions with source only The debugger will only step into functions for which the
source code is known. This helps you avoid stepping into
library functions or entering disassembly mode debugging.

STL container expansion

The Depth value decides how many elements that are shown initially when a container
value is expanded in, for example, the Watch window. Additional elements can be
shown by clicking the expansion arrow.

Live watch

The Updateinterval value decides how often the C-SPY Live Watch window is updated
during execution.

Default integer format

Use the drop-down list to set the default integer format in the Watch, Locals, and related
windows.

IAR Embedded Workbench® IDE reference ___¢

STACK OPTIONS

Use the Stack options—available by choosing T ools>Options or from the context
menu in the Memory window—to set options specific to the Stack window.

IDE Dptions [%]

Comrmon Fonts

Key Bindings [V Enable graphical stack display and stack usage tracking
Editor I—SD % stack usage threshold

Messages
Project
Source Code Control [V ‘wam when stack pointer is out of bounds

[V ‘wam when exceeding stack threshold

Debugger [V Stack pointer(z] not valid until program reaches:
Register Filker Imaln
----- Terminal IjC Warnings
& Log
" Log and alert
I~ Limit stack display to B2 bytes

QK I Cancel | Apply | Help

Figure 124: Stack options

Enable graphical stack display and stack usage tracking

Use this option to enable the graphical stack bar available at the top of the Stack window.
At the same time, it enables the functionality needed to detect stack overflows. To read
more about the stack bar and the information it provides, see The graphical stack bar,
page 294.

% stack usage threshold

Use this text field to specify the percentage of stack usage above which C-SPY should
issue a warning for stack overflow.

Part 6. Reference information 257

Menus

258

IAR Embedded Workbench® IDE
User Guide

Woarn when exceeding stack threshold

Use this option to make C-SPY issue a warning when the stack usage exceeds the
threshold specified in the % stack usage threshold option.

Warn when stack pointer is out of bounds

Use this option to make C-SPY issue a warning when the stack pointer is outside the
stack memory range.

Stack pointer(s) not valid until reaching

Use this option to specify a location in your application code from where you want the
stack display and verification to take place. The Stack window will not display any
information about stack usage until execution has reached this location. By default,
C-SPY will not track the stack usage before the main function. If your application does
not have a main function, for example, if it is an assembler-only project, you should
specify your own start label. If this option is used, after each reset C-SPY keeps a
breakpoint on the given location until it is reached.

Typically, the stack pointer is set up in the system initialization code cstartup, but not
necessarily from the very first instruction. By using this option you can avoid incorrect
warnings or misleading stack display for this part of the application.

Warnings

You can choose to issue warnings using one of the following options:

Log Warnings are issued in the Debug Log window
Log and alert Warnings are issued in the Debug Log window and as alert dialog
boxes.

Limit stack display to

Use this option to limit the amount of memory displayed in the Stack window by
specifying a number, counting from the stack pointer. This can be useful if you have a
big stack or if you are only interested in the topmost part of the stack. Using this option
can improve the Stack window performance, especially if reading memory from the
target system is slow. By default, the Stack window shows the whole stack, or in other
words, from the stack pointer to the bottom of the stack. If the debugger cannot
determine the memory range for the stack, the byte limit is used even if the option is not
selected.

IAR Embedded Workbench® IDE reference ___¢

Note: The Stack window does not affect the execution performance of your
application, but it might read a large amount of data to update the displayed information
when the execution stops.

REGISTER FILTER OPTIONS

Use the Register Filter options—available by choosing Tools>Options when the IAR
C-SPY Debugger is running—to display registers in the Register window in groups you
have created yourself. For more information about register groups, see Register groups,
page 140.

IDE Dptions [%]

- Cormmon Fonks . .
Key Bindings ¥ Use register filter Groups:

Editar IMyFiIter.fIt Filter Files... | I vl

Project
Source Code Control Group members:

=- EI_F'U Registers
~R0

Register Filker
i Terminal IfO

QK | Cancel | Apply Help

Figure 125: Register Filter options

The following options are available:

Option Description

Use register filter Enables the usage of register filters.

Filter Files Displays a dialog box where you can select or create a new filter file.
Groups Lists available groups in the register filter file, alternatively displays the

new register group.

New Group The name for the new register group.
Group members Lists the registers selected from the register scroll bar window.
Base Changes the default integer base.

Table 55: Register Filter options

Part 6. Reference information 259

Menus

260

IAR Embedded Workbench® IDE
User Guide

TERMINAL 1/O OPTIONS

Use the Terminal /O options—available by choosing Tools>Options when the IAR
C-SPY Debugger is running—to configure the C-SPY terminal I/O functionality.

IDE Dptions [%]

Comrmon Fonts

Key Bindings i ity
Editor & Keyboard
Messages % Buffered
Project: " Direct
Source Code Control §
" File

& Text

| Binary

[(FROI_DIR\TemiDinput st |

Input echaing
’7|7 Log file [~ Teminal /0 windaw ‘

[~ Show target reset in Terminal 10 window

QK I Cancel | Apply | Help |

Figure 126: Terminal 1/0 options

Keyboard

Use the Keyboard option to make the input characters be read from the keyboard.
Choose between:

Buffered Input characters are buffered.
Direct Input characters are not buffered.
File

Use the File option to make the input characters be read from a file. A browse button is
available for locating the file. Choose between:

Text Input characters are read from a text file.

Binary Input characters are read from a binary file.

Input Echoing

Input characters can be echoed either in a log file, or in the C-SPY Terminal I/O window.
To echo input in a file requires that you have enabled the option
Debug>L ogging>Enablelog file.

IAR Embedded Workbench® IDE reference ___¢

Show target reset in Terminal 1/O window

When the target resets, a message is displayed in the C-SPY Terminal I/O window.

CONFIGURE TOOLS DIALOG

BOX

In the Configure Tools dialog box—available from the T00ls menu—you can specify
a user-defined tool to add to the Tools menu.

Configure Tools

Menu Content:
Cancel |
Mew
Remove |

Menu Text:

I&Notepad

Command:

IE:\W’INNT\Notepad.exe Browse... |

Argument:

Initial Directary:

™ Redirect to Output \Window

™ Prampt for Cormand Line

Tool Available:

IAIways j

Figure 127: Configure Tools dialog box

Note: If you intend to add an external tool to the standard build tool chain, see

Extending the tool chain, page 89.

The following options are available:

Option Description
Menu Content Lists all available user defined menu commands.
Menu Text Specifies the text for the menu command. By adding the sign &, the

following letter,

N in this example, will then appear as the

mnemonic key for this command. The text you type in this field

will be reflected in the Menu Content field.

Table 56: Configure Tools dialog box options

Part 6. Reference information 261

Menus

262

IAR Embedded Workbench® IDE
User Guide

Option Description

Command Specifies the command, and its path, to be run when you choose
the command from the menu. A browse button is available for
your convenience.

Argument Optionally type an argument for the command.

Initial Directory

Redirect to Output window

Prompt for Command Line

Tool Available

Specifies an initial working directory for the tool.

Specifies any console output from the tool to the Tool Output
page in the Messages window. Tools that are launched with this
option cannot receive any user input, for instance input from the
keyboard.

Tools that require user input or make special assumptions regarding
the console that they execute in, will not work at all if launched
with this option.

Displays a prompt for the command line argument when the
command is chosen from the Tools menu.

Specifies in which context the tool should be available, only when
debugging or only when not debugging.

Table 56: Configure Tools dialog box options (Continued)

Note: Variables can be used in the arguments, allowing you to set up useful tools such
as interfacing to a command line revision control system, or running an external tool on

the selected file.

You can remove a command from the Toolsmenu by selecting it in this list and clicking

Remove.

Click OK to confirm the changes you have made to the Tools menu.

The menu items you have specified will then be displayed on the Tools menu.

Options. ..

Configure Tools, ..
Filename Extensions. ..
Configure Viewers. ..
Motepad

Figure 128: Customized Tools menu

IAR Embedded Workbench® IDE reference ___¢

Specifying command line commands or batch files

Command line commands or batch files need to be run from a command shell, so to add
these to the Tools menu you need to specify an appropriate command shell in the
Command text box. These are the command shells that can be entered as commands:

System Command shell

Windows 2000/XP/Vista cmd.exe (recommended) or command. com

Table 57: Command shells

FILENAME EXTENSIONS DIALOG BOX

In the Filename Extensions dialog box—available from the T00lS menu—you can
customize the filename extensions recognized by the build tools. This is useful if you
have many source files that have a different filename extension.

If you have an IAR Embedded Workbench for a different microprocessor installed on
your host computer, it can appear in the Tool Chain box. In that case you should select
the tool chain you want to customize.

File Extensions

Tool Chain

Cancel
Edit...

Figure 129: Filename Extensions dialog box

P Il

Note the * sign which indicates that there are user-defined overrides. If there is no *
sign, factory settings are used.

Click Edit to open the Filename Extension Overrides dialog box.

Part 6. Reference information 263

Menus

264

IAR Embedded Workbench® IDE
User Guide

FILENAME EXTENSION OVERRIDES DIALOG BOX

The Filename Extension Overrides dialog box—available by clicking Edit in the
Filename Extensions dialog box—Ilists the available tools in the build chain, their
factory settings for filename extensions, and any defined overrides.

Filename Extension Overrides

Taol | Factaory Setting | Overide ()3 I
C/C++ Compiler .CLCPP.LCC <Niones

Azzembler SN0 ASMLMEA S <hones Cancel |
Browse Info Compiler .cioc.cpp <none

Linker ik <none:

Library Builder i i Edit... |
Browse Info Builder .pbi <none

| | i

Figure 130: Filename Extension Overrides dialog box

Select the tool for which you want to define more recognized filename extensions, and
click Edit to open the Edit Filename Extensions dialog box.

EDIT FILENAME EXTENSIONS DIALOG BOX

The Edit File Extensions dialog box—available by clicking Edit in the Filename
Extension Overrides dialog box—Tlists the filename extensions accepted by default,
and you can also define new filename extensions.

Edit Filename Extensions

Factaory setting
I.c:;.c:c:;.c:pp QK

¥ Overide Cancel |
I.c;.cc;.cpp

Figure 131: Edit Filename Extensions dialog box

Click Override and type the new filename extension you want to be recognized.
Extensions can be separated by commas or semicolons, and should include the leading
period.

IAR Embedded Workbench® IDE reference ___¢

CONFIGURE VIEWERS DIALOG BOX

The Configure Viewer s dialog box—available from the Tools menu—Ilists the
filename extensions of document formats that IAR Embedded Workbench can handle,
and which viewer application that will be used for opening the document type. Explorer
Default in the Action column means that the default application associated with the
specified type in Windows Explorer is used for opening the document type.

Configure Yiewers [%]
Extensions | Ackion | Ok
Explorer Default
.htm Explorer Default Cancel

Mg
Edit...

Remave

g

Figure 132: Configure Viewers dialog box

To specity how to open a new document type or editing the setting for an existing
document type, click New or Edit to open the Edit Viewer Extensions dialog box.
EDIT VIEWER EXTENSIONS DIALOG BOX

Type the filename extension for the document type—including the separating
period (.)—in the Filename extensions box.

Edit Yiewer Extensions [%]
File name extensians:
| bl
Cancel |
Action

€ Buile-in text editor
& st file explorer associations

 Command line

| |

Figure 133: Edit Viewer Extensions dialog box

Then choose one of the Action options:

e Built-in text editor—select this option to open all documents of the specified type
with the JAR Embedded Workbench text editor.

e Usefile explorer associations—select this option to open all documents with the
default application associated with the specified type in Windows Explorer.

Part 6. Reference information 265

Menus

266

IAR Embedded Workbench® IDE
User Guide

e Command line—select this option and type or browse your way to the viewer
application, and give any command line options you would like to the tool.

WINDOW MENU

Use the commands on the Window menu to manipulate the IAR Embedded Workbench
IDE windows and change their arrangement on the screen.

The last section of the Window menu lists the windows currently open on the screen.
Choose the window you want to switch to.

Close Tab
Close Window

Split

Mew Vertical Editor Window
Mew Horizontal Editor Window
IMayve Tabs To Mext Windaw

IMave Tabs To Previous Window

Close All Tabs Except Active
Close All Editor Tabs

Figure 134: Window menu

The following commands are available on the Window menu:

Menu command

Description

Close Tab
Close Window
Split

New Vertical Editor
Window

New Horizontal Editor
Window

Move Tabs To Next
Window

Move Tabs To Previous
Window

Close All Tabs Except
Active

Close All Editor Tabs

CTRL+F4

Closes the active tab.
Closes the active editor window.

Splits an editor window horizontally or vertically into two,
or four panes, to allow you to see more parts of a file
simultaneously.

Opens a new empty window next to current editor
window.

Opens a new empty window under current editor window.
Moves all tabs in current window to next window.

Moves all tabs in current window to previous window.

Closes all the tabs except the active tab.

Closes all tabs currently available in editor windows.

Table 58: Window menu commands

IAR Embedded Workbench® IDE reference ___¢

HELP MENU

The Help menu provides help about the IAR Embedded Workbench IDE and displays
the version numbers of the user interface and of the IAR Embedded Workbench IDE.

EMBEDDED WORKBENCH STARTUP DIALOG BOX

The Embedded Workbench Startup dialog box—available from the Help
menu—provides easy access to ready-made example workspaces that can be built and
executed out of the box for a smooth development startup.

Embedded Workbench Startup [%]

Create new project in current work space
Add existing project to current work space

Open exigting workspace

El B |Bi

Example applications

Fecent workspaces:

tutorials Open I

™ Do not shaw this window at startup

Cancel |

Figure 135: Embedded Workbench Startup dial og box

Create new project in current workspace

Use this option to create a new project in your current workspace.

Add existing project to current workspace

Use this option to add an existing project to your current workspace.

Open existing workspace

Use this option to open an existing workspace.

Part 6. Reference information 267

Menus

268

IAR Embedded Workbench® IDE
User Guide

Note: Do not use this option to open an existing workspace which is part of your
product installation, because that might overwrite the original files. Instead, use the
option Example applications.

Example applications

Use this option to open the Example Applications dialog box. In this dialog box you
can choose an example application which is part of your product installation. Click
Open to first choose a destination directory for the project and then to open it. Select Do
not prompt for working copy directory if you do not want to be prompted for a
destination directory. In this case, the example application will be copied to the My
Documents\IAR Embedded Workbench\cpuname\Example Applications
directory.

Recent workspace

In the list of workspaces, choose a recently used workspace and click Open to open it.
If this is the first time you open your IAR Embedded Workbench IDE, the list will be
empty.

Do not show this window at startup

Use this option if you do no want the Embedded Wor kbench Startup dialog box to be
automatically displayed when you start your IJAR Embedded Workbench IDE.

C-SPY® Debugger
reference

This chapter contains detailed reference information about the windows,
menus, menu commands, and the corresponding components that are specific
for the IAR C-SPY Debugger.

C-SPY windows

The following windows specific to C-SPY are available in the IAR C-SPY Debugger:
IAR C-SPY Debugger main window

Disassembly window
Memory window
Symbolic Memory window
Register window

Watch window

Locals window

Auto window

Live Watch window
Quick Watch window
Statics window

Call Stack window
Terminal I/O window
Code Coverage window

Profiling window

Stack window.

Additional windows will be available depending on which C-SPY driver you are using.
For information about driver-specific windows, see the driver-specific documentation.

EDITING IN C-SPY WINDOWS

You can edit the contents of the Memory, Symbolic Memory, Register, Auto, Watch,
Locals, Statics, Live Watch, and Quick Watch windows.

Part 6. Reference information 269

C-SPY windows

270

IAR Embedded Workbench® IDE
User Guide

Use the following keyboard keys to edit the contents of these windows:

Key Description
Enter Makes an item editable and saves the new value.
Esc Cancels a new value.

Table 59: Editing in C-SPY windows

IAR C-SPY DEBUGGER MAIN WINDOW

When you start the IAR C-SPY Debugger, the following debugger-specific items appear
in the main IAR Embedded Workbench IDE window:

o A dedicated debug menu with commands for executing and debugging your
application

o Depending on the C-SPY driver you are using, a driver-specific menu. Typically,
this menu contains menu commands for opening driver-specific windows and dialog
boxes. See the driver-specific documentation for more information

e A special debug toolbar
e Several windows and dialog boxes specific to C-SPY.

The window might look different depending on which components you are using.

Each window item is explained in greater detail in the following sections.

Menu bar

In addition to the menus available in the development environment, the Debug menu is
available when C-SPY is running. The Debug menu provides commands for executing
and debugging the source application. Most of the commands are also available as icon
buttons in the debug toolbar.

Additional menus might be available, depending on which debugger drivers have been
installed; for information, see the driver-specific documentation.
Debug toolbar

The debug toolbar provides buttons for the most frequently-used commands on the
Debug menu.

You can display a description of any button by pointing to it with the mouse pointer.
‘When a command is not available the corresponding button will be dimmed and you will
not be able to select it.

C-SPY® Debugger reference ___o

The following diagram shows the command corresponding to each button:

Next G
Break Step Into Statement °

| | |
o B2 LEZZ R
| | | | |

Reset Step Over Step Out Run To Stop
Cursor Debugging

Figure 136: C-SPY debug toolbar

DISASSEMBLY WINDOW

The C-SPY Disassembly window—available from the View menu—shows the
application being debugged as disassembled application code.

Zone display
Disassembly B
Go to memory ———————— Gata | 7| |Memary | =B Toggle embedded
address :‘ source mode
-
Next label
init_fib:
¢ 00008120 B530 PUSH {R4,R5, LR}
Code coverage 4 00008122 242D MOV R4, #45
information
¢ 0oooB1z4 2001 MOV RO, #1
¢ 00008126 4%0B LDR Rl, [PC,#0x02C]
¢ 00008128 &008 STR RO, [R1, #0]
Current position or 0000B12A 4912 LDR R1l, [PC,#0x048]
0oo0Bl12C &008 STR RO, [R1, #0]
0000B12E 2002 MOV RO, #2
00008130 1C04 MOV R4, RO
00008132 EOOC B 0x00814E
Breakpoint ——— |
00008136 FOOOFBOF ; pre BL/BLXE
0000813A 1COS5 MOV R5, RO
0000B13C 1E&0 SUB RO, R4, #1
0O000B13E FOOOFBOB ; pre BL/BLXE Jﬂ
‘ »

Figure 137: C-SPY Disassembly window

Toolbar

At the top of the window you can find a toolbar.

Part 6. Reference information 271

C-SPY windows

272

IAR Embedded Workbench® IDE
User Guide

Operation Description

Go to The location you want to view. This can be a memory address, or the
name of a variable, function, or label.

Zone display Lists the available memory zones to display.

Toggle Mixed-Mode Toggles between showing only disassembled code or disassembled code
together with the corresponding source code. Source code requires that
the corresponding source file has been compiled with debug information.

Table 60: Disassembly window toolbar

The display area

The current position—highlighted in green—indicates the next assembler instruction to
be executed. You can move the cursor to any line in the Disassembly window by clicking
on the line. Alternatively, you can move the cursor using the navigation keys.
Double-click in the gray left-side margin of the window to set a breakpoint, which is
indicated in red. Code that has been executed—code coverage—is indicated with a
green diamond.

To change the default color of the source code in the Disassembly window, choose
Tools>Options>Debugger. Set the default color using the Set sour cecodecoloringin
Disassembly window option.

To view the corresponding assembler code for a function, you can select it in the editor
window and drag it to the Disassembly window.

Disassembly context menu

Clicking the right mouse button in the Disassembly window displays a context menu

which gives you access to some extra commands.

Move to PC
Run ko Cursor

Code Coverage 3

Toggle Breakpoint {Code)
Toggle Breakpoint {Log)
Enablefdisable Ereakpaoint

Set Mext Statement

Copy Window Contents
v Toggle Mixed-Mode

Figure 138: Disassembly window context menu

C-SPY® Debugger reference ___o

The following commands are available on the menu:

Menu command

Description

Move to PC

Run to Cursor

Code Coverage
Enable
Show

Clear

Toggle Breakpoint (Code)

Toggle Breakpoint (Log)

Enable/Disable Breakpoint
Set Next Statement

Copy Window Contents

Toggle Mixed-Mode

Displays code at the current program counter location.

Executes the application from the current position up to the line
containing the cursor.

Opens a submenu with commands for controlling code coverage.
Enable toggles code coverage on and off.

Show toggles between displaying and hiding code coverage. Executed
code is indicated by a green diamond.

Clear clears all code coverage information.

Toggles a code breakpoint. Assembler instructions at which code
breakpoints have been set are highlighted in red. For information
about code breakpoints, see Code breakpoints dialog box, page 210.

Toggles a log breakpoint for trace printouts. Assembler instructions
at which log breakpoints have been set are highlighted in red. For
information about log breakpoints, see Log breakpoints dialog box, page
212.

Enables and Disables a breakpoint.
Sets program counter to the location of the insertion point.

Copies the selected contents of the Disassembly window to the
clipboard.

Toggles between showing only disassembled code or disassembled
code together with the corresponding source code. Source code
requires that the corresponding source file has been compiled with
debug information.

Table 61: Disassembly context menu commands

MEMORY WINDOW

The Memory window—available from the View menu—gives an up-to-date display of
a specified area of memory and allows you to edit it. You can open several instances of

Part 6. Reference information 273

C-SPY windows

274

Go to location ——

this window, which is very convenient if you want to keep track of different memory or

register zones, or monitor different parts of the memory.

Memory contents

Gotol

Available zones

Context menu button

O00ff£fel
OD0fffed

Memory addresses—— qooeefE£o

Data coverage
information

IAR Embedded Workbench® IDE
User Guide

ODOEE£Ef8

Qoloooos
0oloo0010
oolooole
00l00020
ooloooze

00100000

oo
oo
oo
oo
oo
6f
oo
oo
oo
oo

0o oo
0o oo
0o oo
0o 00
65 BcC
6c 64
0o oo
0o oo
0o oo
0o 0o

oo
oo
oo
oo
6c
oo
oo
oo
oo
cd

oo
oo
oo
oo
6f
oo
oo
oo
oo
cd

oo
oo
oo
oo
20
oo
oo
oo
oo
cd

oo
oo
oo
oo
57
oo
oo
oo
oo
cd

v 1 Units
2x Units
¢ Units

Memory contents in ASCII format

Figure 139: Memory window

Toolbar

At the top of the window you can find a toolbar:

v Little Endian
Big Endian

Memory Fill...
Memary Save. ..
Memoary Restare, .,

Set Data Breakpoink

v Enable
v Show
Clear

Operation Description

Go to The location you want to view. This can be a memory address, or the
name of a variable, function, or label.

Zone display Lists the available memory zones to display.

Context-menu button Displays the context menu, see Memory window context menu, page 275.

Table 62: Memory window operations

The display area

The display area shows the addresses currently being viewed, the memory contents in
the format you have chosen, and the memory contents in ASCII format. You can edit the
contents of the Memory window, both in the hexadecimal part and the ASCII part of the

window.

C-SPY® Debugger reference ___o

Data coverage is displayed with the following colors:

o Yellow indicates data that has been read
o Blue indicates data that has been written

o Green indicates data that has been both read and written.

Note: Data coverage is not supported by all C-SPY drivers. Data coverage is supported
by the IAR C-SPY Simulator.

To view the memory corresponding to a variable, you can select it in the editor window
and drag it to the Memory window.

Memory window context menu

The following context menu is available in the Memory window:

Copy.
Paste

Zong 3

v 1 Units
2x Units
¢ Units

v Little Endian
Big Endian

Data Coverage 3

Memory Fill...
Memary Save. ..
Memoary Restare, .,

Set Data Breakpoink
Figure 140: Memory window context menu

The following commands are available on the menu:

Menu command Description

Copy, Paste Standard editing commands.

Zone Lists the available memory zones to display.

x|, x2, x4 Units Switches between displaying the memory contents in units of 8, 16, or 32
bits

Little Endian Switches between displaying the contents in big-endian or little-endian

Big Endian order.

Table 63: Commands on the memory window context menu

Part 6. Reference information 275

C-SPY windows

276

IAR Embedded Workbench® IDE
User Guide

Menu command

Description

Data Coverage
Enable
Show
Clear

Memory Fill

Memory Save

Memory Restore

Set Data Breakpoint

Enable toggles data coverage on and off.
Show toggles between showing and hiding data coverage.
Clear clears all data coverage information.

Displays the Fill dialog box, where you can fill a specified area with a
value, see Fill dialog box, page 276.

Displays the Memory Save dialog box, where you can save the
contents of a specified memory area to a file, see Memory Save dialog box,
page 277.

Displays the Memory Restore dialog box, where you can load the
contents of a file in Intex-hex or Motorola s-record format to a specified
memory zone, see Memory Restore dialog box, page 278.

Sets breakpoints directly in the Memory window. The breakpoint is not
highlighted; you can see, edit, and remove it in the Breakpoints dialog
box. The breakpoints you set in this window will be triggered for both
read and write access.

Table 63: Commands on the memory window context menu (Continued)

FILL DIALOG B

OoX

In the Fill dialog box—available from the context menu in the Memory window—you
can fill a specified area of memory with a value.

Start address: Length: Zone:
101D [0 |Memay x|
Walue: Operation
FF ' Copy AND
" HOR " OR
()3 I Cancel

Figure 141: Fill dialog box

Options
Option Description
Start Address Type the start address—in binary, octal, decimal, or hexadecimal

notation.

Table 64: Fill dialog box options

C-SPY® Debugger reference ___o

Option Description

Length Type the length—in binary, octal, decimal, or hexadecimal notation.
Zone Select memory zone.

Value Type the 8-bit value to be used for filling each memory location.

Table 64: Fill dialog box options (Continued)

These are the available memory fill operations:

Operation Description
Copy The Value will be copied to the specified memory area.
AND An AND operation will be performed between the Value and the

existing contents of memory before writing the result to memory.

XOR An XOR operation will be performed between the Value and the

existing contents of memory before writing the result to memory.

OR An OR operation will be performed between the Value and the existing

contents of memory before writing the result to memory.

Table 65: Memory fill operations

MEMORY SAVE DIALOG BOX

Use the Memory Save dialog box—available by choosing Debug>M emor y>Save or
from the context menu in the Memory window—to save the contents of a specified

memory area to a file.

Memory Save E

Zone:

|memary = I&I
Start address: Stop address: Close |
| oxa0

OxFF

File: Farmat:
Iintel-extended j

Filename:

I Ciiprojectsimemary, hex

Figure 142: Memory Save dialog box

Zone

The available memory zones.

Part 6. Reference information 277

C-SPY windows

278

IAR Embedded Workbench® IDE
User Guide

Start address

The start address of the memory range to be saved.

Stop address

The stop address of the memory range to be saved.

File format

The file format to be used, which is Intel-extended by default.

Filename

The destination file to be used; a browse button is available for your convenience.

Save

Saves the selected range of the memory zone to the specified file.

MEMORY RESTORE DIALOG BOX

Use the Memory Restor e dialog box—available by choosing Debug>M emory>Save
or from the context menu in the Memory window—to load the contents of a file in
Intel-extended or Motorola S-record format to a specified memory zone.

Memory Restore E

Zone:

= 5
Close |

Filename:

I Ciiprojectsimemary, hex

Figure 143: Memory Restore dialog box

Zone

The available memory zones.

Filename

The file to be read; a browse button is available for your convenience.

Restore

Loads the contents of the specified file to the selected memory zone.

C-SPY® Debugger reference ___o

SYMBOLIC MEMORY WINDOW

The Symbolic Memory window—available from the View menu when the IAR C-SPY
Debugger is running—displays how variables with static storage duration, typically
variables with file scope but also static variables in functions and classes, are laid out in
memory. This can be useful for spotting alignment holes or for understanding problems
caused by buffers being overwritten.

Gato | = [emory =] previous | _next_|
Location | Data | ‘ariable | Walue | Tvpe | ;I
0x5C 0x0200C300
0x60 0x0002 call count 10 int
0x62 0x0001 root[0] 1 unsigned int
0x64 0x0001 root1] 1 unsigned int
0x66 0x0002 root[2] 2 unsigned int
0x68 0x0003 root3] 3 unsigned int
0x6A 0x0005 root[4] 5 unsigned int
0x6C 0x0008 root[5]] unsigned int
0x6E 0x000D rootfB] 13 unsigned int
0x70 0x0015 root[7] 21 unsigned int
0x72 0x0022 rootf8] 34 unsigned int
0x74 0x0037 root[9] 55 unsigned int
0x76 0xCDCDCDCD
Ox7A 0xCDCDCICD x|

Figure 144: Symbolic Memory window

Toolbar

At the top of the window there is a toolbar:

Operation Description

Go to The memory location or symbol you want to view.
Zone display Lists the available memory zones to display.
Previous Jumps to the previous symbol.

Next Jumps to the next symbol.

Table 66: Symbolic Memory window tool bar

The display area

The display area displays the memory space, where information is provided in the
following columns:

Column Description

Location The memory address.

Table 67: Symbolic memory window columns

Part 6. Reference information 279

C-SPY windows

280

IAR Embedded Workbench® IDE
User Guide

Column Description

Data The memory contents in hexadecimal format. The data is grouped
according to the size of the symbol. This column is editable.

Variable The variable name; requires that the variable has a fixed memory
location. Local variables are not displayed.

Value The value of the variable. This column is editable.

Type The type of the variable.

Table 67: Symbolic memory window columns (Continued)

There are several different ways to navigate within the memory space:
o Text that is dropped in the window will be interpreted as symbols
o The scroll bar at the right-side of the window

e The toolbar buttons Next and Previous

e The toolbar list box Go to can be used for locating specific locations or symbols.

Note: Rows are marked in red when the corresponding value has changed.

Symbolic Memory window context menu

The following context menu is available in the Symbolic Memory window:

Mext Symbol
Previous Symbaol

1 Units
2x Units
¢ Units

&dd B Watch Windaw

Figure 145: Symbolic Memory window context menu

The following commands are available on the context menu:

Menu command Description

Next Symbol Jumps to the next symbol.

Previous Symbol Jumps to the previous symbol.

x|, x2, x4 Units Switches between displaying the memory contents in units of 8, 16,

or 32 bits. This applies only to rows which do not contain a variable.

Add to Watch Window Adds the selected symbol to the Watch window.

Table 68: Commands on the Symbolic Memory window context menu

C-SPY® Debugger reference ___o

REGISTER WINDOW

The Register window—available from the View menu—gives an up-to-date display of
the contents of the processor registers, and allows you to edit them. When a value
changes it becomes highlighted. Some registers are expandable, which means that the
register contains interesting bits or sub-groups of bits.

You can open several instances of this window, which is very convenient if you want to
keep track of different register groups.

IEF'U Registers j
PC = 0O=xll62 Ri2 = 0=0200
8P = 0=09F8 R13 = 0=FFFF
FHer = 0=z0000 R14 = 0x0000
R4 = 0=x78ZD Ri5 = 0=0000
RE = 0=6BEE CYCLECOUNTER = 276
R6 = 0=5E95
R7 = 0x763B
RE = O=x4A65
RO = 0=27C3
Ri0 = 0=002D
Ri1 = 0=x7064

Figure 146: Register window

You can select which register group to display in the Register window using the
drop-down list. To define application-specific register groups, see Defining
application-specific groups, page 141.

WATCH WINDOW

The Watch window—available from the View menu—allows you to monitor the values
of C-SPY expressions or variables. You can view, add, modify, and remove expressions

Part 6. Reference information 281

C-SPY windows

282

IAR Embedded Workbench® IDE
User Guide

in the Watch window. Tree structures of arrays, structs, and unions are expandable,
which means that you can study each item of these.

Expression | Yalue | Location | Type |
i 45 R10 short

<array> Mermor:0x202 unsigned int[10]
0 Mermory:0x202 unsigned int
Mermory:0x204 unsigned int
Mermory:0<206 unsigned int
Mermory:0x208 unsigned int
Mermory:0<20A unsigned int
Mermory:0<20C unsigned int
Mermory:0<20E unsigned int
Mermory:0<210 unsigned int
Mermor:0x212 unsigned int
Mermor:0x214 unsigned int

Figure 147: Watch window

Every time execution in C-SPY stops, a value that has changed since the last stop is
highlighted. In fact, every time memory changes, the values in the Watch window are
recomputed, including updating the red highlights.

Woatch window context menu

The following context menu is available in the Watch window:

Add
Remave

v Default Format
Binary Format
Ockal Farmat
Decimal Format
Hexadecimal Format
Char Farmat

Show As 3

Figure 148: Watch window context menu

The menu contains the following commands:

Menu command Description

Add, Remove Adds or removes the selected expression.

Table 69: Watch window context menu commands

C-SPY® Debugger reference ___o

Menu command Description

Default Format, Changes the display format of expressions. The display format setting
Binary Format, affects different types of expressions in different ways, see Table 70,
Octal Format, Effects of display format setting on different types of expressions. Your
Decimal Format, selection of display format is saved between debug sessions.

Hexadecimal Format,
Char Format

Show As Provides a submenu with commands for changing the default type
interpretation of variables. The commands on this submenu are mainly
useful for assembler variables—data at assembler labels—as these are by
default displayed as integers. For more information, see Viewing assembler
variables, page 126.

Table 69: Watch window context menu commands (Continued)

The display format setting affects different types of expressions in different ways:

Type of expressions Effects of display format setting

Variable The display setting affects only the selected variable, not other variables.
Array element The display setting affects the complete array, that is, same display format
is used for each array element.

Structure field All elements with the same definition—the same field name and C
declaration type—are affected by the display setting.

Table 70: Effects of display format setting on different types of expressions

LOCALS WINDOW

The Locals window—available from the View menu—automatically displays the local
variables and function parameters.

¥ Locals M= 3

Expression | Yalue | Location | Type
i 3 17 short

Figure 149: Locals window

Part 6. Reference information 283

C-SPY windows

284

IAR Embedded Workbench® IDE
User Guide

Locals window context menu

The context menu available in the Locals window provides commands for changing the
display format of expressions; for information about these commands, see Watch
window context menu, page 282.

AUTO WINDOW

The Auto window—available from the View menu—automatically displays a useful
selection of variables and expressions in, or near, the current statement.

Expression | Yalue | Location | Type |
i 45 R10 short
root[0] 0 Mermory:0x202 unsigned int
root <array> Mermor:0x202 unsigned int[10]
root[1] 0 Mermory:0x204 unsigned int

Figure 150: Auto window

Auto window context menu

The context menu available in the Auto window provides commands for changing the
display format of expressions; for information about these commands, see \atch
window context menu, page 282.

LIVE WATCH WINDOW

The Live Watch window—available from the View menu—repeatedly samples and
displays the value of expressions while your application is executing. Variables in the
expressions must be statically located, such as global variables.

Live Watch =]
Expression | Yalue | Location | Type |
=l get_fib get_filb (0x1198) unsigned int (*)...
- get_filb (0x1198) Mermor:0<1198 unsigned int {int)

Figure 151: Live Watch window

Typically, this window is useful for hardware target systems supporting this feature.

C-SPY® Debugger reference ___o

Live Watch window context menu

The context menu available in the Live Watch window provides commands for adding
and removing expressions, changing the display format of expressions, as well as
commands for changing the default type interpretation of variables. For information
about these commands, see Watch window context menu, page 282.

In addition, the menu contains the Options command, which opens the Debugger
dialog box where you can set the Update interval option. The default value of this
option is 1000 milliseconds, which means the Live Watch window will be updated once
every second during program execution.

QUICK WATCH WINDOW

In the Quick Watch window—available from the View menu—you can watch the value
of a variable or expression and evaluate expressions.

Quick Watch B
| Expression | Yalue | Location | Type |
WD Tstatus() "Timer disabled" macro string

Figure 152: Quick Watch window

Type the expression you want to examine in the EXpressions text box. Click the
Recalculate button to calculate the value of the expression. For examples about how to
use the Quick Watch window, see Using the Quick Watch window, page 125 and
Executing macros using Quick Watch, page 1438.

Quick Watch window context menu

The context menu available in the Quick Watch window provides commands for
changing the display format of expressions, as well as commands for changing the
default type interpretation of variables. For information about these commands, see
Watch window context menu, page 282.

In addition, the menu contains the Add to Watch window command, which adds the
selected expression to the Watch window.

STATICS WINDOW

The Statics window—available from the View menu—displays the values of variables
with static storage duration, typically that is variables with file scope but also static

Part 6. Reference information 285

C-SPY windows

variables in functions and classes. Note that volatile declared variables with static
storage duration will not be displayed.

Expression | Walue | Location | Type |
call_count <Tutotcall_count> 0 DATA0x000060 int
=l root <Utilitiesiroot> <array> DATADx000062 unsigned int[10]
— [0 1 DATADx000062 unsigned int
DATADx000064 unsigned int
DATADx000066 unsigned int
DATADx000068 unsigned int
DATADx00006A unsigned int
DATADx00006C unsigned int
DATADx00006E unsigned int
DATADx000070 unsigned int
DATADx000072 unsigned int
DATADx000074 unsigned int

EEEEdEEREEE
oo o oo o O R

Figure 153: Satics window

The display area

The display area shows the values of variables with static storage duration, where
information is provided in the following columns:

Column Description

Expression The name of the variable. The base name of the variable is followed by
the full name, which includes module, class, or function scope. This
column is not editable.

Value The value of the variable. Values that have changed are highlighted in red.
This column is editable.

Location The location in memory where this variable is stored.

Type The data type of the variable.

Table 71: Symbolic memory window columns

Statics window context menu

The following context menu is available in the Statics window:

v Default Format
Binary Format
Ockal Farmat
Decimal Format
Hexadecimal Format
Char Format

Select Statics. ..

Figure 154: Satics window context menu

IAR Embedded Workbench® IDE
286 User Guide

C-SPY® Debugger reference ___o

The menu contains the following commands:

Menu command Description

Default Format, Changes the display format of expressions. The display format
Binary Format, setting affects different types of expressions in different ways, see
Octal Format, Table 70, Effects of display format setting on different types of
Decimal Format, expressions. Your selection of display format is saved between
Hexadecimal Format, debug sessions.

Char Format

Select Statics Displays a dialog box where you can select a subset of variables to
be displayed in the Statics window, see Select Statics dialog box,
page 287.

Table 72: Statics window context menu commands

SELECT STATICS DIALOG BOX
Use the Select Statics dialog box—available from the context menu in the Statics

window—to select which variables should be displayed in the Statics window.

Select Statics [2] =]

* Show all variables with static storage duration
{~ Show selected variables only

Marme | Type
O call_count =Tutoricall_count = ink
oot <Utilitiesiroot > unsigned int[10]

Select &l Deselect &l [8]4 I Cancel

Figure 155: Select Statics dialog box

Show all variables with static storage duration

Use this option to make all variables be displayed in the Statics window, including new
variables that are added to your application between debug sessions.

Show selected variables only

Use this option to select which variables you want to be displayed in the Statics window.
Note that in this case if you add a new variable to your application between two debug

Part 6. Reference information 287

C-SPY windows

288

IAR Embedded Workbench® IDE
User Guide

sessions, this variable will not automatically be displayed in the Statics window. If the
checkbox next to a variable is selected, the variable will be displayed.

CALL STACK WINDOW

The Call stack window—available from the View menu—displays the C function call
stack with the current function at the top. To inspect a function call, double-click it.
C-SPY now focuses on that call frame instead.

Call Stack =]

7 filbanacci:nthiint —— Destination for Step
S nth (3) Into

[Pestartup_call_main + 0xd]

Figure 156: Call Stack window
Each entry has the format:
function(values)

where (values) is alist of the current value of the parameters, or empty if the function
does not take any parameters.

If the Step Into command steps into a function call, the name of the function is
displayed in the grey bar at the top of the window. This is especially useful for implicit
function calls, such as C++ constructors, destructors, and operators.

Call Stack window context menu

The context menu available by right-clicking in the Call Stack window provides the
following commands:

G0 to Source

v Show Arguments
Run ko Cursor
Toggle Breakpoint {Code)
Toggle Breakpoint {Log)
Enablefdisable Ereakpaoint

Figure 157: Call Stack window context menu

C-SPY® Debugger reference ___o

Commands

Go to Source Displays the selected functions in the Disassembly or editor
windows.

Show Arguments Shows function arguments.

Run to Cursor Executes to the function selected in the call stack.

Toggle Breakpoint (Code) Toggles a code breakpoint.
Toggle Breakpoint (Log) Toggles a log breakpoint.

Enable/Disable Breakpoint Enables or disables the selected breakpoint.

TERMINAL 1/O WINDOW

In the Terminal I/O window—available from the View menu—you can enter input to
the application, and display output from it. To use this window, you need to link the
application with the option Debug info with terminal 1/0. C-SPY will then direct
stdin, stdout and stderr to this window. If the Terminal I/O window is closed,
C-SPY will open it automatically when input is required, but not for output.

Terminal I;0 B
Output: Log file: Off
1 =
1
2
3
5
8
13
21
34
55 -
K| 3
Input: LCtl codes | Input Mode... |
I— Buffer size: 1]

Figure 158: Terminal I/O window

Clicking the Ctrl codes button opens a menu with submenus for input of special
characters, such as EOF (end of file) and NUL.

0:x00-0x0f »
O:x10-0:x1F »
ECF

Figure 159: Ctrl codes menu

Part 6. Reference information

289

C-SPY windows

Clicking the I nput M ode button opens the Input M ode dialog box where you choose
whether to input data from the keyboard or from a file.

% Buffered e

" Direct ﬂl
" File

& Text

| Binary

$PROJ_DIR$AT erml Dlnput tat J

Figure 160: Input Mode dialog box

For reference information about the options available in the dialog box, see Terminal I/O
options, page 260.

CODE COVERAGE WINDOW

The Code Coverage window—available from the View menu—reports the status of the
current code coverage analysis, that is, what parts of the code that have been executed
at least once since the start of the analysis. The compiler generates detailed stepping
information in the form of step pointsat each statement, as well as at each function call.
The report includes information about all modules and functions. It reports the amount
of all step points, in percentage, that have been executed and lists all step points that have
not been executed up to the point where the application has been stopped. The coverage
will continue until turned off.

Code Coverage B

[0 5] cf g
=% project] 91.18%

&% Tutar 100.00%
¢ do_foreground_process 100.00%
% main 100.00%
@ next_counter 100.00%
Elc Ltilities 86.96%%

&9 get_fib 65.57%
L B 17238 addr(lx] 144)
& init_fib 100.00%
& @ put_fib 84.62%

Figure 161: Code Coverage window

Note: You can enable the Code Coverage plugin module on the Debugger >Plugins
page available in the Options dialog box.

IAR Embedded Workbench® IDE
290 User Guide

25 e

©

C-SPY® Debugger reference ___o

Code coverage is not supported by all C-SPY drivers. For information about whether the
C-SPY driver you are using supports code coverage, see the driver-specific
documentation in the online help system available from the Help menu Code coverage
is supported by the C-SPY Simulator.

Code coverage commands

In addition to the commands available as icon buttons in the toolbar, clicking the right
mouse button in the Code Coverage window displays a context menu that gives you
access to these and some extra commands.

v Activate
Clear
Refresh
Auko-refresh

Save As...

Figure 162: Code coverage context menu

You can find the following commands on the menu:

Activate Switches code coverage on and off during execution.

Clear Clears the code coverage information. All step points are marked as not
executed.

Refresh Updates the code coverage information and refreshes the window. All step

points that has been executed since the last refresh are removed from the
tree.

Auto-refresh Toggles the automatic reload of code coverage information on and off.
When turned on, the code coverage information is reloaded automatically
when C-SPY stops at a breakpoint, at a step point, and at program exit.

Save As Saves the current code coverage information in a text file.

The following icons are used to give you an overview of the current status on all levels:

A red diamond signifies that 0% of the code has been executed
A green diamond signifies that 100% of the code has been executed

°
°
e A red and green diamond signifies that some of the code has been executed
.

A yellow diamond signifies a step point that has not been executed.

For step point lines, the information displayed is the column number range and the row

number of the step point in the source window, followed by the address of the step point.

<column start>-<column end>:<row>.

Part 6. Reference information

291

C-SPY windows

PROFILING WINDOW

The Profiling window—available from the View menu—displays profiling information,
that is, timing information for the functions in an application. Profiling must be turned
on explicitly using a button in the window’s toolbar, and will stay active until it is turned
off.

The profiler measures time at the entry and return of a function. This means that time
consumed in a function is not added until the function returns or another function is
called. You will only notice this if you are stepping into a function.

[© =|=| 5 clo|

Function I Calls I Flat Time (cycles) I Flat Time (*) I Accumulated Tim. I Accumulated Tim I
Outside main 1] 2n? 428 2n? 428
_ datalf_memze. 1 0 ono 0 ono
__putchar 24 72 143 72 143
_exit 1] 0 0.00 0 0.00
do_foreground_p... 10 280 573 3980 82.23
enxit 1 3 0.08 3 0.08
get_fib 26 390 5.06 390 8086
init_fiby 1 248 512 488 10.08
main 1 163 328 4627 95.60
next_counter 10 7n 145 7n 145
put_fib 10 3336 £8.93 3480 71.90
putchar 24 7z 1.43 144 248

Figure 163: Profiling window

Note: You can enable the Profiling plugin module on the Debugger >Plugins page
available in the Options dialog box.

Profiling is not supported by all C-SPY drivers. For information about whether the
C-SPY driver you are using supports profiling, see the driver-specific documentation in
the online help system available from the Help menu. Profiling is supported by the
C-SPY Simulator.

Profiling commands

In addition to the toolbar buttons, the context menu available in the Profiling window
gives you access to these and some extra commands:

v Activate
Mew Measurement
v Graph
Show details
Refresh
Auko refresh

Save As...

Figure 164: Profiling context menu

IAR Embedded Workbench® IDE
292 User Guide

W 5

© &

C-SPY® Debugger reference ___o

You can find the following commands on the menu:

Activate Toggles profiling on and off during execution.

New measurement Starts a new measurement. By clicking the button, the values displayed
are reset to zero.

Graph Displays the percentage information for Flat Time and Accumulated
Time as graphs (bar charts) or numbers.

Show details Shows more detailed information about the function selected in the list.
A window is opened showing information about callers and callees for
the selected function.

Refresh Updates the profiling information and refreshes the window.

Auto refresh Toggles the automatic update of profiling information on and off. When
turned on, the profiling information is updated automatically when
C-SPY stops at a breakpoint, at a step point, and at program exit.

Save As Saves the current profiling information in a text file.

Profiling columns

The Profiling window contains the following columns:

Column Description

Function The name of each function.

Calls The number of times each function has been called.

Flat Time The total time spent in each function in cycles or as a percentage of the
total number of cycles, excluding all function calls made from that
function.

Accumulated Time Time spent in each function in cycles or as a percentage of the total

number of cycles, including all function calls made from that function.

Table 73: Profiling window columns

There is always an item in the list called Outside main. This is time that cannot be
placed in any of the functions in the list. That is, code compiled without debug
information, for instance, all startup and exit code, and C/C++ library code.

STACK WINDOW

The Stack window is a memory window that displays the contents of the stack. In
addition, some integrity checks of the stack can be performed to detect and warn about
problems with stack overflow. For example, the Stack window is useful for determining
the optimal size of the stack.

Part 6. Reference information 293

C-SPY windows

294

IAR Embedded Workbench® IDE
User Guide

Before you can open the Stack window you must make sure it is enabled: choose
Proj ect>Options>Debugger >Plugins and select Stack from the list of plugins. In
C-SPY, you can then open a Stack window by choosing View>Stack. You can open
several Stack windows, each showing a different stack—if several stacks are
available—or the same stack with different display settings.

| Locati0n| Data | Yariable | Yalue | Frame |
IseREE] oxon

+1 Ox08

+2 0x0000 p.mStatus 0 [1] _exit

+4 Ox4A

+5 0Ox67

+6 OxEOD

+7 0Ox04

Figure 165: Stack window

The stack drop-down menu

If the microcontroller you are using has multiple stacks, you can use the stack
drop-down menu at the top of the window to select which stack to view.

The graphical stack bar

At the top of the window, a stack bar displays the state of the stack graphically. To view
the stack bar you must make sure it is enabled: choose Tools>Options>Stack and select
the option Enable graphical stack display and stack usage tracking.

The left end of the stack bar represents the bottom of the stack, in other words, the
position of the stack pointer when the stack is empty. The right end represents the end
of the memory space reserved for the stack. A green line represents the current value of
the stack pointer. The part of the stack memory that has been used during execution is
displayed in a dark gray color, and the unused part in a light gray color. The graphical
stack bar turns red when the stack usage exceeds a threshold that you can specify.

When your application is first loaded, and upon each reset, the memory for the stack area
is filled with the dedicated byte value 0xCD before the application starts executing.
‘Whenever execution stops, the stack memory is searched from the end of the stack until
a byte with a value different from 0xcD is found, which is assumed to be how far the
stack has been used. Although this is a reasonably reliable way to track stack usage,
there is no guarantee that a stack overflow is detected. For example, a stack can
incorrectly grow outside its bounds, and even modify memory outside the stack range,
without actually modifying any of the bytes near the stack range. Likewise, your
application might modify memory within the stack range by mistake. Furthermore, the

C-SPY® Debugger reference ___o

Stack window cannot detect a stack overflow when it happens, but can only detect the
signs it leaves behind.

Note: The size and location of the stack is retrieved from the definition of the segment
holding the stack, typically CSTACK, made in the linker command file. If you, for some
reason, modify the stack initialization made in the system startup code, cstartup, you
should also change the segment definition in the linker command file accordingly;
otherwise the Stack window cannot track the stack usage. To read more about this, see
the IAR C/C++ Compiler Reference Guide.

When the stack bar is enabled, the functionality needed to detect and warn about stack

overflows is also enabled, see Sack options, page 257.

The Stack window columns

The main part of the window displays the contents of stack memory in the following
columns:

Column Description

Location Displays the location in memory. The addresses are displayed in
increasing order. If your target system has a stack that grows towards
high addresses, the top of the stack will consequently be located at the
bottom of the window. The address referenced by the stack pointer, in
other words the top of the stack, is highlighted in a green color.

Data Displays the contents of the memory unit at the given location. From the
Stack window context menu, you can select how the data should be
displayed; as a |-, 2-, or 4-byte group of data.

Variable Displays the name of a variable, if there is a local variable at the given
location. Variables are only displayed if they are declared locally in a
function, and located on the stack and not in registers.

Value Displays the value of the variable that is displayed in the Variable
column.
Frame Displays the name of the function the call frame corresponds to.

Table 74: Stack window columns

Part 6. Reference information 295

C-SPY menus

296

The Stack window context menu

The following context menu is available if you right-click in the Stack window:

v Show Yariables
v Show Offsets
v 1 Units

2x Units

¢ Units

Options. ..

Figure 166: Stack window context menu

The following commands are available in the context window:

Show variables

Show offsets

Ix Units
2x Units
4x Units

Options

Separate columns named Variables, Value, and Frame are
displayed in the Stack window. Variables located at memory
addresses listed in the Stack window are displayed in these
columns.

When this option is selected, locations in the Location column are
displayed as offsets from the stack pointer. When deselected,
locations are displayed as absolute addresses.

The data in the Data column is displayed as single bytes.
The data in the Data column is displayed as 2-byte groups.
The data in the Data column is displayed as 4-byte groups.

Opens the IDE Options dialog box where you can set options
specific to the Stack window, see Stack options, page 257.

C-SPY menus

IAR Embedded Workbench® IDE
User Guide

In addition to the menus available in the development environment, the Debug menu is
available when C-SPY is running.

Additional menus will be available depending on which C-SPY driver you are using. For
information about driver-specific menus, see the online help system available from the
Help menu for information about driver-specific documentation.

-
+*
+*

e & [= R

0 & & &

DEBUG MENU

C-SPY® Debugger reference ___o

The Debug menu provides commands for executing and debugging your application.
Most of the commands are also available as toolbar buttons.

G0 FS
Break:
Reset

Stop Debugging Chrl+5Shift+0
Step Cwver Fi0

Step Inko F11

Skep Cut Shift+F11

Mext Statement
Run ko Cursor
Autostep. ..

Set Mext Statement

Memary
Refresh
Macros. ..
Logging

Figure 167: Debug menu

Menu Command

Description

Go F5

Break

Reset

Stop Debugging Ctrl+Shift+D

Step Over F10
Step Into Fll
Step Out Shift+F1 |

Next Statement

Run to Cursor

Executes from the current statement or instruction until a
breakpoint or program exit is reached.

Stops the application execution.

Resets the target processor.

Stops the debugging session and returns you to the project
manager.

Executes the next statement, function call, or instruction,
without entering C or C++ functions or assembler
subroutines.

Executes the next statement or instruction, entering C or C++
functions or assembler subroutines.

Executes from the current statement up to the statement after
the call to the current function.

Executes directly to the next statement without stopping at
individual function calls.

Executes from the current statement or instruction up to a
selected statement or instruction.

Table 75: Debug menu commands

Part 6. Reference information

297

C-SPY menus

298

IAR Embedded Workbench® IDE
User Guide

Menu Command

Description

Autostep

Set Next Statement

Memory>Save

Memory>Restore

Refresh

Macros

Logging>Set Log file

Displays the Autostep settings dialog box which lets you
customize and perform autostepping.

Moves the program counter directly to where the cursor is,
without executing any source code. Note, however, that this
creates an anomaly in the program flow and might have
unexpected effects.

Displays the Memory Save dialog box, where you can save
the contents of a specified memory area to a file, see Memory
Save dialog box, page 277.

Displays the Memory Restore dialog box, where you can
load the contents of a file in Intex-extended or Motorola
s-record format to a specified memory zone, see Memory
Restore dialog box, page 278.

Refreshes the contents of all debugger windows. Because
window updates are automatic, this is needed only in unusual
situations, such as when target memory is modified in ways
C-SPY cannot detect. It is also useful if code that is displayed in
the Disassembly window is changed.

Displays the Macro Configuration dialog box to allow you to
list, register, and edit your macro files and functions.

Displays a dialog box to allow you to log input and output from
C-SPY to a file. You can select the type and the location of the
log file. You can choose what you want to log: errors, warnings,
system information, user messages, or all of these.

Logging>Set Terminal I/O Log file Displays a dialog box to allow you to log terminal input and

output from C-SPY to a file. You can select the destination of
the log file.

Table 75: Debug menu commands (Continued)

Autostep settings dialog box

In the Autostep settings dialog box—available from the Debug menu—you can

customize autostepping.

Autostep settings E

IStep Into [Source level]

j Start I
Delay [miIIiseconds]:I‘I] Cancel |

Figure 168: Autostep settings dialog box

C-SPY® Debugger reference ___o

The drop-down menu lists the available step commands.

The Delay text box lets you specify the delay between each step.

Macro Configuration dialog box

In the M acro Configur ation dialog box—available by choosing Debug>M acr os—you
can list, register, and edit your macro files and functions.

Macro functions that have been registered using the dialog box will be deactivated when
you exit the debug session, and will not automatically be registered at the next debug
session.

Macro Configuration BE
Look in: Ia tutaor j I I‘j‘ v
_1Debug
1 settings

Setupadvanced. mac
SetupSimple. mac

File name: ISetupSimpIe.mac j
Files of type: IMacro Filez [*.mac] j
Selected Macro Files: Add |

C:hprojectshtutorS etupSimple. mac Add Al |
Remove |
Remave Al |

— Registered Macro .
Regist
(o] User € System ﬂl

Parameters | File

_canceldlinterrupts] - Spstem Macro -
__cancellnterupt int] - Spstem Macro -
_clearBreak [id) - Spstem Macro -
__clozeFile [file] - Spstem Macro - —
. Cloze
__dizablelnterrupts Il - Spstem Macro -
__driverType [ztring] - Spstem Macro - LI Help |

Figure 169: Macro Configuration dialog box

Registering macro files

Select the macro files you want to register in the file selection list, and click Add or Add
All to add them to the Selected M acro Fileslist. Conversely, you can remove files from
the Selected Macro Fileslist using Remove or Remove All.

Part 6. Reference information 299

C-SPY menus

300

IAR Embedded Workbench® IDE
User Guide

Once you have selected the macro files you want to use click Register to register them,
replacing any previously defined macro functions or variables. Registered macro
functions are displayed in the scroll window under Registered Macros. Note that
system macros cannot be removed from the list, they are always registered.

Listing macro functions

Selecting All displays all macro functions, selecting User displays all user-defined
macros, and selecting System displays all system macros.

Clicking on either Name or File under Registered M acros displays the column
contents sorted by macro names or by file. Clicking a second time sorts the contents in
the reverse order.

Modifying macro files
Double-clicking a user-defined macro function in the Name column automatically
opens the file in which the function is defined, allowing you to modify it, if needed.

Log File dialog box

The L og File dialog box—available by choosing Debug>L ogging>Set Log File
—allows you to log output from C-SPY to a file.

r Log File
o Include:
¥ Enable log file
¥ Enmors ¥ “wamings
¥ Info IV User
$PROJ_DIR$ LogFile1.log J

()3 I Cancel |

Figure 170: Log File dialog box
Enable or disable logging to the file with the Enable L og file check box.

The information printed in the file is by default the same as the information listed in the
Log window. To change the information logged, use the I nclude options:

Option Description
Errors C-SPY has failed to perform an operation.
Warnings A suspected error.

Table 76: Log file options

C-SPY® Debugger reference ___o

Option Description
Info Progress information about actions C-SPY has performed.
User Printouts from C-SPY macros, that is, your printouts using the

__Inessage statement.

Table 76: Log file options (Continued)

Click the browse button, to override the default file type and location of the log file.
Click Saveto select the specified file—the default filename extension is log.

Terminal I/O Log File dialog box

The Terminal 1/0 Log Files dialog box—available by choosing
Debug>L ogging—allows you to select a destination log file, and to log terminal /O
input and output from C-SPY to this file.

Temminal 10 Log Files [%]

Temminal 10 Log File

" Enable Terminal |0 log file
Cancel |
Ic:\TermID.Iog J

Figure 171: Terminal 1/0 Log File dialog box

Click the browse button to open a standard Save Asdialog box. Click Saveto select the
specified file—the default filename extension is log.

Part 6. Reference information 301

C-SPY menus

IAR Embedded Workbench® IDE
302 User Guide

General options

This chapter describes the general options in the IAR Embedded
Workbench® IDE.

For information about how options can be set, see Setting options, page 85.

Target

For information about the Tar get options, see the online help system available from the
Help menu.

Output

With the Output options you can specify the type of output file—Executable or
Library. You can also specify the destination directories for executable files, object
files, and list files.

Clutput |

— Output file
& Executable
 Library

r— Output directarie:
Executables/libraries:
IDebug\E we

Object files:
|DebugiObi

List files:
|DebughList

Figure 172: Output options

Part 6. Reference information

303

Output

304

IAR Embedded Workbench® IDE
User Guide

OUTPUT FILE

Use these options to choose the type of output file. Choose between:

Executable As a result of the build process, the linker will create an application (an

(default) executable output file). When this option is selected, linker options will be
available in the Options dialog box. Before you create the output you
should set the appropriate linker options.

Library As a result of the build process, the library builder will create a library file.
When this option is selected, library builder options will be available in the
Options dialog box, and Linker will disappear from the list of categories.
Before you create the library you can set the options.

OUTPUT DIRECTORIES

Use these options to specify paths to destination directories. Note that incomplete paths
are relative to your project directory. You can specify the paths to the following
destination directories:

Executables/libraries Use this option to override the default directory for executable or
library files. Type the name of the directory where you want to save
executable files for the project.

Object files Use this option to override the default directory for object files. Type
the name of the directory where you want to save object files for the
project.

List files Use this option to override the default directory for list files. Type the

name of the directory where you want to save list files for the project.

General options ___¢

Library Configuration
With the Library Configuration options you can specify which library to use.

Library Configuration |

Library: Description:
Customn DLIB j Use a customized C/EC++ runtime library.

Library file:

IEI: projectsimylibrang. rax

Configuration file:
IEI: Sprojectshmylibrane. b

L L

Figure 173: Library Configuration options

For information about the runtime library, library configurations, the runtime
environment they provide, and the possible customizations, see |AR C/C++ Compiler
Reference Guide.

LIBRARY

In the Library drop-down list you choose which runtime library to use. For information
about available libraries, see the IAR C/C++ Compiler Reference Guide.

The library object file and library configuration file that actually will be used are
displayed in the Library file and Configuration file text boxes, respectively.
LIBRARY FILE

The Library file text box displays the library object file that will be used. A library
object file is automatically chosen depending on some of your settings, see the |AR
C/C++ Compiler Reference Guide.

If you have chosen Custom library in the Library drop-down list, you must specify
your own library object file.

CONFIGURATION FILE

The Configuration filetext box displays the library configuration file that will be used.
A library configuration file is chosen automatically depending on the project settings. If
you have chosen Custom DLIB in the Library drop-down list, you must specify your
own library configuration file.

Part 6. Reference information 305

Library Options

306

Note: A library configuration file is only required for the DLIB library, but note that
not all product versions support the DLIB library.

Library Options

IAR Embedded Workbench® IDE
User Guide

With the options on the Library Options page you can choose print f and scanf
formatters.

Library Options |
— Printf farmatter
I Large j
Full formatting.
— Scanf formatter
I Large j
Full formatting.

Figure 174: Library Options page

See the IAR C/C++ Compiler Reference Guide for more information about the
formatting capabilities.

PRINTF FORMATTER

The full formatter version is memory-consuming, and provides facilities that are not
required in many embedded applications.

For information about available print f formatters, see the |AR C/C++ Compiler
Reference Guide.

SCANF FORMATTER

The full formatter version is memory-consuming, and provides facilities that are not
required in many embedded applications.

For information about available scanf formatters, see the |IAR C/C++ Compiler
Reference Guide.

General options ___¢

Stack/Heap

With the options on the Stack/Heap page you can customize the heap and stack sizes.
For more information, see the online help system available from the Help menu.

Part 6. Reference information 307

Stack/Heap

IAR Embedded Workbench® IDE
308 User Guide

Compiler options

This chapter describes the compiler options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 85.

Multi-file compilation

Before you set specific compiler options, you can decide if you want to use multi-file
compilation, which is an optimization technique. If the compiler is allowed to compile
multiple source files in one invocation, it can in many cases optimize more efficiently.

You can use this option for the entire project or for individual groups of files. All C/C++
source files in such a group will be compiled together using one invocation of the
compiler.

Select M ulti-file Compilation to enable multi-file compilation for the group of project
files that was selected in the workspace window when you opened the Options dialog
box. Use Discard Unused Publicsto discard any unused public functions and variables
from the compilation unit. For more information about multi-file compilation and
discarding unused public functions, see the |AR C/C++ Compiler Reference Guide.

Factory Settings

Iv Multi-file Compilation
[Discard Unused Publics

Figure 175: Multi-file Compilation

If you use this option, all files included in the selected group will be compiled together
using the compiler options which have been set on the group or nearest higher enclosing
group which has any options set. Any overriding compiler options on one or more files
are ignored when building, because a group compilation must use exactly one set of
options.

For information about how multi-file compilation is displayed in the workspace
window, see \Workspace window, page 194.

Note: If your product version does not support multi-file compilation, the Multi-file
Compilation option is not available.

Part 6. Reference information 309

Language

310

Language

IAR Embedded Workbench® IDE
User Guide

The L anguage options enable the use of target-dependent extensions to the C or C++
language.

Language|

— Language
@
 Embedded C++
 Extended Embedded C++
' Automatic [extension based)

™ Require pratotypes

r— Language conformance Flain ‘char' iz
& Allow |AR extensions " Signed
" Relaxed IS0/4NS] & Unsigned
£ Shrict 150/8M51

™ Enable multibyte support

™ Enable |4R migration preprocessor extensions

Figure 176: Compiler language options

LANGUAGE

With the L anguage options you can specify the language support you need.

For information about Embedded C++ and Extended Embedded C++, see the IAR
C/C++ Compiler Reference Guide. (Note that not all product versions support C++.)
C

By default, the IAR C/C++ Compiler runs in ISO/ANSI C mode, in which features
specific to Embedded C++ and Extended Embedded C++ cannot be utilized.
Embedded C++

In Embedded C++ mode, the compiler treats the source code as Embedded C++. This
means that features specific to Embedded C++, such as classes and overloading, can be
utilized.

Embedded C++ requires that a DLIB library (C/C++ library) is used.

Extended Embedded C++

In Extended Embedded C++ mode, you can take advantage of features like namespaces
or the standard template library in your source code.

Extended Embedded C++ requires that a DLIB library (C/C++ library) is used.

Compiler options °

Automatic

If you select Automatic, language support will be decided automatically depending on
the filename extension of the file being compiled:

e Files with the filename extension ¢ will be compiled as C source files

e Files with the filename extension cpp will be compiled as Extended Embedded C++
source files.

This option requires that a DLIB library (C/C++ library) is used.

Note: Not all product versions support C++. For products without C++ support, the
L anguage options will not be available.

REQUIRE PROTOTYPES

This option forces the compiler to verify that all functions have proper prototypes. Using
this option means that code containing any of the following will generate an error:

e A function call of a function with no declaration, or with a Kernighan & Ritchie
C declaration
e A function definition of a public function with no previous prototype declaration

e An indirect function call through a function pointer with a type that does not include
a prototype.
LANGUAGE CONFORMANCE

Language extensions must be enabled for the IAR C/C++ Compiler to be able to accept
target-specific keywords as extensions to the standard C or C++ language. In the IAR
Embedded Workbench IDE, the option Allow | AR extensions is enabled by default.

The option Relaxed | SO/ANSI disables TAR extensions, but does not adhere to strict
ISO/ANSIL

Select the option Strict | SO/ANSI to adhere to the strict ISO/ANSI C standard.

For details about language extensions, see the IAR C/C++ Compiler Reference Guide.

PLAIN 'CHAR' IS

Normally, the compiler interprets the char type as unsigned char. Use this option to
make the compiler interpret the char type as signed char instead, for example for
compatibility with another compiler.

Note: The runtime library is compiled with unsigned plain characters. If you select the
Signed option, you might get type mismatch warnings from the linker as the library uses

unsigned char.

Part 6. Reference information 311

Code

312

ENABLE MULTIBYTE SUPPORT

By default, multibyte characters cannot be used in C or Embedded C++ source code. If
you use this option, multibyte characters in the source code are interpreted according to
the host computer’s default setting for multibyte support.

Multibyte characters are allowed in C and C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.

ENABLE IAR MIGRATION PREPROCESSOR EXTENSIONS

Migration preprocessor extensions extend the preprocessor in order to ease migration of
code from earlier IAR compilers. If you need to migrate code from an earlier IAR C or
C++ compiler, you may want to use this option. Note that, depending on your product
installation, this option might not be available.

Note: If you use this option, not only will the compiler accept code that is not standard
conformant, but it will also reject some code that does conform to standard.

Important! Do not depend on these extensions in newly written code. Support for them
may be removed in future compiler versions.

Code

IAR Embedded Workbench® IDE
User Guide

With the options on the Code page you can customize the code generation. For more
information, see the online help system available from the Help menu. Note that,
depending on your product installation, this page might not be available.

Compiler options °

Optimizations
The Optimizations options determine the type and level of optimization for generation
of object code.

Optimizations
Lewvel Enabled transformations:
" None [Common subesprezzion elimination A
& Low [Loop unralling
 Medium [Function |.nI|n|ng
[Code mation

£ High] Type-bazed alias analyzis

[5tatic clustering

[Instruction zcheduling b

Figure 177: Compiler optimizations options

OPTIMIZATIONS

The IAR C/C++ Compiler supports different levels of optimizations, and for the highest
level it is possible to fine-tune the optimizations explicitly for an optimization
goal—size or speed. Choose between:

None (best debug support)

Low

Medium

High, balanced (balancing between speed and size)

High, speed (favors speed)

High, size (favors size).

By default, a debug project will have a size optimization that is fully debuggable, while
a release project will have a high balanced optimization that generates small code
without sacrificing speed.

For a list of optimizations performed at each optimization level, see the IAR C/C++
Compiler Reference Guide.

Part 6. Reference information 313

Output

314

Enabled transformations

The following transformations are available on different level of optimizations:
Common subexpression elimination

Loop unrolling

Function inlining

Code motion

Type-based alias analysis.

Note: Depending on your product installation, there might be additional
transformations available.

When a transformation is available, you can enable or disable it by selecting its check
box.

In a debug project, the transformations are by default disabled. In a release project, the
transformations are by default enabled.

For a brief description of the transformations that can be individually disabled, see the
I1AR C/C++ Compiler Reference Guide.

Output

IAR Embedded Workbench® IDE
User Guide

The Output options determine the output format of the compiled file, including the level
of debugging information in the object code.

Clutput |

Module type

[T Overide default
| Frogram hodule
€ Librany Module

" Object module name:

[V Generate debug information

Figure 178: Compiler output options

Compiler options °

MODULE TYPE

By default, the compiler generates programmodules. Use this option to make a library
module that will only be included if it is referenced in your application. Select the
Override default check box and choose one of:

Program Module The object file will be treated as a program module rather than as
a library module.

Library Module The object file will be treated as a library module rather than as a

program module.

For information about program and library modules, and working with libraries, see the
XLIB and XAR chapters in the | AR Linker and Library Tools Reference Guide, available
from the Help menu.

GENERATE DEBUG INFORMATION

This option causes the compiler to include additional information in the object modules
that is required by C-SPY® and other symbolic debuggers.

The Generate debug information option is selected by default. Deselect this option if
you do not want the compiler to generate debug information.

Note: The included debug information increases the size of the object files.

Part 6. Reference information 315

List

316

List

IAR Embedded Workbench® IDE
User Guide

The List options determine whether a list file is produced, and the information is
included in the list file.

List |

™ Output list file
| fissemblern memarics
™| Diagnostics

™ Output assembler file
| Ihelude source
¥ | Irelude callframe infarmation

Figure 179: Compiler list file options

Normally, the compiler does not generate a list file. Select any of the following options
to generate a list file or an assembler file. The list file will be saved in the Li st directory,
and its filename will consist of the source filename, plus the filename extension 1st.
You can open the output files directly from the Output folder which is available in the
Workspace window.

OUTPUT LIST FILE

Select the Output list file option and choose the type of information to include in the
list file:

Assembler mnemonics Includes assembler mnemonics in the list file.

Diagnostics Includes diagnostic information in the list file.

OUTPUT ASSEMBLER FILE

Select the Output assembler file option and choose the type of information to include
in the list file:

Include source Includes source code in the assembler file.

Include call frame information Includes compiler-generated information for runtime
model attributes, call frame information, and frame size
information.

Compiler options °

Preprocessor

The Preprocessor options allow you to define symbols and include paths for use by the
compiler.

Preprocessor |

™ lgnore standard include directaries $TOOLKIT_DIR$AMNCY

Additional include directories: [one per lineg]

=
=
-

Preinclude file:

Defined symbols: [one per line)

;I ™ Preprocessor output to file
= Freserve commments
= Fererateline ditestives

|

Figure 180: Compiler preprocessor options

IGNORE STANDARD INCLUDE DIRECTORIES

If you select this option, the standard include files will not be used when the project is
built.

ADDITIONAL INCLUDE DIRECTORIES

The Additional include directories option adds a path to the list of #include file
paths. The paths required by the product are specified by default depending on your
choice of runtime library.

Type the full file path of your #include files.

Note: Any additional directories specified using this option will be searched before the
standard include directories.

To make your project more portable, use the argument variable $TOOLKIT_DIRS for the
subdirectories of the active product and $PROJ_DIRS for the directory of the current
project. For an overview of the argument variables, see Argument variables summary;,
page 233.

Part 6. Reference information 317

Diagnostics

318

PREINCLUDE FILE

Use this option to make the compiler include the specified include file before it starts to
read the source file. This is useful if you want to change something in the source code
for the entire application, for instance if you want to define a new symbol.

DEFINED SYMBOLS

The Defined symbolsoption is useful for conveniently specifying a value or choice that
would otherwise be specified in the source file.

Type the symbols that you want to define for the project, for example:
TESTVER=1
Note that there should be no space around the equal sign.

The Defined symbols option has the same effect as a #define statement at the top of
the source file.

For example, you might arrange your source to produce either the test or production
version of your application depending on whether the symbol TESTVER was defined. To
do this you would use include sections such as:

#ifdef TESTVER
; additional code lines for test version only
#endif

You would then define the symbol TESTVER in the Debug target but not in the Release
target.

PREPROCESSOR OUTPUT TO FILE

By default, the compiler does not generate preprocessor output.

Select the Preprocessor output to file option if you want to generate preprocessor
output. You can also choose to preserve comments and/or to generate #1ine directives.

Diagnostics

IAR Embedded Workbench® IDE
User Guide

The Diagnostics options determine how diagnostics are classified and displayed. Use
the diagnostics options to override the default classification of the specified diagnostics.

Compiler options °

Note: The diagnostics cannot be suppressed for fatal errors, and fatal errors cannot be
reclassified.

Diagnostics |
[T Enable remarks

Suppress theze diagnostics:

Treat these as remarks:

Treat these as warnings:

Treat these as emars:

™ Treat all wamings as emors

Figure 181: Compiler diagnostics options

ENABLE REMARKS

The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that might cause strange behavior in the generated code.

By default remarks are not issued. Select the Enable remarks option if you want the
compiler to generate remarks.

SUPPRESS THESE DIAGNOSTICS

This option suppresses the output of diagnostics for the tags that you specify.

For example, to suppress the warnings pe117 and Pel77, type:

Pell7,pPel77

TREAT THESE AS REMARKS

A remark is the least severe type of diagnostic message. It indicates a source code
construct that might cause strange behavior in the generated code. Use this option to
classify diagnostics as remarks.

For example, to classify the warning Pe177 as a remark, type:

pPel77

Part 6. Reference information 319

Extra Options

320

TREAT THESE AS WARNINGS

A warning indicates an error or omission that is of concern, but which will not cause the
compiler to stop before compilation is completed. Use this option to classify diagnostic
messages as warnings.

For example, to classify the remark Pe826 as a warning, type:

Pe826

TREAT THESE AS ERRORS

An error indicates a violation of the C or C++ language rules, of such severity that object
code will not be generated, and the exit code will be non-zero. Use this option to classify
diagnostic messages as errors.

For example, to classify the warning Pe117 as an error, type:

Pell?7

TREAT ALL WARNINGS AS ERRORS

Use this option to make the compiler treat all warnings as errors. If the compiler
encounters an error, object code is not generated.

Extra Options

IAR Embedded Workbench® IDE

User Guide

The Extra Options page provides you with a command line interface to the compiler.

Extra Dptions |
™ Use command line options
[Eammand line optians: [aneipenline]
=
e

Figure 182: Extra Options page for the compiler

Compiler options °

USE COMMAND LINE OPTIONS

Additional command line arguments for the compiler (not supported by the GUI) can be
specified here.

Part 6. Reference information 321

Extra Options

IAR Embedded Workbench® IDE
322 User Guide

Assembler options

This chapter describes the assembler options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 85.

Language

The L anguage options control the code generation of the assembler.

Note: Some of the options described here might not be available in the product version
you are using.

USER SYMBOLS ARE CASE SENSITIVE

By default, case sensitivity is on. This means that, for example, LABEL and label refer
to different symbols. You can deselect User symbols are case sensitive to turn case
sensitivity off, in which case LABEL and 1abel will refer to the same symbol.

ENABLE MULTIBYTE SUPPORT

By default, multibyte characters cannot be used in assembler source code. If you use this
option, multibyte characters in the source code are interpreted according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in comments, in string literals, and in character
constants. They are transferred untouched to the generated code.
ALLOW MNEMONICS IN FIRST COLUMN

The default behavior by the assembler is to treat all identifiers starting in the first column
as labels.

Use this option to make mnemonics names (without a trailing colon) starting in the first
column to be recognized as mnemonics.
ALLOW DIRECTIVES IN FIRST COLUMN

The default behavior by the assembler is to treat all identifiers starting in the first column
as labels.

Use this option to make directive names (without a trailing colon) that start in the first
column to be recognized as directives.

Part 6. Reference information

323

MACRO QUOTE CHARACTERS

The Macro quotechar acter soption sets the characters used for the left and right quotes
of each macro argument.

By default, the characters are < and >. This option allows you to change the quote
characters to suit an alternative convention or simply to allow a macro argument to
contain < or >.

From the drop-down list, choose one of four types of brackets to be used as macro quote
characters:

tacro quote characters
< 'I

[
[
M

Figure 183: Choosing macro quote characters

Output

The Output options allow you to generate information to be used by a debugger such
as the JAR C-SPY® Debugger.

Clutput |

[V Generate debug information

Figure 184: Assembler output options

IAR Embedded Workbench® IDE
324 User Guide

Assembler options __¢

GENERATE DEBUG INFORMATION

The Generate debug information option must be selected if you want to use a
debugger with your application. By default, this option is selected in a Debug project,
but not in a Release project.

List
The List options are used for making the assembler generate a list file and for selecting
the list file contents. For reference information about each option, see the online help
system available from the Help menu.

Preprocessor

The Preprocessor options allow you to define include paths and symbols in the
assembler.

Preprocessor |

[~ lgnore standard include directories [$TOOLKIT_DIR$4MCY

Additional include directories: [one per ling]

<

Defined symbols: [one per line)

<

™ Preprocessor autput to file
| Freserve comments

| Generate Hine diective

Figure 185: Assembler preprocessor options

IGNORE STANDARD INCLUDE DIRECTORIES

If you select this option, the standard include files will not be used when the project is
built.

ADDITIONAL INCLUDE DIRECTORIES

The Additional includedir ectoriesoption adds paths to the list of #include file paths.
The path required by the product is specified by default.

Type the full path of the directories that you want the assembler to search for #include
files.

Part 6. Reference information 325

326

IAR Embedded Workbench® IDE
User Guide

To make your project more portable, use the argument variable $TOOLKIT_DIRS for the
subdirectories of the active product and $PROJ_DIRS for the directory of the current
project. For an overview of the argument variables, see Table 46, Argument variables,
page 233.

See the AR Assembler Reference Guide for information about the #include directive.

Note: By default the assembler also searches for #include files in the paths specified
in the ACPUNAME_INC environment variable. We do not, however, recommend that you
use environment variables in the IAR Embedded Workbench IDE.

DEFINED SYMBOLS

This option provides a convenient way of specifying a value or choice that you would
otherwise have to specify in the source file.

Type the symbols you want to define, one per line.

e For example, you might arrange your source to produce either the test or production
version of your application depending on whether the symbol TESTVER was
defined. To do this you would use include sections such as:

#ifdef TESTVER
; additional code lines for test version only
#endif

You would then define the symbol TESTVER in the Debug target but not in the
Release target.

e Alternatively, your source might use a variable that you need to change often, for
example FRAMERATE. You would leave the variable undefined in the source and use
this option to specify a value for the project, for example FRAMERATE=3.

To delete a user-defined symbol, select in the Defined symbolslist and press the Delete
key.

PREPROCESSOR OUTPUT TO FILE

By default the assembler does not generate preprocessor output.

Select the Preprocessor output to file option if you want to generate preprocessor
output. You can also choose to preserve comments and/or to generate #1ine directives.

Note: This option might not be available in the product version you are using.

Assembler options __¢

Diagnostics
The Diagnostics options determine how diagnostics are classified and displayed. Use
the diagnostics options to override the default classification of the specified diagnostics.

For reference information about each option, see the online help system available from
the Help menu.

Extra Options
The Extra Options page provides you with a command line interface to the assembler.

Extra Dptions |
™ Use command line options

[Eammand line optians: [aneipenline]

Figure 186: Extra Options page for the assembler

USE COMMAND LINE OPTIONS

Additional command line arguments for the assembler (not supported by the GUI) can
be specified here.

Part 6. Reference information 327

IAR Embedded Workbench® IDE
328 User Guide

Custom build options

This chapter describes the Custom Build options available in the IAR
Embedded Workbench® IDE.

For information about how to set options, see Setting options, page 85.

Custom Tool Configuration
To set custom build options in the IAR Embedded Workbench IDE, choose
Project>Options to display the Options dialog box. Then select Custom Build in the
Category list to display the Custom Tool Configuration page:

Custom Tool Configuration |

Filename extensions:

Command line:

Output files [one per line]:

=

Additional input files [one per line]:

L

K1

Figure 187: Custom tool options

In the Filename extensions text box, specify the filename extensions for the types of
files that are to be processed by this custom tool. You can enter several filename
extensions. Use commas, semicolons, or blank spaces as separators. For example:

.htm; . html
In the Command line text box, type the command line for executing the external tool.
In the Output filestext box, enter the output files from the external tool.

If there are any additional files that are used by the external tool during the building
process, these files should be added in the Additional input files text box. If these
additional input files, so-called dependency files, are modified, the need for a rebuild is
detected.

For an example, see Extending the tool chain, page 89.

Part 6. Reference information 329

IAR Embedded Workbench® IDE
330 User Guide

Build actions options

This chapter describes the options for pre-build and post-build actions
available in the IAR Embedded Workbench® IDE.

For information about how to set options, see Setting options, page 85.

Build Actions Configuration
To set options for pre-build and post-build actions in the IAR Embedded Workbench
IDE, choose Project>Options to display the Options dialog box. Then select Build
Actionsin the Category list to display the Build Actions Configuration page.

These options apply to the whole build configuration, and cannot be set on groups or
files.

Build Actions Configuration

Fre-build command line:

Post-build command line:

Ll

Figure 188: Build actions options

PRE-BUILD COMMAND LINE

Type a command line to be executed directly before a build a browse button for locating
an extended command line file is available for your convenience. The commands will
not be executed if the configuration is already up-to-date.

POST-BUILD COMMAND LINE

Type a command line to be executed directly after each successful build a browse button
is available for your convenience. The commands will not be executed if the

Part 6. Reference information 331

configuration was up-to-date. This is useful for copying or post-processing the output
file.

IAR Embedded Workbench® IDE
332 User Guide

Linker options

This chapter describes the XLINK options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 85.

Note that the XLINK command line options that are used for defining
segments in a linker command file are described in the IAR Linker and Library

Tools Reference Guide.

Output

The Output options are used for specifying the output format and the level of debugging
information included in the output file.

Clutput |
— Output file
™ Overide default Secondary output file:
Iproiect‘l .duw [Maone for the selected format]
— Format

&' Debug information for C-5PY
¥ w/ith untime control madules
¥ with 140 emulation modules
™| Buffered terminal autput
[~ Allow C-5P-specific extra output file
" Other

[utput format: I

Farmat wariart: INone

Lef L L

Module-local spmbols: IIncIude all

Figure 189: XLINK output file options

OUTPUT FILE

Use Output fileto specify the name of the XLINK output file. If a name is not specified,
the linker will use the project name with a filename extension. The filename extension
depends on which output format you choose. If you choose Debug infor mation for
C-SPY, the output file will have the filename extension dxx.

Note: If you select a format that generates two output files, the file type that you specify
will only affect the primary output file (first format).

Part 6. Reference information

333

Output

334

IAR Embedded Workbench® IDE
User Guide

Override default

Use this option to specify a filename or filename extension other than the default.

FORMAT

The output options determine the format of the output file generated by the IAR XLINK
Linker. The output file is used as input to either a debugger or as input for programming
the target system. The IAR Systems proprietary output format is called UBROF,
Universal Binary Relocatable Object Format.

The default output settings are:
e In a debug project, Debug information for C-SPY, With runtime control
modules, and With 1/0O emulation modules are selected by default

e In arelease project, an output format suitable for target download is selected by
default.

Note: For debuggers other than C-SPY®, check the user documentation supplied with
that debugger for information about which format/variant should be used.

Debug information for C-SPY

This option creates a UBROF output file, with a dxx filename extension, to be used with
the IAR C-SPY Debugger.

With runtime control modules

This option produces the same output as the Debug information for C-SPY option, but
also includes debugger support for handling program abort, exit, and assertions. Special
C-SPY variants for the corresponding library functions are linked with your application.
For more information about the debugger runtime interface, see the |AR C/C++
Compiler Reference Guide.

Wi ith 1/O emulation modules

This option produces the same output as the Debug information for C-SPY and With
runtime control modulesoptions, but also includes debugger support for I/O handling,
which means that stdin and stdout are redirected to the Terminal I/O window, and
that it is possible to access files on the host computer during debugging.

For more information about the debugger runtime interface, see the |AR C/C++
Compiler Reference Guide.

Linker options °

Buffered terminal output

During program execution in C-SPY, instead of instantly printing each new character to
the C-SPY Terminal I/O window, this option will buffer the output. This option is useful
when using debugger systems that have slow communication.

Allow C-SPY-specific extra output file
Use this option to enable the options available on the Extra Output page.

If you choose any of the options With runtime control modules or With /0
emulation modules, the generated output file will contain dummy implementations for
certain library functions, such as putchar, and extra debug information required by
C-SPY to handle those functions. In this case, the options available on the Extra Output
page are disabled, which means you cannot generate an extra output file. The reason is
that the extra output file would still contain the dummy functions, but would lack the
required extra debug information, and would therefore normally be useless.

However, for some debugger systems, two output files from the same build process are
required—one with the required debug information, and one that you can burn to your
hardware before debugging. This is useful when you want to debug code that is located
in non-volatile memory. In this case, you must choose the Allow C-SPY -specific extra
output file option to make it possible to generate an extra output file.

Other

Use this option to generate output other than those generated by the options Debug
information for C-SPY, With runtime control modules, and With I/O emulation
modules.

Use the Output format drop-down list to select the appropriate output. If applicable,
use Format variant to select variants available for some of the output formats. The
alternatives depend on the output format chosen.

When you specify the Other >Output for mat option as either debug (ubr of), or ubrof,
a UBROF output file with the filename extension dbg will be created. The generated
output file will not contain debugging information for simulating facilities such as stop
at program exit, long jump instructions, and terminal I/O. If you need support for these
facilities during debugging, use the Debug information for C-SPY, With runtime
control modules, and With 1/0 emulation modules options, respectively.

For more information, see the |AR Linker and Library Tools Reference Guide.

Module-local symbols

Use this option to specify whether local (non-public) symbols in the input modules
should be included or not by the IAR XLINK Linker. If suppressed, the local symbols

Part 6. Reference information 335

Extra Output

336

will not appear in the listing cross-reference and they will not be passed on to the output
file.

You can choose to ignore just the compiler-generated local symbols, such as jump or
constant labels. Usually these are only of interest when debugging at assembler level.

Note: Local symbols are only included in files if they were compiled or assembled with
the appropriate option to specify this.

Extra Output

IAR Embedded Workbench® IDE
User Guide

The ExtraOutput options are used for generating an extra output file and for specifying
its format.

Note: If you have chosen any of the options With runtime control modules or With
1/0 emulation modulesavailable on the Output page, you must also choose the option
Allow C-SPY -specific extra output file to enable the Extra Output options.

Extra Dutput |

V' Generate extra output file

— Output file
™ Overide default

Iproiect‘l LR

— Format

Olutput format;: I

L L

Farmat wariatt: INone

Figure 190: XLINK extra output file options

Use the Generateextraoutput fileoption to generate an additional output file from the
build process.

Use the Override default option to override the default file name. If a name is not
specified, the linker will use the project name and a filename extension which depends
on the output format you choose.

Note: If you select a format that generates two output files, the file type that you specify
will only affect the primary output file (first format).

Use the Output format drop-down list to select the appropriate output. If applicable,
use Format variant to select variants available for some of the output formats. The
alternatives depend on the output format you have chosen.

Linker options °

When you specify the Output format option as either debug (ubr of), or ubrof, a
UBROF output file with the filename extension dbg will be created.

#define

You can define symbols with the #define option.

Hdefine |

Defined symbols: [one per line]

Figure 191: Linker defined symbols options

DEFINE SYMBOL

Use Define symbol to define absolute symbols at link time. This is especially useful for
configuration purposes.

Type the symbols that you want to define for the project, for example:
TESTVER=1
Note that there should be no space around the equal sign.

Any number of symbols can be defined in a linker command file. The symbol(s) defined
in this manner will be located in a special module called ?ABS_ENTRY_MOD, which is
generated by the linker.

The linker will display an error message if you attempt to redefine an existing symbol.

Part 6. Reference information 337

Diagnostics

338

Diagnostics

IAR Embedded Workbench® IDE
User Guide

The Diagnostics options determine the error and warning messages generated by the
TAR XLINK Linker.

Diagnostics

™ Always generate output Range checks

. % Generate emors

™ Segment overlap warings)
 Generate warrings

™ Mo global type checking Dissbled

—warnings/E mor
™ Suppress all wamings
Suppress theze diagnostics:

Treat these as warnings:

Treat these as emors:

Figure 192: Linker diagnostics options

ALWAYS GENERATE OUTPUT

Use Always gener ate output to generate an output file even if a non-fatal error was
encountered during the linking process, such as a missing global entry or a duplicate
declaration. Normally, XLINK will not generate an output file if an error is encountered.

Note: XLINK always aborts on fatal errors, even when this option is used.

The Always gener ate output option allows missing entries to be patched in later in the
absolute output image.

SEGMENT OVERLAP WARNINGS

Use Segment overlap war ningsto reduce segment overlap errors to warnings, making
it possible to produce cross-reference maps, etc.

NO GLOBAL TYPE CHECKING

Use Noglobal type checkingto disable type checking at link time. While a well-written
application should not need this option, there may be occasions where it is helpful.

By default, XLINK performs link-time type checking between modules by comparing
the external references to an entry with the PUBLIC entry (if the information exists in the
object modules involved). A warning is generated if there are mismatches.

Linker options °

RANGE CHECKS

Use Range checks to specify the address range check. The following table shows the
range check options in the IAR Embedded Workbench IDE:

Option Description

Generate errors An error message is generated
Generate warnings Range errors are treated as warnings
Disabled Disables the address range checking

Table 77: XLINK range check options

If an address is relocated outside address range of the target CPU —code, external data,
or internal data address—an error message is generated. This usually indicates an error
in an assembler language module or in the segment placement.

WARNINGS/ERRORS

By default, the IAR XLINK Linker generates a warning when it detects that something
may be wrong, although the generated code might still be correct. The
Warnings/Errorsoptions allow you to suppress or enable all warnings, and to change
the severity classification of errors and warnings.

Refer to the AR Linker and Library Tools Reference Guide for information about the
different warning and error messages.

Use the following options to control the generation of warning and error messages:

Suppress all warnings

Use this option to suppress all warnings.

Suppress these diagnostics
This option suppresses the output of diagnostics for the tags that you specify.

For example, to suppress the warnings w117 and w177, type wll7,wl77.

Treat these as warnings

Use this option to specify errors that should be treated as warnings instead. For example,
to make error 106 become treated as a warning, type e106.

Treat these as errors

Use this option to specify warnings that should be treated as errors instead. For example,
to make warning 26 become treated as an error, type w26.

Part 6. Reference information 339

List

List

The List options determine the generation of an XLINK cross-reference listing.

List |

V¥ Generate linker listing

¥ Segment map File format———————
Symbols—————————— & Text
£ Hone HTML

" Symbol listing
Lines/ : ISU
& Module map) e

™ Module summary

™ Include suppressed entries

™ Static averlay map

Figure 193: Linker list file options

GENERATE LINKER LISTING

Causes the linker to generate a listing and send it to the file projectname.map.

Segment map

Use Segment map to include a segment map in the XLINK listing file. The segment
map will contain a list of all the segments in dump order.

Symbols

The following options are available:

Option Description

None Symbols will be excluded from the linker listing.

Symbol listing An abbreviated list of every entry (global symbol) in every module. This
entry map is useful for quickly finding the address of a routine or data
element.

Module map A list of all segments, local symbols, and entries (public symbols) for

every module in the application.

Table 78: XLINK list file options

IAR Embedded Workbench® IDE
340 User Guide

Linker options °

Module summary

Use the Module summary option to generate a summary of the contributions to the total
memory use from each module.

Only modules with a contribution to memory use are listed.

Include suppressed entries

Use this option to include all segment parts in a linked module in the list file, not just the
segment parts that were included in the output. This makes it possible to determine
exactly which entries that were not needed.

Static overlay map

If the compiler uses static overlay, this option includes a listing of the static overlay
system in the list file. Read more about static overlay maps in the |AR Linker and
Library Tools Reference Guide.

File format

The following options are available:

Option Description
Text Plain text file
HTML HTML format, with hyperlinks

Table 79: XLINK list file format options

Lines/page

Sets the number of lines per page for the XLINK listings to 1ines, which must be in
the range 10 to 150.

Part 6. Reference information 341

Config

342

Config

IAR Embedded Workbench® IDE
User Guide

With the Config options you can specify the path and name of the linker command file,
override the default program entry, and specify the library search path.

Config |

Linker command file
™ Overide default
I$TDDLKIT_DIF|$\c:0nfig\Ink.xc:I J

g [Cammatd e canfiguration tool

™ Overide default program entry

&) Entrlabel I_program_start
) Defined by application
Search paths: [one per ling)

|$TDDLKIT_DIF|$\LIB\ ﬂ

File: Symbol: Segment: Align:

| =l [

" Fiaw binary image

Figure 194: Linker config options

LINKER COMMAND FILE

A default linker command file is selected automatically for the chosen Target settings
in the General Options category. You can override this by selecting the Override
default option, and then specifying an alternative file.

The argument variables $TOOLKIT_ DIRS or $PROJ_DIRS can be used here too, to
specify a project-specific or predefined linker command file.

COMMAND FILE CONFIGURATION TOOL

You can override the default linker command file and click Command file
configuration tool to configure a linker command file yourself. For more information
about the options related to the configuration tool, see the online help system available
from the Help menu. Note that this option might not be available in your product
version.

For information about the command file configuration tool, see Processing, page 344.

OVERRIDE DEFAULT PROGRAM ENTRY

By default, the program entry is the label __program_start. The linker will make sure
that a module containing the program entry label is included, and that the segment part
containing the label is not discarded.

Linker options °

The default program handling can be overridden by selecting Override default
program entry.

Selecting the option Entry label will make it possible to specify a label other than
__program_start to use for the program entry.

Selecting the option Defined by application will disable the use of a start label. The
linker will, as always, include all program modules, and enough library modules to
satisty all symbol references, keeping all segment parts that are marked with the root
attribute or that are referenced, directly or indirectly, from such a segment part.

SEARCH PATHS

The Sear ch paths option specifies the names of the directories which XLINK will
search if it fails to find the object files to be linked in the current working directory. Add
the full paths of any further directories that you want XLINK to search.

The paths required by the product are specified by default, depending on your choice of
runtime library. If the box is left empty, XLINK searches for object files only in the
current working directory.

Type the full file path of your #include files. To make your project more portable, use
the argument variable $TOOLKIT_DIR$ for the subdirectories of the active product and
$PROJ_DIRS for the directory of the current project. For an overview of the argument
variables, see Argument variables summary, page 233.

RAW BINARY IMAGE

Use the Raw binary image options to link pure binary files in addition to the ordinary
input files. Use the text boxes to specify the following parameters:

File The pure binary file you want to link.

Symbol The symbol defined by the segment part where the binary data is placed.
Segment The segment where the binary data will be placed.

Align The alignment of the segment part where the binary data is placed.

The entire contents of the file are placed in the segment you specify, which means it can
only contain pure binary data, for example, the raw-binary output format. The segment
part where the contents of the specified file is placed, is only included if the specified
symbol is required by your application. Use the -g linker option if you want to force a
reference to the symbol. Read more about single output files and the -g option in the
AR Linker and Library Tools Reference Guide.

Part 6. Reference information 343

Processing

344

Processing

IAR Embedded Workbench® IDE
User Guide

With the Processing options you can specify details about how the code is generated.

Processing |

¥ Fill unused code memory

Fill pattern: IDxFF

¥ Generate checksum
Size: m
 Arithmetic sum
& CRCIE [0x11021)
© CRC32 (0w4C110ET)
" Crc polynomial:

IDx‘I 1021
Complement: IAs iz - l

Bit arder: IMSB first 'l
Alignment: |2 Initial walue: |00

Figure 195: XLINK processing options

FILL UNUSED CODE MEMORY

Use Fill unused code memory to fill all gaps between segment parts introduced by the
linker with the value you enter. The linker can introduce gaps either because of
alignment restriction, or at the end of ranges given in segment placement options.

The default behavior, when this option is not used, is that these gaps are not given a value
in the output file.

Fill pattern

Use this option to specify size, in hexadecimal notation, of the filler to be used in gaps
between segment parts.

Generate checksum

Use Generate checksum to checksum all generated raw data bytes. This option can
only be used if the Fill unused code memory option has been specified.

Size

Size specifies the number of bytes in the checksum, which can be 1, 2, or 4.

Linker options °

Algorithms

One of the following algorithms can be used:

Algorithms Description

Arithmetic sum Simple arithmetic sum

CRCI6 CRCI 6, generating polynomial Ox 11021 (default)
CRC32 CRC32, generating polynomial 0x104C11DB7

Crc polynomial CRC with a generating polynomial of the value you enter

Table 80: XLINK checksum algorithms

Complement

Use the Complement drop-down list to specify the one’s complement or two’s
complement.

Bit order

By default it is the most significant 1, 2, or 4 bytes (M SB) of the result that will be
output, in the natural byte order for the processor. Choose L SB from the Bit order
drop-down list if you want the least significant bytes to be output.

Alignment

Use this option to specify an optional alignment for the checksum. If you do not specify
an alignment explicitly, an alignment of 2 is used.

Initial value

Use this option to specify the initial value of the checksum. This is useful if the
microcontroller you are using has its own checksum calculation and you want that
calculation to correspond to the calculation performed by XLINK.

THE CHECKSUM CALCULATION

The CRC checksum is calculated as if the following code was called for each bit in the
input, starting with a CRC of 0:

unsigned long
crc(int bit, unsigned long oldcrc)
{
unsigned long newcrc = (oldcrc << 1) *~ bit;
if (oldcrc & 0x80000000)
newcrc "= POLY;
return newcrc;

Part 6. Reference information 345

Extra Options

346

POLY is the generating polynomial. The checksum is the result of the final call to this
routine. If the complement is specified, the checksum is the one’s or two’s complement
of the result.

The linker will place the checksum byte(s) at the __checksum label in the CHECKSUM
segment. This segment must be placed using the segment placement options like any
other segment.

For additional information about segment control, see the | AR Linker and Library Tools
Reference Guide.

Extra Options

IAR Embedded Workbench® IDE
User Guide

The Extra Options page provides you with a command line interface to the linker.

Extra Dptions |
™ Use command line options
[Eammand line optians: [aneipenline]
=
e

Figure 196: Extra Options page for the linker

USE COMMAND LINE OPTIONS

Additional command line arguments for the linker (not supported by the GUI) can be
specified here.

Library builder options

This chapter describes the library builder options available in the IAR
Embedded Workbench® IDE.

For information about how to set options, see Setting options, page 85.

Output

Options for the library builder are not available by default. Before you can set these

options in the IAR Embedded Workbench IDE, you must add the library builder tool to
the list of categories. Choose Project>Options to display the Options dialog box, and
select the General Options category. On the Output page, select the Library option.

If you select the Library option, Library Builder appears as a category in the Options
dialog box. As aresult of the build process, the library builder will create a library output
file. Before you create the library you can set output options.

To set options, select Library Builder from the category list to display the options.

Options for node “projectl - Debug" E

Category: Factary Settings |

General Options

C/EC++ compiler Cuiput |
Azzembler .
Custorn Build Dt
i Library Builder [T Owvenide default

Iproiect‘l THE

()3 I Cancel

Figure 197: Library builder output options

Part 6. Reference information

347

To restore all settings to the default factory settings, click the Factory Settings button.

The Output file option overrides the default name of the output file. Enter a new name
in the Override default text box.

IAR Embedded Workbench® IDE
348 User Guide

Debugger options

This chapter describes the C-SPY® options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 85.

In addition, for information about options specific to the C-SPY hardware
debugger systems, see the online help system available from the Help menu.

Setup

To set C-SPY options in the TAR Embedded Workbench IDE, choose Project>Options
to display the Options dialog box. Then select Debugger in the Category list. The
Setup page contains the generic C-SPY options.

Setup |
Driver———————————— ¥ Funto
I Simulator j Imain
— Setup macro

™ Use macra file
| L

— Device description file

™ Overide default

| L

Figure 198: Generic C-SPY options
To restore all settings to the default factory settings, click the Factory Settings button.

The Setup options specify the C-SPY driver, the setup macro file, and device
description file to be used, and which default source code location to run to.

DRIVER

Selects the appropriate driver for use with C-SPY, for example a simulator or an
emulator.

Part 6. Reference information 349

Setup

350

Contact your distributor or IAR Systems representative, or visit the IAR Systems web
site at www.iar.com for the most recent information about the available C-SPY drivers.

RUN TO

Use this option to specify a location you want C-SPY to run to when you start the
debugger and after a reset.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for example function names.

If the option is deselected, the program counter will contain the regular hardware reset
address at each reset.
SETUP MACROS

To register the contents of a setup macro file in the C-SPY startup sequence, select Use
macr o file and enter the path and name of the setup file, for example
SetupSimple.mac. If no extension is specified, the extension mac is assumed. A
browse button is available for your convenience.

DEVICE DESCRIPTION FILE

Use this option to load a device description file that contains device-specific
information.

For details about the device description file, see Selecting a device description file, page
110.

Device description files are provided in the directory cpuname\config and have the
filename extension ddf.

Download

IAR Embedded Workbench® IDE
User Guide

Options specific to the C-SPY drivers are described in the online help system available
from the Help menu.

Debugger options °

Extra Options

The Extra Options page provides you with a command line interface to the C-SPY

debugger.
Extra Dptions |
™ Use command line options
[Eammand line optians: [aneipenline]
C
[

Figure 199: Extra Options page for the C-SPY debugger

USE COMMAND LINE OPTIONS

Additional command line arguments for the C-SPY debugger (not supported by the
GUI) can be specified here.

Plugins

On the Plugins page you can specify C-SPY plugin modules to be loaded and made
available during debug sessions. Plugin modules can be provided by IAR Systems, as

Part 6. Reference information 351

Plugins

well as by third-party suppliers. Contact your software distributor or IAR representative,
or visit the IAR Systems web site, for information about available modules.

Flugins

Select pluging to load:

Code Coverage

Description: |[Enables code coverage in the debugger.

Lacatian: |\common\plugins\EodeEoverage\EodeEoverage.dII

Originator: |IAF| Systems
Wersior: |4.B.D.D

Figure 200: C-SPY plugin options
By default, Select pluginsto load lists the plugin modules delivered with the product

installation.

If you have any C-SPY plugin modules delivered by any third-party vendor, these will
also appear in the list.

The common\plugins directory is intended for generic plugin modules. The
cpuname\plugins directory is intended for target-specific plugin modules.

IAR Embedded Workbench® IDE
352 User Guide

The lAR C-SPY Command
Line Utility—cspybat

The C-SPY debugger can be executed in batch mode by using the IAR C-SPY
Command Line Utility—cspybat.exe—which is described in this chapter.

Using C-SPY in batch mode

The IAR C-SPY debugger can be executed in batch mode if you use the command line
utility cspybat, which you can find in the directory common\bin.
INVOCATION SYNTAX

The invocation syntax for cspybat is:

cspybat <processor DLL> <driver DLL> <debug file>
[cspybat options] --backend <driver options>

Note: In those cases where a filename is required—including DLL files—you are
recommended to give a full path to the filename.
Parameters

The parameters are:

Parameter Description

processor DLL The processor-specific DLL file; available in cpuname\bin.
driver DLL The C-SPY driver DLL file; available in cpuname\bin.

debug file The object file that you want to debug (filename extension dxx).

cspybat options The command line options that you want to pass to cspybat. Note
that these options are optional. For information about each option, see
Descriptions of C-SPY command line options, page 356.

--backend Marks the beginning of the parameters to the C-SPY driver; all options
that follow will be interpreted as driver options. Note that this option
is mandatory.

driver options The command line options that you want to pass to the C-SPY driver.
Note that some of these options are mandatory and some are
optional. For information about each option, see Descriptions of C-SPY
command line options, page 356.

Table 81: cspybat parameters

Part 6. Reference information 353

Using C-SPY in batch mode

354

IAR Embedded Workbench® IDE
User Guide

Example
The following example starts cspybat using the simulator driver:

:\<installation_dir>\common\bin\cspybat
:\<installation_dir>\cpuname\bin\cpunameproc.dll
:\<installation_dir>\cpuname\bin\cpunamesim.dll
:\<proj_dir>\myproject.dxx --plugin
:\<installation_dir>\cpuname\bin\cpunamebat.dll --backend -d sim
-B -p
c:\<installation_dir>\cpuname\bin\config\devicedescription.ddf

Qa0 QaaQn

For a complete example, see the online help system available from the Help menu,
alternatively the file HelpTargetIDE2 . chm available in the cpuname\doc directory.

OUTPUT
When you run cspybat, the following type of output can be produced:

o Terminal output from cspybat itself
All such terminal output is directed to stderr. Note that if you run cspybat from
the command line without any arguments, the cspybat version number and all
available options including brief descriptions are directed to stdout and displayed
on your screen.

o Terminal output from the application you are debugging
All such terminal output is directed to stdout.

e Error return codes

cspybat return status information to the host operating system that can be tested in
a batch file. For successful, the value int 0 is returned, and for unsuccessful the value
int 1 is returned.

USING AN AUTOMATICALLY GENERATED BATCH FILE

When you use C-SPY in the IAR Embedded Workbench IDE, C-SPY generates a batch
file projectname.cspy.bat every time C-SPY is initialized. You can find the file in
the directory $PROJ_DIR$\settings. This batch file contains the same settings as in
the IDE, and with minimal modifications the file can be used from the command line to
start cspybat. The file also contains information about required modifications.

The IAR C-SPY Command Line Utility—cspybat ___¢

IAR C-SPY command line options
General cspybat options

--backend Marks the beginning of the parameters to be sent to the C-SPY
driver (mandatory).

--cycles Specifies the maximum number of cycles to run.
--flash_loader Specifies a flash loader specification xml file.
--macro Specifies a macro file to be used.

--plugin Specifies a plugin file to be used.

--silent Onmits the sign-on message.

Options available for all C-SPY drivers

-B Enables batch mode (mandatory).
-d Specifies the C-SPY driver to be used.
-p Specifies the device description file to be used.

Note that there might be additional target-specific options available. For a list of
available options, see the online help system available from the Help menu, alternatively
the file HelpTargetIDE2 . chm available in the cpuname\doc directory.

Options available for the simulator driver

For a list of available options, see the online help system available from the Help menu,
alternatively the file HelpTargetIDE2 . chm available in the cpuname\doc directory.
Options available for the C-SPY hardware driver

For a list of available options, see the online help system available from the Help menu,
alternatively the HelpTargetHwW. chm file available in the cpuname\doc directory.

Part 6. Reference information 355

Descriptions of C-SPY command line options

Descriptions of C-SPY command line options

Syntax

Applicability

Description

--backend

Syntax

Parameters

Applicability

Descriptions

--cycles

Syntax

Parameters

Applicability

Descriptions

IAR Embedded Workbench® IDE

356 User Guide

This section gives detailed reference information about each cspybat option and each
option available to the C-SPY drivers.

-B

This option is mandatory and available to all C-SPY drivers, see Invocation syntax, page
353.

Use this option to enable batch mode.

--backend {driver options}

driver options Any option available to the C-SPY driver you are using.

cspybat option (mandatory).

Use this option to send options to the C-SPY driver. All options that follow --backend
will be passed to the C-SPY driver, and will not be processed by cspybat itself.

--cycles cycles

cycles The number of cycles to run.

cspybat option.

Use this option to specify the maximum number of cycles to run. If the target program
executes longer than the number of cycles specified, the target program will be aborted.

The IAR C-SPY Command Line Utility—cspybat ___¢

Using this option requires that the C-SPY driver you are using supports a cycle counter,
and that it can be sampled while executing.

Syntax -d {driverl|driver2}

Parameters
driverl|driver2 The C-SPY driver to be used.

Applicability General C-SPY driver option.

Descriptions Use this option to specify the C-SPY driver to be used.

--flash_loader

Syntax --flash_loader filename
Parameters
filename The flash loader specification xml file.
Applicability cspybat option.
Descriptions Use this option to specify a flash loader specification xml file which contains all relevant

information about the flash loading. There can be more than one such argument, in
which case each argument will be processed in the specified order, resulting in several
flash programming passes.

See also The AR Embedded Workbench flash loader User Guide.
-=mMacro
Syntax --macro filename
Parameters
filename The C-SPY macro file to be used (filename extension mac).
Applicability cspybat option.

Part 6. Reference information 357

Descriptions of C-SPY command line options

Descriptions Use this option to specify a C-SPY macro file to be loaded before executing the target
application. This option can be used more than once on the command line.

See also The macro file, page 144
-p
Syntax -p filename
Parameters
filename The device description file to be used.
Applicability General C-SPY driver option.
Descriptions Use this option to specify the device description file to be used.
See also Selecting a device description file, page 110
--plugin
Syntax --plugin filename
Parameters
filename The plugin file to be used (filename extension d11).
Applicability cspybat option.
Descriptions Certain C/C++ standard library functions, for example print £, can be supported by

C-SPY instead of by real devices on your hardware (for example, the C-SPY Terminal
I/0O window). To enable such support in cspybat, a dedicated plugin module called
cpunameLibSupport.dll or cpunamebat .dll located in the cpuname\bin
directory must be used.

Use this option to include this plugin during the debug session. This option can be used
more than once on the command line.

Note: This option can be used for including also other plugin modules, but in that case
the module must be able to work with cspybat specifically. This means that the C-SPY
plugin modules located in the cpuname\doc directory cannot normally be used with
cspybat.

IAR Embedded Workbench® IDE
358 User Guide

The IAR C-SPY Command Line Utility—cspybat ___¢

See also The macro file, page 144
--silent
Syntax --silent
Applicability cspybat option.
Descriptions Use this option to omit the sign-on message.

Part 6. Reference information 359

Descriptions of C-SPY command line options

IAR Embedded Workbench® IDE
360 User Guide

C-SPY® macros reference

This chapter gives reference information about the C-SPY macros. First a
syntax description of the macro language is provided. Then, the available setup
macro functions and the pre-defined system macros are summarized. Finally,
each system macro is described in detail.

The macro language

The syntax of the macro language is very similar to the C language. There are macro
statements, which are similar to C statements. You can define macro functions, with or
without parameters and return value. You can use built-in system macros, similar to C
library functions. Finally, you can define global and local macro variables. You can
collect your macro functions in a macro file (filename extension mac).

MACRO FUNCTIONS

C-SPY macro functions consist of C-SPY variable definitions and macro statements
which are executed when the macro is called. An unlimited number of parameters can
be passed to a macro function, and macro functions can return a value on exit.

A C-SPY macro has the following form:

macroName (parameterList)

{

macroBody

}

where parameterList is a list of macro parameters separated by commas, and
macroBody is any series of C-SPY variable definitions and C-SPY statements.

Type checking is neither performed on the values passed to the macro functions nor on
the return value.
PREDEFINED SYSTEM MACRO FUNCTIONS

The macro language also includes a wide set of predefined system macro functions
(built-in functions), similar to C library functions. For detailed information about each
system macro, see Description of C-SPY system macros, page 368.

Part 6. Reference information 361

The macro language

362

IAR Embedded Workbench® IDE
User Guide

MACRO VARIABLES

A macro variable is a variable defined and allocated outside your application space. It
can then be used in a C-SPY expression. For detailed information about C-SPY
expressions, see the chapter C-SPY expressions, page 121.

The syntax for defining one or more macro variables is:
__var nameList;
where nameList is a list of C-SPY variable names separated by commas.

A macro variable defined outside a macro body has global scope, and it exists
throughout the whole debugging session. A macro variable defined within a macro body
is created when its definition is executed and destroyed on return from the macro.

By default, macro variables are treated as signed integers and initialized to 0. When a
C-SPY variable is assigned a value in an expression, it also acquires the type of that
expression. For example:

Expression What it means
myvar = 3.5; myvar is now type float, value 3.5.
myvar = (int*)i; myvar is now type pointer to int, and the value is the same as i.

Table 82: Examples of C-SPY macro variables

In case of a name conflict between a C symbol and a C-SPY macro variable, C-SPY
macro variables have a higher precedence than C variables. Note that macro variables
are allocated on the debugger host and do not affect your application.

Macro strings

In addition to C types, macro variables can hold values of macro strings. Note that
macro strings differ from C language strings.

When you write a string literal, such as "Hello! ", in a C-SPY expression, the value is
amacro string. It is not a C-style character pointer char*, because char* must point to
a sequence of characters in target memory and C-SPY cannot expect any string literal to
actually exist in target memory.

You can manipulate a macro string using a few built-in macro functions, for example
__strFindor __subString. The result can be a new macro string. You can
concatenate macro strings using the + operator, for example str + "tail". You can
also access individual characters using subscription, for example str[3]. You can get
the length of a string using sizeof (str). Note that a macro string is not
NULL-terminated.

C-SPY® macros reference __¢

The macro function __toString is used for converting from a NULL-terminated C
string in your application (char* or char []) to a macro string. For example, assume
the following definition of a C string in your application:

char const *cstr = "Hello";

Then examine the following examples:

__var str; /* A macro variable */

str = cstr /* str is now just a pointer to char */

sizeof str /* same as sizeof (char*), typically 2 or 4 */
str = _ toString(cstr,512) /* str is now a macro string */
sizeof str /* 5, the length of the string */

str[l] /* 101, the ASCII code for 'e' */

str += " World!" /* str is now "Hello World!" */

See also Formatted output, page 364.

MACRO STATEMENTS

Statements are expected to behave in the same way as the corresponding C statements
would do. The following C-SPY macro statements are accepted:

Expressions

expression;

For detailed information about C-SPY expressions, see C-SPY expressions, page 121.

Conditional statements
if (expression)

statement

if (expression)
statement
else
statement

Loop statements

for (init_expression; cond_expression; update_expression)
statement

while (expression)
statement

do
statement

Part 6. Reference information 363

The macro language

364

IAR Embedded Workbench® IDE
User Guide

while (expression);

Return statements
return;

return expression;

If the return value is not explicitly set, signed int 0 is returned by default.

Blocks
Statements can be grouped in blocks.

{
statementl
statement?2

statementN

FORMATTED OUTPUT

C-SPY provides different methods for producing formatted output:

__message argList; Prints the output to the Debug Log window.
__fmessage file, argList; Prints the output to the designated file.

__smessage argList; Returns a string containing the formatted output.

where argList is a comma-separated list of C-SPY expressions or strings, and £ileis
the result of the __openFile system macro, see __openFile, page 372.

Examples

Use the __message statement, as in the following example:

varl = 42;
var2 = 37;
__message "This line prints the values ", varl, " and ", var2,

" in the Log window.";
This should produce the following message in the Log window:

This line prints the values 42 and 37 in the Log window.

C-SPY® macros reference __¢

Use __ fmessage to write the output to the designated file, for example:
__fmessage myfile, "Result is ", res, "!\n";

Finally, use __smessage to produce strings, for example:

myMacroVar = __smessage 42, " is the answer.";

myMacroVar now contains the string "42 is the answer".

Specifying display format of arguments

It is possible to override the default display format of a scalar argument (number or
pointer) in argList by suffixing it with a : followed by a format specifier. Available
specifiers are $b for binary, %o for octal, $d for decimal, $x for hexadecimal and %c for
character. These match the formats available in the Watch and Locals windows, but
number prefixes and quotes around strings and characters are not printed. Another
example:

__message "The character '", cvar:%c, "' has the decimal value
", cvar;

This might produce:
The character 'A' has the decimal value 65

Note: A character enclosed in single quotes (a character literal) is an integer constant
and is not automatically formatted as a character. For example:

__message 'A', " is the numeric value of the character ",
'A':%C;

would produce:
65 is the numeric value of the character A

Note: The default format for certain types is primarily designed to be useful in the
Watch window and other related windows. For example, a value of type char is
formatted as 'A' (0x41), while a pointer to a character (potentially a C string) is
formatted as 0x8102 "Hello", where the string part shows the beginning of the string
(currently up to 60 characters).

When printing a value of type char*, use the $x format specifier to print just the pointer
value in hexadecimal notation, or use the system macro __toString to get the full
string value.

Part 6. Reference information 365

Setup macro functions summary

366

Setup macro functions summary
The following table summarizes the available setup macro functions:

IAR Embedded Workbench® IDE
User Guide

Macro

Description

execUserPreload

execUserFlashInit

execUserSetup

execUserFlashReset

execUserReset

execUserExit

execUserFlashExit

Called after communication with the target system is established
but before downloading the target application.

Implement this macro to initialize memory locations and/or
registers which are vital for loading data properly.

Called once before the flash loader is downloaded to RAM.
Implement this macro typically for setting up the memory map
required by the flash loader. This macro is only called when you are
programming flash, and it should only be used for flash loader
functionality.

Called once after the target application is downloaded.
Implement this macro to set up the memory map, breakpoints,
interrupts, register macro files, etc.

Called once after the flash loader is downloaded to RAM, but
before execution of the flash loader. This macro is only called when
you are programming flash, and it should only be used for flash
loader functionality.

Called each time the reset command is issued.
Implement this macro to set up and restore data.

Called once when the debug session ends.
Implement this macro to save status data etc.

Called once when the debug session ends.
Implement this macro to save status data etc. This macro is useful
for flash loader functionality.

Table 83: C-SPY setup macros

Note: If you define interrupts or breakpoints in a macro file that is executed at system
start (using execUserSetup) we strongly recommend that you also make sure that they
are removed at system shutdown (using execUserExit). An example is available in
SetupSimple.mac, see Smulating an interrupt, page 53.

The reason for this is that the simulator saves interrupt settings between sessions and if
they are not removed they will get duplicated every time execUserSetup is executed
again. This seriously affects the execution speed.

C-SPY® macros reference __¢

C-SPY system macros summary

The following table summarizes the pre-defined system macros:

Macro Description

__cancelAllInterrupts Cancels all ordered interrupts

__cancellInterrupt Cancels an interrupt

__clearBreak Clears a breakpoint

__closeFile Closes a file that was opened by __openFile

__disableInterrupts Disables generation of interrupts

__driverType Verifies the driver type

__enablelInterrupts Enables generation of interrupts

__evaluate Interprets the input string as an expression and
evaluates it.

__openFile Opens a file for I/O operations

__orderInterrupt Generates an interrupt

__popSimulatorInterruptExecu Informs the interrupt simulation system that an

tingStack interrupt handler has finished executing
__readFile Reads from the specified file

__readFileByte Reads one byte from the specified file
__readMemory8, Reads one byte from the specified memory location
__readMemoryByte

__readMemoryl6 Reads two bytes from the specified memory location
__readMemory32 Reads four bytes from the specified memory location
__registerMacroFile Registers macros from the specified file
__resetFile Rewinds a file opened by __openFile
__setCodeBreak Sets a code breakpoint

__setDataBreak Sets a data breakpoint

__setSimBreak Sets a simulation breakpoint
__sourcePosition Returns the file name and source location if the

current execution location corresponds to a source

location

__strFind Searches a given string for the occurrence of another
string

__subString Extracts a substring from another string

Table 84: Summary of system macros

Part 6. Reference information 367

Description of C-SPY system macros

368

Macro Description

__toLower Returns a copy of the parameter string where all the
characters have been converted to lower case

__toString Prints strings

__toUpper Returns a copy of the parameter string where all the
characters have been converted to upper case

__writeFile Werites to the specified file

__writeFileByte Writes one byte to the specified file

__writeMemoryByte Writes one byte to the specified memory location

__writeMemory8 Writes one byte to the specified memory location

__writeMemoryl6 Writes a two-byte word to the specified memory
location

__writeMemory32 Writes a four-byte word to the specified memory
location

Table 84: Summary of system macros (Continued)

Description of C-SPY system macros

This section gives reference information about each of the C-SPY system macros.

__cancelAlllnterrupts
Syntax __cancelAllInterrupts()
Return value int 0
Description Cancels all ordered interrupts.
Applicability This system macro is only available in IAR C-SPY Simulator.

IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference __¢

__cancellnterrupt

Syntax __cancelInterrupt (interrupt_id)

Parameter
interrupt_id The value returned by the corresponding

__orderInterrupt macro call (unsigned long)

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 85: __cancelInterrupt return values

Description Cancels the specified interrupt.
Applicability This system macro is only available in IAR C-SPY Simulator.
__clearBreak
Syntax __clearBreak (break_id)
Parameter
break_id The value returned by any of the set breakpoint macros
Return value int 0
Description Clears a user-defined breakpoint.
See also Defining breakpoints, page 129.
__closeFile
Syntax __closeFile(filehandle)
Parameter
filehandle The macro variable used as filehandle by the __openFile macro
Return value int 0
Description Closes a file previously opened by __openFile.

Part 6. Reference information 369

Description of C-SPY system macros

__disablelnterrupts

Syntax __disableInterrupts()

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 86: __disablelnterrupts return values

Description Disables the generation of interrupts.
Applicability This system macro is only available in IAR C-SPY Simulator.
__driverType
Syntax __driverType (driver_id)
Parameter
driver_id A string corresponding to the driver you want to check for; for a list
of supported strings, see the online help system available from the
Help menu
Return value
Result Value
Successful 1
Unsuccessful 0

Table 87: __driverType return values

Description Checks to see if the current AR C-SPY Debugger driver is identical to the driver type
of the driver_ id parameter.

Example __driverType("sim")

If a simulator is the current driver, the value 1 is returned. Otherwise 0 is returned.

IAR Embedded Workbench® IDE
370 User Guide

C-SPY® macros reference __¢

__enablelnterrupts

Syntax __enableInterrupts|()

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 88: __enablelnterrupts return values

Description Enables the generation of interrupts.
Applicability This system macro is only available in IAR C-SPY Simulator.
__evaluate
Syntax __evaluate(string, valuePtr)
Parameter
string Expression string
valuePtr Pointer to a macro variable storing the result

Return value

Result Value
Successful int 0
Unsuccessful int 1

Table 89: __evaluate return values

Description This macro interprets the input string as an expression and evaluates it. The result is
stored in a variable pointed to by valueptr.

Example The following example assumes that the variable i is defined and has the value 5:
__evaluate("i + 3", &myVar)

The macro variable myvar is assigned the value 8.

Part 6. Reference information 371

Description of C-SPY system macros

372

__openFile

IAR Embedded Workbench® IDE

User Guide

Syntax

Parameters

Return value

Description

Example

See also

__openFile(file, access)

file The filename as a string

access The access type (string).
These are mandatory but mutually exclusive:
"a" append, new data will be appended at the end of the open file
"t read
"W write

These are optional and mutually exclusive:

"b" binary, opens the file in binary mode
" ASCII text, opens the file in text mode
This access type is optional:
"4 together with r, w, or a; r+ or w+ is read and write, while a+ is read
and append
Result Value
Successful The file handle
Unsuccessful An invalid file handle, which tests as False

Table 90: __openFile return values

Opens a file for I/O operations. The default base directory of this macro is where the
currently open project file (* . pew or * . pr3j) is located. The argument to __openFile
can specify a location relative to this directory. In addition, you can use argument
variables such as $PROJ_DIR$ and $TOOLKIT_DIRS in the path argument.

__var filehandle; /* The macro variable to contain */
/* the file handle */
filehandle = __openFile("Debug\\Exe\\test.tst", "r");
if (filehandle)
{
/* successful opening */
}

Argument variables summary, page 233.

C-SPY® macros reference __¢

__orderinterrupt

Syntax __orderInterrupt (specification, first_activation,
repeat_interval, variance, infinite_hold_time,
hold time, probability)

Parameters
specification The interrupt (string). The specification can either be the full

specification used in the device description file (Adf) or only the
name. In the latter case the interrupt system will automatically get
the description from the device description file.

first_activation The first activation time in cycles (integer)

repeat_interval The periodicity in cycles (integer)

variance The timing variation range in percent (integer between 0 and 100)
infinite hold_time | if infinite, otherwise 0.

hold time The hold time (integer)

probability The probability in percent (integer between 0 and 100)

Return value The macro returns an interrupt identifier (unsigned long).

If the syntax of specification is incorrect, it returns -1.
Description Generates an interrupt.
Applicability This system macro is only available in IAR C-SPY Simulator.

Example The following example generates a repeating interrupt using an infinite hold time first
activated after 4000 cycles:

__orderInterrupt("USARTR_VECTOR", 4000, 2000, O, 1, 0O, 100);

__popSimulatorinterruptExecutingStack

Syntax __popSimulatorInterruptExecutingStack (void)
Return value This macro has no return value.
Description Informs the interrupt simulation system that an interrupt handler has finished executing,

as if the normal instruction used for returning from an interrupt handler was executed.

Part 6. Reference information 373

Description of C-SPY system macros

374

Applicability

__readFile

__readFileByte

IAR Embedded Workbench® IDE

User Guide

Syntax

Parameters

Return value

Description

Example

Syntax

Parameter

Return value

Description

This is useful if you are using interrupts in such a way that the normal instruction for
returning from an interrupt handler is not used, for example in an operating system with
task-switching. In this case, the interrupt simulation system cannot automatically detect
that the interrupt has finished executing.

This system macro is only available in [AR C-SPY Simulator.

__readFile(file, valuePtr)

file A file handle
valuePtr A pointer to a variable
Result Value

Successful 0

Unsuccessful Non-zero error number

Table91: _ readFile return values
Reads a sequence of hexadecimal digits from the given file and converts them to an
unsigned long which is assigned to the value parameter, which should be a pointer

to a macro variable.

__var number;
if (__readFile(myFile, &number) == 0)
{

// Do something with number

__readFileByte(file)

file A file handle

-1 upon error or end-of-file, otherwise a value between 0 and 255.

Reads one byte from the file £ile.

Example

__readMemory8

Syntax

Parameters

Return value
Description

Example

__readMemoryl 6

Syntax

Parameters

Return value
Description

Example

y —

C-SPY® macros reference __¢

__var byte;
while ((byte = __readFileByte(myFile)) != -1)

{
// Do something with byte

readMemoryByte

__readMemory8 (address, zone)
__readMemoryByte (address, zone)

address The memory address (integer)

zone The memory zone name (string); for a list of available
zones, see Memory addressing, page 137

The macro returns the value from memory.
Reads one byte from a given memory location.

_readMemory8 (0x0108, "Memory") ;

__readMemorylé6 (address, zone)

address The memory address (integer)

zone The memory zone name (string); for a list of available
zones, see Memory addressing, page 137

The macro returns the value from memory.
Reads a two-byte word from a given memory location.

_readMemoryl6 (0x0108, "Memory") ;

Part 6. Reference information

375

Description of C-SPY system macros

__readMemory32
Syntax __readMemory32 (address, zone)
Parameters
address The memory address (integer)
zone The memory zone name (string); for a list of available
zones, see Memory addressing, page 137
Return value The macro returns the value from memory.
Description Reads a four-byte word from a given memory location.
Example __readMemory32 (0x0108, "Memory") ;
__registerMacroFile
Syntax __registerMacroFile(filename)
Parameter
filename A file containing the macros to be registered (string)
Return value int 0
Description Registers macros from a setup macro file. With this function you can register multiple
macro files during C-SPY startup.
Example __registerMacroFile("c:\\testdir\\macro.mac") ;
See also Registering and executing using setup macros and setup files, page 147.
__resetFile
Syntax __resetFile(filehandle)
Parameter
filehandle The macro variable used as filehandle by the __openFile
macro
Return value int 0

IAR Embedded Workbench® IDE
376 User Guide

C-SPY® macros reference __¢

Description Rewinds a file previously opened by __openFile.
__setCodeBreak
Syntax __setCodeBreak (location, count, condition, cond_type, action)
Parameters
location A string with a location description. This can be either:

A source location on the form { filename}.line.col (for
example {D:\\src\\prog.c}.12.9)

An absolute location on the form zone: hexaddress or simply
hexaddress (for example Memory : 0x42)

An expression whose value designates a location (for example main)

count The number of times that a breakpoint condition must be fulfilled
before a break occurs (integer)

condition The breakpoint condition (string)
cond_type The condition type; either “CHANGED” or “TRUE” (string)
action An expression, typically a call to a macro, which is evaluated when

the breakpoint is detected

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 92: __setCodeBreak return values

Description Sets a code breakpoint, that is, a breakpoint which is triggered just before the processor
fetches an instruction at the specified location.

Examples __setCodeBreak ("{D:\\src\\prog.c}.12.9", 3, "d>16", "TRUE",
"ActionCode () ") ;

The following example sets a code breakpoint on the label main in your source:

__setCodeBreak("main", 0, "1", "TRUE", "");

See also Defining breakpoints, page 129.

Part 6. Reference information 377

Description of C-SPY system macros

378

__setDataBreak

Syntax __setDataBreak(location, count, condition, cond_type, access,

Parameters
location

count

condition
cond_type

access

action

Return value
Result

action)

A string with a location description. This can be either:

A source location on the form { filename}.line.col (for
example {D:\\src\\prog.c}.12.9),although this is not
very useful for data breakpoints

An absolute location on the form zone: hexaddress or simply
hexaddress (for example Memory : 0x42)

An expression whose value designates a location (for example
my_global_variable).

The number of times that a breakpoint condition must be fulfilled
before a break occurs (integer)

The breakpoint condition (string)
The condition type; either “"CHANGED” or “TRUE” (string)

The memory access type: "R" for read, "W" for write, or "RW"
for read/write

An expression, typically a call to a macro, which is evaluated when
the breakpoint is detected

Value

Successful

Unsuccessful

An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Table 93: __setDataBreak return values

Description Sets a data breakpoint, that is, a breakpoint which is triggered directly after the processor
has read or written data at the specified location.

Applicability This system macro is only available in IAR C-SPY Simulator.
Example __var brk;
brk = __setDataBreak("Memory:0x4710", 3, "d>6", "TRUE",
"W", "ActionData()");

IAR Embedded Workbench® IDE
User Guide

See also

__setSimBreak

Syntax

Parameters

Return value

Description

Applicability

C-SPY® macros reference __¢

__clearBreak (brk) ;

Defining breakpoints, page 129.

__setSimBreak(location, access, action)

location A string with a location description. This can be either:
A source location on the form { filename}.line.col (for
example {D:\\src\\prog.c}.12.9),although this is not
very useful for simulation breakpoints.
An absolute location on the form zone: hexaddress or simply
hexaddress (for example Memory : 0xE01E).
An expression whose value designates a location (for example
my_global_variable).

access The memory access type: "R" for read or "W" for write

action An expression, typically a call to a macro function, which is
evaluated when the breakpoint is detected

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 94: __setSmBreak return values

Use this system macro to set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
processor is about to read data from a location or immediately after it has written data.
Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the processor reads at a
memory-mapped location, a C-SPY macro function can intervene and supply the
appropriate data. Conversely, when the processor writes to a memory-mapped location,
a C-SPY macro function can act on the value that was written.

This system macro is only available in the IAR C-SPY Simulator.

Part 6. Reference information 379

Description of C-SPY system macros

380

__sourcePosition

Syntax

Parameters

Return value

Description

___strFind

IAR Embedded Workbench® IDE

User Guide

Syntax

Parameters

Return value
Description

Example

See also

__sourcePosition(linePtr, colPtr)

linePtr Pointer to the variable storing the line number
colPtr Pointer to the variable storing the column number
Result Value

Successful Filename string

Unsuccessful Empty (" ") string

Table 95: __sourcePosition return values
If the current execution location corresponds to a source location, this macro returns the

filename as a string. It also sets the value of the variables, pointed to by the parameters,
to the line and column numbers of the source location.

__strFind(macroString, pattern, position)

macroString The macro string to search in
pattern The string pattern to search for
position The position where to start the search. The first position is 0

The position where the pattern was found or -1 if the string is not found.

This macro searches a given string for the occurrence of another string.

1]
w

__strFind("Compiler", "pile", 0)
__strFind("Compiler", "foo", 0) = -1

Macro strings, page 362.

C-SPY® macros reference __¢

__subString

Syntax __subString(macroString, position, length)

Parameters
macroString The macro string from which to extract a substring
position The start position of the substring. The first position is 0.
length The length of the substring

Return value A substring extracted from the given macro string.

Description This macro extracts a substring from another string.

Example __subString("Compiler", 0, 2)
The resulting macro string contains Co.
__subString("Compiler", 3, 4)
The resulting macro string contains pile.

See also Macro strings, page 362.

__toLower

Syntax __toLower (macroString)

Parameter macroString is any macro string.

Return value The converted macro string.

Description This macro returns a copy of the parameter string where all the characters have been
converted to lower case.

Example __toLower ("IAR")
The resulting macro string contains iar.
__toLower ("Mix42")
The resulting macro string contains mix42.

See also Macro strings, page 362.

Part 6. Reference information 381

Description of C-SPY system macros

__toString
Syntax __toString(C_string, maxlength)
Parameter
string Any null-terminated C string
maxlength The maximum length of the returned macro string
Return value Macro string.
Description This macro is used for converting C strings (char* or char []) into macro strings.
Example Assuming your application contains the following definition:
char const * hptr = "Hello World!";
the following macro call:
__toString (hptr, 5)
would return the macro string containing Hello.
See also Macro strings, page 362.
__toUpper
Syntax __toUpper (macroString)
Parameter macroString is any macro string.
Return value The converted string.
Description This macro returns a copy of the parameter macroString where all the characters have
been converted to upper case.
Example __toUpper ("string")
The resulting macro string contains STRING.
See also Macro strings, page 362.

IAR Embedded Workbench® IDE
382 User Guide

__writeFile

Syntax

Parameters

Return value

Description

__writeFileByte

Syntax

Parameters

Return value

Description

__writeMemoryByte

Syntax

Parameters

Return value

Description

C-SPY® macros reference __¢

__writeFile(file, value)

file A file handle
value An integer
int 0

Prints the integer value in hexadecimal format (with a trailing space) to the file file.

Note: The __ fmessage statement can do the same thing. The __writeFile macro is
provided for symmetry with __readrile.

__writeFileByte(file, value)

file A file handle
value An integer in the range 0-255
int 0

Writes one byte to the file file.

__writeMemoryByte(value, address, zone)

value The value to be written (integer)
address The memory address (integer)
zone The memory zone name (string); for a list of available zones,

see Memory addressing, page 137
int 0

Writes one byte to a given memory location.

Part 6. Reference information

383

Description of C-SPY system macros

Example

__writeMemory8

Syntax

Parameters

Return value
Description

Example

__writeMemoryl 6

Syntax

Parameters

Return value
Description

Example

IAR Embedded Workbench® IDE
384 User Guide

__writeMemoryByte (0x2F, 0x1F, "Memory") ;

__writeMemory8 (value, address, zone)

value The value to be written (integer)
address The memory address (integer)
zone The memory zone name (string); for a list of available zones,

see Memory addressing, page 137
int 0
Writes one byte to a given memory location.

__writeMemory8 (0x2F, 0x8020, "Memory");

__writeMemorylé6 (value, address, zone)

value The value to be written (integer)
address The memory address (integer)
zone The memory zone name (string); for a list of available zones,

see Memory addressing, page |37
int 0
Writes two bytes to a given memory location.

__writeMemoryl6 (0x2FFF, 0x8020, "Memory") ;

C-SPY® macros reference __¢

__writeMemory32
Syntax __writeMemory32(value, address, zone)
Parameters
value The value to be written (integer)
address The memory address (integer)
zone The memory zone name (string); for a list of available zones,
see Memory addressing, page |37
Return value int 0
Description Writes four bytes to a given memory location.

Example

__writeMemory32 (0x5555FFFF, 0x8020, "Memory");

Part 6. Reference information 385

Description of C-SPY system macros

IAR Embedded Workbench® IDE
386 User Guide

Glossary
A

Absolute location

A specific memory address for an object specified in the
source code, as opposed to the object being assigned a location
by the JAR XLINK Linker.

Absolute segments
Segments that have fixed locations in memory before linking.

Address expression
An expression which has an address as its value.

Application

The program developed by the user of the IAR Systems toolkit
and which will be run as an embedded application on a target
processor.

Architecture

A term used by computer designers to designate the structure
of complex information-processing systems. It includes the
kinds of instructions and data used, the memory organization
and addressing, and the methods by which the system is
implemented. The two main architecture types used in
processor design are Harvard architecture and von Neumann
architecture.

Assembler directives

The set of commands that control how the assembler operates.

Assembler options
Parameters you can specify to change the default behavior of
the assembler.

Assembler language

A machine-specific set of mnemonics used to specify
operations to the target processor and input or output registers
or data areas. Assembler language might sometimes be
preferred over C/Embedded C++ to save memory or to
enhance the execution speed of the application.

Glossary °

Auto variables

The term refers to the fact that each time the function in which
the variable is declared is called, a new instance of the variable
is created automatically. This can be compared with the
behavior of local variables in systems using static overlay,
where a local variable only exists in one instance, even if the
function is called recursively. Also called local variables.
Compare Register variables.

Backtrace

Information that allows the IAR C-SPY® Debugger to show,
without any runtime penalty, the complete stack of function
calls wherever the program counter is, provided that the code
comes from compiled C functions.

Bank
See Memory bank.

Bank switching

Switching between different sets of memory banks. This
software technique is used to increase a computer's usable
memory by allowing different pieces of memory to occupy the
same address space.

Banked code
Code that is distributed over several banks of memory. Each
function must reside in only one bank.

Banked data
Data that is distributed over several banks of memory. Each
data object must fit inside one memory bank.

Banked memory
Has multiple storage locations for the same address. See also
Memory bank.

Bank-switching routines
Code that selects a memory bank.

387

388

Batch files

A text file containing operating system commands which are
executed by the command line interpreter. In Unix, this is
called a “shell script” because it is the Unix shell which
includes the command line interpreter. Batch files can be used
as a simple way to combine existing commands into new
commands.

Bitfield
A group of bits considered as a unit.

Breakpoint

1. Code breakpoint. A point in a program that, when reached,
triggers some special behavior useful to the process of
debugging. Generally, breakpoints are used for stopping
program execution or dumping the values of some or all of the
program variables. Breakpoints can be part of the program
itself, or they can be set by the programmer as part of an
interactive session with a debugging tool for scrutinizing the
program's execution.

2. Data breakpoint. A point in memory that, when accessed,
triggers some special behavior useful to the process of
debugging. Generally, data breakpoints are used to stop
program execution when an address location is accessed either
by a read operation or a write operation.

3. Immediate breakpoint. A point in memory that, when
accessed, trigger some special behavior useful in the process of
debugging. Immediate breakpoints are generally used for
halting the program execution in the middle of a memory
access instruction (before or after the actual memory access
depending on the access type) while performing some
user-specified action. The execution is then resumed. This
feature is only available in the simulator version of C-SPY.

C

Calling convention

A calling convention describes the way one function in a
program calls another function. This includes how register
parameters are handled, how the return value is returned, and
which registers that will be preserved by the called function.
The compiler handles this automatically for all C and C++

IAR Embedded Workbench® IDE
User Guide

functions. All code written in assembler language must
conform to the rules in the calling convention in order to be
callable from C or C++, or to be able to call C and C++
functions. The C calling convention and the C++ calling
conventions are not necessarily the same.

Cheap

As in cheap memory access. A cheap memory access either
requires few cycles to perform, or few bytes of code to
implement. A cheap memory access is said to have a low cost.
See Memory access cost.

Checksum

A computed value which depends on the contents of a block of
data and which is stored along with the data in order to detect
corruption of the data. Compare CRC (cyclic redundancy
checking).

Code banking
See Banked code.

Code model

The code model controls how code is generated for an
application. Typically, the code model controls behavior such
as how functions are called and in which code segment
functions will be located. All object files of an application
must be compiled using the same code model.

Code pointers

A code pointer is a function pointer. As many microcontrollers
allow several different methods of calling a function,
compilers for embedded systems usually provide the users
with the ability to use all these methods.

Do not confuse code pointers with data pointers.

Compilation unit
See Translation unit.

Compiler function directives

The compiler function directives are generated by the compiler
to pass information about functions and function calls to the
TIAR XLINK Linker. To view these directives, you must create
an assembler list file. These directives are primarily intended
for compilers that support static overlay, a feature which is
useful in smaller microcontrollers.

Compiler options
Parameters you can specify to change the default behavior of
the compiler.

Cost
See Memory access cost.

CRC (cyclic redundancy checking)

A number derived from, and stored with, a block of data in
order to detect corruption. A CRC is based on polynomials and
is a more advanced way of detecting errors than a simple
arithmetic checksum. Compare Checksum.

C-SPY options
Parameters you can specify to change the default behavior of
the IAR C-SPY Debugger.

Cstartup
Code that sets up the system before the application starts
executing.

C-style preprocessor

A preprocessor is either a stand-alone application or an
integrated part of a compiler, that performs preprocessing of
the input stream before actual compilation takes place. A
C-style preprocessor follows the rules set up in the ANSI
specification of the C language and implements commands
like #define, #if, and #include, which are used to handle textual
macro substitution, conditional compilation, and inclusion of
other files.

D

Data banking
See Banked data.

Glossary °

Data model

The data model specifies the default memory type. This means
that the data model typically controls one or more of the
following: The method used and the code generated to access
static and global variables, dynamically allocated data, and the
runtime stack. It also controls the default pointer type and in
which data segments static and global variables will be
located. A project can only use one data model at a time, and
the same model must be used by all user modules and all
library modules in the project.

Data pointers

Many microcontrollers have different addressing modes in
order to access different memory types or address spaces.
Compilers for embedded systems usually have a set of
different data pointer types so they can access the available
memory efficiently.

Data representation
How different data types are laid out in memory and what
value ranges they represent.

Declaration

A specification to the compiler that an object, a variable or
function, exists. The object itself must be defined in exactly
one translation unit (source file). An object must either be
declared or defined before it is used. Normally an object that is
used in many files is defined in one source file. A declaration
is normally placed in a header file that is included by the files
that use the object.

For example:

/* Variable "a" exists somewhere. Function
"b" takes two int parameters and returns an
int. */

extern int a;
int b(int, int);

Definition

The variable or function itself. Only one definition can exist
for each variable or function in an application. See also
Tentative definition.

389

For example:

int a;
int b(int x, int y)
{

return x + y;

}

Derivative
One of two or more processor variants in a series or family of
microprocessors or microcontrollers.

Device description file

A file used by the IAR C-SPY Debugger that contains various
device-specific information such as I/O registers (SFR)
definitions, interrupt vectors, and control register definitions.

Device driver
Software that provides a high-level programming interface to
a particular peripheral device.

Digital signal processor (DSP)

A device that is similar to a microprocessor, except that the
internal CPU has been optimized for use in applications
involving discrete-time signal processing. In addition to
standard microprocessor instructions, digital signal processors
usually support a set of complex instructions to perform
common signal-processing computations quickly.

Disassembly window

A C-SPY window that shows the memory contents
disassembled as machine instructions, interspersed with the
corresponding C source code (if available).

Dynamic initialization

Variables in a program written in C are initialized during the
initial phase of execution, before the main function is called.
These variables are always initialized with a static value,
which is determined either at compile-time or at link-time.
This is called static initialization. In Embedded C++, variables
might require initialization to be performed by executing code,
for example, running the constructor of global objects, or
performing dynamic memory allocation.

IAR Embedded Workbench® IDE
User Guide

Dynamic memory allocation

There are two main strategies for storing variables: statically at
link-time, or dynamically at runtime. Dynamic memory
allocation is often performed from the heap and it is the size of
the heap that determines how much memory that can be used
for dynamic objects and variables. The advantage of dynamic
memory allocation is that several variables or objects that are
not active at the same time can be stored in the same memory,
thus reducing the memory need of an application. See also
Heap memory.

Dynamic object

An object that is allocated, created, destroyed, and released at
runtime. Dynamic objects are almost always stored in memory
that is dynamically allocated. Compare Static object.

E

EEPROM

Electrically Erasable, Programmable Read-Only Memory. A
type of ROM that can be erased electronically, and then be
re-programmed.

EPROM

Erasable, Programmable Read-Only Memory. A type of ROM
that can be erased by exposing it to ultraviolet light, and then
be re-programmed.

Embedded C++

A subset of the C++ programming language, which is intended
for embedded systems programming. The fact that
performance and portability are particularly important in
embedded systems development was considered when
defining the language.

Embedded system

A combination of hardware and software, designed for a
specific purpose. Embedded systems are often part of a larger
system or product.

Emulator

An emulator is a hardware device that performs emulation of
one or more derivatives of a processor family. An emulator can
often be used instead of the actual microcontroller and
connects directly to the printed circuit board—where the
microcontroller would have been connected—via a connecting
device. An emulator always behaves exactly as the processor it
emulates, and is used when debugging requires all systems
actuators, or when debugging device drivers.

Enumeration

A type which includes in its definition an exhaustive list of
possible values for variables of that type. Common examples
include Boolean, which takes values from the list [true, false],
and day-of-week which takes values [Sunday, Monday,
Tuesday, Wednesday, Thursday, Friday, Saturday].
Enumerated types are a feature of typed languages, including
C and Ada.

Characters, (fixed-size) integers, and even floating-point types
might be (but are not usually) considered to be (large)
enumerated types.

Exceptions

An exception is an interrupt initiated by the processor
hardware, or hardware that is tightly coupled with the
processor, for instance, a memory management unit (MMU).
The exception signals a violation of the rules of the
architecture (access to protected memory), or an extreme error
condition (division by zero).

Do not confuse this use of the word exception with the term
exception used in the C++ language (but not in Embedded
C++).

Expensive

As in expensive memory access. An expensive memory access
either requires many cycles to perform, or many bytes of code
to implement. An expensive memory access is said to have a
high cost. See Memory access cost.

Extended keywords

Non-standard keywords in C and C++. These usually control
the definition and declaration of objects (that is, data and
functions). See also Keywords.

Glossary °

F

Format specifiers

Used to specify the format of strings sent by library functions
such as printf. In the following example, the function call
contains one format string with one format specifier, %c, that
prints the value of a as a single ASCII character:

)

printf("a = %c", a);

G

General options

Parameters you can specify to change the default behavior of
all tools that are included in the IAR Embedded Workbench
IDE.

Generic pointers

Pointers that have the ability to point to all different memory
types in, for example, a microcontroller based on the Harvard
architecture.

H

Harvard architecture

A microcontroller based on the Harvard architecture has
separate data and instruction buses. This allows execution to
occur in parallel. As an instruction is being fetched, the current
instruction is executing on the data bus. Once the current
instruction is complete, the next instruction is ready to go. This
theoretically allows for much faster execution than a von
Neumann architecture, but there is some added silicon
complexity. Compare von Neumann architecture.

Heap memory

The heap is a pool of memory in a system that is reserved for
dynamic memory allocation. An application can request parts
of the heap for its own use; once memory has been allocated
from the heap it remains valid until it is explicitly released
back to the heap by the application. This type of memory is

391

useful when the number of objects is not known until the
application executes. Note that this type of memory is risky to
use in systems with a limited amount of memory or systems
that are expected to run for a very long time.

Heap size
Total size of memory that can be dynamically allocated.

Host

The computer that communicates with the target processor.
The term is used to distinguish the computer on which the
debugger is running from the microcontroller the embedded
application you develop runs on.

IDE (integrated development environment)
A programming environment with all necessary tools
integrated into one single application.

Include file
A text file which is included into a source file. This is often
performed by the preprocessor.

Inline assembler
Assembler language code that is inserted directly between C
statements.

Inlining

An optimization that replaces function calls with the body of
the called function. This optimization increases the execution
speed and can even reduce the size of the generated code.

Instruction mnemonics

A word or acronym used in assembler language to represent a
machine instruction. Different processors have different
instruction sets and therefore use a different set of mnemonics
to represent them, such as, ADD, BR (branch), BLT (branch if
less than), MOVE, LDR (load register).

Interrupt vector
A small piece of code that will be executed, or a pointer that
points to code that will be executed when an interrupt occurs.

IAR Embedded Workbench® IDE
User Guide

Interrupt vector table

A table containing interrupt vectors, indexed by interrupt type.
This table contains the processor's mapping between interrupts
and interrupt service routines and must be initialized by the
programmer.

Interrupts

In embedded systems, the use of interrupts is a method of
detecting external events immediately, for example a timer
overflow or the pressing of a button.

Interrupts are asynchronous events that suspend normal
processing and temporarily divert the flow of control through
an “interrupt handler” routine. Interrupts can be caused by both
hardware (I/0O, timer, machine check) and software
(supervisor, system call or trap instruction). Compare Trap.

Intrinsic
An adjective describing native compiler objects, properties,
events, and methods.

Intrinsic functions

1. Function calls that are directly expanded into specific
sequences of machine code. 2. Functions called by the
compiler for internal purposes (that is, floating point
arithmetic etc.).

K

Key bindings
Key shortcuts for menu commands used in the AR Embedded
Workbench IDE.

Keywords

A fixed set of symbols built into the syntax of a programming
language. All keywords used in a language are reserved—they
cannot be used as identifiers (in other words, user-defined
objects such as variables or procedures). See also Extended
keywords.

L

L-value

A value that can be found on the left side of an assignment and
thus be changed. This includes plain variables and
de-referenced pointers. Expressions like (x + 10) cannot be
assigned a new value and are therefore not L-values.

Language extensions
Target-specific extensions to the C language.

Library
See Runtime library.

Linker command file

A file used by the IAR XLINK Linker. It contains command
line options which specify the locations where the memory
segments can be placed, thereby assuring that your application
fits on the target chip.

Because many of the chip-specific details are specified in the
linker command file and not in the source code, the linker
command file also helps to make the code portable.

In particular, the linker specifies the placement of segments,
the stack size, and the heap size.

Local variable
See Auto variables.

Location counter
See Program location counter (PLC).

Logical address
See Virtual address (logical address).

Glossary °

M

MAC (Multiply and accumulate)

A special instruction, or on-chip device, that performs a
multiplication together with an addition. This is very useful
when performing signal processing where many filters and

transforms have the form:
N

Y= E Cit Kiaj

=0

The accumulator of the MAC usually has a higher precision
(more bits) than normal registers. See also Digital signal
processor (DSP).

Macro

1. Assembler macros are user-defined sets of assembler lines
that can be expanded later in the source file by referring to the
given macro name. Parameters will be substituted if referred

to.

2. C macro. A text substitution mechanism used during
preprocessing of source files. Macros are defined using the
#define preprocessing directive. The replacement text of each
macro is then substituted for any occurrences of the macro
name in the rest of the translation unit.

3. C-SPY macros are programs that you can write to enhance
the functionality of the IAR C-SPY Debugger. A typical
application of C-SPY macros is to associate them with
breakpoints; when such a breakpoint is hit, the macro is run
and can for example be used to simulate peripheral devices, to
evaluate complex conditions, or to output a trace.

The C-SPY macro language is like a simple dialect of C, but is
less strict with types.

Mailbox

A mailbox in an RTOS is a point of communication between
two or more tasks. One task can send messages to another task
by placing the message in the mailbox of the other task.
Mailboxes are also known as message queues or message
ports.

393

394

Memory access cost

The cost of a memory access can be in clock cycles, or in the
number of bytes of code needed to perform the access. A
memory which requires large instructions or many instructions
is said to have a higher access cost than a memory which can
be accessed with few, or small instructions.

Memory area
A region of the memory.

Memory bank

The smallest unit of continuous memory in banked memory.
One memory bank at a time is visible in a microcontroller’s
physical address space.

Memory map
A map of the different memory areas available to the
microcontroller.

Memory model

Specifies the memory hierarchy and how much memory the
system can handle. Your application must use only one
memory model at a time, and the same model must be used by
all user modules and all library modules.

Microcontroller

A microprocessor on a single integrated circuit intended to
operate as an embedded system. As well as a CPU, a
microcontroller typically includes small amounts of RAM,
PROM, timers, and 1/O ports.

Microprocessor

A CPU contained on one (or a small number of) integrated
circuits. A single-chip microprocessor can include other
components such as memory, memory management, caches,
floating-point unit, I/O ports and timers. Such devices are also
known as microcontrollers.

Module

The basic unit of linking. A module contains definitions for
symbols (exports) and references to external symbols
(imports). When compiling C/C++, each translation unit
produces one module. In assembler, each source file can
produce more than one module.

IAR Embedded Workbench® IDE
User Guide

N

Nested interrupts
A system where an interrupt can be interrupted by another
interrupt is said to have nested interrupts.

Non-banked memory
Has a single storage location for each memory address in a
microcontroller’s physical address space.

Non-initialized memory
Memory that can contain any value at reset, or in the case of a
soft reset, can remember the value it had before the reset.

Non-volatile storage

Memory devices such as battery-backed RAM, ROM,
magnetic tape and magnetic disks that can retain data when
electric power is shut off. Compare Volatile storage.

NOP

No operation. This is an instruction that does not perform
anything, but is used to create a delay. In pipelined
architectures, the NOP instruction can be used for
synchronizing the pipeline. See also Pipeline.

o

Operator

A symbol used as a function, with infix syntax if it has two
arguments (+, for example) or prefix syntax if it has only one
(for instance, bitwise negation, ~). Many languages use
operators for built-in functions such as arithmetic and logic.

Operator precedence

Each operator has a precedence number assigned to it that
determines the order in which the operator and its operands are
evaluated. The highest precedence operators are evaluated
first. Use parentheses to group operators and operands to
control the order in which the expressions are evaluated.

P

Parameter passing
See Calling convention.

Peripheral
A hardware component other than the processor, for example
memory or an I/O device.

Pipeline

A structure that consists of a sequence of stages through which
a computation flows. New operations can be initiated at the
start of the pipeline even though other operations are already
in progress through the pipeline.

Pointer
An object that contains an address to another object of a
specified type.

#pragma

During compilation of a C/C++ program, the #pragma
preprocessing directive causes the compiler to behave in an
implementation-defined manner. This can include, for
example, producing output on the console, changing the
declaration of a subsequent object, changing the optimization
level, or enabling/disabling language extensions.

Pre-emptive multitasking

An RTOS task is allowed to run until a higher priority process
is activated. The higher priority task might become active as
the result of an interrupt. The term preemptive indicates that
although a task is allotted to run a given length of time (a
timeslice), it might lose the processor at any time. Each time
an interrupt occurs, the task scheduler looks for the highest
priority task that is active and switches to that task. If the
located task is different from the task that was executing before
the interrupt, the previous task is suspended at the point of
interruption.

Compare Round Robin.

Preprocessing directives
A set of directives that are executed before the parsing of the
actual code is started.

Glossary °

Preprocessor
See C-style preprocessor.

Processor variant
The different chip setups that the compiler supports. See
Derivative.

Program counter (PC)
A special processor register that is used to address instructions.
Compare Program location counter (PLC).

Program location counter (PLC)

Used in the IAR Assembler to denote the code address of the
current instruction. The PLC is represented by a special
symbol (typically $) that can be used in arithmetic expressions.
Also called simply location counter (LC).

PROM
Programmable Read-Only Memory. A type of ROM that can
be programmed only once.

Project
The user application development project.

Project options
General options that apply to an entire project, for example the
target processor that the application will run on.

Q

Qualifiers
See Type qualifiers.

R

R-value
A value that can be found on the right side of an assignment.
This is just a plain value. See also L-value.

395

Real-time operating system (RTOS)

An operating system which guarantees the latency between an
interrupt being triggered and the interrupt handler starting, as
well as how tasks are scheduled. An RTOS is typically much
smaller than a normal desktop operating system. Compare
Real-time system.

Real-time system
A computer system whose processes are time-sensitive.
Compare Real-time operating system (RTOS).

Register constant

A register constant is a value that is loaded into a dedicated
processor register when the system is initialized. The compiler
can then generate code that assumes that the constants are
present in the dedicated registers.

Register

A small on-chip memory unit, usually just one or a few bytes
in size, which is particularly efficient to access and therefore
often reserved to function as a temporary storage area during
program execution.

Register locking

Register locking means that the compiler can be instructed that
some processor registers shall not be used during normal code
generation. This is useful in a number of situations. For
example, some parts of a system might be written in assembler
language to gain speed. These parts might be given dedicated
processor registers. Or the register might be used by an
operating system, or by other third-party software.

Register variables

Typically, register variables are local variables that have been
placed in registers instead of on the (stack) frame of the
function. Register variables are much more efficient than other
variables because they do not require memory accesses, so the
compiler can use shorter/faster instructions when working
with them. See also Auto variables.

Relocatable segments
Segments that have no fixed location in memory before
linking.

IAR Embedded Workbench® IDE
User Guide

Reset

A reset is a restart from the initial state of a system. A reset can
originate from hardware (hard reset), or from software (soft
reset). A hard reset can usually not be distinguished from the
power-on condition, which a soft reset can be.

ROM-monitor

A piece of embedded software that has been designed
specifically for use as a debugging tool. It resides in the ROM
of the evaluation board chip and communicates with a
debugger via a serial port or network connection. The
ROM-monitor provides a set of primitive commands to view
and modify memory locations and registers, create and remove
breakpoints, and execute your application. The debugger
combines these primitives to fulfill higher-level requests like
program download and single-step.

Round Robin

Task scheduling in an operating system, where all tasks have
the same priority level and are executed in turn, one after the
other. Compare Pre-emptive multitasking.

RTOS
See Real-time operating system (RTOS).

Runtime library
A collection of useful routines, stored as an object file, that can
be linked into any application.

Runtime model attributes

A mechanism that is designed to prevent modules that are not
compatible to be linked into an application. A runtime attribute
is a pair constituted of a named key and its corresponding
value.

Two modules can only be linked together if they have the same
value for each key that they both define.

S

Saturation arithmetics

Most, if not all, C and C++ implementations use mod—2N
2-complement-based arithmetics where an overflow wraps the
value in the value domain, that is, (127 + 1) = -128. Saturation
arithmetics, on the other hand, does not allow wrapping in the
value domain, for instance, (127 + 1) = 127, if 127 is the upper
limit. Saturation arithmetics is often used in signal processing,
where an overflow condition would have been fatal if value
wrapping had been allowed.

Scheduler

The part of an RTOS that performs task-switching. It is also
responsible for selecting which task that should be allowed to
run. There are many different scheduling algorithms, but most
of them are either based on static scheduling (performed at
compile-time), or on dynamic scheduling (where the actual
choice of which task to run next is taken at runtime, depending
on the state of the system at the time of the task-switch). Most
real-time systems use static scheduling, because it makes it
possible to prove that the system will not violate the real-time
requirements.

Scope

The section of an application where a function or a variable can
be referenced by name. The scope of an item can be limited to
file, function, or block.

Segment
A chunk of data or code that should be mapped to a physical
location in memory. The segment can either be placed in RAM

(read-and-writeable memory) or in ROM (read-only memory).

Segment map
A set of segments and their locations.

Semaphore

A semaphore is a type of flag that is used for guaranteeing
exclusive access to resources. The resource can be a hardware
port, a configuration memory, or a set of variables. If several
different tasks have to access the same resource, the parts of
the code (the critical sections) that access the resource have to
be made exclusive for every task. This is done by obtaining the

Glossary °

semaphore that protects that resource, thus blocking all other
tasks from it. If another task wishes to use the resource, it also
has to obtain the semaphore. If the semaphore is already in use,
the second task has to wait until the semaphore is released.
After the semaphore is released, the second task is allowed to
execute and can obtain the semaphore for its own exclusive
access.

Severity level

The level of seriousness of the diagnostic response from the
assembler, compiler, or debugger, when it notices that
something is wrong. Typical severity levels are remarks,
warnings, errors, and fatal errors. A remark just points to a
possible problem, while a fatal error means that the
programming tool exits without finishing.

Short addressing

Many microcontrollers have special addressing modes for
efficient access to internal RAM and memory mapped I/O.
Short addressing is therefore provided as an extended feature
by many compilers for embedded systems. See also Data
pointers.

Side effect

An expression in C or C++ is said to have a side-effect if it
changes the state of the system. Examples are assignments to
avariable, or using a variable with the post-increment operator.
The C and C++ standards state that a variable that is subject to
a side-effect should not be used more that once in an
expression. As an example, this statement violates that rule:

*d++ = *d;

Signal

Signals provide event-based communication between tasks. A
task can wait for one or more signals from other tasks. Once a
task receives a signal it waits for, execution continues. A task
in an RTOS that waits for a signal does not use any processing
time, which allows other tasks to execute.

397

Simulator

A debugging tool that runs on the host and behaves as similar
to the target processor as possible. A simulator is used to debug
the application when the hardware is unavailable, or not
needed for proper debugging. A simulator is usually not
connected to any physical peripheral devices. A simulated
processor is often slower, or even much slower, than the real
hardware.

Single stepping
Executing one instruction or one C statement at a time in the
debugger.

Skeleton code
An incomplete code framework that allows the user to
specialize the code.

Special function register (SFR)
A register that is used to read and write to the hardware
components of the microcontroller.

Stack frames

Data structures containing data objects as preserved registers,
local variables, and other data objects that need to be stored
temporary for a particular scope (usually a function).

Earlier compilers usually had a fixed size and layout on a stack
frame throughout a complete function, while modern
compilers might have a very dynamic layout and size that can
change anywhere and anytime in a function.

Stack segments

The segment or segments that reserve space for the stack(s).
Most processors use the same stack for calls and parameters,
but some have separate stacks.

Statically allocated memory

This kind of memory is allocated once and for all at link-time,
and remains valid all through the execution of the application.
Variables that are either global or declared static are allocated
this way.

IAR Embedded Workbench® IDE
User Guide

Static object

An object whose memory is allocated at link-time and is
created during system startup (or at first use). Compare
Dynamic object.

Static overlay

Instead of using a dynamic allocation scheme for parameters
and auto variables, the linker allocates space for parameters
and auto variables at link time. This generates a worst-case
scenario of stack usage, but might be preferable for small chips
with expensive stack access or no stack access at all.

Structure value

A collecting names for structs and unions. A struct is a
collection of data object placed sequentially in memory
(possibly with pad bytes between them). A union is a
collection of data sharing the same memory location.

Symbol
A name that represents a register, an absolute value, or a
memory address (relative or absolute).

Symbolic location
A location that uses a symbolic name because the exact
address is unknown.

T

Target

1. An architecture. 2. A piece of hardware. The particular
embedded system you are developing the application for. The
term is usually used to distinguish the system from the host
system.

Task (thread)

A task is an execution thread in a system. Systems that contain
many tasks that execute in parallel are called multitasking
systems. Because a processor only executes one instruction
stream at the time, most systems implement some sort of
task-switch mechanism (often called context switch) so that all
tasks get their share of processing time. The process of
determining which task that should be allowed to run next is
called scheduling. Two common scheduling methods are
Pre-emptive multitasking and Round Robin.

Tentative definition
A variable that can be defined in multiple files, provided that
the definition is identical and that it is an absolute variable.

Terminal /O
A simulated terminal window in the IAR C-SPY Debugger.

Timeslice

The (longest) time an RTOS allows a task to run without
running the task-scheduling algorithm. It is possible that a task
will be allowed to execute during several consecutive
timeslices before being switched out. It is also possible that a
task will not be allowed to use its entire time slice, for example
if, in a preemptive system, a higher priority task is activated by
an interrupt.

Timer
A peripheral that counts independent of the program
execution.

Translation unit

A source file together with all the header files and source files
included via the preprocessor directive #include, with the
exception of the lines skipped by conditional preprocessor
directives such as #if and #ifdef.

Trap

A trap is an interrupt initiated by inserting a special instruction
into the instruction stream. Many systems use traps to call
operating system functions. Another name for trap is software
interrupt.

Type qualifiers

In standard C/C++, const or volatile. IAR compilers usually
add target-specific type qualifiers for memory and other type
attributes.

U

UBROF (Universal Binary Relocatable Object
Format)

File format produced by the IAR Systems programming tools.

Glossary °

A\

Virtual address (logical address)

An address that needs to be translated by the compiler, linker
or the runtime system into a physical memory address before
it is used. The virtual address is the address seen by the
application, which can be different from the address seen by
other parts of the system.

Virtual space

An IAR Embedded Workbench Editor feature which allows
you to place the insertion point outside of the area where there
are actual characters.

Volatile storage

Data stored in a volatile storage device is not retained when the
power to the device is turned off. In order to preserve data
during a power-down cycle, you should store it in non-volatile
storage. This should not be confused with the C keyword
volatile. Compare Non-volatile storage.

von Neumann architecture

A computer architecture where both instructions and data are
transferred over a common data channel. Compare Harvard
architecture.

W

Woatchpoints

Watchpoints keep track of the values of C variables or
expressions in the C-SPY Watch window as the application is
being executed.

X

XAR options
The set of commands that control how the IAR XAR Library
Builder operates.

XLIB options
The set of commands that control how the IAR XLIB Librarian
operates.

399

400

XLINK options
Parameters you can specify to change the default behavior of
the IAR XLINK Linker.

Z

Zero-overhead loop

A loop in which the loop condition, including branching back
to the beginning of the loop, does not take any time at all. This
is usually implemented as a special hardware feature of the
processor and is not available in all architectures.

Zone

Different processors have widely differing memory
architectures. Zoneis the term C-SPY uses for a named
memory area. For example, on processors with separately
addressable code and data memory there would be at least two
zones. A processor with an intricate banked memory scheme
might have several zones.

IAR Embedded Workbench® IDE
User Guide

A

absolute location, definitionof 387
absolute segments, definitionof 387
Access Type (Breakpoints dialog box)
databreakpoint.ttt 172
immediate breakpoint. 174
Action (Breakpoints dialog box)
code breakpoint i 211
databreakpoint.ovuirininnnan.. 172
immediate breakpoint. 174
Add existing project to current
workspace (Startup option)., 267
Additional include directories (assembler option). 325
Additional include directories (compiler option) 317
address expression, definitionof.................... 387
address range check, specifying inlinker 339
Alias (Key bindings option) 243
Allow C-SPY-specific output file (linker option) 335
Allow directives in first column (assembler option) 323
Allow mnemonics in first column (assembler option). . . . 323
Always generate output (linker option). 338
application
built outside the IDE 111
definitionof 387
EEStNG v ot ettt e 88, 151
architecture, definitionof 387
argument variables i 262
environment variables 234
in #include file paths
assembler 326
COMPIlEr ..ottt 317
linker.ooi 343
SUMMATY &+ o v vt vt et et e e et e e e e eeeenn 233
Arguments (External editor option) 248
asm (filename extension) 18
assembler
command line version 69
documentationiuiiiiiiiian... 22

Index °

features 11
assembler comments, text style in editor. 95
assembler directives L. 63

definitionof L L L., 387

textstyleineditor oL 95
assembler labels, viewing L L. 126
assembler language, definitionof 387
assembler list files

compiler call frame information, including 316

format L 47

GENETALING .« . oottt et e 325
Assembler mnemonics (compiler option) 316
assembler optionsl 323

definitionof L L L. 387

Diagnostics 327

Language........ i 323

LaSt. oo 325

OULPUL .« o oot e 324

Preprocessor. i 325
assembler output, including debug information 324
assembler preprocessor. 325
assembler symbols

defining 326

using in C-SPY expressions. 122
assembler variables, viewing. 126
assert, in built applications 77
assumptions, programming eXperience XXxiii
Auto indent (editor option) 245
auto variables, definitionof. 387
AUto Window 284

COMEXEMENU .« . o \oet et ettt et et e e eeeeeenes 284
Automatic (compiler option). 311
Autostep settings dialog box (Debug menu) 298
axx (filename extension). 18
-B (cspybatoption) L 356
--backend (cspybatoption) 356

401

402

Background color (IDE Tools option). 251
backtrace information

definitionof L L., 387
generated by compiler 117
viewing in Call Stack window 288
bank switching, definitionof. 387
banked code, definitionof. 387
banked data, definitionof 387
banked memory, definitionof 387
bank-switching routines, definitionof. 387
Base (Register filteroption) 259
bat (filename extension)couuiuann. 18
BatchBuild......... i 87
Batch Build Configuration dialog box (Project menu) . . . 239
Batch Build dialog box (Project menu). 238
batch files
definitionof L il 388
specifying in Embedded Workbench IDE 74,263
bin (subdirectory) 15
bin, common (subdirectory) 17
bitfield, definitionof 388
blocks, in C-SPY macros 364
Body (b) (Configure auto indent option). 247
bold style, inthisguide. XXX
bookmarks
adding L 99
showingineditor............ 246
Break (button).t 117, 271
breakpoint condition, example 132
breakpointicons il 130
Breakpoint Usage dialog box (Simulator menu). 175
USINE .ottt e 133
breakpointso i 117
code,exampleol 377
conditional, example, 59
connectinga C-SPYmacro 149
CONSUIMETS . .. v vt tee e eee e eie e e 134
data ... 170-171
example. 378

IAR Embedded Workbench® IDE
User Guide

definitionof L il 388
immediate 173
example. 59
in Memory window, 131
inthesimulator 170
listingall i, 134
setting
inmemory window, 131
USING SYStEM MACTOS . .+ « v v v v ve e e e e eeenenn 132
using the dialogbox 131
SELHNES. - . v vttt 235
single-stepping if not available. 109
system, descriptionof 129
toggling 130
VIEWING .« oot 133
Breakpoints dialog box
Codeo 210
Data..... ... 171
Immediate L ., 173
Log oo 212
Breakpoints window (Viewmenu) 209
Buffered terminal output (linker option). 335
-build (iarbuild command line option) 89
Build Actionsttt 87

Build Actions Configuration (Build Actions options). . . . 331
build configuration

CIEALNEottt e e 78
definitionof L 77
Build window contextmenu, 215
Build window (Viewmenu) 215
building
commandsfor oL, 87
from the commandline 89
OPLONS . . vttt e 253
pre- and post-actions e ... 87
the Processovviv i 85

C

C comments, text styleineditor 95
C compiler. See compiler
C function information, in C-SPY................... 117
C keywords, text styleineditor. 95
C symbols, using in C-SPY expressions 121
C variables, using in C-SPY expressions 121
¢ (filename extension).oiiirinran.n.. 18
call chain, displaying in C-SPY 117
Call stack information. 117
Call Stack window iiiiiiininan... 288
CONEEXEMENU . . o\ vt v v e te e e e eee e 288
example 58
for backtrace information. 118
calling convention, definitionof 388
__cancelAlllnterrupts (C-SPY system macro) 368
__cancelInterrupt (C-SPY system macro). 369
category, in Options dialogbox. 86, 236
cfg (filename extension)coouvuennon.. 18
characters, in assembler macro quotes 324
cheap memory access, definitionof 388
Check In Files dialogbox 200
Check Out Files dialogbox. 201
checksum
definitionof 388
generatinginlinker, 344
chm (filename extension)covu.... 18
-clean (iarbuild command line option) 89
__clearBreak (C-SPY systemmacro) 369
Close Workspace (Filemenu). 219
__closeFile (C-SPY systemmacro) 369
code
banked, definitionof 387
skeleton, definitionof 398
TeSHNG . oottt 88
code coverage
commands 291
CONEXEMENU .« o v v v ettt et et e et e eeeeen 291

Index °

USINE @ oottt e 153
VIEWING « oot 154
Code Coverage windowcoouiuien.n. 290
code generation
assembler. 323
compiler, features. ool 10
code INte@rityottt 82
code memory, fillingunused. 344
code model, definitionof 388
Code page (compiler options). 312
code pointers, definitionof 388
code templates, usingineditor, 97
Command file configuration tool (XLINK option) 342
command line options,
specitying in Embedded Workbench IDE. 74,263
command prompt icon, in this guide. XXXViii
Command (External editor option) 248
Common Fonts (IDE Options dialog box) 241
common (directory)c.oueuiriinnnenan.. 17
compiler
command line version 4,69
documentation 11,21
features 9
compiler call frame information
including in assembler listfile 316
compiler diagnostics. 316
SUPPIESSING © o v v vttt 319
compiler function directives, definitionof 389
compiler list files
assembler mnemonics, including 316
example 31
GENETALING . . oottt et 316
source code, including, 316
compiler OptioNSo vt 309
definitionof L i 389
setting in Embedded Workbench, example 29
Code .o 312
Diagnostics 318
Language i 310
LaSt. oot 316

403

404

Optimizations.vvvtn i 313

OULPUL . oottt e 314

Preprocessor. 317
compiler output, including debug information 315
COMPIlEr PrePrOCESSOT. « . v vttt e et eee e 317
compiler symbols, defining. 318
computer style, typographic convention XXXVii
conditional breakpoints, example 59
conditional statements, in C-SPY macros............. 363
Conditions (Breakpoints dialog box)

code breakpoint Lol 212

databreakpoint.t 172
Config (linkeroptions)coieinen... 342
config (subdirectory). 16
Configuration file (general option) 305
configurationtool L . 342
Configurations for project dialog box (Project menu). . . .234
Configure Auto Indent (IDE Options dialog box). 246
Configure Tools (Toolsmenu) 261
Configure Viewers dialog box (Tools menu)........... 265
config, common (subdirectory)...................... 17
context menu, in wWindows. 124
conventions, typographic XXXVii
Copy (button)t 193
copyright.o e ii
cost. See memory access cost
cpp (filename extension).covninenn.. 18
CPU registers, definitions 110
CPU variant, definitionof 390
CRC, definitionof. 389
Create New Project dialog box (Project menu). 235
Create new project in current workspace (Startup option). 267
cross-references, inmap files 34
CSpybat . . . 353
Cstartup, definitionof 389
current position, in C-SPY Disassembly window 272
cursor, in C-SPY Disassembly window. 272
$CUR_DIRS (argument variable) 233
CUR_LINES (argument variable). 233

IAR Embedded Workbench® IDE
User Guide

custombuild......... 89

USINE oottt 90
custom tool configuration., 89
Custom Tool Configuration (Custom Build options). 329
C++ comments, text styleineditor................... 95
C++ keywords, text style ineditor 95
CH+tutorial 49
C-SPY

debugger systems, OVerview. 106
environment OVerview 107
IDE reference information. 269
OVEIVIEW ...ttt 5
plugin modules, loading. 110
SELNZ UP -« v vttt e 108
Simulator. L 159
starting the debugger 111
C-SPY drivers, simulator 159
C-SPY eXPressionso.vuven e 121
evaluating. 125
inC-SPYmacros................ 363
Quick Watch, using 125
Tooltip watch, using. 124
Watch window, using., 124
C-SPY Macrosouuuiiiiinnnnnanen.. 143, 361
blocks. . .o 364
conditional statements 363
C-SPY eXpressionsc.ouoeeenenenennnn.. 363
dialog box 299
USIIG o oottt e e e e 146
examples 144
checking status of register. 148
checking the status of WDT 148
creatingalogmacro 149
execUserSetupooiiiininiin.. 55, 61
CXECULIMZ o vt vttt e ettt e 145
connecting to a breakpoint 149
using Quick Watch 148
using setup macro and setup file. 147

functions 122, 361

loop statementsc.c.ininiiiaan.. 363
MACIO STALEMENLS « « .« v v v v v et e e aen e 363
setup macro file
definitionof 145
EXECULING. . o vt ettt 147
setup macro function
definitionof 145
SUMMATY .« v v vvee e et et e et e e e e 366
system macros, summary of. 367
USING « ettt e 143
variables. 122,362
C-SPY Optionscouuinininininininnen.n. 349
definitionof L. 389
Extra Options.ot 351
forthe simulator. 159
in Options dialog boxX., 237
Plugins. i 351
SEUDP vttt 349
C-SPYLinK.o 8
C-style preprocessor, definitionof 389
C/C++ syntax styles, options 250
-d (cspybatoption)t 357
dat (filename extension)c.ouiui.... 18
databreakpointsovuiiiiiniii. 170
data model, definitionof............. 389
data pointers, definitionof 389
data representation, definitionof.................... 389
dbg (filename extension).c.ceuenennn.. 18
dbgt (filename extension)oeueuenn... 18
ddf (filename extension), 18
selecting device descriptionfile.................. 110
Debug info with terminal I/O (linker option) 289
debug information
generating inassembler 325
in compiler, generating 315
Debug information for C-SPY (linker option). 334

Index

Debug Log window context menu 218
Debug Log window (View menu) 217
Debugmenu......... ... i 297
debugger concepts, definitionsof 105
debugger drivers, simulator. 159
debugger system OVerviewcoon. 106
Debugger (IDE Options dialog box) 255
debugging projects

externally built applications. 111

in disassembly mode, example. 38
debugging, RTOS awareness.couuen... 9
declaration, definitionof.......................... 389
default installation path. 15
Default integer format (IDE option) 256
#define options (linker options) 337
#define statement, in compiler 318
Define symbol (linker option). 337
define (linker options)., 337
Defined symbols (assembler option). 326
Defined symbols (compiler option). 318
definition, definitionof 389
dep (filename extension).vuvenenenan.. 19
derivative, definitionof 390
description (interrupt property).o.ven.o.. 182
development environment, introduction 69
Device description file (C-SPY option). 350
device descriptionfiles 16, 110

definitionof L 390

specifying interrupts 373
device driver, definitionof 390
device selectionfiles............ 16
diagnostics

compiler

includinginlistfile......................... 316
SUPPIESSING .« v v ve ettt et 319

linker, SUppressingouiiiiian. 339
Diagnostics (assembler options) 327
Diagnostics (compiler options) 318
Diagnostics (linker options) 338

—e

405

406

digital signal processor, definitionof 390

AIreCtOTI@S .« v vt vttt 15
assembler, ignore standard include. 325
COMIMON . .\ vt ettt et e et e e et et e et eeees 17
compiler, ignore standard include 317
01 15

directory Structure.viiii i 15

Disable language extensions (compiler option). 311

__disableInterrupts (C-SPY system macro) 370

disassembly mode debugging, example 38

Disassembly window 271
CONEXEMENU &« + o v v ov et e e e et e et e e eeeeeanenn 272
definitionof 390

Discard Unused Publics (compiler option) 309

disclaimer. i ii

DLIB library functions, reference information 94

dni (filename extension) 19

Do not show this window at startup (Startup option)268

do (macro statement), 363

doc (subdirectory). ovv vt 16

dockable windows. 71

document cOnventions.ovuueuean.n.. XXX Vil

documentationiiiiiit . 15
assembler. 11
compiler. 11
linkero 12
online.ot 16-17
otherguides............. ..., XXXVii
OVEIVIEW .\ttt ettt et ens XXX1V
product. 21
thisguide.......... Xxxiii
XLIB .ot e 13

doc, common (subdirectory), 17

drag-and-drop
of files in Workspace window 79
textin editorwindow 95

Driver (C-SPY option)coiiininann.. 349

drivers (subdirectory)vuiiiiniin.. 16

__driverType (C-SPY systemmacro) 370

IAR Embedded Workbench® IDE
User Guide

DSP. See digital signal processor

dxx (filename extension).ouueuur.n.. 18
Dynamic Data Exchange (DDE).................... 100
calling external editor 248
dynamic initialization, definitionof 390
dynamic memory allocation, definitionof 390
dynamic object, definitionof 390
Edit Filename Extensions dialog box (Tools menu) 264
Edit Interrupt dialog box (Simulator menu) 181
Edit Memory Access dialogbox.................... 169
Editmenu......... i 221
editing source files, 93
edition, user guide. i ii
editor
codetemplatesot 97
CommMANdS . ..ot 95
customizing the environment. 100
external 100
features 5
indentation. 96
keyboard commands, .. 205
matching parentheses and brackets 97
OPLIONS .« v v vttt ettt e e e e 244
shortcut to functions. 99, 203
splitter controlst 202
status bar, uSing int 97
USIIG &« vttt et e 93
Editor Colors and Fonts (IDE Options dialog box). 250
Editor Font (Editor colors and fonts option) 250
Editor Setup Files (IDE Options dialog box) 249
editor setup files, options 249
Editorwindow 202
COMEXEMENU . o .o e vttt e et e e ee e 203
tab, conteXt Menu.c.ovuvenvenennennenn.. 203
Editor (External editor option) 248
Editor (IDE Options dialog box). 244

EEC++ syntax (compiler option) 310
EEPROM, definitionof. 390
Embedded C++
definitionof L. 390
syntax, enabling in compiler 310
Embedded C++ Technical Committee XXXVii
Embedded C++ (compiler option) 310
embedded system, definitionof 390
Embedded Workbench
editor . ..o 93
exiting from. i 71
layout. .. .ot 71
mainwindow, 70, 192
reference information. 191
TUNMINZ. « ot v ettt e e e e e e e e ee e 70
version number, displaying 267

Embedded Workbench Startup dialog box (Help menu) . . 267
emulator (C-SPY version)

definitionof L. 391

third-party 4
Enable graphical stack display and stack usage
tracking (Stackoption) 257
Enable multibyte support (assembler option) 323
Enable multibyte support (compiler option) 312
Enable remarks (compiler option). 319
Enable Virtual Space (editor option). 246
enabled transformations, in compiler 314
__enablelnterrupts (C-SPY system macro)............ 371
Enter Location (Breakpoints dialog box) 214
enumeration, definitionof. 391
environment variables, as argument variables. 234
EOL character (editoroption).c...vun... 245
EPROM, definitionof. 390
error messages

compiler. 320

linkero 339
__evaluate (C-SPY system macro) 371
ewd (filename extension) 19
ewp (filename extension) oL, 19
ewplugin (filename extension) 19

Index °

eww (filename extension) 19
the workspacefile L. 71
$EW_DIRS (argument variable). 233
Example applications (Startup option) 268
examples
breakpoints i 40
EXECUtiNZ UP O .« v vttt e 41
setting
using dialogbox. oL 59
USINZ MACTO .« v v v ve e et eaens 61
calling convention, examining 45
compiling. 30
C-SPYmacros.cooouiiniiiinannann.. 144
C/C++ and assembler, mixing 46
ddffile,using. ... 57
debuggingaprogram............ 35
disassembly mode debugging. 38
function calls, displayingin C-SPY 58
interrupts, USIiNg MaCro. . . .« v vv v e e e e 61
linking
acompiler program. 33
viewingthemapfile 34
macros
checking status of register. 148
checking statusof WDT 148
creatingalogmacro 149
for interrupts and breakpoints 61
using Quick Watch 148
Memory window, Uusingoueueeaen.n. 42
MEMOrY, MONILOTING. « .« vt v ettt e e e eee e 42
mixing C and assembler. 45
performing tasks without stopping execution. 132
project
addingfiles i 28
CIEALINE .« v v vt ettt e e e 25-26
reaching program exitcuenuen.n. 43
registers, monitoring 42
Scan for Changed Files (editor option), using 32
setting project Optionsc..euuennon.. 29

407

SEEPPING -« v v v et et e e 36

Terminal I/O, displaying 43
tracing incorrect function arguments 132
using libraries i, 63
variables
setting awatchpoint. 39
watchinginC-SPY 38
viewing assembler listfile 47
viewing compiler listfiles 31
workspace, creating anew 25
examples (subdirectory) 16
exceptions, definitionof 391
execUserExit (C-SPY setupmacro) 366
execUserFlashExit (C-SPY setup macro) 366
execUserFlashlnit (C-SPY setup macro). 366
execUserFlashReset (C-SPY setup macro) 366
execUserPreload (C-SPY setup macro). 366
execUserReset (C-SPY setupmacro) 366
execUserSetup (C-SPY setup macro) 366
example 55, 61
Executable (output directory) 304
executing a program up to a breakpoint 41
execution history, tracing 126
execution time, reducing. i 151
$EXE_DIRS (argument variable) 233
Exit(Filemenu) i, 71
exit, of user application. 117
expensive memory access, definitionof 391

expressions. See C-SPY expressions

Extended Embedded C++ syntax, enabling in compiler . . 310
extended keywords, definitionof 391
extended linker command line file. See linker command file
extensions. See filename extensions Or language extensions

External Editor (IDE Options dialog box). 247

external editor, using. 100

Extra Options
forassembler..........., 327
forcompiler........... i i 320
forC-SPY 351

IAR Embedded Workbench® IDE
User Guide

forlinker i 346
Extra Output (linker options) 336

F

factory settings

linker oo 348
restoring default settings 87
features
assembler. 11
[&0) 1) o3 1 < 9
CdItOr . vt 5
librarianov i e 13
source codecontrol i, 4
file extensions. See filename extensions
Filemenuo, 218
file types
device descriptioniiiiiiaan 16
specifying in Embedded Workbench. 110
deviceselection 16
documentationouuitiiitiiainann 16
AUIVEIS . oottt e 16
flash loader applications 16
header 16
include. 16
Hbraryoonini 16
linker command file templates. 16
117276 ¢ o O 109, 350
INAD v et ettt et e e e e 340
projecttemplates 16
readmeottt 16-17
special function registers description files 16
syntax coloring configuration. 16
filename extensions., 18
cfg, syntax highlighting 251
ddf, selecting device description file 110
eww, the workspacefile................ 71
mac
themacrofile 144

usingmacrofile 109

map, linker listing 21
otherthandefault.............................. 20
Filename Extensions dialog box (Tools menu) 263

Filename Extensions Overrides dialog box (Tools menu) . 264
files

addingtoaproject 28

checkinginandout 83

compiling, example 30

editingot 93

Navigating among.vvn vttt 79

readmehtm L il 21
$FILE_DIRS (argument variable)................... 233
$FILE_FNAMES (argument variable) 233
$FILE_PATHS (argument variable) 233
Fill dialog box (Memory window) 276
Fill pattern (linker option).c.c.oin.... 344
Fill unused code memory (linker option) 344
Filter Files (Register filter option). 259
Find dialog box (Editmenu)....................... 224
Find in Files dialog box (Edit menu). 226
Find in Files window

CONEEXEMENIUL . . o v ve vttt et e et e e eeeeeene 216
Find in Files window (View menu). 215
Find in Trace dialogbox. 164
Find in Trace window 164
Find Next (button)ciuiiirennan.n. 193
Find Previous (button), 193
Find (button). 193
first activation time (interrupt property) 182

definitionof 178
Fixed width font (IDE option). 241
flash loader applications 16
flash memory
loading externally built applicationsto............... 111
--flash_loader (cspybatoption) 357
floating windows 71
fmt (filename extension)n.. 19
font

Editor. 250

Index °

Fixedwidth 241
Proportional width 241
for (macro statement) 363
Forced Interrupt window (Simulator menu) 183
format specifiers, definitionof 391
Format (linker option)., 334
formats
assembler listfile.............................. 47
compiler listfile.......... 31
C-SPYinput.ot 8
linker output
default, overriding. 335-336
specifying 334
function calls, displayingin C-SPY 58
function level profiling 151
Function Trace (C-SPY window) 162
function trace, definitionof. 160
functions
C-SPY running to when starting 109, 350
intrinsic, definitionof. 392
shortcut to in editor windows. 99, 203
general OptionsSo vttt 303
definitionof 391
specifying, example., 29
Library Configuration 305
Library Options ovinn i 306
OULPUL &« o vttt et e 303
Stack/Heap optionscuvuienenan.. 307
Target. . oot 303
Generate browse information (IDE Project options). 254
Generate checksum (linker option) 344
Generate debug info (assembler option) 325
Generate debug information (compiler option) 315
Generate extra output file (linker option) 336
Generate linker listing (linker option). 340
generating extraoutputfile........................ 335

409

410

generic pointers, definitionof 391

gloSSary. . .o 387
Go to Bookmark (button) 193
Go to function (editor button) 99, 203
GoTo(button)c. i, 193
Go(button) 271
Go(Debugmenu)..........c.ouiniiiiiiiinn... 116
Group members (Register filter option) 259
Groups (Register filter option) 259
groups, definitionof L L L, 77
h (filename extension).c.ciuiren.... 19
Harvard architecture, definitionof 391
headerfiles i 16

quick acCesSt0. .. v v i 99
heap memory, definitionof 391
heap size, definitionof 392
Helpmenu i, 267
helpfiles (filename extension). 19
highlighting, inC-SPY 116
hold time (interrupt property)ooueueun... 182

definitionof 178
host, definitionof L ... 392
i(filename extension)iiitinntan... 19
IAR Assembler Reference Guide 22
IAR Compiler Reference Guide 21
IAR Linker and Library Tools Reference Guide 22
IAR Systems website. 22
iarbuild, building from the command line.............. 89
farchive options.o 356
TarldePm.exe.t 70
iconsinthisguide.......... XXXViii
IDE. . 3-4

definitionof i L 392

IAR Embedded Workbench® IDE
User Guide

if else (macro statement). 363
if (macro statement), 363
Ignore standard include directories (assembler option). . . 325
Ignore standard include directories (compiler option). . . .317

illegal memory accesses, checking for 166
immediate breakpoints oL 173
inc (filename extension)uut.n.. 19
inc (subdirectory)o 16
Include compiler call frame
information (compiler option). 316
includefiles. 16
assembler, specifyingpath...................... 325
compiler, specifyingpath. 317
definitionof i 392
linker, specifyingpath 343
Include source (compiler option) 316
Include suppressed entries (linker option). 341
Incremental Search dialog box (Edit menu) 227
Indent Size (editoroption) 244
indentation, ineditor., 96
information, product i 21
inherited settings, overriding. 86
ini (filename extension)c..ouiurnn.. 19
inline assembler, definitionof. 392
inlining, definitionof 392
input
redirecting to Terminal I/O window 289
special characters in Terminal I/O window 289
input formats, C-SPY i 8
Input Mode dialogbox 290
insertion point, shortcut key for moving 95
installation path, default 15
installed files.o i 15
documentation, 16-17
executable 17
include. ... 16
Bbraryt 16
instruction mnemonics, definitionof. 392
Integrated Development Environment (IDE). 3-4
definitionof L i 392

Intel-extended, C-SPY input format 8, 107
Internet, IAR Systems web site. 22
Interrupt Log window (Simulator menu). 185
Interrupt Setup dialog box (Simulator menu) 180
interrupt system, using device description file 180
interrupt vector table, definitionof 392
interrupt vector, definitionof 392
interrupts
adapting C-SPY system for target hardware 180
definitionof L L. 392
nested, definitionof 394
OPLIONS .« et ettt e 182
simulated, definitionof 177
timer,example i 186
USINg SYStemM MACIOS . . o v v vvvv e eeeeene 184
intrinsic functions, definitionof 392
intrinsic, definitionof 392
ISO/ANSI C, compiler adheringto. 311
italic style, in this guide XXXVii-XXXViil
ixx (filename extension), 19
Key bindings (IDE Options dialog box) 242
key bindings, definitionof 392
key summary, editor 205
keywords, definitionof 392
Label (c) (Configure auto indent option). 247
labels (assembler), viewing. 126
Language conformance (compiler option) 311
language extensions
definitionof L i L 393
disablingincompiler........... 311
language facilities, incompiler. 10
Language (assembler options). 323
Language (compiler options) 310

Index °

Language (IDE Options dialogbox)................. 243
Language (Language option) 243
layout, of Embedded Workbench 71
lib (subdirectory)coiuiriiiiia.. 16
librarian

documentation 22

features 13

options, definitionof 399

OVEIVIEW ...ttt 12
librarian. See XLIB
library

creating aprojectfor L L 64

definitionof L L L. 396

TUNLIME.ot 11
library builder

documentation 22

OVEIVIEW ...ttt 12

using for building libraries. 63
library builder options

definitionof L L L. 399

OULPUL .« o oot e 347
Library Configuration (general options) 305
Library file (general option) 305
library files 12,16
library functions

configurable. i 17

reference information. 94

library modules

eXample e 63
specifying in compiler 315
USIE « vttt et e 63
Library Options (general options). 306
Library (general option)c.oiuvunen.n. 305
lightbulb icon, in this guide. XXXViii
#line directives, generating
inassembler......... L .. 326
incompiler. i 318
Lines/page (linker option). 341

411

412

linker

command line version 69
diagnostics, SUPPressing.t 339
documentationi it 22
overriding defaultoutput 335-336
OVEIVIEW .\ vttt ettt e e et 11

linker command file

definitionof L 393
path, specifying i 343
specifyinginlinker, 342
specifyingin XLINK o oL 342
templates 16
Linker command file configurationtool 342
Linker command file (linker option). 342
linker list files
GENETALNG . . oottt e 340
including segmentmap 340
specifying lines perpage, 341
linker optionst 333
definitionof L 400
factory settings.t 348
Config .. oot 342
define....... ... oo 337
Diagnosticso 338
Extra Options. covt et 346
ExtraOutput, 336
List. oo 340
OUEPUL . o et 333
Processing i 344
With I/O emulation modules 334
linker symbols, defining 337
linking, example 33
list files
assembler. 47
compiler runtime information, including. 316
compiler
assembler mnemonics, including 316
example. 31
GENETALING . . . oottt et 316

IAR Embedded Workbench® IDE
User Guide

source code, including 316
linker
GENETALNG . . . o vt eee 340
including segmentmap 340
specifying lines perpage. 341
option for specifying destination 304
List (assembler options), 325
List (compiler options)t .. 316
List (linker options)c.coeuinininnnnenon. 340
$LIST_DIRS (argument variable). 233
Live Watchwindow 284
COMEXEMENU « . v v ettt et ettt et e eeeeeenes 285
Live watch (IDEoption), 256
local variables. See auto variables
Localswindowo, 283
COMEEXEMENIU « .« vovte ettt e et e e e eeeeeenes 284
location counter, definitionof 395
-log (iarbuild command line option) 89
Log File dialog box (Debug menu). 300
log (filename extension)ovienenon.. 19
logical address, definitionof....................... 399
loop statements, in C-SPY macros 363
Ist (filename extension).coovuirenn.n.. 19
L-value, definitionof 393
mac (filename extension)cocen... 19
themacrofile............., 144
usingamacrofile., 109
--macro (cspybat option). 357-358
Macro Configuration dialog box (Debug menu) 299
macro files, specifying 109, 350
Macro quote characters (assembler option). 324
MACTO SLALEMENES . . o\ vt vttt e e e e e eeeeenn 363
macros
definitionof 393
CXECULING o vt vttt et e ettt 145
R 2 1<) 11 361

USING « ettt e 143
MAGQC, definitionof 393
mailbox (RTOS), definitionof 393
main function, C-SPY running to when starting 109, 350
main.sxx (assembler tutorial file) 63
-make (iarbuild command line option) 89
Make before debugging (IDE Project options) 253
Managing ProjeCtS. . . .o vv vt n et en e 4
mapfiles...... 340

example 34

VIEWING .ot 34
map (filename extension)oienon.. 19

linker listing. i 21
maxmin.sxx (assembler tutorial file). 63
memory

fillingunused. i i 344

MONIOTING « . ¢ v ettt e e e 138

example. 42
memory access checking. 166, 168
memory access cost, definitionof. 394
Memory Access Setup dialog box (Simulator menu) 166
memory accesses, illegal. 166
memory area, definitionof 394
memory bank, definitionof. 394
MEMOTY MAP . « « et et et et e et e e eeeeenn 166

definitionof L. 394
memory model, definitionof. 394
Memory Restore dialogbox 278
Memory Save dialog box 277
memory usage, summary of 341
Memory Window.ovt it 273

CONEEXEMENIUL . . o\ v e e v et et e e e e e eeeeene 275

USIIE .« oottt et e e 138
MEMOTY ZONES . « « ¢ v e ettt e e ettt e e eeenn 137
MENUDAT. . ..o e 192

C-SPY-specific.coiiiii i 270
menu (filename extension) 19
Menu (Key bindings option) 242

Index

101S) 0L PP 218

specificto C-SPY. o 296
Messages window, amount of output 251
Messages (IDE Options dialogbox) 251
metadata (subdirectory) oL 18
microcontroller, definitionof 394
microprocessor, definitionof 394
migration, from earlier AR compilers 312
module map, inmapfiles 34
Module summary (linker option) 341
Module type (compiler option) 315
MODULE (assembler directive) 63
modules

definitionof i 394

including local symbols ininput 335
Module-local symbols (linker option). 335
Motorola, C-SPY input format 8, 107
Multiply and accumulate, definitionof. 393
multitasking, definitionof. 395
Navigate Backward (button) 193
NDEBUG, preprocessor symbol. 77
nested interrupts, definitionof 394
New Configuration dialog box (Project menu) 235
New Document (button) 193
New Group (Register filteroption) 259
Next Statement (button)c.. .. 271
No global type checking (linker option) 338
non-banked memory, definitionof 394
non-initialized memory, definitionof 394
non-volatile storage, definitionof 394
NOP, definitionof 394
object files, specifying output directory 304
OBJ_DIRS (argument variable) 233

—e

413

414

online documentation

available from Helpmenu 267
common, in directory. 17
target-specific, in directory, 16
onlinehelp 22
Open existing workspace (Startup option) 267
Open Workspace (Filemenu) 219
__openFile (C-SPY systemmacro). 372
Opening Brace (a) (Configure auto indent option) 247
operator precedence, definitionof. 394
operators, definitionof 394
optimizationlevels 313
Optimizations page (compiler options). 313
Optimizations (compiler option). 313
optimizations, effects on variables 123
options
typographic convention XXXVii
assembler. L i 323
compiler. 309
CustomBuild. 331
custombuild L 329
C-SPY .. 349
editor . ..o 244
general 303
general, specifying. 29
farchiveo 356
library builder 347
linkero 333
setup files foreditor. 249
Options dialog box (Projectmenu) 236
USIIE .« ottt ettt e e e e 86
__orderInterrupt (C-SPY system macro). 373
output
assembler
including debug information. 324
preprocessor, generating 326
compiler
including debug information. 315
preprocessor, generating 318

IAR Embedded Workbench® IDE
User Guide

formats. 334

debug (ubrof) 334
from C-SPY, redirectingtoafile 111
generating extrafile........... 335
linker
GENETALNG . . . v vttt 338
specifying filename. 333
specifying filename on extra output 336
Output assembler file (compiler option) 316
Output file (linker option) 333
Output format (linker option) 335-336
Output list file (compiler option) 316
Output (assembler option).coviion. .. 324
Output (compiler options).oovvven ... 314
Output (general options)o, 303
Output (library builder options) 347
Output (linker options) 333
-p (driver option).o 358
par (filename extension)vuuenenn.. 19
parameters, typographic convention XXXVii
parentheses and brackets, matching (in editor) 97
part number, of user guide ii
Paste (button)t 193
paths
assembler include files. 325
compiler include files. 317
linkerincludefiles 343
relative, in Embedded Workbench 79, 205
source files. 205
pbd (filename extension).oouuen... 20
pbi (filename extension)vuiinin... 20
peripheral units, definitions. 110
peripherals, definitionof. 395
pew (filename extension)coeuennn.. 20
pipeline, definitionof, 395
Plain ‘char’ is (compiler option) 311

Play a sound after build operations (IDE Project options). 254

plugin modules (C-SPY). 8
loading. ...t 110
Plugins (C-SPY options).oveiiienin .. 351
plugins (subdirectory). L. 17
plugins, common (subdirectory) 18
pointers, definitionof L. 395
__popSimulatorInterruptExecutingStack (C-SPY
SYSEEIM MACTO). « « « v v ev ettt e e e e e e eee e 373
powerpac (subdirectory) oo 17
#pragma directive, definitionof 395
precedence, definitionof. 394
preemptive multitasking, definitionof 395
Preinclude file (compiler option) 318
preprocessor

definition of. See C-style preprocessor
preprocessor directives

definitionof L i 395
text styleineditor L. 95
Preprocessor output to file (assembler option) 326
Preprocessor output to file (compiler option) 318
Preprocessor (assembler option) 325
preprocessor (compiler options) 317
prerequisites, programming experience. XXxxiii
Press shortcut key (Key bindings option) 242
Primary (Key bindings option) 242
Printf formatter (general option) 306
prj (filename extension), 20
probability (interrupt property)c....... 183
definitionof L i 178
Processing options (linker options). 344
processor variant, definitionof 395
product overview
assembler. L L i 11
compiler. 9
C-SPY Debugger. ...t 5
directory structureiiiiiien... 15
documentation 21
filetypes ... oo i 18
IAR Embedded WorkbenchIDE 3

Index °

librarian L 12
library builder 12
linker 11
profiling information. 151
Profiling window 292
USINE @ oottt e 151
program counter, definitionof. 395
program execution, inC-SPY 113
program location counter, definitionof............... 395
programming eXperience.oeieienen .. XXxiii
Project Make, options ci i 253
Projectmenu. i 231
projectmodel 75
project options, definitionof............ 395
Project page (IDE Options dialogbox)............... 253
projects
addingfilesto 78,231
example. 28
build configuration, creating 78
building 87
inbatches L L 87
compiling, example oo 30
CIEALINE « v vttt et ittt 26, 78
example. 64
definitionof, 76, 395
excluding groups and files 78
files
checkinginandout.......................... 83
TMOVING © oottt ettt e e e e 78
for debugging externally built applications 111
SrOUPS, CTEALNG . .« . v vttt ettt e et 78
MANAZING . . o v ottt ettt 4,75
OFANIZALION . . . o vttt et et 75
FEMOVING IeMSo\ttt e ens 78
SELtiNG OPLioNS . . . oot ittt 85
source code control, 82
EESHINE v oe ettt e e 88
version control Systems 82
workspace, creating 78

415

416

$PROJ_DIRS (argument variable) 233

$PROJ_FNAMES$ (argument variable) 233
$PROJ_PATHS (argument variable) 233
PROM, definitionof 395
Proportional width font (IDE option) 241
PUBLIC (assembler directive) 63

Q

qualifiers, definition of. See type qualifiers

Quick Search textbox............................ 193
Quick Watchwindow 285
executing C-SPY macros....................... 148
USIIE « vttt 125
Range checks (linker option) 339
Raw binary image (linker option) 343
__readFile (C-SPY system macro) 374
__readFileByte (C-SPY system macro) 374
reading guidelines. XXXiii
readmefiles............. L 16-17
readmehtm ool 21
__readMemoryByte (C-SPY system macro)........... 375
__readMemory16 (C-SPY system macro) 375
__readMemory32 (C-SPY system macro) 376
__readMemory8 (C-SPY system macro) 375
real-time operating system, definitionof. 396
real-time system, definitionof 396
Recent workspace (Startup option) 268
Redo(button), 193
reference information
C-SPYIDE i 269
QUIdES. . oo 21
IAR Embedded Workbench 191
typographic convention XXXViii
register constant, definitionof. 396
Register Filter (IDE Options dialogbox) 259

IAR Embedded Workbench® IDE
User Guide

TEZISTET GIOUPS . vttt et e e et 140
application-specific, defining. 141
predefined, enabling. 140

register locking, definitionof 396

register variables, definitionof 396

Register windowt 281
example 42
USINE @ oottt e 140

registered trademarks oL ii

__registerMacroFile (C-SPY system macro). 376

registers, definitionof 396

relativepaths. L 79, 205

Relaxed ISO/ANSI (compiler option). 311

release notes 17

Reload last workspace at startup (IDE Project options) . .254

relocatable segments, definitionof 396

remarks, compiler diagnostics. 319

Remove trailing blanks (editor option) 246

repeat interval (interrupt property) 182
definitionof L L. 178

Replace dialog box (Editmenu) 225

Replace (button) 193

Require prototypes (compiler option) 311

Reset All (Key bindings option) 243

Reset(button) i, 271

Reset (Debug menu), example 44

__resetFile (C-SPY system macro). 376

reset, definitionof 396

restoring default factory settings. 87

return (macro statement).outi..... 364

ROM-monitor, definitionof 107, 396

TOOt dITECLOTY . o v vttt e e e 15

Round Robin, definitionof 396

RTOS awareness debugging 9

RTOS awareness (C-SPY plugin module). 110

RTOS, definitionof. 396

Runto Cursor (button) 271

Run to Cursor, descriptionooon. 116

Runto (C-SPY option), 109, 350

runtime libraries L L Lo 11
definitionof L i 396
runtime model attributes
definitionof L 396
inmapfiles 34
rxx (filename extension), 20
R-value, definitionof 395
saturation arithmetics, definitionof. 397
Save All (button).t 193
Save All (Filemenu).covvin.... 220
Save As(Filemenu) 220
Save editor windows before building (IDE Project
OPLIONS) . & v ettt e e e e e e 253
Save workspace and projects before building (IDE
Project options).t 253
Save Workspace (Filemenu). 219
Save (button).t 193
Save (Filemenu). 220
Scan for Changed Files (editor option) 246
USIIE &« ottt ettt e e e e e 32
Scanf formatter (general option). 306
SCC. See source code control systems
scheduler (RTOS), definitionof 397
scope, definitionof L L. 397
scrolling, shortcutkey for............... 95
Search paths (linker option) 343
searching in editor windows 99
Segment map (linker option). 340
segment map, definitionof 397
Segment overlap warnings (linker option). 338
segment parts, including all in listfile. 341
segments
definitionof 397
overlap errors, reducing 338
range checks, controlling, 339
sectioninmapfiles 34

Index

Select SCC Provider dialog box (Project menu). 199
Select Statics dialog box (Statics window) 287
selecting text, shortcutkey for 95
semaphores, definitionof 397
Service (External editor option) 248
Set Log file dialog box (Debug menu) 298
__setCodeBreak (C-SPY system macro). 377
__setDataBreak (C-SPY system macro) 378
__setSimBreak (C-SPY system macro) 379
settings (directory)oi i 20
Setup macros (C-SPY option). 350
setup macros, in C-SPY. See C-SPY macros
Setup (C-SPY options)cociininia... 349
severity level, definitionof 397
SFR

definitionof 398

headerfiles. i 16
sfr (filename extension) 20
short addressing, definitionof...................... 397
Shortcut Keys. . .o vven e 95
Show Bookmarks (editor option) 246
Show Line Number (editor option) 245
Show right margin (editor option). 245
side-effect, definitionof 397
signals, definitionof 397
--silent (cspybatoption) 359
simulating interrupts, enabling/disabling 181
simulator

definitionof 398

features 9
Simulatormenu.ttt 160
SiZe OptiMIZAtion.ottt 313
Size (Breakpoints dialog) 172,211
SIZEOf . .o 121
skeleton code, definitionof........................ 398
Source Browser windowo..... 207

CONEXEMENU . . o\t v v et et et e e eieeeeennns 208

USINE « vt ettt et e e 81

—e

417

418

source code

including in compiler listfile. 316
templates 97
Source code color in Disassembly window (IDE option) . 256
Source Code Control context menu. 197
source code control SyStems 82
Source Code Control (IDE Options dialog box) 254
source code control, features. 4
source filepaths 79, 205
source files
addingtoaproject 28
editingot 93
managing in projectseeeienenen .. 77
__sourcePosition (C-SPY system macro) 380
special function registers (SFR)
definitionof L i 398
descriptionfiles 16
headerfiles. 16
using as assembler symbols 122
speed optimizationo i, 313
SIC (SUDAITeCtory) . . oottt 17
src, common (subdirectory) 18
stack frames, definitionof. 398
stack segments, definitionof............. 398
Stackwindow i 293
USIIE .« oottt et e e 138
Stack (IDE Options dialogbox) 257
Stack/Heap (general options) 307
static objects, definitionof 398
Static overlay map (linker option). 341
static overlay, definitionof 398
statically allocated memory, definitionof 398
Statics Window 285
CONEEXEMENUL . . o v ve ettt et e e e e e eeeaenen 286
StAtUS DAr. . . ot 194
stdin and stdout
redirecting to C-SPY window 118
redirectingtofile 118

IAR Embedded Workbench® IDE
User Guide

StepInto.o 271
descriptionovti i 115
exampleof L 38

Step into functions (IDE option). 256

StepOut ..ot 271
descriptionovti i 115

Step OVer ..ot 271
descriptionovti i 115

step points, definitionof 114

SEEPPING .+« v v vttt 114
definitionof L L L. 398
example 36

STL container expansion (IDE option) 256

Stop build operation on (IDE Project options) 253

Stop Debugging (button). 271

__strFind (C-SPY systemmacro) 380

Strict ISO/ANSI (compiler option) 311

strings, text styleineditor. L. 95

structure value, definitionof 398

__subString (C-SPY system macro) 381

support, technical L 22

Suppress all warnings (linker option) 339

Suppress download (C-SPY option) 159

Suppress these diagnostics (compiler option) 319

Suppress these diagnostics (linker option) 339

sxx (filename extension) 20

symbolic location, definitionof 398

Symbolic Memory window. 279
COMEEXEMENU « . v \ovt vttt et et e e e e e 280
toolbar 279

symbols
See also user symbols
defining in assembler. 326
defining in compiler. 318
defininginlinker 337
definitionof i 398
ininputmodules, 335
using in C-SPY expressions. 121

syntax coloring

configurationfiles 16

meditor 95
Syntax Coloring (Editor colors and fonts option) 250
Syntax Highlighting (editor option) 245
syntax highlighting, in editor window. 96
SYSEEIN TNACTOS. « « « v v v te et e e et e e e eaenens 361
Tab Key Function (editor option) 244
Tab Size (editor option).ovvivenvnen.. 244
Target options, specifying. 303
target system, definitionof 106
Target (general Options)ovueuenenenn.. 303
target, definitionof 398
$TARGET_BNAMES (argument variable). 233
$TARGET_BPATHS$ (argument variable). 233
$TARGET_DIRS (argument variable) 233
$TARGET_FNAMES$ (argument variable) 233
$TARGET_PATHS (argument variable) 233
task, definitionof, 398
tcl (filename extension).oovtinennenan... 20
technical support.t 22
Template dialog box (Editmenu) 228
tentative definition, definitionof.................... 399
Terminal [O LogFile 118
terminal I/O

definitionof 399

simulating 334
Terminal I/O Log File dialog box (Debug menu) 301
Terminal /O window 118, 289

exampleofusing, 43
Terminal I/O (IDE Options dialogbox) 260
terminology.o vt 387
testing,of code 88
thread, definitionof. 398
timer, definitionof 399
timeslice, definitionof 399

Index °

Toggle Bookmark (button) 193
Toggle Breakpoint (button). 193
toggle breakpoint, example. 40, 60
__toLower (C-SPY system macro) 381
tool chain
extending 89
specifying 26
Tool Output window 216
COMEXEMENU . . .o v ittt et e e e e e 217
toolbar
debug. ... oo 270
IDE .. 193
Trace 162
$TOOLKIT_DIRS (argument variable) 233
tools icon, inthis guide. XXX Vil
Toolsmenu............ 240
tools, user-configured oL 261
__toString (C-SPY systemmacro) 382
touch, open-source command line utility 88
__toUpper (C-SPY systemmacro) 382
Trace Expressions window 163
Trace window 161
toolbar 162
trace, definitionof. 125
trademarks ii
transformations, enabled in compiler 314
translation unit, definitionof. 399
trap, definitionof L ... 399
Treat all warnings as errors (compiler option). 320
Treat these as errors (compiler option) 320
Treat these as errors (linker option). 339
Treat these as remarks (compiler option) 319
Treat these as warnings (compiler option). 320
Treat these as warnings (linker option) 339
tutor (Subdirectory).o 17
type qualifiers, definitionof 399
Type (External editor option) 248
type-checking i 10, 12
disabling at link time 338

419

420

typographic conventions XXX Vil
UBROF. ... i 8, 11
definitionof 399
Undo (button)ovvii e 193
Universal Binary Relocatable Object Format. See UBROF
Use Code Templates (editor option) 249
Use Custom Keyword File (editor option) 249
Use External Editor (External editor option). 248
Use register filter (Register filter option) 259
user application, definitionof 106
User symbols are case sensitive (assembler option) 323
variables
AULO .« v ot ettt et e 387
effects of optimizations 123
information, limitationon 123
usSing in arguments.vovnvn vt 262
using in C-SPY expressions. 121
watching inC-SPY 124
example. 38
variance (interrupt property)veeenenen .. 182
definitionof 178
version control Systems. 82
version number, of Embedded Workbench 267
VIeW MeNUot 229
virtual address, definitionof 399
virtual space, definitionof 399
visualSTATE
pluginmodules for......... 8
volatile storage, definitionof 399
von Neumann architecture, definitionof. 399
vsp (filename extension). 20

IAR Embedded Workbench® IDE
User Guide

W

Warn when exceeding stack threshold (Stack option). . . . 258
Warn when stack pointer is out of bounds (Stack option) . 258

warnings
COMPIlEr. . oo v it 320
linker 339
Warnings/Errors (linker option) 339
Watchwindow 281
COMEXEMENU . ¢ .o v vv ettt et e e e 282
USING © ottt et 124
watchpoints
definitionof i 399
SCLIMG .« v\ttt 38
web sites, recommended. L Ll XXXVii
web site, [AR Systems 22
When source resolves to multiple function instances255
while (macro statement) 363
Windowmenu., 266
WINdOWSt 191
organizingonthescreen 71
specificto C-SPY. oo 269
With I/O emulation modules (linker option) 334
USING «vve ettt e 118
With runtime control modules (linker option). 334
Workspace window. i 194
CONEXEMENU .« . o\ vv v et e e e ee e e e 196, 209
drag-and-dropoffiles 79
example 27
workspaces
CIALNG . .o\ v ettt 26,78
USINE «ov ettt et e e 78
__writeFile (C-SPY systemmacro) 383
__writeFileByte (C-SPY system macro).............. 383
__writeMemoryByte (C-SPY system macro) 383
__writeMemory16 (C-SPY system macro)............ 384
__writeMemory32 (C-SPY system macro)............ 385
__writeMemory8 (C-SPY system macro)............. 384
wsdt (filename extension) 20

Index °

WWW.AALCOMI. .« o v vt ettt et e e et e ettt 22 $TARGET_FNAMES$ (argument variable) 233
$TARGET_PATHS (argument variable) 233
X $TOOLKIT_DIRS$ (argument variable) 233
% stack usage threshold (Stack option). 257
XAR Seelibrary builder -B (cspybatoption) i 356
xcl (filename extension)uiau... 20 -d (espybatoption) ... 357
xIb (filename eXtension)o.oouran. . 20 -p (driveroption). 358
XLIB Seelibrarian --backend (cspybatoption) 356
XLINK Seelinker --flash_loader (cspybatoption) 357
--macro (cspybatoption). 357-358
Z --silent (cspybatoption) 359
__cancelAlllnterrupts (C-SPY system macro) 368
zero-overhead loop, definitionof 400 —cancelInterrupt (C-SPY system macro). 369
zone __clearBreak (C-SPY systemmacro) 369
definition of 400 __closeFile (C-SPY systemmacro) 369
in C-SPY 137 __disablelnterrupts (C-SPY system macro) 370
__driverType (C-SPY systemmacro) 370
__enablelnterrupts (C-SPY system macro). 371
SY m b O I s __evaluate (C-SPY systemmacro) 371
fi C-SPY tat 1 [364
#define options (linker options) 337 —fmessage (macro statement)
#define statement, in compiler 318 __message (C-SPY macro statement). 364
T T e File (C-SPY system macro). 372
#line directives, generating in assembler. 326 —zfc:lrlrlltzﬁru ((C sz; rsn :s:z(r)l)lacro) 173
#line directives, generating in compiler 318 - . P Y L
#oraema directive. definition of 395 __popSimulatorInterruptExecutingStack (C-SPY
prag ’ abley 533 SYSEEIM MACTO). + ¢ v v ee et e e et e e eeeeen s 373
CUR_DIR (argument Varla. be) """""""""" 533 __readFile (C-SPY systemmacro) 374
$CUR_LINES (argument Yagla). 533 __readFileByte (C-SPY systemmacro) 374
$EW_DIRS (argument Vaﬂé 61") """""""""" 533 __readMemoryByte (C-SPY system macro)........... 375
$EXE_DIRS (argument varl.al;) ©) 533 __readMemory16 (C-SPY system macro) 375
$FILE_DIRS (argument varia le.) bl """"""""" 533 __readMemory32 (C-SPY system macro) 376
$£ii§‘§§%¥]€$ (argument VaEla €) e 533 __readMemory8 (C-SPY system macro) 375
$ - $ (argument ve.m;l €) s 533 __registerMacroFile (C-SPY system macro). 376
SLIST_DIRS (argument Vaflille) """""""""" 533 __resetFile (C-SPY system macro). 376
$OBJ_DIRS (argument varla% ;i) """""""""" 533 __setCodeBreak (C-SPY system macro). 377
$PROJ_DIRS$ (argument varia ef) l:;l """"""""" 533 __setDataBreak (C-SPY system macro) 378
$g§8§—§§?§ﬂ£$ (argument Vaglla € 533 __setSimBreak (C-SPY system macro) 379
$ - $ (argument variable) B .t.)l """"""" 533 __smessage (C-SPY macro statement) 364
STARGET_BNAMES (argument vapal ©)eie 533 __sourcePosition (C-SPY system macro) 380
$¥2§2E¥—E};§TH$ (argument y%;:llab € 533 __strFind (C-SPY systemmacro) 380
$ - $ (argument variable) __subString (C-SPY system macro) 381

421

__toLower (C-SPY system macro) 381

__toString (C-SPY systemmacro) 382
__toUpper (C-SPY system macro) 382
__writeFile (C-SPY system macro) 383
__writeFileByte (C-SPY system macro).............. 383
__writeMemoryByte (C-SPY system macro) 383
__writeMemory16 (C-SPY system macro)............ 384
__writeMemory32 (C-SPY system macro)............ 385
__writeMemory8 (C-SPY system macro). 384

IAR Embedded Workbench® IDE
422 User Guide

	Brief contents
	Contents
	Tables
	Figures
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Part 1. Product overview
	Part 2. Tutorials
	Part 3. Project management and building
	Part 4. Debugging
	Part 5. IAR C-SPY® Simulator
	Part 6. Reference information

	Other documentation
	Document conventions

	Part 1. Product overview
	Product introduction
	The IAR Embedded Workbench IDE
	An extensible and modular environment
	Features
	Project management
	Source code control
	Window management
	The text editor

	Documentation

	IAR C-SPY Debugger
	General C-SPY Debugger features
	Source and disassembly level debugging
	Single-stepping on a function call level
	Code and data breakpoints
	Monitoring variables and expressions
	Container awareness
	Call stack information
	Powerful macro system
	Additional general C-SPY Debugger features

	C-SPY plugin modules
	RTOS awareness
	IAR C-SPY Simulator
	Features

	Documentation

	IAR C/C++ Compiler
	Features
	Code generation
	Language facilities
	Type checking

	Runtime environment
	Documentation

	IAR Assembler
	Features
	Documentation

	IAR XLINK Linker
	Features
	Documentation

	IAR XAR Library Builder and IAR XLIB Librarian
	Features
	Documentation

	Installed files
	Directory structure
	Root directory
	The CPUNAME directory
	The cpuname\bin directory
	The cpuname\config directory
	The cpuname\doc directory
	The cpuname\drivers directory
	The cpuname\examples directory
	The cpuname\inc directory
	The cpuname\lib directory
	The cpuname\plugins directory
	The cpuname\powerpac directory
	The cpuname\src directory
	The cpuname\tutor directory

	The common directory
	The common\bin directory
	The common\config directory
	The common\doc directory
	The common\plugins directory
	The common\src directory

	The metadata directory

	File types
	files with non-default filename extensions

	Documentation
	The user and reference guides
	IAR Embedded Workbench® IDE User Guide
	IAR C/C++ Compiler Reference Guide
	IAR Assembler Reference Guide
	IAR Linker and Library Tools Reference Guide

	Online help
	IAR on the web

	Part 2. Tutorials
	Creating an application project
	Setting up a new project
	Creating a Workspace window
	Creating the new project
	Adding files to the project
	Setting project options

	Compiling and linking the application
	Compiling the source files
	Viewing the list file
	Linking the application
	Output format
	Linker command file
	Linker map file

	Viewing the map file

	Debugging using the IAR C-SPY® Debugger
	Debugging the application
	Starting the debugger
	Organizing the windows
	Inspecting source statements
	Inspecting variables
	Using the Auto window
	Setting a watchpoint

	Setting and monitoring breakpoints
	Executing up to a breakpoint

	Monitoring registers
	Monitoring memory
	Viewing terminal I/O
	Reaching program exit

	Mixing C and assembler modules
	Examining the calling convention
	Adding an assembler module to the project
	Setting up the project
	Viewing the assembler list file

	Using C++
	Creating a C++ application
	Compiling and linking the C++ application
	Setting a breakpoint and executing to it
	Looking at the function calls

	Printing the Fibonacci numbers

	Simulating an interrupt
	Adding an interrupt handler
	The application-a brief description
	Writing an interrupt handler
	Setting up the project

	Setting up the simulation environment
	Defining a C-SPY setup macro file
	Specifying C-SPY options
	Building the project
	Starting the simulator
	Specifying a simulated interrupt
	Setting an immediate breakpoint

	Simulating the interrupt
	Executing the application

	Using macros for interrupts and breakpoints

	Creating and using libraries
	Using libraries
	The Main.sxx program
	The library routines
	Creating a new project
	Creating a library project
	Using the library in your application project

	Part 3. Project management and building
	The development environment
	The IAR Embedded Workbench IDE
	The tool chain
	Running the IAR Embedded Workbench IDE
	Double-clicking the workspace filename

	Exiting

	Customizing the environment
	Organizing the windows on the screen
	Using docked versus floating windows
	Organizing windows

	Customizing the IDE
	Invoking external tools
	Adding command line commands

	Managing projects
	The project model
	How projects are organized
	Projects and workspaces
	Projects and build configurations
	Groups
	Source files

	Creating and managing workspaces
	Drag and drop
	Source file paths

	Navigating project files
	Viewing the workspace
	Displaying browse information

	Source code control
	Interacting with source code control systems
	Setting up an SCC project in the SCC client application
	Connecting projects in IAR Embedded Workbench
	Viewing the SCC states
	Configuring the source code control system

	Building
	Building your application
	Setting options
	Using the Options dialog box

	Building a project
	Building multiple configurations in a batch
	Using pre- and post-build actions
	Using pre-build actions for time stamping

	Correcting errors found during build
	Building from the command line

	Extending the tool chain
	Tools that can be added to the tool chain
	Adding an external tool

	Editing
	Using the IAR Embedded Workbench editor
	Editing a file
	Accessing reference information for DLIB library functions
	Using and customizing editor commands and shortcut keys
	Splitting the editor window into panes
	Dragging and dropping of text
	Syntax coloring
	Automatic text indentation
	Matching brackets and parentheses
	Displaying status information

	Using and adding code templates
	Enabling code templates
	Inserting a code template in your source code
	Adding your own code templates

	Navigating in and between files
	Searching

	Customizing the editor environment
	Using an external editor

	Part 4. Debugging
	The IAR C-SPY® Debugger
	Debugger concepts
	IAR C-SPY Debugger and target systems
	Debugger
	Target system
	User application
	IAR C-SPY Debugger systems
	ROM-monitor program
	Third-party debuggers

	The C-SPY environment
	An integrated environment

	Setting up the IAR C-SPY Debugger
	Choosing a debug driver
	Executing from reset
	Using a setup macro file
	Selecting a device description file
	Loading plugin modules
	The IAR C-SPY RTOS awareness plugin modules

	Starting the IAR C-SPY Debugger
	Executable files built outside of the IAR Embedded Workbench IDE
	Redirecting debugger output to a file

	Executing your application
	Source and disassembly mode debugging
	Executing
	Step
	Go
	Run to Cursor
	Highlighting
	Using breakpoints to stop
	Using the Break button to stop
	Stop at program exit

	Call stack information
	Terminal input and output
	Directing stdin and stdout to a file

	Working with variables and expressions
	C-SPY expressions
	C symbols
	Using sizeof

	Assembler symbols
	Macro functions
	Macro variables

	Limitations on variable information
	Effects of optimizations

	Viewing variables and expressions
	Working with the windows
	Using the Quick Watch window

	Using the trace system
	The Trace window and its browse mode
	Searching in the trace data

	Viewing assembler variables

	Using breakpoints
	The breakpoint system
	Defining breakpoints
	Toggling a simple code breakpoint
	Breakpoint icons

	Setting a breakpoint in the Memory window
	Defining breakpoints using the dialog box
	Tracing incorrect function arguments
	Performing a task with or without stopping execution

	Defining breakpoints using system macros
	Defining breakpoints at C-SPY startup using a setup macro file

	Viewing all breakpoints
	Using the Breakpoint Usage dialog box
	Breakpoint consumers

	Monitoring memory and registers
	Memory addressing
	Windows for monitoring memory and registers
	Using the Memory window
	Using the Stack window
	Detecting stack overflows
	Viewing the stack contents

	Working with registers
	Register groups
	Enabling predefined register groups
	Defining application-specific groups

	Using the C-SPY® macro system
	The macro system
	The macro language
	Example

	The macro file
	Setup macro file

	Setup macro functions

	Using C-SPY macros
	Using the Macro Configuration dialog box
	Registering and executing using setup macros and setup files
	Executing macros using Quick Watch
	Executing a macro by connecting it to a breakpoint

	Analyzing your application
	Function-level profiling
	Using the profiler
	Profiling information is displayed in the window.
	Viewing the figures
	Producing reports

	Code coverage
	Using Code Coverage
	Viewing the figures
	What parts of the code are displayed?
	Producing reports

	Part 5. IAR C-SPY® Simulator
	Simulator-specific debugging
	Simulator-specific menus
	Using the trace system in the simulator
	Trace window
	Trace toolbar
	Function Trace window
	Trace Expressions window
	Find In Trace window
	Find in Trace dialog box

	Memory access checking
	Memory Access setup dialog box
	Use ranges based on
	Use manual ranges
	Memory access checking
	Buttons

	Edit Memory Access dialog box
	Memory range
	Access type
	Cycle costs
	Cycle costs

	Using breakpoints in the simulator
	Data breakpoints
	Data breakpoints dialog box

	Immediate breakpoints
	Immediate breakpoints dialog box

	Breakpoint Usage dialog box

	Simulating interrupts
	The C-SPY interrupt simulation system
	Using the interrupt simulation system
	Target-adapting the interrupt simulation system
	Interrupt Setup dialog box
	Edit Interrupt dialog box
	Forced interrupt window
	C-SPY system macros for interrupts
	Defining simulated interrupts at C-SPY startup using a setup file
	Interrupt simulation in a multi-task system

	Interrupt Log window

	Simulating a simple interrupt

	Part 6. Reference information
	IAR Embedded Workbench® IDE reference
	Windows
	IAR Embedded Workbench IDE window
	Menu bar
	Toolbar
	Status bar

	Workspace window
	Toolbar
	The display area
	Workspace window context menu
	Source Code Control menu
	Source code control states

	Editor window
	Split commands
	Go to function
	Editor window tab context menu
	Editor window context menu
	Source file paths
	Editor key summary

	Source Browser window
	Source Browser window context menu

	Breakpoints window
	Breakpoints window context menu

	Build window
	Find in Files window
	Tool Output window
	Debug Log window

	Menus
	File menu
	Edit menu
	View menu
	Project menu
	Argument variables summary

	Tools menu
	Tools menu commands

	Common fonts options
	Key Bindings options
	Menu
	Command
	Press shortcut key
	Primary
	Alias
	Reset All

	Language options
	Language

	Editor options
	Tab Size
	Indent Size
	Tab Key Function
	EOL character
	Show right margin
	Syntax Highlighting
	Auto Indent
	Show Line Numbers
	Scan for Changed Files
	Show Bookmarks
	Enable Virtual Space
	Remove trailing blanks

	Configure Auto Indent dialog box
	Opening Brace (a)
	Body (b)
	Label (c)
	Sample code

	External Editor options
	Use External Editor
	Type
	Editor
	Arguments
	Service
	Command

	Editor Setup Files options
	Use Custom Keyword File
	Use Code Templates

	Editor Colors and Fonts options
	Editor Font
	Syntax Coloring

	Messages options
	Show build messages
	Log File
	Enable All Dialogs

	Project options
	Source Code Control options
	Keep items checked out when checking in
	Save editor windows before performing source code control commands

	Debugger options
	When source resolves to multiple function instances
	Source code color in Disassembly window
	Step into functions
	STL container expansion
	Live watch
	Default integer format

	Stack options
	Enable graphical stack display and stack usage tracking
	% stack usage threshold
	Warn when exceeding stack threshold
	Warn when stack pointer is out of bounds
	Stack pointer(s) not valid until reaching
	Warnings
	Limit stack display to

	Register Filter options
	Terminal I/O options
	Keyboard
	File
	Input Echoing
	Show target reset in Terminal I/O window

	Configure Tools dialog box
	Specifying command line commands or batch files

	Filename Extensions dialog box
	Filename Extension Overrides dialog box
	Edit Filename Extensions dialog box
	Configure Viewers dialog box
	Edit Viewer Extensions dialog box
	Window menu
	Help menu
	Embedded Workbench Startup dialog box
	Create new project in current workspace
	Add existing project to current workspace
	Open existing workspace
	Example applications
	Recent workspace
	Do not show this window at startup

	C-SPY® Debugger reference
	C-SPY windows
	Editing in C-SPY windows
	IAR C-SPY Debugger main window
	Menu bar
	Debug toolbar

	Disassembly window
	Toolbar
	The display area
	Disassembly context menu

	Memory window
	Toolbar
	The display area
	Memory window context menu

	Fill dialog box
	Memory Save dialog box
	Zone
	Start address
	Stop address
	File format
	Filename
	Save

	Memory Restore dialog box
	Zone
	Filename
	Restore

	Symbolic Memory window
	Toolbar
	The display area
	There are several different ways to navigate within the memory space:
	Symbolic Memory window context menu

	Register window
	Watch window
	Watch window context menu

	Locals window
	Locals window context menu

	Auto window
	Auto window context menu

	Live Watch window
	Live Watch window context menu

	Quick Watch window
	Quick Watch window context menu

	Statics window
	The display area
	Statics window context menu

	Select Statics dialog box
	Show all variables with static storage duration
	Show selected variables only

	Call Stack window
	Call Stack window context menu

	Terminal I/O window
	Code Coverage window
	Code coverage commands

	Profiling window
	Profiling commands
	Profiling columns

	Stack window
	The stack drop-down menu
	The graphical stack bar
	The Stack window columns
	The Stack window context menu

	C-SPY menus
	Debug menu

	General options
	Target
	Output
	Library Configuration
	Library Options
	Stack/Heap

	Compiler options
	Multi-file compilation
	Language
	C
	Embedded C++
	Extended Embedded C++
	Automatic

	Code
	Optimizations
	Output
	List
	Preprocessor
	Diagnostics
	Extra Options

	Assembler options
	Language
	Output
	List
	Preprocessor
	Diagnostics
	Extra Options

	Custom build options
	Build actions options
	Linker options
	Output
	Override default
	Debug information for C-SPY
	With runtime control modules
	With I/O emulation modules
	Buffered terminal output
	Allow C-SPY-specific extra output file
	Other
	Module-local symbols

	Extra Output
	#define
	Diagnostics
	Suppress all warnings
	Suppress these diagnostics
	Treat these as warnings
	Treat these as errors

	List
	Segment map
	Symbols
	Module summary
	Include suppressed entries
	Static overlay map
	File format
	Lines/page

	Config
	Processing
	Fill pattern
	Generate checksum

	Extra Options

	Library builder options
	Debugger options
	Setup
	Extra Options
	Plugins

	The IAR C-SPY Command Line Utility-cspybat
	Using C-SPY in batch mode
	Invocation syntax
	Parameters
	Example

	Output
	Using an automatically generated batch file

	IAR C-SPY command line options
	General cspybat options
	Options available for all C-SPY drivers
	Options available for the simulator driver
	Options available for the C-SPY hardware driver

	Descriptions of C-SPY command line options

	C-SPY® macros reference
	The macro language
	Macro functions
	Predefined system macro functions
	Macro variables
	Macro strings

	Macro statements
	Expressions
	Conditional statements
	Loop statements
	Return statements
	Blocks

	Formatted output

	Setup macro functions summary
	C-SPY system macros summary
	Description of C-SPY system macros

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols

